
556: MATHEMATICAL STATISTICS I

ASYMPTOTIC APPROXIMATIONS AND THE DELTA METHOD

To approximate the distribution of elements in sequence of random variables {Xn} for large n, we
attempt to find sequences of constants {an} and {bn} such that

Zn = anXn + bn
d−→ Z

where Z has some distribution characterized by cdf FZ . Then, for large n, FZn(z) l FZ(z), so

FXn(x) = P [Xn ≤ x] = P [anXn + bn ≤ anx+ bn] = FZn(anx+ bn) l FZ(anx+ bn).

EXAMPLE Suppose that X1, X2, . . . , Xn are i.i.d. such that Xi ∼ Exp(1), and let
Yn = max{X1, X2, . . . , Xn}. Then by a previous result, for y > 0,

FYn(y) = {FX(y)}n = {1− e−y}n −→ 0

and there is no limiting distribution. However, if we take an = 1 and bn = − log n, and set
Zn = anYn + bn, then as n −→ ∞,

FZn(z) = P[Zn ≤ z] = P[Yn ≤ z + log n] = {1− e−z−logn}n −→ exp{−e−z} = FZ(z),

∴ FYn(y) = P [Yn ≤ y] = P [Zn ≤ y − log n] l FZ(y − log n) = exp{−e−y+logn} = exp{−ne−y}

and by differentiating, for y > 0
fYn(y) l ne−y exp{−ne−y}.

This can be compared with the exact version, for y > 0

fYn(y) = ne−y(1− e−y)n−1.

The figure below compares the approximations for n = 50, 100, 500, 1000. Solid lines use the exact
formula, dotted lines use the approximation, histograms are 5000 simulated values.
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DEFINITION (Asymptotic Normality)
A sequence of random variables {Xn} is asymptotically normally distributed as n −→ ∞ if there
exist sequences of real constants {µn} and {σn} (with σn > 0) such that

Xn − µn

σn

d−→ Z ∼ N (0, 1).

The notation Xn .∼. N (µn, σ
2
n) or Xn ∼ AN (µn, σ

2
n) as n −→ ∞ is commonly used.

DEFINITION (Stochastic Order Notation)

• For random variable Z, we write Z = Op(1) if for all ϵ > 0, there exists M < ∞ such that

P [|Z| ≥ M ] ≤ ϵ.

• For sequence {Zn}, write Zn = Op(1) if for all n, P [|Zn| ≥ M ] ≤ ϵ, and write Zn = Op(Sn) for
sequence of random variables {Sn} if

|Zn|
|Sn|

= Op(1).

Note that this includes the case where Sn is a sequence of reals, rather than random variables.
Finally, write Zn = op(1) if Zn

p−→ 0, and Zn = op(Sn) if

|Zn|
|Sn|

= op(1).

Note that Op(1)op(1) = op(1) and Op(1) + op(1) = Op(1).

LEMMA
Suppose {Xn} are a sequence of rvs, and that for real sequence {an} with an −→ ∞ as n −→ ∞,

(i) for real constant x0 and random variable V , an(Xn − x0)
d−→ V ;

(ii) real function g is differentiable at x0, with derivative ġ.

Then
an(g(Xn)− g(x0))

d−→ ġ(x0)V

Proof. Note first that for every ϵ > 0, there exists δ > 0 such that

|x− x0| ≤ δ =⇒ |g(x)− g(x0)− ġ(x0)(x− x0)| ≤ ϵ|x− x0|

Now, from (i) we have

an(Xn − x0) = Op(1) =⇒ Xn − x0 = Op(a
−1
n ) = op(1)

as an −→ ∞. Therefore, by definition, for every δ > 0, P [|Xn − x0| ≤ δ] −→ 1, and therefore from
above, for every ϵ > 0,

P [|g(Xn)− g(x0)− ġ(x0)(Xn − x0)| ≤ ϵ|Xn − x0|] −→ 1.

Hence
an(g(Xn)− g(x0)− ġ(x0)(Xn − x0)) = op(an(Xn − x0)) = op(1)

Therefore
an(g(Xn)− g(x0)) = ġ(x0){an(Xn − x0)}+ op(1)

and hence
an(g(Xn)− g(x0))

d−→ ġ(x0)V.
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THEOREM (The Delta Method)
Consider sequence of random variables {Xn} such that

√
n(Xn − µ)

d−→ X.

Suppose that g(.) is a function such that first derivative ġ(.) is continuous in a neighbourhood of µ,
with ġ(µ) ̸= 0. Then

√
n(g(Xn)− g(µ))

d−→ ġ(µ)X.

