556: Mathematical Statistics I

Worked Examples: Calculations For Multivariate Distributions

EXAMPLE 1 Let X_{1} and X_{2} be discrete random variables each with range $\{1,2,3, \ldots\}$ and joint mass function

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{c}{\left(x_{1}+x_{2}-1\right)\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+1\right)} \quad x_{1}, x_{2}=1,2,3, \ldots
$$

and zero otherwise. The marginal mass function for X is given by

$$
\begin{aligned}
f_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}=-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\sum_{x_{2}=1}^{\infty} \frac{c}{\left(x_{1}+x_{2}-1\right)\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+1\right)} \\
& =\sum_{x_{2}=1}^{\infty} \frac{c}{2}\left[\frac{1}{\left(x_{1}+x_{2}-1\right)\left(x_{1}+x_{2}\right)}-\frac{1}{\left(x_{1}+x_{2}\right)\left(x_{1}+x_{2}+1\right)}\right] \\
& =\frac{c}{2} \frac{1}{x_{1}\left(x_{1}+1\right)}
\end{aligned}
$$

as all other terms cancel, and to calculate c, note that

$$
\sum_{x_{1}=-\infty}^{\infty} f_{X_{1}}\left(x_{1}\right)=\sum_{x_{1}=1}^{\infty} \frac{c}{2} \frac{1}{x_{1}\left(x_{1}+1\right)}=\frac{c}{2} \sum_{x_{1}=1}^{\infty}\left[\frac{1}{x_{1}}-\frac{1}{x_{1}+1}\right]=\frac{c}{2}
$$

as all terms in the sum except the first cancel. Hence $c=2$. Also, as the joint function is symmetric in form for X_{1} and $X_{2}, f_{X_{1}}$ and $f_{X_{2}}$ are identical.

EXAMPLE 2 Let X_{1} and X_{2} be continuous random variables with ranges $\mathbb{X}_{1}=\mathbb{X}_{2}=(0,1)$ and joint pdf defined by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=4 x_{1} x_{2} \quad 0<x_{1}<1,0<x_{2}<1
$$

and zero otherwise. For $0<x_{1}, x_{2}<1$,

$$
\begin{aligned}
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\int_{-\infty}^{x_{2}} \int_{-\infty}^{x_{1}} f_{X_{1}, X_{2}}\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=\int_{0}^{x_{2}} \int_{0}^{x_{1}} 4 t_{1} t_{2} d t_{1} d t_{2} \\
& =\left\{\int_{0}^{x_{1}} 2 t_{1} d t_{1}\right\}\left\{\int_{0}^{x_{2}} 2 t_{2} d t_{2}\right\}=\left(x_{1} x_{2}\right)^{2}
\end{aligned}
$$

and a full specification for $F_{X_{1}, X_{2}}$ is

$$
F_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)= \begin{cases}0 & x_{1}, x_{2} \leq 0 \\ \left(x_{1} x_{2}\right)^{2} & 0<x_{1}, x_{2}<1 \\ x_{1}^{2} & 0<x_{1}<1, x_{2} \geq 1 \\ x_{2}^{2} & 0<x_{2}<1, x_{1} \geq 1 \\ 1 & x_{1}, x_{2} \geq 1\end{cases}
$$

To calculate

$$
P\left[\frac{X_{1}+X_{2}}{2}<c\right]
$$

we need to integrate $f_{X_{1}, X_{2}}$ over the set $A_{c}=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, x_{2}<1,\left(x_{1}+x_{2}\right) / 2<c\right\}$, that is, if $c=1 / 2$,

$$
\operatorname{Pr}\left[\left(X_{1}+X_{2}\right)<1\right]=\int_{0}^{1} \int_{0}^{1-x_{1}} 4 x_{1} x_{2} d x_{2} d x_{1}=\int_{0}^{1} 2 x_{1}\left(1-x_{1}\right)^{2} d x_{1}=\frac{1}{6}
$$

EXAMPLE 3 Let X_{1}, X_{2} be continuous random variables with ranges $\mathbb{X}_{1} \equiv \mathbb{X}_{2} \equiv[0,1]$, and joint pdf defined by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=1 \quad 0 \leq x_{1}, x_{2} \leq 1
$$

and zero otherwise. Let $Y=X_{1}+X_{2}$. The has range $\mathbb{Y} \equiv[0,2]$,

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[\left(X_{1}+X_{2}\right) \leq y\right]
$$

