MATH 556 - ASSIGNMENT 2

1. (a) We have by definition that

$$
\varphi_{k}(t)=\int e^{i t x} \mathrm{~d} F_{k}(x)
$$

say, for some cdf F_{k}. Clearly $\varphi(t)$ is finite as the c_{k} are summable, and the individual cf integrals are finite. We have, because of this, by exchanging the order of summation and integration,
$\varphi(t)=\sum_{k=1}^{n} c_{k} \varphi_{k}(t)=\sum_{k=1}^{n}\left\{c_{k} \int e^{i t x} \mathrm{~d} F_{k}(x)\right\}=\int e^{i t x}\left\{\sum_{k=1}^{n} c_{k} \mathrm{~d} F_{k}(x)\right\}=\int e^{i t x} \mathrm{~d}\left\{\sum_{k=1}^{n} c_{k} F_{k}(x)\right\}$.
The function

$$
F_{X}(x)=\sum_{k=1}^{n} c_{k} F_{k}(x)
$$

is a valid cdf; this is easily verified by checking the standard properties, as the $c_{k} \mathrm{~s}$ sum to one. Therefore $\varphi(t)$ is the cf corresponding to F_{X}.

4 Marks
The distribution characterized by F_{X} and $\varphi(t)$ is termed a finite mixture distribution.
(b) Consider the limiting case function $F_{X}(x)$

$$
F_{X}(x)=\sum_{k=1}^{\infty} c_{k} F_{k}(x)
$$

for any fixed x. The right hand side can be considered as the probability of a disjoint union of the events

$$
(X \leq x \cap Z=k) \quad k=1,2, \ldots
$$

where Z is a discrete random variable on the positive integers, with probabilities c_{1}, c_{2}, \ldots attached to $1,2, \ldots$. Now by standard limit results for event sequences

$$
\bigcup_{k=1}^{\infty}(X \leq x \cap Z=k) \equiv(X \leq x)
$$

and thus $F_{X}(x)$ is a well-defined cdf. Hence the limiting case as $n \longrightarrow \infty$ provides no difficulty.
2 Marks
(c) By inspection of the formula sheet, and the realization that if the mgf $M(t)$ exists for $|t|<\delta$, then $\varphi(t)=M(i t)$, we may deduce that $\varphi_{1}(t)$ is the cf of the normal density with mean zero and variance 8 .

For $\varphi_{2}(t)$, we note that

$$
\limsup _{t \rightarrow \pm \infty}\left|\varphi_{2}(t)\right|=1
$$

so the distribution is discrete; we must find mass function $f_{2}(x)$ with support \mathbb{X} such that

$$
\sum_{x \in \mathbb{X}} e^{i x t} f_{2}(x)=(3+\cos (t)+\cos (2 t)) / 5
$$

Now, note that $e^{i t x}=\cos (t x)+i \sin (t x)$, so we can deduce that $x=0,1,2$ must be in \mathbb{X}. Note also that the of is entirely real, and

$$
\cos (t x)=\frac{e^{i t x}+e^{-i t x}}{2}
$$

and so

$$
\cos (t)=\frac{e^{i t}+e^{-i t}}{2} \quad \cos (2 t)=\frac{e^{i t 2}+e^{-i t 2}}{2}
$$

Hence $f_{2}(x)$ can be deduced to be of the form

$$
f_{2}(x)=\left\{\begin{array}{cc}
1 / 10 & x=-2 \\
1 / 10 & x=-1 \\
6 / 10 & x=0 \\
1 / 10 & x=1 \\
1 / 10 & x=2 \\
0 & \text { otherwise }
\end{array}\right.
$$

Hence, using part(a), the distribution is an equal mixture of the two components, that is,

$$
F(x)=\frac{1}{2} \Phi(x / \sqrt{8})+\frac{1}{2} F_{2}(x) .
$$

4 Marks
2. As $X_{2}=X_{1}+\left(X_{2}-X_{1}\right)$, we have by the independence statements

$$
\varphi_{X_{2}}(t)=\varphi_{X_{1}}(t) \varphi_{X_{2}-X_{1}}(t)=\varphi_{X_{1}}(t) \varphi_{X_{2}}(t) \varphi_{X_{1}}(-t)=\varphi_{X_{2}}(t)\left|\varphi_{X_{1}}(t)\right|^{2}
$$

with the final step being an elementary property of complex numbers. Now $\varphi_{X_{2}}(0)=1$ and thus by continuity $\varphi_{X_{2}}(t) \neq 0$ for t at least in a neighbourhood of zero. Thus, equating the two sides, we must have $\left|\varphi_{X_{1}}(t)\right|^{2}=1$ for all t. Thus as t varies, $\varphi_{X_{1}}(t)$ is always a complex valued quantity that lies on the unit circle in the complex plane. Hence we must have

$$
\varphi_{X_{1}}(t)=e^{i t c}
$$

for some c, and X_{1} is degenerate at c.
3. First, note that

$$
M_{X}(t)=e^{-t} M_{Z}(t)
$$

where

$$
M_{Z}(t)=\frac{9}{(3+2 t)^{2}}=\frac{1}{(1+(2 / 3) t)^{2}}
$$

and, by linear transformation results for mgfs, $X \stackrel{d}{=} Z-1$. Hence

$$
\mathbb{E}_{X}\left[X^{r}\right]=\mathbb{E}_{Z}\left[(Z-1)^{r}\right]=\sum_{j=0}^{r}\binom{r}{j}(-1)^{r-j} \mathbb{E}_{Z}\left[Z^{j}\right] .
$$