In particular, if
√
n(Xn − µ)

d−→ X ∼ N (0, σ2).

then √
n(g(Xn)− g(µ))

d−→ ġ(µ)X ∼ N (0, {ġ(µ)}2σ2).

Proof. Using the Lemma above, with an =
√
n, x0 = µ, V = X , we have that

√
n(g(Xn)− g(µ)) = ġ(µ)

√
n(Xn − µ)

d−→ ġ(µ)X

and if X ∼ N (0, σ2), it follows from the properties of the Normal distribution that

√
n(g(Xn)− g(µ))

d−→ N (0, {ġ(µ)}2σ2).

Note that this method does not give a useful result if ġ(µ) = 0.

Multivariate Version: Consider a sequence of random vectors {Xn} such that

√
n(Xn − µ)

d−→ X.

and g : Rk −→ Rd is a vector-valued function with first derivative matrix ġ(.) which is continuous in a
neighbourhood of µ, with ġ(µ) ̸= 0. Note that g can be considered as a d×1 vector of scalar functions.

g(x) = (g1(x), . . . , gd(x))
⊤.

Note that ġ(x) is a (d× k) matrix with (i, j)th element

∂gi(x)

∂xj

Under these assumptions, in general

√
n(g(Xn)− g(µ))

d−→ ġ(µ)X.

and in particular, if
√
n(Xn − µ)

d−→ X ∼ N (0,Σ).

where Σ is a positive definite, symmetric k × k matrix, then

√
n(g(Xn)− g(µ))

d−→ ġ(µ)X ∼ N
(
0, ġ(µ)Σġ(µ)⊤

)
.
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THEOREM (The Second Order Delta Method: Normal case)
Consider sequence of random variables {Xn} such that

√
n(Xn − µ)

d−→ N (0, σ2).

Suppose that g(.) is a function such that first derivative ġ(.) is continuous in a neighbourhood of µ,
with ġ(µ) = 0, but second derivative exists at µ with g̈(µ) ̸= 0. Then

n(g(Xn)− g(µ))
d−→ σ2 g̈(µ)

2
X

where X ∼ χ2
1.

Proof. Uses a second order Taylor approximation; informally

g(Xn) = g(µ) + ġ(µ)(Xn − µ) +
g̈(µ)

2
(Xn − µ)2 + op(1)

thus, as ġ(µ) = 0,

g(Xn)− g(µ) =
g̈(µ)

2
(Xn − µ)2 + op(1)

and thus

n(g(Xn)− g(µ)) =
g̈(µ)

2
{
√
n(Xn − µ)}2 d−→ σ2 g̈(µ)

2
Z2

where Z2 ∼ χ2
1.

EXAMPLES

1. Under the conditions of the Central Limit Theorem, for random variables X1, . . . , Xn and their
sample mean random variable Xn

√
n(Xn − µ)

d−→ X ∼ N (0, σ2).

Consider g(x) = x2, so that ġ(x) = 2x, and hence, if µ ̸= 0,
√
n(Xn

2 − µ2)
d−→ X ∼ N (0, 4µ2σ2)

and
Xn

2 ∼ AN (µ2, 4µ2σ2/n)

If µ = 0, we proceed by a different route to compute the approximate distribution of Xn
2; note

that, if µ = 0,
√
nXn

d−→ X ∼ N (0, σ2)

so therefore
nXn

2
= (

√
nXn)

2 d−→ X2 ∼ Gamma(1/2, 1/(2σ2))

by elementary transformation results. Hence, for large n,

Xn
2
.∼. Gamma(1/2, n/(2σ2))

2. Again under the conditions of the CLT, consider the distribution of 1/Xn. In this case, we have a
function g(x) = 1/x, so ġ(x) = −1/x2, and if µ ̸= 0, the Delta method gives

√
n(1/Xn − 1/µ)

d−→ X ∼ N (0, σ2/µ4)

or,
1

Xn

∼ AN (1/µ, n−1σ2/µ4).
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THE JOINT DISTRIBUTION OF SAMPLE QUANTILES

RESULT 1: If Y1, Y2, . . . , Yn+1 ∼ Exponential (1) are independent random variables, and S1, S2, . . . , Sn+1

are defined by

Sk =
k∑

j=1

Yj k = 1, 2, . . . , n+ 1

then the random variables [
S1

Sn+1
,

S2

Sn+1
, . . . ,

Sn

Sn+1

]
given that Sn+1 = s, say, have the same distribution as the order statistics from a random sample of
size n from the Uniform distribution on (0, 1) .

