556: MATHEMATICAL STATISTICS 1
ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {X,,} for large n, we
attempt to find sequences of constants {a,,} and {b,,} such that

T = an X + by~ Z
where Z has some distribution characterized by cdf Fz. Then, for large n, Fz, (2) = Fz(z), so
Fx, (z) = P[X,, < z| = Plap X, + by, < anx + by| = Fz, (anx + by) = Fz(apx + by).

EXAMPLE Suppose that X1, X»,..., X, areii.d. such that X; ~ Exp(1), and let
Y, = max{X1, Xs,..., X, }. Then by a previous result, for y > 0,

Fy,(y) = {Fx(y)}"={1-eY}" —0

and there is no limiting distribution. However, if we take a,, = 1 and b,, = —logn, and set
Zp = apnYn + by, thenas n — oo,

Fz,(2) = P[Z,<z]=PlY, <z+logn]={1—e8"" _; exp{—e?} = Fy(2),
Fy (y) = PIY,<y|=P[Z,<y—logn|=Fz(y—logn)= exp{—e*yﬂog"} = exp{—ne Y}

and by differentiating, for y > 0
fy, (y) = ne”¥ exp{—neY}.
This can be compared with the exact version, for y > 0

fru(y) =ne”¥(1 —e¥)" L.

The figure below compares the approximations for n = 50, 100, 500, 1000. Solid lines use the exact
formula, dotted lines use the approximation, histograms are 5000 simulated values.
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DEFINITION (Asymptotic Normality)
A sequence of random variables { X, } is asymptotically normally distributed as n — oo if there
exist sequences of real constants {u,, } and {0, } (with o, > 0) such that

X, —
S e 4, 7 N(O,1).

On
The notation X, ~ N (,,,02) or X,, ~ AN (u,,,02) as n — oo is commonly used.
DEFINITION (Stochastic Order Notation)
e For random variable Z, we write Z = O,(1) if for all € > 0, there exists M < oo such that
P[|Z| > M] <.

e For sequence {Z,}, write Z, = O,(1) if for all n, P[|Z,| > M| < ¢, and write Z,, = O,(S,,) for
sequence of random variables {5, } if
1Zn] _
S|
Note that this includes the case where S,, is a sequence of reals, rather than random variables.
Finally, write Z,, = o,(1) if Z,, L.0,and Z,, = 0p(Sy) if
| Zn|
= 0,(1).
K

Note that O,(1)o,(1) = 0,(1) and O, (1) + 0,(1) = Op(1).

0,(1).

LEMMA
Suppose {X,,} are a sequence of rvs, and that for real sequence {a,} with a,, — oo asn — oo,

(i) for real constant xy and random variable V, a,, (X, — z0) 4, V;
(ii) real function g is differentiable at x(, with derivative g.

Then
an(9(Xn) — g(w0)) L+ §wo)V

Proof. Note first that for every e > 0, there exists 6 > 0 such that

[z —wol <6 = [g(x) = g(x0) = g(wo) (2 — x0)| < €| — o]
Now, from (i) we have

an(Xn—20) =0p(1) = Xp—m0=0y(a,") = 0p(1)

as a, — oo. Therefore, by definition, for every 6 > 0, P[|X,, — 29| < §] — 1, and therefore from
above, for every € > 0,

Pllg(Xn) — g(x0) — §(x0) (X5 — 20)| < €[ X5 — z0]] — 1.

Hence
an(9(Xn) — g(z0) — g(0)(Xn — 0)) = 0p(an(Xn — 20)) = 0p(1)
Therefore
an(9(Xn) — g9(w0)) = g(z0){an(Xn — 20)} + 0p(1)
and hence

an(9(Xn) — g(w0)) ~ g(ao)V.



THEOREM (The Delta Method)
Consider sequence of random variables { X, } such that

V(X — p) -5 X

Suppose that g(.) is a function such that first derivative §(.) is continuous in a neighbourhood of ,
with g(u) # 0. Then

In particular, if
V(X = i) =5 X ~ N(0,07).

then .
Vi(g(Xn) = g(p)) = (1) X ~ N(0,{g(n)}*0?).

Proof. Using the Lemma above, with a,, = /n,zo = p,V = X, we have that

Valg(Xa) = g(1) = Gl)Va(Xn — ) -5 §(u) X

and if X ~ N(0,0?), it follows from the properties of the Normal distribution that

Vi(g(Xa) — g(1) ~L N (0, {3(1)}202).

Note that this method does not give a useful result if (x) = 0.

