## MATH 556-ASSIGNMENT 4SOLUTIONS

1. The cdf is

$$
F_{X}(x)=1-\exp \{-\lambda(x-\eta)\} \quad x>\eta
$$

and zero otherwise. Therefore $Y_{n, 1}$ has cdf

$$
F_{Y_{n, 1}}(y)=1-\exp \{-n \lambda(y-\eta)\} \quad y>\eta
$$

and as $n \longrightarrow \infty$ we have

$$
F_{Y_{n, 1}}(y) \longrightarrow \begin{cases}0 & y \leq \eta \\ 1 & y>\eta\end{cases}
$$

Therefore the limiting distribution is degenerate at $\eta$; the limit function is not right continuous, but clearly for any $\epsilon>0, \mathrm{P}\left[Y_{n, 1}<\epsilon\right] \longrightarrow 1$.

2 Marks
2. We have

$$
F_{X}(x)=1-\frac{1}{(1+x)} \quad x>0
$$

and zero otherwise. Then $Y_{n, n}$ has cdf

$$
F_{Y_{n, n}}(y)=\left(1-\frac{1}{1+y}\right)^{n} \quad y>0
$$

Let $V_{n}=Y_{n, n} / n$. Then for $v>0$

$$
F_{V_{n}}(v)=\left(1-\frac{1}{1+n v}\right)^{n}
$$

and in the limit we have that

$$
F_{V_{n}}(v)=\longrightarrow\left\{\begin{array}{cc}
0 & v \leq 0 \\
\exp \{-1 / v\} & v>0
\end{array}\right.
$$

4 Marks
3. By Markov's inequality, for $r=2$ and $\epsilon>0$,

$$
\mathrm{P}_{X}\left[X^{2} \geq \epsilon\right] \leq \frac{\mathbb{E}_{X}\left[X^{2}\right]}{\epsilon}
$$

Consider the sequence of random variables $\left\{X_{n}-X, n \geq 1\right\}$. Then this inequality becomes

$$
\mathrm{P}_{X_{n}, X}\left[\left(X_{n}-X\right)^{2} \geq \epsilon\right] \leq \frac{\mathbb{E}_{X_{n}, X}\left[\left(X_{n}-X\right)^{2}\right]}{\epsilon}
$$

But the right hand side goes to zero as $n \longrightarrow \infty$. Therefore, for any $\epsilon>0$,

$$
\mathrm{P}_{X_{n}, X}\left[\left(X_{n}-X\right)^{2} \geq \epsilon\right] \longrightarrow 0
$$

which confirms that $X_{n} \xrightarrow{p} X$.
4. (a) We have from the Weak Law of Large Numbers and Central Limit Theorem that

$$
\bar{X}_{n} \xrightarrow{p} \phi \quad \sqrt{n}\left(\bar{X}_{n}-\phi\right) \xrightarrow{d} \mathcal{N}(0, \phi(1-\phi))
$$

so using the Delta Method for transform $g(t)=t^{2}$, so that $\dot{g}(t)=2 t$, we have

$$
S_{n}=\left\{\bar{X}_{n}\right\}^{2} \xrightarrow{p} \phi^{2}
$$

and

$$
\sqrt{n}\left(S_{n}-\phi^{2}\right) \xrightarrow{d} \mathcal{N}\left(0,4 \phi^{3}(1-\phi)\right)
$$

so that for large $n$

$$
S_{n} \dot{\sim} \mathcal{N}\left(\phi^{2}, 4 \phi^{3}(1-\phi) / n\right) .
$$

5 Marks
(b) We have that

$$
T_{n}=\log M_{n}=\frac{1}{n} \sum_{i=1}^{n} \log U_{i}=\frac{1}{n} \sum_{i=1}^{n} Y_{i}
$$

say. Note that, by parts

$$
\mathbb{E}_{Y_{i}}\left[Y_{i}\right]=\int_{0}^{1} \log u \mathrm{~d} u=[-u(1-\log u)]_{0}^{1}=-1
$$

and also by parts

$$
\mathbb{E}_{Y_{i}}\left[Y_{i}^{2}\right]=\int_{0}^{1}(\log u)^{2} \mathrm{~d} u=\left[u(\log u)^{2}\right]_{0}^{1}-2 \int_{0}^{1} \log u \mathrm{~d} u=2
$$

so that $\operatorname{Var}_{Y_{i}}\left[Y_{i}\right]=1$. Therefore by the CLT

$$
\sqrt{n}\left(T_{n}+1\right) \xrightarrow{d} \mathcal{N}(0,1) .
$$

Using the Delta Method for transform $g(t)=e^{t}$, so that $\dot{g}(t)=e^{t}$, we have

$$
\sqrt{n}\left(M_{n}-e^{-1}\right) \xrightarrow{d} \mathcal{N}\left(0, e^{-2}\right)
$$

so that for large $n$

$$
M_{n} \dot{\sim} \mathcal{N}\left(e^{-1}, e^{-2} / n\right) .
$$

5 Marks
Here is a Monte Carlo study: the code simulates the distribution of the standardized version of $M_{n}$, that is

$$
Z_{n}=\sqrt{n} \frac{M_{n}-e^{-1}}{e^{-1}}
$$

for $n=5,10,20,50,100$.
set.seed (2323)
nvec<-c (5,10,20,50,100)
nreps<-5000
Xsamp<-matrix(0,nrow=nreps,ncol=length(nvec))
for(i in 1:length(nvec)) \{
Xsamp[,i]<-replicate(nreps, exp(mean(log(runif(nvec[i])))))
Xsamp[,i]<-sqrt(nvec[i])*(Xsamp[,i]-exp (-1))/exp (-1)
\}
Xsamp<-cbind (Xsamp, rnorm(nreps))
boxplot (Xsamp, names=c (nvec, Inf))
The boxplots for increasing $n$ seem to match the asymptotic limit for $n \geq 20$.

5000 samples from the distribution of $Z_{n}$


