
556: MATHEMATICAL STATISTICS I
DISTRIBUTIONS DERIVED FROM NORMAL RANDOM SAMPLES

Suppose that X1, . . . , Xn ∼ N (µ, σ2) form a random sample.

(a) By the univariate transformation result

Z =
X − µ
σ/
√
n
∼ N (0, 1)

(b) By the multivariate transformation result

T =
X − µ
s/
√
n
∼ Student(n− 1)

as T can be written T = Z/
√
V/ν, where Z ∼ N (0, 1) and V ∼ χ2

ν are independent random
variables defined by

Z =
X − µ
σ/
√
n

V =
(n− 1)s2

σ2

(c) Fisher-F distribution: By the multivariate transformation result, if V1 ∼ χ2
k1

and V2 ∼ χ2
k2

are
independent random variables, then

Q =
V1/k1
V2/k2

has pdf

fQ(x) =

Γ

(
k1 + k2

2

)
Γ

(
k1
2

)
Γ

(
k2
2

) (k1
k2

)k1/2
xk1/2−1

(
1 +

k1
k2
x

)−(k1+k2)/2
x > 0

and zero otherwise. We say that Q ∼ Fisher(k1, k2).

Now, if X1, . . . , XnX ∼ N (µX , σ
2
X) and Y1, . . . , YnY ∼ N (µY , σ

2
Y ) are independent random sam-

ples from different distributions, then as

(nX − 1)s2X
σ2X

∼ χ2
nX−1

(nY − 1)s2Y
σ2Y

∼ χ2
nY −1

it follows that
s2X/σ

2
X

s2Y /σ
2
Y

∼ Fisher(nX − 1, nY − 1)

Note that if X ∼ Fisher(k1, k2), then

EX [X] =
k2

k2 − 2
(if k2 > 2) VarX [X] = 2

(
k2

k2 − 2

)2 (k1 + k2 − 2)

k1(k2 − 4)
(if k2 > 4)

Also

X ∼ Fisher(k1, k2) =⇒ 1

X
∼ Fisher(k2, k1)

X ∼ Student(k1) =⇒ X2 ∼ Fisher(1, k1)

X ∼ Fisher(k1, k2) =⇒ (k1/k2)X

1 + (k1/k2)X
∼ Beta

(
k1
2
,
k2
2

)
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THE MULTIVARIATE NORMAL DISTRIBUTION

MARGINAL AND CONDITIONALS DISTRIBUTIONS

Suppose that vector random variable X = (X1, X2, . . . , Xk)
> has a multivariate normal distribution

with pdf given by

fX(x) =

(
1

2π

)k/2 1

|Σ|1/2
exp

{
−1

2
x>Σ−1x

}
(1)

where Σ is the k × k variance-covariance matrix (we can consider here the case where the expected
value µ˜ is the k × 1 zero vector; results for the general case are easily available by transformation).

Consider partitioning X into two components X1 and X2 of dimensions k1 and k2 = k−k1 respectively,
that is,

X =

[
X1

X2

]
.

We attempt to deduce

(a) the marginal distribution of X1, and
(b) the conditional distribution of X2 given that X1 = x1.

First, write

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Σ11 is k1 × k1, Σ22 is k2 × k2, Σ21 = Σ>12, and

Σ−1 = V =

[
V11 V12

V21 V22

]
so that ΣV = Ik (Ir is the r × r identity matrix) gives[

Σ11 Σ12

Σ21 Σ22

] [
V11 V12

V21 V22

]
=

[
Ik1 0
0 Ik2

]
where 0 represents the zero matrix of appropriate dimension. More specifically,

Σ11V11 + Σ12V21 = Ik1 (2)
Σ11V12 + Σ12V22 = 0 (3)
Σ21V11 + Σ22V21 = 0 (4)
Σ21V12 + Σ22V22 = Ik2 . (5)

From the multivariate normal pdf in equation (1), we can re-express the term in the exponent as

x>Σ−1x = x>1 V11x1 + x>1 V12x2 + x>2 V21x1 + x>2 V22x2. (6)

In order to compute the marginal and conditional distributions, we must complete the square in x2 in
this expression. We can write

x>Σ−1x = (x2 −m)>M(x2 −m) + c (7)

and by comparing with equation (6) we can deduce that, for quadratic terms in x2,

x>2 V22x2 = x>2 Mx2 ∴ M = V22 (8)
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for linear terms
x>2 V21x1 = −x>2 Mm ∴ m = −V−122 V21x1 (9)

and for constant terms

x>1 V11x1 = c + m>Mm ∴ c = x>1 (V11 −V>21V
−1
22 V21)x1 (10)

thus yielding all the terms required for equation (7), that is

x>Σ−1x = (x2 + V−122 V21x1)
>V22(x2 + V−122 V21x1) + x>1 (V11 −V>21V

−1
22 V21)x1, (11)

which, crucially, is a sum of two terms, where the first can be interpreted as a function of x2, given x1,
and the second is a function of x1 only.

Hence we have an immediate factorization of the full joint pdf using the chain rule for random vari-
ables;

fX(x) = fX2|X1
(x2|x1)fX1(x1) (12)

where

fX2|X1
(x2|x1) ∝ exp

{
−1

2
(x2 + V−122 V21x1)

>V22(x2 + V−122 V21x1)

}
(13)

giving that
X2|X1 = x1 ∼ Nk2

(
−V−122 V21x1,V

−1
22

)
(14)

and

fX1(x1) ∝ exp

{
−1

2
x>1 (V11 −V>21V

−1
22 V21)x1

}
(15)

giving that
X1 ∼ Nk1

(
0, (V11 −V>21V

−1
22 V21)

−1
)
. (16)

But, from equation (3), Σ12 = −Σ11V12V
−1
22 , and then from equation (2), substituting in Σ12,

Σ11V11 − Σ11V12V
−1
22 V21 = Ik1 ∴ Σ11 = (V11 −V12V

−1
22 V21)

−1 = (V11 −V>21V
−1
22 V21)

−1.

Hence, by inspection of equation (16), we conclude that

X1 ∼ Nk1 (0,Σ11) , (17)

that is, we can extract the Σ11 block of Σ to define the marginal sigma matrix of X1.

Using similar arguments, we can define the conditional distribution from equation (14) more precisely.
First, from equation (3), V12 = −Σ−111 Σ12V22, and then from equation (5), substituting in V12

−Σ21Σ
−1
11 Σ12V22 + Σ22V22 = Ik−k1 ∴ V−122 = Σ22 − Σ21Σ

−1
11 Σ12 = Σ22 − Σ>12Σ

−1
11 Σ12.

Finally, from equation (3), taking transposes on both sides, we have that V21Σ11 + V22Σ21 = 0. Then
pre-multiplying by V−122 , and post-multiplying by Σ−111 , we have

V−122 V21 + Σ21Σ
−1
11 = 0 ∴ V−122 V21 = −Σ21Σ

−1
11 ,

so we have, substituting into equation (14), that

X2|X1 = x1 ∼ Nk2
(
Σ21Σ

−1
11 x1,Σ22 − Σ21Σ

−1
11 Σ12

)
. (18)

Thus any marginal, and any conditional distribution of a multivariate normal joint distribution is also
multivariate normal, as the choices of X1 and X2 are arbitrary.
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