MATH 556 - ASSIGNMENT 4

To be handed in not later than 10pm, 3rd December 2014. Please submit your solutions as pdf via myCourses

1. Suppose that $\{X_n, n = 1, 2, ...\}$ are independent and identically distributed continuous random variables with pdf

$$f_X(x) = \lambda \exp\{-\lambda(x-\eta)\}$$
 $x > \eta$

and zero otherwise, for parameters $\lambda > 0$ and $\eta \in \mathbb{R}$. Find the limiting distribution, as $n \longrightarrow \infty$, of the sequence of random variables $\{Y_{n,1}, n = 1, 2, ...\}$ defined by

$$Y_{n,1} = \min\{X_1, \dots, X_n\}.$$

The double subscript notation $Y_{n,j}$ *for the jth order statistic arising from a sample of size* n *more readily lends itself to the study of asymptotic properties, and is commonly used.*

2 Marks

2. Suppose that $\{X_n, n = 1, 2, ...\}$ are independent and identically distributed continuous random variables with pdf

$$f_X(x) = \frac{1}{(1+x)^2}$$
 $x > 0$

and zero otherwise. Let

 $Y_{n,n} = \max\{X_1, \dots, X_n\}$ $n = 1, 2, \dots$

Show that the sequence of random variables $\{Y_{n,n}/n, n = 1, 2, ...\}$ converges in distribution, and find the limiting distribution.

4 Marks

3. Show that, for sequence of random variables $\{X_n, n = 1, 2, ...\}$ and random variable *X* (defined on a common probability space) if

$$\mathbb{E}_{X_n,X}[(X_n - X)^2] \longrightarrow 0$$

as $n \longrightarrow \infty$, then $X_n \xrightarrow{p} X$.

4 Marks

4. A simple version of the *Central Limit Theorem* states that if $\{X_n, n = 1, 2, ...\}$ are independent and identically distributed with finite expectation μ and variance σ^2 , then if

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

is the sample mean random variable, we have that

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\longrightarrow} \operatorname{Normal}(0, \sigma^2)$$

In addition, a version of the *first order Delta method* states that if $\{Y_n, n = 1, 2, ...\}$ is a sequence of rvs such that

$$\sqrt{n}(Y_n - \theta) \xrightarrow{d} \operatorname{Normal}(0, V(\theta))$$

for some constant θ , where V(.) is a positive function, and if g(t) is a continuous function such that the first derivative of g, \dot{g} , is non-zero at θ , then

$$\sqrt{n}(g(Y_n) - g(\theta)) \xrightarrow{d} \operatorname{Normal}(0, V(\theta) \{ \dot{g}(\theta) \}^2)$$

(a) Suppose $\{X_n, n = 1, 2, ...\}$ are independent and identically distributed Bernoulli(ϕ) random variables, where $0 < \phi < 1$. Describe the limiting behaviour of the sequence $\{S_n, n = 1, 2, ...\}$, where

$$S_n = \{\overline{X}_n\}^2$$

and construct a large sample normal approximation to the distribution of S_n .

5 Marks

(b) Suppose that U_1, U_2, \ldots are independent and identically distributed Uniform(0, 1) random variables. Let M_n be the geometric mean of the U_1, \ldots, U_n , that is

$$M_n = \left\{\prod_{i=1}^n U_i\right\}^{1/n} \qquad n = 1, 2, \dots$$

Describe the limiting behaviour of the sequence of random variables $\{M_n, n = 1, 2, ...\}$, and construct a large sample normal approximation to the distribution of M_n .

5 Marks