556: Mathematical Statistics I

Convergence In Distribution: Examples

EXAMPLE 1: Continuous random variable X_{n} with range $\mathbb{X} \equiv(0, n]$ for $n>0$ and cdf

$$
F_{X_{n}}(x)=1-\left(1-\frac{x}{n}\right)^{n} \quad 0<x \leq n
$$

and standard cdf behaviour outside of this range. Then as $n \rightarrow \infty, \mathbb{X} \equiv(0, \infty)$, and for all $x>0$

$$
F_{X_{n}}(x) \rightarrow 1-e^{-x} \quad \therefore \quad F_{X_{n}}(x) \rightarrow F_{X}(x)=1-e^{-x}
$$

and hence

$$
X_{n} \xrightarrow{d} X \quad X \sim \text { Exponential }(1)
$$

Figure 1: $F_{X_{n}}(x)=1-\left(1-\frac{x}{n}\right)^{n}$ for $0 \leq x \leq n, n=0,1,2, \ldots$

EXAMPLE 2: Continuous random variable X_{n} with range $\mathbb{X} \equiv(0, \infty)$ and cdf

$$
F_{X_{n}}(x)=\left(1-\frac{1}{1+n x}\right)^{n} \quad 0<x<\infty
$$

and zero otherwise. Then as $n \rightarrow \infty$, for all $x>0$

$$
F_{X_{n}}(x) \rightarrow e^{-1 / x} \quad \therefore \quad F_{X_{n}}(x) \rightarrow F_{X}(x)=e^{-1 / x}
$$

as

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{1+n x}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n x}\right)^{n}=\lim _{n \rightarrow \infty}\left(1-\frac{1 / x}{n}\right)^{n}
$$

and for any z

$$
\lim _{n \rightarrow \infty}\left(1+\frac{z}{n}\right)^{n}=e^{z}
$$

Figure 2: $F_{X_{n}}(x)=\left(1-\frac{1}{1+n x}\right)^{n}, 0<x<\infty, n=0,1,2, \ldots, 20$

EXAMPLE 3: Continuous random variable X_{n} with range $\mathbb{X} \equiv[0,1]$ and cdf

$$
F_{X_{n}}(x)=x-\sin (2 n \pi x) /(2 n \pi) \quad 0 \leq x \leq 1
$$

and standard cdf behaviour outside of this range. Then as $n \rightarrow \infty$, and for all $0 \leq x \leq 1$

$$
F_{X_{n}}(x) \rightarrow x \quad \therefore \quad F_{X_{n}}(x) \rightarrow F_{X}(x)=x
$$

and hence

$$
X_{n} \xrightarrow{d} X \quad \text { where } X \sim \operatorname{Uniform}(0,1)
$$

Figure 3: $F_{X_{n}}(x)=x-\sin (2 n \pi x) /(2 n \pi), 0 \leq x \leq 1, n=0,1,2, \ldots, 10$
NOTE: for the pdf

$$
f_{X_{n}}(x)=1-\cos (2 n \pi x) \quad 0 \leq x \leq 1
$$

and there is no limit as $n \rightarrow \infty$.

EXAMPLE 4: Continuous random variable X_{n} with range $\mathbb{X} \equiv[0,1]$ and cdf

$$
F_{X_{n}}(x)=1-(1-x)^{n} \quad 0 \leq x \leq 1
$$

and standard cdf behaviour outside of this range. Then as $n \rightarrow \infty$, and for $x \in \mathbb{R}$

$$
F_{X_{n}}(x) \rightarrow\left\{\begin{array}{ll}
0 & x \leq 0 \\
1 & x>0
\end{array} .\right.
$$

This limiting form is not continuous at $x=0$, as $x=0$ is not a point of continuity, and the ordinary definition of convergence in distribution cannot be applied. However, it is clear that for $\epsilon>0$,

$$
P\left[\left|X_{n}\right|<\epsilon\right]=1-(1-\epsilon)^{n} \rightarrow 1 \text { as } n \rightarrow \infty
$$

so it is still correct to say

$$
X_{n} \xrightarrow{d} X \quad \text { where } P[X=0]=1
$$

so the limiting distribution is degenerate at $x=0$.

Figure 4: $F_{X_{n}}(x)=1-(1-x)^{n}, 0<x<1, n=0,1,2, \ldots, 100$

EXAMPLE 5: Continuous random variable X_{n} with range $\mathbb{X} \equiv(0, \infty)$ and $c d f$

$$
F_{X_{n}}(x)=\left(\frac{x}{1+x}\right)^{n} \quad x>0
$$

and zero otherwise. Then as $n \rightarrow \infty$, and for $x>0$

$$
F_{X_{n}}(x) \rightarrow 0
$$

Thus there is no limiting distribution.

Figure 5: $F_{X_{n}}(x)=\left(\frac{x}{1+x}\right)^{n}, x>0, n=0,1,2, \ldots, 20$
Now let $V_{n}=X_{n} / n$. Then $\mathbb{V} \equiv(0, \infty)$ and the $c d f$ of V_{n} is

$$
F_{V_{n}}(v)=P\left[V_{n} \leq v\right]=P\left[X_{n} / n \leq v\right]=P\left[X_{n} \leq n v\right]=F_{X_{n}}(n v)=\left(\frac{n v}{1+n v}\right)^{n} \quad v>0
$$

and as $n \rightarrow \infty$, for all $v>0$

$$
F_{V_{n}}(v) \rightarrow e^{-1 / v} \quad \therefore \quad F_{V_{n}}(v) \rightarrow F_{V}(v)=e^{-1 / v}
$$

and the limiting distribution of V_{n} does exist.

EXAMPLE 6: Continuous random variable X_{n} with range $\mathbb{X} \equiv(0, \infty)$ and cdf

$$
F_{X_{n}}(x)=\frac{\exp (n x)}{1+\exp (n x)} \quad x \in \mathbb{R}
$$

and zero otherwise. Then as $n \rightarrow \infty$

$$
F_{X_{n}}(x) \rightarrow\left\{\begin{array}{cc}
0 & x<0 \\
\frac{1}{2} & x=0 \\
1 & x>0
\end{array} \quad x \in \mathbb{R}\right.
$$

This limiting form is not a cdf, as it is not right continuous at $x=0$. However, as $x=0$ is not a point of continuity, and the ordinary definition of convergence in distribution does not apply. However, it is clear that for $\epsilon>0$,

$$
P[|X|<\epsilon]=\frac{\exp (n \epsilon)}{1+\exp (n \epsilon)}-\frac{\exp (-n \epsilon)}{1+\exp (-n \epsilon)} \rightarrow 1 \text { as } n \rightarrow \infty
$$

so it is still correct to say

$$
X_{n} \xrightarrow{d} X \quad \text { where } \quad \mathrm{P}[X=0]=1
$$

and the limiting distribution is degenerate at $x=0$.

Figure 6: $F_{X_{n}}(x)=\frac{\exp (n x)}{1+\exp (n x)}, x \in \mathbb{R}, n=0,1,2, \ldots, 20$