Now, to calculate $\operatorname{Pr}\left[\left(X_{1}+X_{2}\right) \leq y\right]$, need to integrate $f_{X_{1}, X_{2}}$ over the set

$$
A_{y}=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}, x_{2}<1, x_{1}+x_{2} \leq y\right\}
$$

This region is a portion of the unit square (that is, $\mathbb{X}_{1} \times \mathbb{X}_{2}$) ; the line $x_{1}+x_{2}=y$ is a line with negative slope that cuts the x_{1} (horizontal) axis at $x_{1}=y$, and the x_{2} axis (vertical) at $x_{2}=y$. Now for $0 \leq y \leq 1$, A_{y} is the dark shaded lower triangle in Figure 1(a); hence,for fixed y,

$$
\operatorname{Pr}\left[X_{1}+X_{2}<y\right]=\int_{0}^{y} \int_{0}^{y-x_{2}} 1 d x_{1} d x_{2}=\int_{0}^{y}\left(y-x_{2}\right) d x_{2}=\frac{y^{2}}{2} .
$$

For $1 \leq y \leq 2, A_{y}$ is more complicated see the figure below (right panel). It is easier mathematically to describe the complement of A_{y} within $\mathbb{X}_{1} \times \mathbb{X}_{2}$ (striped in the right panel of the figure below), so we instead compute the complement probability as follows:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}+X_{2} \leq y\right] & =1-\operatorname{Pr}\left[X_{1}+X_{2}>y\right] \\
& =1-\int_{y-1}^{1} \int_{y-x_{2}}^{1} 1 d x_{1} d x_{2}=1-\int_{y-1}^{1}\left(1-y+x_{2}\right) d x_{2}=-\frac{y^{2}}{2}+2 y-1
\end{aligned}
$$

These two expressions give the $\operatorname{cdf} F_{Y}$, and hence by differentiation we have

$$
f_{Y}(y)= \begin{cases}y & 0 \leq y \leq 1 \\ 2-y & 1 \leq y \leq 2\end{cases}
$$

and zero otherwise.

EXAMPLE 4 Let X_{1} and X_{2} be continuous random variables with ranges $\mathbb{X}_{1}=(0,1), \mathbb{X}_{2}=(0,2)$ and joint pdf defined by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) \quad 0<x_{1}<1,0<x_{2}<2
$$

and zero otherwise.
(i) To calculate c, we have

$$
\begin{aligned}
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} & =\int_{0}^{2}\left\{\int_{0}^{1} c\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) d x_{1}\right\} d x_{2} \\
& =\int_{0}^{2} c\left[\frac{x_{1}^{3}}{3}+\frac{x_{1}^{2} x_{2}}{4}\right]_{0}^{1} d x_{2} \\
& =\int_{0}^{2} c\left(\frac{1}{3}+\frac{x_{2}}{4}\right) d x_{2} \\
& =c\left[\frac{x_{2}}{3}+\frac{x_{2}^{2}}{8}\right]_{0}^{2}=c \frac{7}{6}
\end{aligned}
$$

so $c=6 / 7$. The marginal pdf of X_{1} is given, for $0<x_{1}<1$, by

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{0}^{2} \frac{6}{7}\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) d x_{2}=\frac{6}{7}\left[x_{1}^{2} x_{2}+\frac{x_{1} x_{2}^{2}}{4}\right]_{0}^{2}=\frac{6 x_{1}\left(2 x_{1}+1\right)}{7}
$$

and is zero otherwise.
(ii) To compute $\operatorname{Pr}\left[X_{1}>X_{2}\right]$, let

$$
A=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}<1,0<x_{2}<2, x_{2}<x_{1}\right\}
$$

so that

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1}\right. & \left.>X_{2}\right]=\iint_{A} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1} \\
& =\int_{0}^{1}\left\{\int_{0}^{x_{1}} \frac{6}{7}\left(x_{1}^{2}+\frac{x_{1} x_{2}}{2}\right) d x_{2}\right\} d x_{1} \\
& =\int_{0}^{1}\left[x_{1}^{2} x_{2}+\frac{x_{1} x_{2}^{2}}{4}\right]_{0}^{x_{1}} d x_{1} \\
& =\int_{0}^{1}\left(x_{1}^{3}+\frac{x_{1}^{3}}{4}\right) d x_{1} \\
& =\frac{6}{7}\left[\frac{5 x_{1}^{4}}{16}\right]_{0}^{1} \\
& =\frac{15}{56}
\end{aligned}
$$