Multivariate Version: Consider a sequence of random vectors {X,,} such that

d
VX, — p) — X.
and g : R¥ — R9 is a vector-valued function with first derivative matrix g(.) which is continuous in a
neighbourhood of p, with g(p) # 0. Note that g can be considered as a d x 1 vector of scalar functions.

g(x) = (91(x),...,9a(x)) "

Note that g(x) is a (d x k) matrix with (4, j)th element

0g;(x)
81,‘]'

Under these assumptions, in general

and in particular, if
Vil(Xy = ) =5 X~ N(0,3).

where ¥ is a positive definite, symmetric k& x k matrix, then

Vilg(Xa) — (1) 5 &)X ~ N (0,8(w)Ts(w)T).



THEOREM (The Second Order Delta Method: Normal case)
Consider sequence of random variables { X, } such that
Vi(Xn — 1) =5 N(0,0%),

Suppose that ¢(.) is a function such that first derivative ¢(.) is continuous in a neighbourhood of 4,
with ¢(p) = 0, but second derivative exists at ;1 with §(u) # 0. Then

n(9(Xn) — g(n) % o

9 5
2

where X ~ 2.

Proof. Uses a second order Taylor approximation; informally

0(%) = ) + 5 (X — ) + T (06, — )2 4 0, (1)

thus, as g(u) =0,

9(Xn) = g(n) = =~ (Xn — )" + 0p(1)
and thus
(o) — () = P [V, - 2 L 28 2
where Z2 ~ x7.
EXAMPLES
1. Under the conditions of the Central Limit Theorem, for random variables X1, ..., X,, and their

sample mean random variable X,
Vil(Xn = ) =5 X ~ N (0,0%).
Consider g(z) = 22, so that g(x) = 2z, and hence, if 1 # 0,
V(X" = i?) -5 X ~ N(0,4%0%)

and )

X" ~ AN (12, 4p*0” /n)
If u = 0, we proceed by a different route to compute the approximate distribution of X.,.”; note
that, if 4 =0,

ViXn ~5 X ~ N(0,02)

so therefore ,
nX, = (vVnXn)? -4 X? ~ Gamma(1/2,1/(202))

by elementary transformation results. Hence, for large n,
X, Gamma(1/2,n/(20%))

2. Again under the conditions of the CLT, consider the distribution of 1/ X,,. In this case, we have a
function g(x) = 1/, s0 §(x) = —1/x2, and if uu # 0, the Delta method gives
V(L)X = 1/p) 5 X ~ N(0,0% /)
or,

;n ~ AN (1, n 0% /).



THE JOINT DISTRIBUTION OF SAMPLE QUANTILES

RESULT 1: If Y7, Y5, ..., Y41 ~ Exponential (1) are independent random variables, and Sy, S, . .., Sy 41
are defined by

k
Se=>Y  k=12..n+1
j=1

then the random variables

[ S1 S Sh
Sn+1 ’ Sn+1 Y Sn+1

given that S, 11 = s, say, have the same distribution as the order statistics from a random sample of
size n from the Uniform distribution on (0, 1) .

Proof: Let the Ys be defined as above. Then the joint density for the Yjs is given by

n+1

expq — Yy Y1 Y2 Yot > 0.
j=1
Now
ST =Y
Sy = Y1+Y i = 5
Sy = Yi+Ye+Ys o = 5-5
) ) Y3 = S3-5
S, = J;YJ Y, = S,—S,1
n+1
Sn+1 = Y} Yn+1 Sn+1 - Sn
j=1 J
and so the Jacobian of the transformation from (Y3,...,Y,11) — (S1,...,S,+1) is 1, and hence the

joint density for (S, ..., Sp+1) is given by
exp {—sn+1} 0<81<82<...< 8p1 <00

The marginal distribution for S, 11 is Gamma (n + 1, 1) and thus the conditional distribution of (S1, ..., Sy)
given 5,11 = sis

exp {—s} n!
T

= 0<s1<s89<...<8< 0.
—s"e —s
rnrn® ori=s
Finally, conditional on S,,11 = s, define the joint transformation

S.
‘/J:?]<:>S]:5V; 1=12....n

which has Jacobian s™. Then, conditional on S,+1 = s, (V1,...,V,) have joint pdf equal to n! for
0 <wv <wy <...<uw, < 1 Finally, if Uy, ..., U, are independent random variables each having a
Uniform distribution on (0,1), then (Uy, ..., U,) have joint pdf equal to 1 on the unit hypercube in n
dimensions, and thus the corresponding order statistics U(y), . . ., Uy, also have joint pdf equal to

n! O<uy <us <...<u,<1Ll.



RESULT 2: Let the Sj, be defined as in Result 1. Then

ﬁ(?l) S N(0,1) as k —» oo

Proof: We have that Sy, is the sum of k independent and identically distributed Exponential(1) random
variables, Y1, ..., Y}, so that E [Y;] = Var [Y;] = 1. Thus result follows via the Central Limit Theorem.

