556: Mathematical Statistics I

General Results for the Sample Mean and Variance Statistics

THEOREM

Suppose that X_{1}, \ldots, X_{n} is a random sample from a distribution, with finite expectation μ and variance σ^{2}. Consider the sample mean and sample variance statistics \bar{X} and s^{2} and denote

$$
T_{1}=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad T_{2}=s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

Then
(a) $\mathbb{E}_{T_{1}}\left[T_{1}\right]=\mu$
(b) $\quad \operatorname{Var}_{T_{1}}\left[T_{1}\right]=\frac{\sigma^{2}}{n}$
(c) $\mathbb{E}_{T_{2}}\left[T_{2}\right]=\sigma^{2}$

Proof (a) and (b) follow from elementary properties of expectations and variances for independent random variables. For (c), note that

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}
$$

Hence

$$
\begin{align*}
\mathbb{E}_{T_{2}}\left[T_{2}\right] & =\frac{1}{n-1} \mathbb{E}_{f_{\mathrm{X}}}\left[\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right] \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} \mathbb{E}_{X_{i}}\left[X_{i}^{2}\right]-n \mathbb{E}_{X}\left[\bar{X}^{2}\right]\right] \\
& =\frac{1}{n-1}\left[n\left(\sigma^{2}+\mu^{2}\right)-n\left(\frac{\sigma^{2}}{n}+\mu^{2}\right)\right] \tag{1}\\
& =\sigma^{2}
\end{align*}
$$

where line (1) follows from the fact that for any random variable X

$$
\sigma^{2}=\mathbb{E}_{X}\left[X^{2}\right]-\mathbb{E}_{X}[X]^{2}=\mathbb{E}_{X}\left[X^{2}\right]-\mu^{2}
$$

and the result of parts (a) and (b).

Recall the fundamental transformation results for Normal random variables:
(i) If $X \sim \mathcal{N}(0,1)$, then

$$
X^{2} \sim \chi_{1}^{2} \equiv \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right)
$$

(ii) If $X_{1}, \ldots, X_{r} \sim \mathcal{N}(0,1)$ are independent random variables, then

$$
Y=\sum_{i=1}^{r} X_{i}^{2} \sim \chi_{r}^{2} \equiv \operatorname{Gamma}\left(\frac{r}{2}, \frac{1}{2}\right)
$$

(iii) If $Y_{1} \sim \chi_{r_{1}}^{2}$ and $Y_{2} \sim \chi_{r_{2}}^{2}$ are independent random variables, then

$$
Y=Y_{1}+Y_{2} \sim \chi_{r_{1}+r_{2}}^{2}
$$

THEOREM

Suppose that X_{1}, \ldots, X_{n} is a random sample from a normal distribution, say $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$. Define the sample mean and sample variance statistics \bar{X} and s^{2} as the random variables

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Then
(a) $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right)$
(b) \bar{X} is independent of $\left\{X_{i}-\bar{X}, i=1, \ldots, n\right\}$, and \bar{X} and s^{2} are independent random variables
(c) The random variable

$$
\frac{(n-1) s^{2}}{\sigma^{2}}=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

has a chi-squared distribution with $n-1$ degrees of freedom.
Proof (a) Proof straightforward using mgfs.
(b) The joint pdf X_{1}, \ldots, X_{n} is the normal density

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}\right\}
$$

Consider the multivariate transformation to Y_{1}, \ldots, Y_{n} where

$$
\left.\begin{array}{l}
Y_{1}=\bar{X} \\
Y_{i}=X_{i}-\bar{X}, i=2, \ldots, n
\end{array}\right\} \Longleftrightarrow\left\{\begin{array}{l}
X_{1}=Y_{1}-\sum_{i=2}^{n} Y_{i} \\
X_{i}=Y_{i}+Y_{1}, i=2, \ldots, n
\end{array}\right.
$$

Thus $\mathbf{Y}=A \mathbf{X}$, or equivalently $\mathbf{X}=A^{-1} \mathbf{Y}$, where A is the $n \times n$ matrix with (i, j) th element

$$
[A]_{i j}=\left\{\begin{aligned}
& \frac{1}{n} i=1, j=1,2, \ldots, n \\
& 1-\frac{1}{n} \\
&-\frac{1}{n} i=j=2,3, \ldots, n \\
& \text { otherwise }
\end{aligned}\right.
$$

that is, we have a linear transformation. Note that

$$
\begin{aligned}
\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2} & =\sum_{i=1}^{n}\left[\left(x_{i}-\bar{x}\right)^{2}+2\left(x_{i}-\bar{x}\right)(\bar{x}-\mu)+(\bar{x}-\mu)^{2}\right] \\
& =\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}
\end{aligned}
$$

where $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is the observed sample mean. Thus the joint pdf of X_{1}, \ldots, X_{n} takes the form

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, . ., x_{n}\right)=\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+n(\bar{x}-\mu)^{2}\right]\right\} .
$$

Now

$$
x_{1}-\bar{x}=-\sum_{i=2}^{n}\left(x_{i}-\bar{x}\right)=-\sum_{i=2}^{n} y_{i}
$$

and so

$$
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(x_{1}-\bar{x}\right)^{2}+\sum_{i=2}^{n}\left(x_{i}-\bar{x}\right)^{2}=\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}
$$

