MATH 556 - ASSIGNMENT 1 - Solutions

1. (a) We have in general that

$$
F_{X}(x)=1-\exp \left\{-\beta x^{\alpha}\right\} \quad x>0
$$

with $F_{X}(0)=0$ for $x \leq 0$. Therefore, by direct calculation

$$
Q_{X}(p)=\left\{-\frac{1}{\beta} \log (1-p)\right\}^{1 / \alpha} \quad 0<p<1
$$

2 Marks
(b) We deduce directly that $c=1 / 10$, and hence that

$$
F_{X}(x)=\left\{\begin{array}{cc}
0 & x<1 \\
\frac{\lfloor\min \{x, 10\}\rfloor}{10} & x \geq 1
\end{array} .\right.
$$

Hence

$$
Q_{X}(p)=\lceil 10 p\rceil \quad 0<p<1 .
$$

(c) By right-continuity at $x=1$ we must have

$$
\frac{3}{4}=1-c \quad \Longrightarrow \quad c=\frac{1}{4}
$$

so therefore

$$
Q_{X}(p)=\left\{\begin{array}{cc}
0 & 0<p \leq 0.5 \\
1 & 0.5<p \leq 0.75 \\
1-\log (4(1-p)) & 0.75<p<1
\end{array}\right.
$$

2. (a) For $y>0$

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{X}\left[X^{2} \leq y\right]=P_{Y}[-\sqrt{y} \leq X \leq \sqrt{y}]=F_{X}(\sqrt{y})-F_{X}(-\sqrt{y})
$$

so therefore by differentiation, for $y>0$

$$
f_{Y}(y)=\frac{1}{2 \sqrt{y}} f_{X}(\sqrt{y})+\frac{1}{2 \sqrt{y}} f_{X}(-\sqrt{y})=\frac{1}{\sqrt{y}} f_{X}(\sqrt{y})
$$

as $f_{X}($.$) is symmetric around zero. That is$

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi y}} \exp \left\{-\frac{y}{2}\right\} \quad y>0
$$

and zero otherwise.
1 Mark
(b) For $y>0$

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{X}[|X| \leq y]=P_{Y}[-y \leq X \leq y]=F_{X}(y)-F_{X}(-y)
$$

so therefore by differentiation, for $y>0$

$$
f_{Y}(y)=f_{X}(y)+f_{X}(-y)=2 f_{X}(y)
$$

as $f_{X}($.$) is symmetric around zero. That is$

$$
f_{Y}(y)=\frac{2}{\sqrt{2 \pi}} \exp \left\{-\frac{y^{2}}{2}\right\} \quad y>0
$$

and zero otherwise.
1 Mark
(c) We have
$F_{Y}(y)=P_{Y}[Y \leq y]=P_{X}\left[2 X-X^{2} \leq y\right]=P_{X}\left[X^{2}-2 X+y \geq 0\right]=P_{X}\left[\left(X-a_{1}(y)\right)\left(X-a_{2}(y)\right) \geq 0\right]$
say, where

$$
\left(a_{1}(y), a_{2}(y)\right)=\frac{2 \pm \sqrt{4(1-y)}}{2}=1 \pm \sqrt{1-y}
$$

provided $y \leq 1$; if $y>1, P_{X}\left[X^{2}-2 X+y \geq 0\right]=1$. Thus for $y<1$,

$$
F_{Y}(y)=P_{X}\left[X \leq a_{1}(y)\right]+P_{X}\left[X \geq a_{2}(y)\right]=F_{X}\left(a_{1}(y)\right)+1-F_{X}\left(a_{2}(y)\right)
$$

and hence

$$
f_{Y}(y)=\frac{1}{2 \sqrt{1-y}} f_{X}(1-\sqrt{1-y})+\frac{1}{2 \sqrt{1-y}} f_{X}(1+\sqrt{1-y})
$$

2 Marks
(d) The function $F_{X}($.$) maps onto (0,1)$, so for $0<y<1$

$$
F_{Y}(y)=P_{Y}[Y \leq y]=P_{X}\left[F_{X}(X) \leq y\right]=P_{X}\left[X \leq F_{X}^{-1}(y)\right]=F_{X}\left(F_{X}^{-1}(y)\right)=y
$$

so therefore

$$
f_{Y}(y)=1 \quad 0<y<1
$$

and zero otherwise.

3. We have

$$
\mathbb{E}_{Y}[Y] \equiv \mathbb{E}_{X}\left[\left\{F_{X}(X)\right\}^{k}\right]=\int_{-\infty}^{\infty}\left\{F_{X}(x)\right\}^{k} f_{X}(x) d x=\left[\frac{1}{k+1}\left\{F_{X}(x)\right\}^{k+1}\right]_{-\infty}^{\infty}=\frac{1}{k+1} .
$$

3 Marks
4. We have that the area is a continuous random variable Z given by $Z=X Y$. Then, by first principles of expectations

$$
\begin{aligned}
\mathbb{E}_{Z}[Z] & =\int_{0}^{\infty} z f_{Z}(z) d z \\
& \equiv \int_{0}^{\infty} \int_{0}^{\infty} x y f_{X, Y}(x, y) d x d y \\
& =\left\{\int_{0}^{\infty} x f_{X}(x) d x\right\}\left\{\int_{0}^{\infty} y f_{Y}(y) d y\right\} \quad \text { by independence } \\
& =\mathbb{E}_{X}[X] \mathbb{E}_{Y}[Y]=\frac{1}{2} \times \frac{1}{2}=\frac{1}{4} .
\end{aligned}
$$

