MATH 556 - EXERCISES 2

Not for assessment.

1. Suppose that X is a continuous rv with pdf f_{X} and characteristic function (cf) φ_{X}. Find $\varphi_{X}(t)$ if
(a)

$$
f_{X}(x)=\frac{1}{2}|x| \exp \{-|x|\} \quad x \in \mathbb{R}
$$

(b)

$$
f_{X}(x)=\exp \left\{-x-e^{-x}\right\} \quad x \in \mathbb{R} .
$$

(c)

$$
f_{X}(x)=\frac{1}{\cosh (\pi x)}=\frac{2}{e^{-\pi x}+e^{\pi x}}=\sum_{k=0}^{\infty}(-1)^{k} \exp \{-(2 k+1) \pi|x|\} \quad x \in \mathbb{R}
$$

Leave your answer as an infinite sum if necessary.
2. Find $f_{X}(x)$ if the cf is given by

$$
\varphi_{X}(t)=1-|t| \quad-1<t<1
$$

and zero otherwise.
3. Suppose that random variable Y has $\operatorname{cf} \varphi_{Y}$. Find the distribution of Y if
(a)

$$
\varphi_{Y}(t)=\frac{2(1-\cos t)}{t^{2}} \quad t \in \mathbb{R}
$$

(b)

$$
\varphi_{Y}(t)=\cos (\theta t) \quad t \in \mathbb{R} .
$$

for some parameter $\theta>0$.
4. By considering derivatives at $t=0$, and the implied moments, assess whether the function

$$
\varphi(t)=\frac{1}{1+t^{4}}
$$

is a valid cf for a pmf or pdf.
5. Suppose that X_{1}, \ldots, X_{n} are independent and identically distributed Cauchy rvs each with

$$
f_{X}(x)=\frac{1}{\pi} \frac{1}{1+x^{2}} \quad x \in \mathbb{R} \quad \varphi_{X}(t)=\exp \{-|t|\} \quad t \in \mathbb{R}
$$

Let continuous random variable Z_{n} be defined by

$$
Z_{n}=\frac{1}{\bar{X}}=\frac{n}{\sum_{j=1}^{n} X_{j}}
$$

Find an expression for $P_{Z_{n}}\left[\left|Z_{n}\right| \leq c\right]$ for constant $c>0$.
6. A probability distribution for $\mathrm{rv} X$ is termed infinitely divisible if, for all positive integers n, there exists a sequence of independent and identically distributed $\operatorname{rvs} Z_{n 1}, \ldots, Z_{n n}$ such that X and

$$
Z_{n}=\sum_{j=1}^{n} Z_{n j}
$$

have the same distribution, that is, the characteristic function of X can be written

$$
\varphi_{X}(t)=\left\{\varphi_{Z}(t)\right\}^{n}
$$

for some characteristic function φ_{Z}. Show that the $\operatorname{Gamma}(\alpha, \beta)$ distribution is infinitely divisible.
7. Prove that if f_{X} is pdf for a continuous random variable, then

$$
\left|\varphi_{X}(t)\right| \longrightarrow 0 \quad \text { as } \quad|t| \longrightarrow \infty .
$$

Use the fact that f_{X} can be approximated to arbitrary accuracy by a step-function; for each $\epsilon>0$, there exists a step-function $g_{\epsilon}(x)$ defined (for some K) as

$$
g_{\epsilon}(x)=\sum_{k=1}^{K} c_{k} \mathbb{1}_{A_{k}}(x)
$$

where $c_{k}, k=1, \ldots, K$ are real constants, and A_{1}, \ldots, A_{K} form a partition of \mathbb{R}, such that

$$
\int_{-\infty}^{\infty}\left|f_{X}(x)-g_{\epsilon}(x)\right| d x<\epsilon
$$

As previously defined, the function $\mathbb{1}_{A}(x)$ is the indicator function for set A

$$
\mathbb{1}_{A}(x)=\left\{\begin{array}{ll}
1 & x \in A \\
0 & x \notin A
\end{array} .\right.
$$

