MATH 556 - ASSIGNMENT 4

To be handed in not later than 11.59pm, 3rd December 2019. Please submit your solutions as pdf via myCourses.

- 1. Suppose X_1, \ldots, X_n are independent $Normal(\mu, \sigma^2)$ rvs. Denote by \overline{X} and s^2 the sample mean and sample variance statistics.
 - (a) Derive the distribution of the rv

$$T_1 = \frac{\overline{X} - \mu}{s/\sqrt{n}}$$

You may use without proof results from handouts concerning \overline{X} and s^2 , but must present details of the derivation for T_1 . 4 Marks

- (b) By first considering its form for fixed finite *n*, derive the *limiting distribution* of s², that is, the probability distribution of s² as n → ∞.
 Provide the approximation of s² as n → ∞.
- (c) Derive the limiting distribution of T_1 as $n \to \infty$.
- 2. Suppose that for positive integers n_1 and n_2 , rvs $V_1 \sim \chi^2_{n_1}$ and $V_2 \sim \chi^2_{n_2}$ are independent.
 - (a) Derive using multivariate transformation techniques the distribution of

$$T_2 = \frac{V_1/n_1}{V_2/n_2}.$$

Show full details of the calculation.

- (b) Identify the limiting distribution (as defined in Q1) of T_2 as $n_2 \rightarrow \infty$. 2 Marks
- 3. Suppose that X is a continuous random variable with cdf

$$F_X(x) = \mathbb{1}_{(0,\infty)}(x) \left(\frac{x^2}{1+x^2}\right)^n$$

where n is a positive integer.

- (a) Derive, for fixed $x \in \mathbb{R}$, $P_X[X > x]$
- (b) Describe, for fixed $x \in \mathbb{R}$, the behaviour of $P_X[X > x]$ as $n \longrightarrow \infty$.
- (c) Describe, for fixed $y \in \mathbb{R}$, the behaviour of $P_Y[Y > y]$ as $n \longrightarrow \infty$ if Y is the random variable defined by

$$Y = \frac{X}{\sqrt{n}}.$$

3 Marks

4 Marks

2 Marks

1 Mark 2 Marks