MATH 556 - ASSIGNMENT 1

To be handed in not later than 11.59pm, 29th September 2019. Please submit your solutions as pdf via myCourses.

1. Find the quantile function, $Q_{X}(p)$ for $0<p<1$, for the following cases:
(a) X is distributed as $W \operatorname{eibull}(3,2)$ (in the parameterization of the Distributions Formula Sheet).

2 Marks
(b) X has the discrete distribution with

$$
f_{X}(x)=c \mathbb{1}_{\{1,2, \ldots, 10\}}(x) \quad x \in \mathbb{R}
$$

for some c to be determined.
2 Marks
(c) X has the distribution with

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} & 0 \leq x<1 \\
\frac{3}{4} & x=1 \\
(1-c \exp (-(x-1)) & x>1
\end{array}\right.
$$

for some c to be determined.
4 Marks
2. Suppose that X has a standard Normal distribution, $X \sim \operatorname{Normal}(0,1)$ with pdf

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\} \quad x \in \mathbb{R}
$$

Compute and sketch (or plot) the pdfs of the random variables
(a) $Y_{1}=X^{2} \quad 1$ Mark
(b) $Y_{2}=|X|$ 1 Mark
(c) $Y_{3}=2 X-X^{2} \quad 2$ Marks
(d) $Y_{4}=F_{X}(X)$, where $F_{X}($.$) is the cdf of X$. 2 Marks
3. Suppose that X is a continuous random variable with support $\mathbb{X}=\mathbb{R}$, and with $\operatorname{cdf} F_{X}(x)$. Suppose that Y is a transformed variable given by

$$
Y=\left\{F_{X}(X)\right\}^{k}
$$

for positive integer k. Find the expectation of Y.
3 Marks
4. A random rectangle is to be defined in the following way: one corner is anchored at the origin, the next corner is at $(X, 0)$, the next corner is at (X, Y) and the final corner is at $(0, Y)$, where X and Y are continuous random variables, independently drawn from the Exponential(2) distribution (using the parameterization from the Distribution Formula Sheet).

Find the expectation of the area of the random rectangle.

