MATH 556 - ASSIGNMENT 2

To be handed in not later than 10pm, 20th October 2014. Please submit your solutions as pdf via myCourses

1. (a) Suppose that $\{\varphi_k(t)\}_{k=1}^n$ is a sequence of characteristic functions, and $\{c_k\}_{k=1}^n$ is a sequence of nonnegative real valued constants, with

$$\sum_{k=1}^{n} c_k = 1.$$

Show that

$$\sum_{k=1}^n c_k \varphi_k(t)$$

is also a characteristic function, and identify the distribution to which it corresponds.

4 Marks

- (b) Does the result in (a) extend to the case where $n \rightarrow \infty$? Justify your answer.
- 2 Marks

4 Marks

(c) If

$$\begin{split} \varphi_1(t) &= \exp(-4t^2) \qquad \varphi_2(t) = (3+\cos(t)+\cos(2t))/5 \\ \text{identify the distribution with cf} \\ &\frac{\varphi_1(t)+\varphi_2(t)}{2}. \end{split}$$

2. Suppose X_1 and X_2 are independent random variables, and suppose also that X_1 and $X_1 - X_2$ are independent. Show that

$$P_{X_1}[X_1 = c] = 1$$

for some constant *c*.

Hint: write $X_2 = X_1 + (X_2 - X_1)$ *, and recall that if* $\varphi(t)$ *is an arbitrary cf, then* $\varphi(t)$ *is continuous for all* t*.* 4 Marks

3. Suppose that mgf $M_X(t)$ is defined, for a suitable neighbourhood of zero $(-\delta, \delta)$, as

$$M_X(t) = \frac{9e^{-t}}{(3+2t)^2}.$$

Find an expression for $\mathbb{E}_X[X^r]$, for r = 1, 2, ...,

3 Marks

4. Suppose that $X \sim \text{Binomial}(n, \theta)$ for integer $n \ge 1$, and $0 < \theta < 1$. Let

$$Z_n = \frac{(X - n\theta)}{\sqrt{n\theta(1 - \theta)}}.$$

Find the first two non-zero terms in the power series expansion of the cumulant generating function of Z_n , and the order of approximation (in terms of n) when truncating the expansion at the second term, for large n.

Recall that

$$\log\{(1+z)^n\} = n\{z - z^2/2 + \cdots\}.$$

3 Marks