MATH 556 - ASSIGNMENT 2

To be handed in not later than 11.59pm, 27th October 2019. Please submit your solutions as pdf via myCourses.

1. Suppose that X has a finite mixture distribution with cdf

$$
F_{X}(x)=\sum_{k=1}^{K} \omega_{k} F_{k}(x) \quad x \in \mathbb{R}
$$

where K is a positive integer, F_{1}, \ldots, F_{K} are distinct cdfs, and $\omega_{1}, \ldots, \omega_{K}$ satisfy

$$
0<\omega_{k}<1 \quad \text { for all } k \quad \sum_{k=1}^{K} \omega_{k}=1
$$

Find the characteristic function (cf) for X in terms of the cfs corresponding to F_{1}, \ldots, F_{K}. 4 Marks
2. A sufficient condition for a distribution defined on \mathbb{R} to be (absolutely) continuous is that its cf $\varphi(t)$ satisfies

$$
\int_{-\infty}^{\infty}|\varphi(t)| d t<\infty .
$$

where $|\varphi(t)|$ is the modulus of the complex-valued quantity $\varphi(t)$. By finding a suitable counterexample, show that this is not a necessary condition for (absolute) continuity. That is, find an (absolutely) continuous distribution with cf $\varphi(t)$ for which

$$
\int_{-\infty}^{\infty}|\varphi(t)| d t=\infty
$$

4 Marks
3. Suppose that of $\varphi_{X}(t)$ takes the form

$$
\varphi_{X}(t)=\frac{1}{2}(\cos (t)+\cos (\pi t)) .
$$

(a) Is the distribution of X (absolutely) continuous ? Justify your answer.

2 Marks
(b) Comment on the finiteness or existence of $\mathbb{E}_{X}\left[X^{r}\right]$ for $r \geq 1$.

4. Compute

(a) The first four cumulants of the $\operatorname{Poisson}(\lambda)$ distribution.

2 Marks
(b) The first three cumulants of the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution.
5. Consider the function

$$
\varphi(t)=\frac{1}{\left(1+2 t^{2}+t^{4}\right)}
$$

Assess whether this function is a valid cf, and if it is valid, describe in as much detail as possible the distribution to which it corresponds.

4 Marks