EXAMPLE 5 Let X_{1}, X_{2} and X_{3} be continuous random variables with joint ranges

$$
\mathbb{X}^{(3)}=\left\{\left(x_{1}, x_{2}, x_{3}\right): 0<x_{1}<x_{2}<x_{3}<1\right\}
$$

and joint pdf defined by

$$
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=c \quad 0<x_{1}<x_{2}<x_{3}<1
$$

and zero otherwise.
(i) To calculate c, integrate carefully over $\mathbb{X}^{(3)}$, that is

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2} d x_{3}=1
$$

gives that

$$
\int_{0}^{1}\left\{\int_{0}^{x_{3}}\left\{\int_{0}^{x_{2}} c d x_{1}\right\} d x_{2}\right\} d x_{3}=1
$$

Now

$$
\int_{0}^{1}\left\{\int_{0}^{x_{3}}\left\{\int_{0}^{x_{2}} c d x_{1}\right\} d x_{2}\right\} d x_{3}=\int_{0}^{1}\left\{\int_{0}^{x_{3}} c x_{2} d x_{2}\right\} d x_{3}=\int_{0}^{1} \frac{c x_{3}^{2}}{2} d x_{3}=\frac{c}{6}
$$

and hence $c=6$.

Also, for $0<x_{3}<1, f_{X_{3}}$ is given by

$$
f_{X_{3}}\left(x_{3}\right)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) d x_{1} d x_{2}=\int_{0}^{x_{3}}\left\{\int_{0}^{x_{2}} 6 d x_{1}\right\} d x_{2}=\int_{0}^{x_{3}} 6 x_{2} d x_{2}=3 x_{3}^{2}
$$

and is zero otherwise. Similar calculations for X_{1} and X_{2} give

$$
\begin{array}{ll}
f_{X_{1}}\left(x_{1}\right)=3\left(1-x_{1}\right)^{2} & 0<x_{1}<1 \\
f_{X_{2}}\left(x_{2}\right)=6 x_{2}\left(1-x_{2}\right) & 0<x_{2}<1
\end{array}
$$

with both densities equal to zero outside of these ranges.
Furthermore, for the joint marginal of X_{1} and X_{2}, we have

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right) d x_{3}=\int_{x_{2}}^{1} 6 d x_{3}=6\left(1-x_{2}\right) \quad 0<x_{1}<x_{2}<1
$$

and zero otherwise. Combining these results, we have, for example, for the conditional of X_{1} given $X_{2}=x_{2}$,

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}=\frac{1}{x_{2}} \quad 0<x_{1}<x_{2}
$$

and zero otherwise for fixed x_{2}. Now, we can calculate the expectation of X_{1} either directly or using the Law of Iterated Expectation: we have

$$
E_{f_{X_{1}}}\left[X_{1}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1}}\left(x_{1}\right) d x_{1}=\int_{0}^{1} x_{1} 3\left(1-x_{1}\right)^{2} d x_{1}=\frac{1}{4}
$$

or, alternatively,

$$
E_{f_{X_{1} \mid X_{2}}}\left[X_{1} \mid X_{2}=x_{2}\right]=\int_{-\infty}^{\infty} x_{1} f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}=\int_{0}^{x_{2}} x_{1} \frac{1}{x_{2}} d x_{1}=\frac{x_{2}}{2}
$$

and hence by the law of iterated expectation

$$
\begin{aligned}
E_{f_{X_{1}}}\left[X_{1}\right] & =E_{f_{X_{2}}}\left[E_{f_{X_{1} \mid X_{2}}}\left[X_{1} \mid X_{2}=x_{2}\right]\right]=\int_{-\infty}^{\infty}\left\{E_{f_{X_{1} \mid X_{2}}}\left[X_{1} \mid X_{2}=x_{2}\right]\right\} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =\int_{0}^{1} \frac{x_{2}}{2} 6 x_{2}\left(1-x_{2}\right) d x_{2}=\frac{1}{4}
\end{aligned}
$$

