MATH 556 - ASSIGNMENT 3

To be handed in not later than 10pm, 14th November 2014.
 Please submit your solutions as pdf via myCourses

1. The entropy of a discrete distribution with countable support $\mathfrak{X}=\left\{x_{1}, x_{2}, \ldots\right\}$ and mass function $f(x)$ is defined by

$$
H(f)=-\sum_{x \in \mathfrak{X}} f(x) \log f(x)
$$

For this question, suppose $\mathfrak{X} \equiv\{0,1,2, \ldots\}$.
(a) Find the mass function f_{X} that has the largest possible entropy on this support, subject to the constraint that

$$
\mathbb{E}_{X}[X]=\sum_{x=0}^{\infty} x f_{X}(x)=\mu
$$

6 Marks
Use Lagrange multipliers to perform the constrained optimization as follows:

- Denote $f_{X}(x)=p_{x}$ for each x;
- Consider the objective function $\Lambda($.$) expressed in terms of \mathbf{p}=\left(p_{0}, p_{1}, \ldots\right)$ as

$$
\Lambda\left(\mathbf{p}, \lambda_{0}, \lambda_{1}\right)=H(\mathbf{p})+\lambda_{0}\left(\sum_{x=0}^{\infty} p_{x}-1\right)+\lambda_{1}\left(\sum_{x=0}^{\infty} x p_{x}-\mu\right)
$$

where the first term is the entropy defined for the distribution specified by \mathbf{p}, the second term acknowledges the constraint that the probabilities must sum to one, and the third term acknowledges the constraint that the expectation must equal μ;

- maximize $\Lambda\left(\mathbf{p}, \lambda_{0}, \lambda_{1}\right)$ using calculus methods.
(b) Suppose now that m constraints of the form

$$
\mathbb{E}_{X}\left[g_{k}(X)\right]=\omega_{k} \quad k=1, \ldots, m
$$

are placed on the distribution. Show that the distribution that maximizes entropy on this support is an Exponential Family distribution.

4 Marks
2. Consider the discrete distribution for random variable X defined on $\{0,1,2, \ldots\}$ with mass function

$$
f_{X}(x ; \theta)=\frac{h(x) \theta^{x}}{\sum_{y=0}^{\infty} h(y) \theta^{y}} \quad x=0,1,2, \ldots
$$

with $\theta>0$. Verify that this is an Exponential Family distribution, and also that if X_{1}, \ldots, X_{n} are independent random variables having this distribution, then the distribution of random variable

$$
S_{n}=\sum_{i=1}^{n} X_{i}
$$

is also a member of the same distributional family.
3. Consider the continuous random variable X with density function

$$
f_{X}(x ; \mu, \lambda)=C(\mu, \lambda) \exp \left\{-\lambda(x-\mu)^{3}\right\} \quad x \in \mathbb{R}
$$

for parameters $\mu \in \mathbb{R}, \lambda>0$. Is this a location-scale family distribution, an Exponential Family distribution, or both ? Justify your answer.

5 Marks