We have that

$$
M_{Z}^{(j)}(t)=(-2)(-3) \ldots(-2-j+1) \frac{(2 / 3)^{j}}{(1+(2 / 3) t)^{2+j}}=(-1)^{j}(j+1)!\frac{(2 / 3)^{j}}{(1+(2 / 3) t)^{2+j}}
$$

so that

$$
\mathbb{E}_{Z}\left[Z^{j}\right]=M_{Z}^{(j)}(0)=(-1)^{j}(j+1)!(2 / 3)^{j}
$$

which we may substitute in above to get

$$
\mathbb{E}_{X}\left[X^{r}\right]=\mathbb{E}_{Z}\left[(Z-1)^{r}\right]=(-1)^{r} \sum_{j=0}^{r}\binom{r}{j}(j+1)!(2 / 3)^{j} .
$$

3 Marks
4. From the formula sheet we have

$$
M_{X}(t)=\left(1-\theta+\theta e^{t}\right)^{n}
$$

and thus

$$
K_{X}(t)=n \log \left(1-\theta+\theta e^{t}\right) .
$$

Using the linear transformation result,

$$
M_{Z_{n}}(t)=e^{b_{n} t} M_{X}\left(a_{n} t\right)
$$

where

$$
a_{n}=\frac{1}{\sqrt{n \theta(1-\theta)}} \quad b_{n}=-\frac{n \theta}{\sqrt{n \theta(1-\theta)}}=-n \theta a_{n}
$$

we have

$$
K_{Z_{n}}(t)=-n \theta a_{n} t+K_{X}\left(a_{n} t\right)=-n \theta a_{n} t+n \log \left(1-\theta+\theta e^{a_{n} t}\right)
$$

Now if

$$
g_{n}(t)=e^{a_{n} t}-1=a_{n} t+\frac{1}{2} a_{n}^{2} t^{2}+\frac{1}{6} a_{n}^{3} t^{3}+\cdots
$$

we have up to terms in t^{3}

$$
\begin{aligned}
n \log \left\{\left(1+\theta g_{n}(t)\right)\right\}= & n \theta g_{n}(t)-n \theta^{2}\left\{g_{n}(t)\right\}^{2} / 2+n \theta^{3}\left\{g_{n}(t)\right\}^{3} / 6 \cdots \\
= & n \theta\left(a_{n} t+\frac{1}{2} a_{n}^{2} t^{2}+\frac{1}{6} a_{n}^{3} t^{3}+\cdots\right) \\
& -\frac{n \theta^{2}}{2}\left(a_{n}^{2} t^{2}+a_{n}^{3} t^{3}+\cdots\right) \\
& +\frac{n \theta^{3}}{3}\left(a_{n}^{3} t^{3}+\cdots\right)+\cdots
\end{aligned}
$$

Therefore, from the earlier expression, the term in t cancels, and we are left with

$$
\begin{aligned}
K_{Z_{n}}(t) & =\frac{n \theta(1-\theta)}{2} a_{n}^{2} t^{2}+n \theta\left(\frac{1}{6}-\frac{\theta}{2}+\frac{\theta^{2}}{3}\right) a_{n}^{3} t^{3}+\cdots \\
& =\frac{t^{2}}{2}+\frac{1}{n^{1 / 2}} \frac{\theta\left(1-3 \theta+2 \theta^{2}\right)}{6(\theta(1-\theta))^{3 / 2}} t^{3}+\cdots
\end{aligned}
$$

The truncation after the second term leads to an approximation which has order $n a_{n}^{4}$; this is a constant times $n n^{-2}=n^{-1}$. Hence we may equivalently write

$$
K_{Z_{n}}(t)=\frac{t^{2}}{2}+\frac{1}{n^{1 / 2}} \frac{\theta\left(1-3 \theta+2 \theta^{2}\right)}{6(\theta(1-\theta))^{3 / 2}} t^{3}+\mathrm{O}\left(n^{-1}\right)
$$

or

$$
K_{Z_{n}}(t)=\frac{t^{2}}{2}+\frac{1}{n^{1 / 2}} \frac{\theta\left(1-3 \theta+2 \theta^{2}\right)}{6(\theta(1-\theta))^{3 / 2}} t^{3}+\mathrm{o}\left(n^{-1 / 2}\right)
$$

as $n \longrightarrow \infty$.

3 Marks