EXAMPLE 6 Let X_{1}, X_{2} be continuous random variables with joint density $f_{X_{1}, X_{2}}$ and let random variable Y be defined by $Y=g\left(X_{1}, X_{2}\right)$. To calculate the pdf of Y we could use the multivariate transformation theorem after defining another (dummy) variable Z as some function of X_{1} and X_{2}, and consider the joint transformation $\left(X_{1}, X_{2}\right) \longrightarrow(Y, Z)$.

As a special case of the Theorem, consider defining $Z=X_{1}$. We have

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{Y, Z}(y, z) d z=\int_{-\infty}^{\infty} f_{Y \mid Z}(y \mid z) f_{Z}(z) d z=\int_{-\infty}^{\infty} f_{Y \mid X_{1}}\left(y \mid x_{1}\right) f_{X_{1}}\left(x_{1}\right) d x_{1}
$$

as $f_{Y, Z}(y, z)=f_{Y \mid Z}(y \mid z) f_{Z}(z)$ by the chain rule for densities; $f_{Y \mid X_{1}}\left(y \mid x_{1}\right)$ is a univariate (conditional) pdf for Y given $X_{1}=x_{1}$.

Now, given that $X_{1}=x_{1}$, we have that $Y=g\left(x_{1}, X_{2}\right)$, that is, Y is a transformation of X_{2} only. Hence the conditional pdf $f_{Y \mid X_{1}}\left(y \mid x_{1}\right)$ can be derived using single variable (rather than multivariate) transformation techniques. Specifically, if $Y=g\left(x_{1}, X_{2}\right)$ is a 1-1 transformation from X_{2} to Y, then the inverse transformation $X_{2}=g^{-1}\left(x_{1}, Y\right)$ is well defined, and by the transformation theorem

$$
f_{Y \mid X_{1}}\left(y \mid x_{1}\right)=f_{X_{2} \mid X_{1}}\left(g^{-1}\left(x_{1}, y\right)\right)\left|J\left(y ; x_{1}\right)\right|=f_{X_{2} \mid X_{1}}\left(g^{-1}\left(x_{1}, y\right) \mid x_{1}\right)\left|\frac{\partial}{\partial t}\left\{g^{-1}\left(x_{1}, t\right)\right\}_{t=y}\right|
$$

and hence

$$
f_{Y}(y)=\int_{-\infty}^{\infty}\left\{f_{X_{2} \mid X_{1}}\left(g^{-1}\left(x_{1}, y\right) \mid x_{1}\right)\left|\frac{\partial}{\partial t}\left\{g^{-1}\left(x_{1}, t\right)\right\}_{t=y}\right|\right\} f_{X_{1}}\left(x_{1}\right) d x_{1}
$$

For example, if $Y=X_{1} X_{2}$, then $X_{2}=Y / X_{1}$, and hence

$$
\left|\frac{\partial}{\partial t}\left\{g^{-1}\left(x_{1}, t\right)\right\}_{t=y}\right|=\left|\frac{\partial}{\partial t}\left\{\frac{t}{x_{1}}\right\}_{t=y}\right|=\left|x_{1}\right|^{-1}
$$

so

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{2} \mid X_{1}}\left(y / x_{1} \mid x_{1}\right)\left|x_{1}\right|^{-1} f_{X_{1}}\left(x_{1}\right) d x_{1} .
$$

The conditional density $f_{X_{2} \mid X_{1}}$ and/or the marginal density $f_{X_{1}}$ may be zero on parts of the range of the integral. Alternatively, the cdf of Y is given by

$$
F_{Y}(y)=\operatorname{Pr}[Y \leq y]=\operatorname{Pr}\left[g\left(X_{1}, X_{2}\right) \leq y\right]=\iint_{A_{y}} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}
$$

where $A_{y}=\left\{\left(x_{1}, x_{2}\right): g\left(x_{1}, x_{2}\right) \leq y\right\}$ so the cdf can be calculated by carefully identifying and intergrating over the set A_{y}.

