MATH 556 - ASSIGNMENT 1

1. (i) The density must integrate to 1 , so we must have $c=\lambda / 2$
(ii) The cdf takes slightly different forms either side of θ. The density is symmetric about θ so we have

$$
F_{X}(x)= \begin{cases}\frac{1}{2}-\frac{1}{2}(1-\exp \{-\lambda(x-\theta)\} & x \leq \theta \\ \frac{1}{2}+\frac{1}{2}(1-\exp \{-\lambda(x-\theta)\} & x>\theta\end{cases}
$$

(iii) The quantile function takes slightly different forms either side of $t=1 / 2$. Again by symmetry, we have

$$
Q_{X}(t)= \begin{cases}\theta+\frac{1}{\lambda} \log (2 t) & t \leq 1 / 2 \\ \theta-\frac{1}{\lambda} \log (2(1-t)) & t>1 / 2\end{cases}
$$

(iv) By symmetry, and the fact that the expectation is finite, we conclude that $\mathbb{E}_{X}[X]=\theta$;
(v) The variance of X is equal to the variance of $Z=X-\theta$, so using

$$
f_{Z}(z)=\frac{\lambda}{2} \exp \{-\lambda|z|\} \quad z \in \mathbb{R}
$$

we have

$$
\begin{aligned}
\mathbb{E}_{Z}\left[Z^{2}\right] & =\frac{\lambda}{2} \int_{-\infty}^{0} z^{2} \exp \{\lambda z\} \mathrm{d} z+\frac{\lambda}{2} \int_{0}^{\infty} z^{2} \exp \{-\lambda z\} \mathrm{d} z \\
& =\lambda \int_{0}^{\infty} z^{2} \exp \{-\lambda z\} \mathrm{d} z=\lambda \frac{\Gamma(3)}{\lambda^{3}}=\frac{2}{\lambda^{2}}
\end{aligned}
$$

5 Marks
2. For joint density defined on the unit cube $\mathcal{C}^{3} \equiv(0,1)^{3}$.

$$
f_{X_{1}, X_{2}, X_{3}}\left(x_{1}, x_{2}, x_{3}\right)=c\left(1-\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \sin \left(2 \pi x_{3}\right)\right)
$$

and zero otherwise, for some constant c.
(a) We have for $0<x_{1}, x_{2}<1$

$$
\begin{aligned}
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right) & =\int_{0}^{1} c\left(1-\sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \sin \left(2 \pi x_{3}\right)\right) \mathrm{d} x_{3} \\
& =c-c \sin \left(2 \pi x_{1}\right) \sin \left(2 \pi x_{2}\right) \int_{0}^{1} \sin \left(2 \pi x_{3}\right) \mathrm{d} x_{3} \\
& =c
\end{aligned}
$$

Thus $c=1$, and X and Y are marginally uniform, and independent.
(b) (X_{1}, X_{2}, X_{3}) are not independent as the density does not factorize into the product of marginals.
3. We have that

$$
f_{X_{1}, \ldots, X_{n}}\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{1}{2 \pi}\right)^{n / 2} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n} x_{i}^{2}\right\}
$$

Let $V_{i}=X_{i}^{2}, i=1, \ldots, n$. Then by univariate transformation methods

$$
f_{V_{1}, \ldots, V_{n}}\left(v_{1}, \ldots, v_{n}\right)=\left(\frac{1}{2 \pi}\right)^{n / 2} \prod_{i=1}^{n} v_{i}^{-1 / 2} \exp \left\{-\frac{1}{2} \sum_{i=1}^{n} v_{i}\right\}
$$

for $\left(v_{1}, \ldots, v_{n}\right)$ on $\left\{\mathbb{R}^{+}\right\}^{n}$. Now if

$$
S=\sum_{i=1}^{n} X_{i}^{2}=\sum_{i=1}^{n} V_{i} \quad T_{i}=\frac{X_{i}^{2}}{S}=V_{i} / S \quad i=1, \ldots, n
$$

then we know that

$$
\sum_{i=1}^{n} T_{i}=1
$$

Hence consider the transform $\left(V_{1}, \ldots, V_{n}\right) \longrightarrow\left(S, T_{1}, \ldots, T_{n-1}\right)$, and the inverse transform

$$
V_{i}=S T_{i} \quad i=1, \ldots, n-1 \quad V_{n}=S\left(1-\sum_{i=1}^{n-1} T_{i}\right)
$$

