1.

$$
\begin{array}{rlr}
P_{X, Y}[X<Y] & =\int_{-\infty}^{\infty} \int_{-\infty}^{y} f_{X, Y}(x, y) d x d y=\int_{0}^{\infty} \int_{0}^{y} f_{X}(x) f_{Y}(y) d x d y & \\
& =\int_{0}^{\infty} F_{X}(y) f_{Y}(y) d y & \text { by definition of } F_{X} \\
& =\int_{0}^{1} F_{X}\left(F_{Y}^{-1}(t)\right) f_{Y}\left(F_{Y}^{-1}(t)\right) \frac{d F_{Y}^{-1}(t)}{d t} d t & \text { setting } t=F_{Y}(y) \\
& =\int_{0}^{1} F_{X}\left(F_{Y}^{-1}(t)\right) d t &
\end{array}
$$

as

$$
\frac{d F_{Y}^{-1}(t)}{d t}=\frac{1}{f_{Y}\left(F_{Y}^{-1}(t)\right)}
$$

using implicit differentiation.
6 Marks
2. The joint pdf of Z_{1} and Z_{2} is

$$
f_{Z_{1}, Z_{2}}\left(z_{1}, z_{2}\right)=\mathbb{1}_{(0, \infty)}\left(z_{1}\right) \mathbb{1}_{(0, \infty)}\left(z_{2}\right) \exp \left\{-\left(z_{1}+z_{2}\right)\right\} .
$$

The inverse transformations are given by

$$
Z_{1}=Y_{1} Y_{2} \quad Z_{2}=\left(1-Y_{1}\right) Y_{2}
$$

and Y_{1} has support $(0,1)$, with Y_{2} having support $(0, \infty)$. The Jacobian is therefore

$$
\left|\left[\begin{array}{ll}
\frac{\partial z_{1}}{\partial y_{1}} & \frac{\partial z_{1}}{\partial y_{2}} \\
\frac{\partial z_{2}}{\partial y_{1}} & \frac{\partial z_{2}}{\partial y_{2}}
\end{array}\right]\right|=\left|\left[\begin{array}{cc}
y_{2} & y_{1} \\
-y_{2} & 1-y_{1}
\end{array}\right]\right|=y_{2}
$$

so therefore, using the transformation theorem, we have that

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=\mathbb{1}_{(0,1)}\left(y_{1}\right) \mathbb{1}_{(0, \infty)}\left(y_{2}\right) \exp \left\{-\left(y_{1} y_{2}+\left(1-y_{1}\right) y_{2}\right\}=\mathbb{1}_{(0,1)}\left(y_{1}\right) \mathbb{1}_{(0, \infty)}\left(y_{2}\right) y_{2} \exp \left\{-y_{2}\right\}\right.
$$

We can then spot that

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2}}\left(y_{2}\right) \quad\left(y_{1}, y_{2}\right) \in \mathbb{R}^{2}
$$

where

$$
\begin{aligned}
& f_{Y_{1}}\left(y_{1}\right)=\mathbb{1}_{(0,1)}\left(y_{1}\right) \\
& f_{Y_{2}}\left(y_{2}\right)=\mathbb{1}_{(0, \infty)}\left(y_{2}\right) y_{2} \exp \left\{-y_{2}\right\}
\end{aligned}
$$

that is, $Y_{1} \sim \operatorname{Uniform}(0,1)$ and $Y_{2} \sim \operatorname{Gamma}(2,1)$.
Alternately, we can deduce using mgfs that $Y_{2} \sim \operatorname{Gamma}(2,1)$ as it is the sum of two independent Exponential(1) rvs, and then note that by symmetry of form Y_{1} and $1-Y_{1}$ must have the same distribution, which for a rv on $(0,1)$ ensures that the distribution of Y_{1} is $\operatorname{Uniform}(0,1)$. 5 Marks
Y_{1} and Y_{2} are independent, as the joint pdf factorizes into a product of the two marginal pdfs and the support of the joint pdf is the Cartesian production $(0,1) \times \mathbb{R}^{+}$.
3. We have

$$
f_{X}(x ; \psi, \gamma)=\mathbb{1}_{(0, \infty)}(x) \sqrt{\frac{1}{2 \pi \gamma x^{3}}} \exp \left\{-\frac{1}{2} \psi^{2} \gamma x+\psi-\frac{1}{2 \gamma x}\right\}
$$

for $\psi, \gamma>0$ and
(a) This is NOT a location-scale family. For the family to be a location-scale family, we must be able to make a transform of the form

$$
Z=\frac{X-\mu}{\sigma}
$$

with the result that the distribution of Z does not depend on any parameters. The presence of the $1 / x$ term renders the required linear transformation impossible.

2 Marks
(b) This IS an Exponential Family distribution; we may write the transparent parameterization

$$
f_{X}(x ; \psi, \gamma)=h(x) \exp \left\{\left(c_{1}\left(\theta_{1}\right), c_{2}\left(\theta_{2}\right)\binom{T_{1}(x)}{T_{2}(x)}-A(\theta)\right\}\right.
$$

where

- $h(x)=\mathbb{1}_{(0, \infty)}(x) x^{-3 / 2}(2 \pi)^{-1 / 2}$
- $T_{1}(x)=x, T_{2}(x)=1 / x$.
- $c_{1}(\theta)=-\frac{1}{2} \psi^{2} \gamma$ and $c_{2}(\theta)=-\frac{1}{2 \gamma}$.
- $A(\theta)=-\psi+\frac{1}{2} \log \gamma$.

2 Marks
(c) Using the score result,we see that

$$
\mathbb{E}_{X}\left[\frac{\partial c_{1}(\theta)}{\partial \psi} X+\frac{\partial c_{2}(\theta)}{\partial \psi} \frac{1}{X}\right]=\frac{\partial A(\theta)}{\partial \psi}
$$

and

$$
\mathbb{E}_{X}\left[\frac{\partial c_{1}(\theta)}{\partial \gamma} X+\frac{\partial c_{2}(\theta)}{\partial \gamma} \frac{1}{X}\right]=\frac{\partial A(\theta)}{\partial \gamma}
$$

or equivalently

$$
\mathbb{E}_{X}\left[-\psi \gamma X+0 \frac{1}{X}\right]=-1 \quad \therefore \quad \mathbb{E}_{X}[X]=\frac{1}{\psi \gamma}
$$

and

$$
\mathbb{E}_{X}\left[-\frac{1}{2} \psi^{2} X+\frac{1}{2 \gamma^{2}} \frac{1}{X}\right]=\frac{1}{2 \gamma} \quad \therefore \quad \mathbb{E}_{X}\left[\frac{1}{X}\right]=\gamma+\psi \gamma
$$

4 Marks
Note that we may further rewrite the density

$$
f_{X}\left(x ; \phi_{1}, \phi_{2}\right)=\mathbb{1}_{(0, \infty)}(x) \sqrt{\frac{\phi_{1}}{2 \pi x^{3}}} \exp \left\{-\frac{\phi_{1}}{2} \frac{\left(x-\phi_{2}\right)^{2}}{\phi_{2}^{2} x}\right\}
$$

where

$$
\phi_{1}=\frac{1}{\gamma} \quad \phi_{2}=\frac{1}{\psi \gamma}
$$

rendering

$$
\mathbb{E}_{X}[X]=\phi_{2} \quad \mathbb{E}_{X}\left[\frac{1}{X}\right]=\frac{1}{\phi_{1}}+\frac{1}{\phi_{2}}
$$