EXAMPLE 7 Let X_{1}, X_{2} be random variables with joint density $f_{X_{1}, X_{2}}$ and let $g\left(X_{1}\right)$. Then

$$
\begin{aligned}
E_{f_{X_{1}, X_{2}}}\left[g\left(X_{1}\right)\right] & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) f_{X_{2}}\left(x_{2}\right) d x_{1}\right\} d x_{2} \\
& =\int_{-\infty}^{\infty}\left\{\int_{-\infty}^{\infty} g\left(x_{1}\right) f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right) d x_{1}\right\} f_{X_{2}}\left(x_{2}\right) d x_{2} \\
& =E_{f_{X_{2}}}\left[E_{f_{X_{1} \mid X_{2}}}\left[g\left(X_{1}\right) \mid X_{2}=x_{2}\right]\right] \\
& =E_{f_{X_{1}}}\left[g\left(X_{1}\right)\right]
\end{aligned}
$$

by the law of iterated expectation.
EXAMPLE 8 Let X_{1}, X_{2} be continuous random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=x_{1} \exp \left\{-\left(x_{1}+x_{2}\right)\right\} \quad x_{1}, x_{2}>0
$$

and zero otherwise. Let $Y=X_{1}+X_{2}$. Then by the Convolution Theorem,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right) d x_{1}=\int_{0}^{y} x_{1} \exp \left\{-\left(x_{1}+\left(y-x_{1}\right)\right)\right\} d x_{1}=\frac{y^{2}}{2} e^{-y} \quad y>0
$$

and zero otherwise. Note that the integral range is 0 to y as the joint density $f_{X_{1}, X_{2}}$ is only nonzero when both its arguments are positive, that is, when $x_{1}>0$ and $y-x_{1}>0$ for fixed y, or when $0<x_{1}<y$. It is straightforward to check that this density is a valid pdf.

EXAMPLE 9 Let X_{1}, X_{2} be continuous random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=2\left(x_{1}+x_{2}\right) \quad 0 \leq x_{1} \leq x_{2} \leq 1
$$

and zero otherwise. Let $Y=X_{1}+X_{2}$. Then by the Convolution Theorem,

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right) d x_{1}= \begin{cases}\int_{0}^{y / 2} 2 y d x_{1} & 0 \leq y \leq 1 \\ \int_{y-1}^{y / 2} 2 y d x_{1} & 1 \leq y \leq 2\end{cases}
$$

and zero otherwise, as $f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)=2 y$; this holds when both x_{1} and $y-x_{1}$ lie in the interval $[0,1]$ with $x_{1} \leq y-x_{1}$ for fixed y, and zero otherwise. Clearly Y takes values on $\mathbb{Y} \equiv[0,2]$; for $0 \leq y \leq 1$, the constraints $0 \leq x_{1} \leq y-x_{1} \leq 1$ imply that $0 \leq 2 x_{1} \leq y$, or $0 \leq x_{1} \leq y / 2$ (for fixed y); if $1 \leq y \leq 2$ the constraints imply $1-y \leq x_{1} \leq y / 2$. Hence

$$
f_{Y}(y)= \begin{cases}y^{2} & 0 \leq y \leq 1 \\ y(2-y) & 1 \leq y \leq 2\end{cases}
$$

It is straightforward to check that this density is a valid pdf. The region of $\left(X_{1}, Y\right)$ space on which the joint density $f_{X_{1}, X_{2}}\left(x_{1}, y-x_{1}\right)$ is positive; this region is the triangle with corners $(0,0),(1,2),(0,1)$.

