MATH 556 - ASSIGNMENT 2

To be handed in not later than 10pm, 20th October 2014. Please submit your solutions as pdf via myCourses

1. (a) Suppose that $\left\{\varphi_{k}(t)\right\}_{k=1}^{n}$ is a sequence of characteristic functions, and $\left\{c_{k}\right\}_{k=1}^{n}$ is a sequence of nonnegative real valued constants, with

$$
\sum_{k=1}^{n} c_{k}=1
$$

Show that

$$
\sum_{k=1}^{n} c_{k} \varphi_{k}(t)
$$

is also a characteristic function, and identify the distribution to which it corresponds.
4 Marks
(b) Does the result in (a) extend to the case where $n \longrightarrow \infty$? Justify your answer.

2 Marks
(c) If

$$
\varphi_{1}(t)=\exp \left(-4 t^{2}\right) \quad \varphi_{2}(t)=(3+\cos (t)+\cos (2 t)) / 5
$$

identify the distribution with of

$$
\frac{\varphi_{1}(t)+\varphi_{2}(t)}{2} .
$$

4 Marks
2. Suppose X_{1} and X_{2} are independent random variables, and suppose also that X_{1} and $X_{1}-X_{2}$ are independent. Show that

$$
\mathrm{P}_{X_{1}}\left[X_{1}=c\right]=1
$$

for some constant c.
Hint: write $X_{2}=X_{1}+\left(X_{2}-X_{1}\right)$, and recall that if $\varphi(t)$ is an arbitrary $c f$, then $\varphi(t)$ is continuous for all t.
4 Marks
3. Suppose that $\operatorname{mgf} M_{X}(t)$ is defined, for a suitable neighbourhood of zero $(-\delta, \delta)$, as

$$
M_{X}(t)=\frac{9 e^{-t}}{(3+2 t)^{2}} .
$$

Find an expression for $\mathbb{E}_{X}\left[X^{r}\right]$, for $r=1,2, \ldots$, .
3 Marks
4. Suppose that $X \sim \operatorname{Binomial}(n, \theta)$ for integer $n \geq 1$, and $0<\theta<1$. Let

$$
Z_{n}=\frac{(X-n \theta)}{\sqrt{n \theta(1-\theta)}} .
$$

Find the first two non-zero terms in the power series expansion of the cumulant generating function of Z_{n}, and the order of approximation (in terms of n) when truncating the expansion at the second term, for large n.

Recall that

$$
\log \left\{(1+z)^{n}\right\}=n\left\{z-z^{2} / 2+\cdots\right\}
$$