Proof: Let the Yjs be defined as above. Then the joint density for the Yjs is given by

exp

−
n+1∑
j=1

yj

 y1, y2, . . . , yn+1 > 0.

Now
S1 = Y1
S2 = Y1 + Y2
S3 = Y1 + Y2 + Y3
...

...

Sn =
n∑

j=1
Yj

Sn+1 =
n+1∑
j=1

Yj


⇐⇒



Y1 = S1

Y2 = S2 − S1

Y3 = S3 − S2
...

...
Yn = Sn − Sn−1

Yn+1 = Sn+1 − Sn

and so the Jacobian of the transformation from (Y1, . . . , Yn+1) −→ (S1, . . . , Sn+1) is 1, and hence the
joint density for (S1, . . . , Sn+1) is given by

exp {−sn+1} 0 < s1 < s2 < . . . < sn+1 < ∞.

The marginal distribution for Sn+1 is Gamma (n+ 1, 1) and thus the conditional distribution of (S1, . . . , Sn)
given Sn+1 = s is

exp {−s}
1

Γ (n+ 1)
sn exp {−s}

=
n!

sn
0 < s1 < s2 < . . . < s < ∞.

Finally, conditional on Sn+1 = s, define the joint transformation

Vj =
Sj

s
⇐⇒ Sj = sVj j = 1, 2, . . . , n

which has Jacobian sn. Then, conditional on Sn+1 = s, (V1, . . . , Vn) have joint pdf equal to n! for
0 < v1 < v2 < . . . < vn < 1. Finally, if U1, . . . , Un are independent random variables each having a
Uniform distribution on (0, 1), then (U1, . . . , Un) have joint pdf equal to 1 on the unit hypercube in n
dimensions, and thus the corresponding order statistics U(1), . . . , U(n) also have joint pdf equal to

n! 0 < u1 < u2 < . . . < un < 1.
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RESULT 2: Let the Sk be defined as in Result 1. Then

√
k

(
Sk

k
− 1

)
d−→ N (0, 1) as k −→ ∞

Proof: We have that Sk is the sum of k independent and identically distributed Exponential(1) random
variables, Y1, . . . , Yk, so that E [Yj ] = Var [Yj ] = 1. Thus result follows via the Central Limit Theorem.

RESULT 3: Let the Sk be defined as in Result 1. Then, if k1n is a sequence of integers such that

k1n −→ ∞ while
k1n
n

−→ p1

for some p1 with 0 < p1 < 1, it follows that

√
n+ 1

(
Sk1n

n+ 1
− k1n

n+ 1

)
d−→ N (0, p1) as n −→ ∞

Proof: We have

√
n+ 1

(
Sk1n

n+ 1
− k1n

n+ 1

)
=

√
k1n
n+ 1

×
√
k1n

(
Sk1n

k1n
− 1

)
d−→ √

p1 ×N (0, 1) ≡ N (0, p1)

as n −→ ∞ and k1n −→ ∞.

Corollary: Using the same approach, if

k1n
n

−→ p1 and
k2n
n

−→ p2

for 0 < p1 < p2 < 1, then if Dn =
k2n∑

j=k1n+1

Yj ,

√
n+ 1

(
(Sk2n − Sk1n)

n+ 1
− k2n − k1n

n+ 1

)
=

√
k2n − k1n
n+ 1

√
k2n − k1n

(
Dn

k2n − k1n
− 1

)
d−→

√
p2 − p1 ×N (0, 1) ≡ N (0, p2 − p1) .

Similarly
√
n+ 1

(
1

n+ 1
(Sn+1 − Sk2n)−

n+ 1− k2n
n+ 1

)
d−→ N (0, 1− p2)

where the limiting variables in the three cases are independent, as

Sk1n =

k1n∑
j=1

Yj

(Sk2n − Sk1n) =

k2n∑
j=k1n+1

Yj

(Sn+1 − Sk2n) =
n+1∑

j=k2n+1

Yj

are independent.
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RESULT 4: Let

Z1 =
Sk1n

n+ 1
Z2 =

(Sk2n − Sk1n)

n+ 1
Z3 =

(Sn+1 − Sk2n)

n+ 1

and suppose that
√
n

(
k1n
n

− p1

)
−→ 0 and

√
n

(
k2n
n

− p2

)
−→ 0

as n −→ ∞. Then
√
n+ 1

 Z1

Z2

Z3

−

 p1
p2 − p1
1− p2

 d−→ N (0,Σ)

as n −→ ∞, where Σ = diag (p1, p2 − p1, 1− p2).