EXAMPLE 10 Let X_{1}, X_{2} be continuous random variables with joint pdf given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=c \quad 0<x_{1}<1, x_{1}<x_{2}<x_{1}+1
$$

and zero otherwise. To calculate c, we have

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2} d x_{1}=\int_{0}^{1} \int_{x_{1}}^{x_{1}+1} c d x_{2} d x_{1}=\int_{0}^{1} c\left[x_{2}\right]_{x_{1}}^{x_{1}+1} d x_{1}=\int_{0}^{1} c d x_{2}=c
$$

so $c=1$. The marginal pdf of X_{1} is given by

$$
f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}=\int_{x_{1}}^{x_{1}+1} 1 d x_{2}=1 \quad 0<x_{1}<1
$$

and zero otherwise, and the marginal pdf for X_{2} is given by

$$
f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{1}=\left\{\begin{array}{lll}
\int_{0}^{x_{2}} 1 d x_{1} & =x_{2} & 0<x_{2}<1 \\
\int_{x_{2}-1}^{1} 1 d x_{1} & =2-x_{2} & 1 \leq x_{2}<2
\end{array}\right.
$$

and zero otherwise. Hence

$$
\begin{aligned}
E_{f_{X_{1}}}\left[X_{1}\right]= & \int_{-\infty}^{\infty} x_{1} f_{X_{1}}\left(x_{1}\right) d x_{1}=\int_{0}^{1} x_{1} d x_{1}=\frac{1}{2} \\
\operatorname{Var}_{f_{X_{1}}}\left[X_{1}\right]= & \int_{-\infty}^{\infty} x_{1}^{2} f_{X_{1}}\left(x_{1}\right) d x_{1}-\left\{E_{f_{X_{1}}}\left[X_{1}\right]\right\}^{2}=\int_{0}^{1} x_{1}^{2} d x_{1}-\frac{1}{4}=\frac{1}{12} \\
E_{f_{X_{2}}}\left[X_{2}\right] & =\int_{-\infty}^{\infty} x_{2} f_{X_{2}}\left(x_{2}\right) d x_{2}=\int_{0}^{1} x_{2}^{2} d x_{2}+\int_{1}^{2} x_{2}\left(2-x_{2}\right) d x_{2} \\
& =\frac{1}{3}-\left(1-\frac{1}{3}\right)+\left(4-\frac{8}{3}\right)=1 \\
\operatorname{Var}_{f_{X_{2}}}\left[X_{2}\right] & =\int_{-\infty}^{\infty} x_{2}^{2} f_{X_{2}}\left(x_{2}\right) d x_{2}-\left\{E_{f_{X_{2}}}\left[X_{2}\right]\right\}^{2} \\
& =\int_{0}^{1} x_{2}^{2} x_{2} d x_{2}+\int_{1}^{2} x_{2}^{2}\left(2-x_{2}\right) d x_{2}-1 \\
& =\frac{1}{4}-\left(\frac{2}{3}-\frac{1}{4}\right)+\left(\frac{16}{3}-4\right)-1=\frac{1}{6}
\end{aligned}
$$

The covariance and correlation of X_{1} and X_{2} are then given by

$$
\begin{aligned}
\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right] & =\left\{\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} x_{2} f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) d x_{2}\right\} d x_{1}-E_{f_{X_{1}}}\left[X_{1}\right] E_{f_{X_{2}}}\left[X_{2}\right] \\
& =\int_{0}^{1}\left\{\int_{x_{1}}^{x_{1}+1} x_{1} x_{2} d x_{2}\right\} d x_{1}-\frac{1}{2} \cdot 1 \\
& =\int_{0}^{1} x_{1}\left[\frac{x_{2}}{2}\right]_{x_{1}}^{x_{1}+1} d x_{1}-\frac{1}{2} \\
& =\int_{0}^{1}\left(x_{1}^{2}+\frac{x_{1}}{2}\right) d x_{1}-\frac{1}{2} \\
& =\left[\frac{x_{1}^{3}}{3}+\frac{x_{1}^{2}}{4}\right]_{0}^{1}-\frac{1}{2} \\
& =\frac{7}{12}-\frac{1}{2}=\frac{1}{12}
\end{aligned}
$$

and hence

$$
\operatorname{Corr}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]=\frac{\operatorname{Cov}_{f_{X_{1}, X_{2}}}\left[X_{1}, X_{2}\right]}{\sqrt{\operatorname{Var}_{f_{X_{1}}}\left[X_{1}\right] \operatorname{Var}_{f_{X_{2}}}\left[X_{2}\right]}}=\frac{1 / 12}{\sqrt{1 / 12} \sqrt{1 / 6}}=\frac{1}{\sqrt{2}}
$$