The Jacobian matrix of partial derivatives is an $n \times n$ matrix taking the form

$$
\left[\begin{array}{ccccc}
t_{1} & s & 0 & \cdots & 0 \\
t_{2} & 0 & s & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
t_{n-1} & 0 & \cdots & 0 & s \\
\left(1-\sum_{i=1}^{n-1} t_{i}\right) & -s & -s & \cdots & -s
\end{array}\right]
$$

The determinant of this matrix is identical to the determinant of the matrix formed by adding the first $n-1$ rows to the last, that is,

$$
\left[\begin{array}{ccccc}
t_{1} & s & 0 & \cdots & 0 \\
t_{2} & 0 & s & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 \\
t_{n-1} & 0 & \cdots & 0 & s \\
1 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

which yields the determinant s^{n-1}. Hence the target joint density is

$$
\begin{aligned}
f_{S, T_{1}, \ldots, T_{n-1}}\left(s, t_{1}, \ldots, t_{n-1}\right) & =\left(\frac{1}{2 \pi}\right)^{n / 2}\left\{\prod_{i=1}^{n-1}\left(s t_{i}\right)^{-1 / 2}\right\}\left(s\left(1-\sum_{i=1}^{n-1} t_{i}\right)\right)^{-1 / 2} \exp \left\{-\frac{1}{2} s\right\} s^{n-1} \\
& =\left(\frac{1}{2 \pi}\right)^{n / 2}\left\{\prod_{i=1}^{n} t_{i}^{-1 / 2}\right\}\left(1-\sum_{i=1}^{n-1} t_{i}\right)^{-1 / 2} s^{n / 2-1} \exp \left\{-\frac{s}{2}\right\}
\end{aligned}
$$

The support of this density is readily seen to be $R^{+} \times \mathcal{S}_{n-1}$, where \mathcal{S}_{n-1} is the $n-1$ dimensional simplex. Thus we have directly that for all $\left(s, t_{1}, \ldots, t_{n-1}\right)$,

$$
f_{S, T_{1}, \ldots, T_{n-1}}\left(s, t_{1}, \ldots, t_{n-1}\right)=f_{S}(s) f_{T_{1}, \ldots, T_{n-1}}\left(t_{1}, \ldots, t_{n-1}\right)
$$

where

$$
f_{S}(s)=\frac{(1 / 2)^{n / 2}}{\Gamma(n / 2)} s^{n / 2-1} \exp \left\{-\frac{s}{2}\right\} \quad s>0
$$

and zero otherwise, that is, $S \sim \operatorname{Gamma}(n / 2,1 / 2)$, and

$$
f_{T_{1}, \ldots, T_{n-1}}\left(t_{1}, \ldots, t_{n-1}\right)=\frac{\Gamma(n / 2)}{\pi^{n / 2}}\left\{\prod_{i=1}^{n} t_{i}^{-1 / 2}\right\}\left(1-\sum_{i=1}^{n-1} t_{i}\right)^{-1 / 2}
$$

In fact, we have that

$$
\left(T_{1}, \ldots, T_{n-1}\right) \sim \operatorname{Dirichlet}(1 / 2,1 / 2, \cdots, 1 / 2)
$$

Thus S and $\left(T_{1}, \ldots, T_{n-1}\right)$ are independent. Finally, as T_{n} is a deterministic function of $\left(T_{1}, \ldots, T_{n-1}\right)$, S is independent of T_{n} also.

6 Marks
4. The cdf of the $\operatorname{Pareto}(\theta, \alpha)$ distribution is

$$
F_{X}(x)=1-\left(\frac{\theta}{\theta+x}\right)^{\alpha} \quad x>0
$$

which yields the quantile function

$$
Q_{X}(t)=\theta\left(\{(1-t)\}^{-1 / \alpha}-1\right)
$$

Therefore we may set

$$
X=\theta\left(\{(1-(1-\exp \{-Z\}))\}^{-1 / \alpha}-1\right)
$$

or

$$
X=\theta(\exp \{Z / \alpha\}-1)
$$

as we require

$$
\mathrm{P}_{Z}[g(Z) \leq x]=1-\left(\frac{\theta}{\theta+x}\right)^{\alpha}
$$

for $x>0$, but

$$
\mathrm{P}_{Z}[g(Z) \leq x] \equiv \mathrm{P}_{Z}\left[Z \leq g^{-1}(x)\right]=1-\exp \left\{-g^{-1}(x)\right\}
$$

dictates that

$$
\exp \left\{-g^{-1}(x)\right\}=\left(\frac{\theta}{\theta+x}\right)^{\alpha}
$$

or

$$
g^{-1}(x)=-\alpha \log \theta+\alpha \log (\theta+x)
$$

which yields the solution.

