MATH 556-ASSIGNMENT 3: Solutions

1. (a) We have

$$
\Lambda\left(\mathbf{p}, \lambda_{0}, \lambda_{1}\right)=-\sum_{x=0}^{\infty} p_{x} \log p_{x}+\lambda_{0}\left(\sum_{x=0}^{\infty} p_{x}-1\right)+\lambda_{1}\left(\sum_{x=0}^{\infty} x p_{x}-\mu\right)
$$

- by convention, and without loss of generality, we assume $\lambda_{0}, \lambda_{1}>0$. Differentiating wrt p_{x} and equating to zero yields

$$
-\left(1+\log p_{x}\right)+\lambda_{0}+\lambda_{1} x=0
$$

that is, for $x=0,1,2, \ldots$.

$$
p_{x}=\exp \left\{-\left(\lambda_{0}-1\right)-\lambda_{1} x\right\} \propto \exp \left\{-\lambda_{1} x\right\} .
$$

By the sum to 1 constraint, we must have that

$$
p_{x}=\frac{\exp \left\{-\lambda_{1} x\right\}}{\sum_{y=0}^{\infty} \exp \left\{-\lambda_{1} y\right\}}=\frac{\theta^{x}}{\sum_{y=0}^{\infty} \theta^{y}}
$$

after writing $\theta=\exp \{-\lambda\}$, where $0<\theta<1$. Hence, summing the geometric progression in the denominator, we must have

$$
p_{x}=(1-\theta) \theta^{x} \quad x=0,1, \ldots
$$

To meet the second constraint, we now see that we must have

$$
\sum_{x=1}^{\infty} x(1-\theta) \theta^{x}=\mu
$$

that is,

$$
\mu=\theta(1-\theta) \sum_{x=1}^{\infty} x \theta^{x-1}=\theta(1-\theta) \frac{d}{d \theta}\left\{\sum_{x=1}^{\infty} \theta^{x}\right\}=\theta(1-\theta) \frac{d}{d \theta}\left\{\frac{1}{1-\theta}-1\right\}=\frac{\theta}{1-\theta} .
$$

that is

$$
\theta=\frac{\mu}{1+\mu}
$$

6 Marks
(b) We now have

$$
\Lambda(\mathbf{p}, \lambda)=-\sum_{x=0}^{\infty} p_{x} \log p_{x}+\lambda_{0}\left(\sum_{x=0}^{\infty} p_{x}-1\right)+\sum_{k=1}^{m} \lambda_{k}\left(\sum_{x=0}^{\infty} g_{k}(x) p_{x}-\omega_{k}\right)
$$

Using the same logic, differentiation wrt p_{x} yields for $x=0,1, \ldots$,

$$
-\left(1+\log p_{x}\right)+\lambda_{0}+\sum_{k=1}^{m} \lambda_{k} g_{k}(x)=0
$$

yielding

$$
p_{x}=\exp \left\{\left(\lambda_{0}-1\right)+\sum_{k=1}^{m} \lambda_{k} g_{k}(x)\right\} \propto \exp \left\{\sum_{k=1}^{m} \lambda_{k} g_{k}(x)\right\}
$$

which defines an Exponential Family distribution with statistic $T(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)^{\top}$ and natural parameter $\eta=\left(\lambda_{1}, \ldots, \lambda_{k}\right)^{\top}$.
2. It is clear that

$$
f_{X}(x ; \theta)=\exp \{x \log \theta-A(\theta)\} h(x) \quad x=0,1,2, \ldots
$$

where

$$
A(\theta)=\log \left(\sum_{y=0}^{\infty} h(y) \theta^{y}\right) .
$$

so this is a one parameter Exponential Family distribution with natural parameter $\eta=\log \theta$.
2 Marks
The joint distribution of $X=\left(X_{1}, \ldots, X_{n}\right)$ takes the form

$$
f_{X}(x ; \theta)=\exp \left\{\left(\sum_{i=1}^{n} x_{i}\right) \log \theta-n A(\theta)\right\}\left\{\prod_{i=1}^{n} h\left(x_{i}\right)\right\} \quad x=0,1,2, \ldots
$$

Thus the joint distribution of $\left(X, S_{n}\right)$ is

$$
f_{X, S_{n}}(x, s ; \theta)=\exp \{s \log \theta-n A(\theta)\}\left\{\prod_{i=1}^{n} h\left(x_{i}\right)\right\} \mathbb{1}_{s}\left(\sum_{i=1}^{n} x_{i}\right)
$$

and, marginalizing over the distribution of x we have that

$$
f_{S_{n}}(s ; \theta)=\exp \{s \log \theta-n A(\theta)\} h_{S_{n}}(s) \quad x=0,1,2, \ldots
$$

which is of the same form as the distribution of X_{i}, for $i=1, \ldots, n$.
3. (I) Range \mathbb{R}^{+}. In this case, the distribution is an Exponential Family distribution with

$$
T(x)=\left(x, x^{2}, x^{3}\right)^{\top} \quad \theta=\left(-3 \lambda \mu^{2}, 3 \lambda \mu, \lambda\right)^{\top} \quad A(\theta)=-\log C(\mu, \lambda)+\lambda \mu^{3}
$$

and the support does not depend on θ. However, it is not a location scale distribution, as if we make a location scale transformation

$$
Y=a+b X
$$

we have for $y>a$

$$
f_{Y}(y ; \mu, \lambda, a, b)=C(\mu, \lambda) \frac{1}{b} \exp \left\{-\lambda\left(\frac{y-a}{b}-\mu\right)^{3}\right\}=C(\mu, \lambda) \frac{1}{b} \exp \left\{-\frac{\lambda}{b^{3}}(y-a-b \mu)^{3}\right\}
$$

This is no longer a two parameter model, as we need to know a to define the support.
The model, is, however, a scale distribution, as X and $Y=b X$ have the same form with λ updated to λ / b^{3} after the transform.
(II) Range (μ, ∞). In this case, the model is not an Exponential Family distribution unless parameter μ is treated as known, as the support depends on μ. However, it is a location scale family, as if we again take $Y=a+b X$, we have for $y>a+b \mu$

$$
f_{Y}(y ; \mu, \lambda)=C(\mu, \lambda) \frac{1}{b} \exp \left\{-\lambda\left(\frac{y-a}{b}-\mu\right)^{3}\right\}=C(\mu, \lambda) \frac{1}{b} \exp \left\{-\frac{\lambda}{b^{3}}(y-a-b \mu)^{3}\right\}
$$

that is

$$
f_{Y}\left(y ; \mu^{*}, \lambda^{*}\right)=C\left(\mu^{*}, \lambda^{*}\right) \exp \left\{-\lambda^{*}\left(x-\mu^{*}\right)^{3}\right\}
$$

with $\mu^{*}=a+b \mu, \lambda^{*}=\lambda / b^{3}$.

