MATH 556 - ASSIGNMENT 3

To be handed in not later than 11.59pm, 15th November 2019. Please submit your solutions as pdf via myCourses.

1. Suppose that X and Y are positive, independent continuous random variables with cdfs F_{X} and F_{Y}. Show that

$$
P[X<Y]=\int_{0}^{1} F_{X}\left(F_{Y}^{-1}(t)\right) d t
$$

where F_{Y}^{-1} is the inverse function for the 1-1 function F_{Y}.
Hint: Sketch the region in the positive quadrant corresponding to the required probability. Recall that

$$
F_{X}(x)=\int_{0}^{x} f_{X}(t) d t
$$

2. Suppose that Z_{1} and Z_{2} are independent random variables each having an Exponential(1) distribution. Find the joint pdf of random variables Y_{1} and Y_{2} defined by

$$
Y_{1}=\frac{Z_{1}}{Z_{1}+Z_{2}} \quad Y_{2}=Z_{1}+Z_{2}
$$

5 Marks
Are Y_{1} and Y_{2} independent ? Justify your answer.
1 Mark
3. Consider the distribution for continuous random variable X with pdf specified via the two dimensional parameter $\theta=(\psi, \gamma)$ as

$$
f_{X}(x ; \psi, \gamma)=\mathbb{1}_{(0, \infty)}(x) \sqrt{\frac{1}{2 \pi \gamma x^{3}}} \exp \left\{-\frac{1}{2} \psi^{2} \gamma x+\psi-\frac{1}{2 \gamma x}\right\}
$$

for $\psi, \gamma>0$ and
(a) Is this a location-scale family distribution ? Justify your answer.

2 Marks
(b) Is this an Exponential Family distribution ? Justify your answer.
(c) For this model, the result concerning the expected score holds, that is

$$
\mathbb{E}_{X}[\mathbf{S}(X ; \theta)]=\mathbf{0} \quad(2 \times 1)
$$

where

$$
\mathbf{S}(x ; \theta)=\binom{S_{1}(x ; \theta)}{S_{2}(x ; \theta)}=\binom{\frac{\partial}{\partial \psi} \log \left\{f_{X}(x ; \psi, \gamma)\right\}}{\frac{\partial}{\partial \gamma} \log \left\{f_{X}(x ; \psi, \gamma)\right\}}
$$

Using this result, find $\mathbb{E}_{X}[X]$ and $\mathbb{E}_{X}[1 / X]$
4 Marks