The Jacobian of the transformation is n, so the joint density of Y_{1}, \ldots, Y_{n} is given by the multivariate transformation theorem as

$$
\begin{aligned}
f_{Y_{1}, ., Y_{n}}\left(y_{1}, . ., y_{n}\right) & =n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}+n\left(y_{1}-\mu\right)^{2}\right]\right\} \\
& =n\left(\frac{1}{2 \pi \sigma^{2}}\right)^{n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\left[\left(-\sum_{i=2}^{n} y_{i}\right)^{2}+\sum_{i=2}^{n} y_{i}^{2}\right]\right\} \times \exp \left\{-\frac{n}{2 \sigma^{2}}\left(y_{1}-\mu\right)^{2}\right\} \\
& =f_{Y_{2}, ., Y_{n}}\left(y_{2}, . ., y_{n}\right) f_{Y_{1}}\left(y_{1}\right)
\end{aligned}
$$

and therefore Y_{1} is independent of Y_{2}, \ldots, Y_{n}. Hence \bar{X} is independent of the random variables $\left\{Y_{i}=X_{i}-\bar{X}, i=2, \ldots, n\right\}$. Finally, \bar{X} is also independent of $X_{1}-\bar{X}$ as

$$
X_{1}-\bar{X}=-\sum_{i=2}^{n}\left(X_{i}-\bar{X}\right)
$$

and of s^{2}, which is a function only of $\left\{X_{i}-\bar{X}, i=1, \ldots, n\right\}$. As \bar{X} is independent of these variables, \bar{X} and s^{2} are also independent.
(c) The random variables that appear as sums of squares terms in the joint pdf are

$$
\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}}+\frac{n(\bar{X}-\mu)^{2}}{\sigma^{2}}
$$

or $V_{1}=V_{2}+V_{3}$, say. Now, $X_{i} \sim \mathcal{N}\left(\mu, \sigma^{2}\right)$, so therefore

$$
\frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \mathcal{N}(0,1) \quad \Longrightarrow \quad \frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi_{1}^{2} \equiv \operatorname{Gamma}\left(\frac{1}{2}, \frac{1}{2}\right) \quad \Longrightarrow \quad V_{1}=\frac{\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi_{n}^{2}
$$

as the X_{i} s are independent, and the sum of n independent $\operatorname{Gamma}(1 / 2,1 / 2)$ variables has a Gamma $(n / 2,1 / 2)$ distribution. Similarly, as $\bar{X} \sim \mathcal{N}\left(\mu, \sigma^{2} / n\right), V_{3} \sim \chi_{1}^{2}$ By part (b), V_{2} and V_{3} are independent, and so the mgfs of V_{1}, V_{2} and V_{3} are related by

$$
M_{V_{1}}(t)=M_{V_{2}}(t) M_{V_{3}}(t) \Longrightarrow M_{V_{2}}(t)=\frac{M_{V_{1}}(t)}{M_{V_{3}}(t)}
$$

As V_{1} and V_{3} are Gamma random variables, $M_{V_{1}}$ and $M_{V_{3}}$ are given by

$$
M_{V_{1}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{n / 2} \quad \text { and } \quad M_{V_{3}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{1 / 2} .
$$

So therefore

$$
M_{V_{2}}(t)=\left(\frac{1 / 2}{1 / 2-t}\right)^{(n-1) / 2}
$$

which is also the mgf of a Gamma random variable, and hence

$$
V_{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

and the result follows.
Alternative inductive proof of (c): Let \bar{X}_{k} and $s_{k^{\prime}}^{2} k=1,2, \ldots, n$ denote the sample mean and sample variance random variables derived from the first k variables. Now, for $k \geq 2$, it can be shown after some manipulation that

$$
\begin{equation*}
(k-1) s_{k}^{2}=(k-2) s_{k-1}^{2}+\left(\frac{k-1}{k}\right)\left(X_{k}-\bar{X}_{k-1}\right)^{2} \tag{2}
\end{equation*}
$$

For $k=2$

$$
(2-1) s_{2}^{2}=\frac{1}{2}\left(X_{2}-X_{1}\right)^{2}=\left(\frac{X_{2}-X_{1}}{\sqrt{2}}\right)^{2}=Z^{2}
$$

say, where $Z \sim \mathcal{N}(0,1)$. Thus $s_{2}^{2} \sim \chi_{1}^{2}$. Now for the inductive hypothesis, presume that

$$
(k-1) s_{k}^{2} \sim \chi_{k-1}^{2}
$$

so that, using the identity in (2),

$$
k s_{k+1}^{2}=(k-1) s_{k}^{2}+\left(\frac{k}{k+1}\right)\left(X_{k+1}-\bar{X}_{k}\right)^{2}
$$

The two terms on the right hand side are independent (using the result in (b)); the first term is χ_{k-1}^{2} distributed, the second term is χ_{1}^{2} distributed, so $k s_{k+1}^{2}$ is χ_{k}^{2} distributed and the inductive argument is completed.

