556: Mathematical Statistics I

Order Statistics And Sample Quantiles

For n random variables X_{1}, \ldots, X_{n}, the order statistics, Y_{1}, \ldots, Y_{n}, are defined by

$$
Y_{i}=X_{(i)}-\text { "the } i \text { th smallest value in } X_{1}, \ldots ., X_{n} "
$$

for $i=1, \ldots, n$. For example

$$
Y_{1}=X_{(1)}=\min \left\{X_{1}, \ldots, X_{n}\right\} \quad Y_{n}=X_{(n)}=\max \left\{X_{1}, \ldots, X_{n}\right\}
$$

Now let $0 \leq p \leq 1$. Recall that the p th quantile of a distribution F is denoted by $x_{F}(p)$ is defined by

$$
x_{F}(p)=\inf \{x: F(x) \geq p\}
$$

where inf is the infimum, or greatest lower bound, that is, $x_{F}(p)$ is the smallest x value such that $F(x) \geq p$. The median is $x_{F}(0.5)$. The p th sample quantile is defined in terms of the order statistics, but there are many possible variants. In general, the p th sample quantile derived from a sample of size n can be defined

$$
\widetilde{X}_{n}(p)=(1-\gamma(n)) X_{(k)}+\gamma(n) X_{(k+1)}
$$

for some $\gamma(n)$ where $0 \leq \gamma(n) \leq 1$ is some function of n to be specified, and k is the integer such that $k / n \leq p<(k+1) / n$. One simple definition uses the k th order statistic $X_{(k)}$,

$$
\widetilde{X}_{n}(p)=X_{(k)}
$$

where $k=[n p]$ is the nearest integer to $n p$. The sample median is most commonly defined by

$$
\widetilde{X}= \begin{cases}X_{((n+1) / 2)} & n \text { odd } \\ \left(X_{(n / 2)}+X_{(n / 2+1)}\right) / 2 & n \text { even }\end{cases}
$$

THEOREM (Distributions of minimum and maximum order statistics)

For random sample X_{1}, \ldots, X_{n} from population with $\mathrm{pmf} / \mathrm{pdf} f_{X}$ and cdf F_{X},
(a) $Y_{1}=X_{(1)}$ has cdf $F_{Y_{1}}(y)=1-\left\{1-F_{X}(y)\right\}^{n}$;
(b) $Y_{n}=X_{(n)}$ has cdf $F_{Y_{n}}(y)=\left\{F_{X}(y)\right\}^{n}$

Proof. (a) For the marginal cdf for Y_{1},

$$
\begin{aligned}
F_{Y_{1}}\left(y_{1}\right) & =P_{Y_{1}}\left[Y_{1} \leq y_{1}\right]=1-P_{Y_{1}}\left[Y_{1}>y_{1}\right]=1-P_{\mathbf{X}}\left[\min \left\{X_{1}, \ldots, X_{n}\right\}>y_{1}\right]=1-P_{\mathbf{X}}\left[\bigcap_{i=1}^{n}\left(X_{i}>y_{i}\right)\right] \\
& =1-\prod_{i=1}^{n} P_{X_{i}}\left[X_{i}>y_{1}\right]=1-\prod_{i=1}^{n}\left\{1-F_{X}\left(y_{1}\right)\right\}=1-\left\{1-F_{X}\left(y_{1}\right)\right\}^{n}
\end{aligned}
$$

(b) For Y_{n},

$$
\begin{aligned}
F_{Y_{n}}\left(y_{n}\right) & =P_{Y_{n}}\left[Y_{n} \leq y_{n}\right]=P_{\mathbf{X}}\left[\max \left\{X_{1}, \ldots, X_{n}\right\} \leq y_{n}\right]=P_{\mathbf{X}}\left[\bigcap_{i=1}^{n}\left(X_{i} \leq y_{i}\right)\right] \\
& =\prod_{i=1}^{n} P_{X_{i}}\left[X_{i} \leq y_{n}\right]=\prod_{i=1}^{n}\left\{F_{X}\left(y_{n}\right)\right\}=\left\{F_{X}\left(y_{n}\right)\right\}^{n}
\end{aligned}
$$

The pmf/pdf can be computed from the cdf.

THEOREM (Marginal pmf/pdf)

For random sample X_{1}, \ldots, X_{n} from population with pmf/pdf f_{X} and $\operatorname{cdf} F_{X}$,
(a) In the discrete case, suppose that $\mathbb{X} \equiv\left\{x_{1}, x_{2}, \ldots\right\}$, where $x_{1}<x_{2}<\cdots$, and suppose that

$$
f_{X}\left(x_{i}\right)=p_{i} \quad P_{i}=\sum_{k=1}^{i} p_{k}
$$

$i=1,2, \ldots$. Then the marginal cdf of $Y_{j}=X_{(j)}$ is defined by

$$
F_{Y_{j}}\left(x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k} P_{i}^{k}\left(1-P_{i}\right)^{n-k} \quad x_{i} \in \mathbb{X}
$$

with the usual cdf behaviour at other values of x. The marginal pmf of $Y_{j}=X_{(j)}$ is

$$
f_{Y_{j}}\left(x_{i}\right)=\sum_{k=j}^{n}\binom{n}{k}\left[P_{i}^{k}\left(1-P_{i}\right)^{n-k}-P_{i-1}^{k}\left(1-P_{i-1}\right)^{n-k}\right] \quad x_{i} \in \mathbb{X}
$$

(b) In the continuous case, the marginal cdf of $Y_{j}=X_{(j)}$ is

$$
F_{Y_{j}}(x)=\sum_{k=j}^{n}\binom{n}{k}\left\{F_{X}(x)\right\}^{k}\left\{1-F_{X}(x)\right\}^{n-k}
$$

and the marginal pdf is

$$
f_{Y_{j}}(x)=\frac{n!}{(j-1)!(n-j)!}\left\{F_{X}(x)\right\}^{j-1}\left\{1-F_{X}(x)\right\}^{n-j} f_{X}(x)
$$

Proof. (sketch, continuous case) If the j th order statistic is at x, then we have
(i) a single observation at x, which contributes $f_{X}(x)$;
(ii) $j-1$ observations which have values less than x, which contributes $\left\{F_{X}(x)\right\}^{j-1}$;
(iii) $n-j$ observations which have values greater than x, which contributes $\left\{1-F_{X}(x)\right\}^{n-j}$;

Thus the required mass/density is proportional to

$$
\left\{F_{X}(x)\right\}^{j-1} f_{X}(x)\left\{1-F_{X}(x)\right\}^{n-j} .
$$

The normalizing constant is the number of ways of labelling the original x values to obtain this configuration of order statistics: this is

$$
n \times\binom{ n-1}{j-1}=\frac{n!}{(j-1)!(n-j)!}
$$

we may choose the single datum in step (i) in n ways, and then the $j-1$ data in step (ii) in $\binom{n-1}{j-1}$ ways.

THEOREM (Joint pdf: continuous case)

For random sample X_{1}, \ldots, X_{n} from population with pdf f_{X}, the joint pdf of order statistics Y_{1}, \ldots, Y_{n}

$$
f_{Y_{1}, \ldots, Y_{n}}\left(y_{1}, \ldots, y_{n}\right)=n!f_{X}\left(y_{1}\right) \ldots f_{X}\left(y_{n}\right) \quad y_{1}<\ldots<y_{n}
$$

Proof. There are n ! configurations of the x s that yield identical order statistics, and the result follows by the theorem of total probability.