RESULT 3: Let the S}, be defined as in Result 1. Then, if k1, is a sequence of integers such that
. kln
ki, — 00 while . — p1

for some p; with 0 < p; < 1, it follows that

,/n_f_1<5k’1n_ kin

n+1 n+1

)i>./\/'(0,p1) asn — oo

Proof: We have

vn+1 < Skin — Fin > = kln x Vk (Skln — > -, p1 x N (0,1) =N (0,p1)

n+1 n+1 k1n

asn — oo and ky,, — o0.

Corollary: Using the same approach, if

k
— — 1 and 2Ry
n n

an
for0 <p1 <p2 <1,thenif D, = > Y

n+1 n-+1 n—|—1

e (S S b o) ol (e )
2n — Nln

L V=i x N (0,1) =N (0,p2 — 1)

Similarly
vVn+1|——(Sps1— S )—w L N (0,1 — ps)
n + 1 n+1 kon N + 1 5 p2
where the limiting variables in the three cases are independent, as
kin
Stn = DY)
j=1
kan
(Stan = Skin) = D0 Y
]:k1n+1
n+1
(Snt1 = Sky) = . Y
]:k2n+1

are independent.



RESULT 4: Let

and suppose that

as n — o0o. Then

A D1
¢nH((%)(mm))dWWQD
Z3 1—po

as n —» oo, where ¥ = diag (p1,p2 — p1,1 — p2).

Proof: We have, as n — oo,

T (S ) v (S ) ()

n+1 n+1 n+1 n—+1

L vn+1 (Skln—p1> and \/n+1(5’kl"— P >

n—+1 n+1 n+1

have the same asymptotic distribution, and thus the result follows from Result 3. The proof is similar
for the other two terms. Independence (that is, the diagonal nature of X) follows from the indepen-
dence of S, (Sky,, — Sky, ), and (Sp4+1 — Sk,,.)-

RESULT 5: If U(yy, . . ., Uy, are the order statistics from a random sample of size n from a Uniform (0, 1)
distribution, and if n — oo, k1, — oo and ks, — oo in such a way that

kin kan
w{;_myﬁo and w(;_m)%o

for 0 < p1 < p2 < 1, then
Ulkr) )_<P1 >) d ( |:p1(1_p1) pl(l—pQ)]>
ﬁ(( Ulkan) P2 — N pr(1—p2) p2(l—p2) | /)"

1 71 : 1 T +1x3 —I1 —x1
_— g(xlnyax3) = 2
Ty + a2+ 23 | 1+ X2 (1 + 22 + 23)

Proof: Define

g (1, 22,23) =

Skln San - Sk‘ln Sn+1 - Sk'Qn — 1 Skln
n+1" n+1 > n+1 St | Ska,

which has the same distribution as (U, ,,), U (k2n))T, by Result 1. By the Delta Method

A((w )= (%) 4 0ewmew

where ¥ is as defined in the Result 4, where here 1 = (p1,p2 — p1,1 — pg)T. It can be easily verified that

. ) B p1(I—=p1) p1(1—p2)
g(u)Eg(u)T—{pia—p;) piu—pi)]'

T3 r3  — (21 +22)



RESULT 6: If X(y),..., X(y) are the order statistics from a random sample of size n from a distribu-
tion with continuous distribution function Fx and density fx which is continuous and non-zero in a
neighbourhood of quantiles x,, and x,, corresponding to probabilities p; < po, then if ki, = [np1]
and kgn = (pril

p(1—p1) p1(1—p2)
{fx (@p)} Ix (@py) fx (@py)
A() () 2oelo] T
(k2n) Lpy 1 (1 _ p2) M

fx (xpy) fx (2p,) {fx (2p)}

Proof: We use the Delta Method on the result from Result 5, with the transformation

—1
sl = | o5 |

so that
_ 0
. Fit
g(yl;y?): fX( )({) (yl)) 1

fx (Fx' (y2))
with y; = p; and y2 = po.

By properties of the multivariate normal distribution, we have that the marginal distribution of X, )
can be approximated for large n by using the relationship

- . d p1(1—p1)
\/>(X(k1n) p) — N (07 {fx ($P1)}2>

For example, if p; = 1/2, xp, is the median xr, (0.5) of the distribution, and X4, ) is the sample
median X,,(0.5), and we have that

Vi(Xn(0.5) — 25y (0.5)) L N (0’ 4{fx (;(0,5))}2>

If F is the N (u, 0?) distribution, then z g, (0.5) = y and

1/2
Fx(@(0.5)) = Fx(u) = ( ! )

2ro

so this result says that

= 7'('0'2
Vi(Xn(0.5) — p) 5 N (0, 2) ~ N (0,1.575?)

which contrasts with the exact result for the sample mean

VX, — p) ~N(0,07).