Proof: We have, as n −→ ∞,

√
n+ 1

(
Sk1n

n+ 1
− p1

)
−

√
n+ 1

(
Sk1n

n+ 1
− k1n

n+ 1

)
=

√
n+ 1

(
k1n
n+ 1

− p1

)
−→ 0

∴
√
n+ 1

(
Sk1n

n+ 1
− p1

)
and

√
n+ 1

(
Sk1n

n+ 1
− k1n

n+ 1

)
have the same asymptotic distribution, and thus the result follows from Result 3. The proof is similar
for the other two terms. Independence (that is, the diagonal nature of Σ) follows from the indepen-
dence of Sk1n , (Sk2n − Sk1n), and (Sn+1 − Sk2n).

RESULT 5: If U(1), . . . , U(n) are the order statistics from a random sample of size n from a Uniform (0, 1)
distribution, and if n −→ ∞, k1n −→ ∞ and k2n −→ ∞ in such a way that

√
n

(
k1n
n

− p1

)
−→ 0 and

√
n

(
k2n
n

− p2

)
−→ 0

for 0 < p1 < p2 < 1, then

√
n

((
U(k1n)

U(k2n)

)
−
(

p1
p2

))
d−→ N

(
0,

[
p1 (1− p1) p1 (1− p2)
p1 (1− p2) p2 (1− p2)

])
.

Proof: Define

g (x1, x2, x3) =
1

x1 + x2 + x3

[
x1

x1 + x2

]
ġ (x1, x2, x3) =

1

(x1 + x2 + x3)
2

[
x2 + x3 −x1 −x1

x3 x3 − (x1 + x2)

]
.

∴ g

(
Sk1n

n+ 1
,
Sk2n − Sk1n

n+ 1
,
Sn+1 − Sk2n

n+ 1

)
=

1

Sn+1

[
Sk1n

Sk2n

]
which has the same distribution as

(
U(k1n), U(k2n)

)⊤, by Result 1. By the Delta Method

√
n

((
U(k1n)

U(k2n)

)
−
(

p1
p2

))
d−→ N

(
0, ġ (µ)Σġ (µ)⊤

)
where Σ is as defined in the Result 4, where here µ = (p1, p2 − p1, 1− p2)

T . It can be easily verified that

ġ (µ)Σġ (µ)T =

[
p1 (1− p1) p1 (1− p2)
p1 (1− p2) p2 (1− p2)

]
.
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RESULT 6: If X(1), . . . , X(n) are the order statistics from a random sample of size n from a distribu-
tion with continuous distribution function FX and density fX which is continuous and non-zero in a
neighbourhood of quantiles xp1 and xp2 corresponding to probabilities p1 < p2, then if k1n = ⌈np1⌉
and k2n = ⌈np2⌉

√
n

((
X(k1n)

X(k2n)

)
−
(

xp1
xp2

))
d−→ N

0,


p1 (1− p1)

{fX (xp1)}
2

p1 (1− p2)

fX (xp1) fX (xp2)

p1 (1− p2)

fX (xp1) fX (xp2)

p2 (1− p2)

{fX (xp2)}
2




Proof: We use the Delta Method on the result from Result 5, with the transformation

g (y1, y2) =

[
F−1
X (y1)

F−1
X (y2)

]
so that

ġ (y1, y2) =


1

fX
(
F−1
X (y1)

) 0

0
1

fX
(
F−1
X (y2)

)


with y1 = p1 and y2 = p2.

By properties of the multivariate normal distribution, we have that the marginal distribution of X(k1n)

can be approximated for large n by using the relationship

√
n(X(k1n) − xp1)

d−→ N

(
0,

p1 (1− p1)

{fX (xp1)}
2

)

For example, if p1 = 1/2, xp1 is the median xFX
(0.5) of the distribution, and X(k1n) is the sample

median X̃n(0.5), and we have that

√
n(X̃n(0.5)− xFX

(0.5))
d−→ N

(
0,

1

4 {fX(x(0.5))}2

)
If FX is the N (µ, σ2) distribution, then xFX

(0.5) = µ and

fX(x(0.5)) = fX(µ) =

(
1

2πσ2

)1/2

so this result says that

√
n(X̃n(0.5)− µ)

d−→ N
(
0,

πσ2

2

)
.∼. N

(
0, 1.57σ2

)
which contrasts with the exact result for the sample mean

√
n(Xn − µ) ∼ N

(
0, σ2

)
.
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