MATH 556 - EXERCISES 3: SOLUTIONS

1 (a) This is not an Exponential Family distribution; the support is parameter dependent.
(b) This is an EF distribution with $m=1$:

$$
f(x ; \theta)=\frac{\mathbb{I}_{\{1,2,3, \ldots\}}(x)}{x} \frac{-1}{\log (1-\theta)} \exp \{x \log \theta\}=\exp \{c(\theta) T(x)-A(\theta)\} h(x)
$$

where $\quad h(x)=\frac{\mathbb{I}_{\{1,2,3, \ldots\}}(x)}{x} \quad A(\theta)=\log (-\log (1-\theta)) \quad c(\theta)=\log (\theta) \quad T(x)=x$, so the natural parameter is $\eta=\log (\theta)$.
(c) This is an EF distribution with $k=2$:

$$
\begin{aligned}
f(x ; \phi, \lambda) & =\frac{\mathbb{I}_{(0, \infty)}(x)}{\left(2 \pi x^{3}\right)^{1 / 2}} \sqrt{\lambda} e^{\phi} \exp \left\{-\frac{\phi^{2}}{2 \lambda} x-\frac{\lambda}{2} \frac{1}{x}\right\} \\
& =\exp \left\{c_{1}(\phi, \lambda) T_{1}(x)+c_{2}(\phi, \lambda) T_{2}(x)-A(\phi, \lambda)\right\} h(x)
\end{aligned}
$$

where

$$
h(x)=\frac{\mathbb{I}_{(0, \infty)}(x)}{\left(2 \pi x^{3}\right)^{1 / 2}} \quad A(\phi, \lambda)=-\phi-\frac{1}{2} \log \lambda
$$

and

$$
c_{1}(\phi, \lambda)=-\frac{\phi^{2}}{2 \lambda} \quad c_{2}(\phi, \lambda)=-\frac{\lambda}{2} \quad T_{1}(x)=x \quad T_{2}(x)=\frac{1}{x},
$$

so the natural parameter is $\eta=\left(\eta_{1}, \eta_{2}\right)^{\top}$ where

$$
\eta_{1}=-\phi^{2} / 2 \lambda \quad \eta_{2}=-\lambda / 2
$$

Thus

$$
\phi=2 \sqrt{\eta_{1} \eta_{2}} \quad \lambda=-2 \eta_{2} .
$$

In the natural parameterization, therefore,

$$
k\left(\eta_{1}, \eta_{2}\right)=-2 \sqrt{\eta_{1} \eta_{2}}-\frac{1}{2} \log \left(-2 \eta_{2}\right)
$$

and using the results from lectures

$$
\mathbb{E}_{f_{X}}[1 / X]=\mathbb{E}_{f_{X}}\left[T_{2}(X)\right]=\frac{\partial k\left(\eta_{1}, \eta_{2}\right)}{\partial \eta_{2}}
$$

We have

$$
\mathbb{E}_{f_{X}}[1 / X]=\frac{\partial}{\partial \eta_{2}}\left\{-2 \sqrt{\eta_{1} \eta_{2}}-\frac{1}{2} \log \left(-2 \eta_{2}\right)\right\}=\left\{-\sqrt{\eta_{1} / \eta_{2}}-\frac{1}{2 \eta_{2}}\right\}=\frac{\phi}{\lambda}+\frac{1}{\lambda}
$$

2 (a) Suppose that $\eta_{1}, \eta_{2} \in \mathcal{H}$ and $0 \leq t \leq 1$. Then

$$
\begin{aligned}
\int h(x) e^{\left(t \eta_{1}+(1-t) \eta_{2}\right)^{\top} T(x)} \mathrm{d} x & =\int h(x) e^{\left(t \eta_{1}\right)^{\top} T(x)} e^{\left((1-t) \eta_{2}\right)^{\top} T(x)} \mathrm{d} x \\
& \leq\left\{\int h(x) e^{\left(t \eta_{1}\right)^{\top} T(x)} \mathrm{d} x\right\}\left\{\int h(x) e^{\left((1-t) \eta_{2}\right)^{\top} T(x)} \mathrm{d} x\right\} \\
& \leq\left\{\int h(x) e^{\eta_{1}^{\top} T(x)} \mathrm{d} x\right\}^{t}\left\{\int h(x) e^{\eta_{2}^{\top} T(x)} \mathrm{d} x\right\}^{(1-t)}<\infty
\end{aligned}
$$

so $t \eta_{1}+(1-t) \eta_{2} \in \mathcal{H}$.
(b) We can re-write f_{X} as

$$
f_{X}(x ; \eta)=\exp \left\{\eta^{\top} T(x)-k(\eta)\right\} h(x)
$$

and by integrating with respect to x, we note that

$$
\int h(x) \exp \{\eta T(x)\} \mathrm{d} x=\exp \{k(\eta)\}
$$

for $\eta \in \mathcal{H}$ as given in lectures. Thus, for s in a suitable neighbourhood of zero, $\|s\|<\delta$ say, we have

$$
\begin{aligned}
M_{T}(s) & =\mathbb{E}_{f_{X}}\left[e^{s^{\top} T(X)}\right]=\int e^{s^{\top} T(x)} h(x) \exp \left\{\eta^{\top} T(x)-k(\eta)\right\} \mathrm{d} x \\
& =\exp \{-k(\eta)\} \int h(x) \exp \left\{(\eta+s)^{\top} T(x)\right\} \mathrm{d} x=\exp \{-k(\eta)\} \exp \{k(\eta+s)\}
\end{aligned}
$$

as $\eta \in \mathcal{H} \Longrightarrow \eta+s \in \mathcal{H}$ for s small enough, as \mathcal{H} is open. Hence, as $K_{T}(s)=\log M_{T}(s)$,

$$
K_{T}(s)=k(\eta+s)-k(\eta)
$$

for $\|s\|<\delta$ as required.
(c) By inspection

$$
\ell\left(x ; \eta_{1}, \eta_{2}\right)=\left(\eta_{1}-\eta_{2}\right)^{\top} T(x)-\left(k\left(\eta_{1}\right)-k\left(\eta_{2}\right)\right)
$$

