
The Mazur-Tate pairing and explicit

homomorphisms between Mordell-Weil groups of

elliptic curves and ideal class groups

Author: Nicolas Simard

Master of Science

Department of Mathematics and Statistics

McGill University

Montreal, Quebec

2014-04-11

Supervisor: Henri Darmon

Copyright©Nicolas Simard



ACKNOWLEDGEMENTS

I thank Prof. Darmon for his great advice and for the time he spent answering my

questions. I would also like to thank Prof. Darmon, the math department of McGill

University, the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT)

and the Conseil de Recherche en Sciences Naturelles et en Génie (CRSNG) for their �nancial

support during my two years of studies at McGill University. Finally, I thank my family

for their constant support.

ii



ABSTRACT

In [Buell(1977)] and [Soleng(1994)], Buell and Soleng found explicit homomorphisms

between the Mordell-Weil group of elliptic curves and the ideals class group of quadratic

�elds, which turn out to be essentially equivalent. After recalling the basic concepts

in the theories of quadratic forms, quadratic �elds and elliptic curves, we prove that

Soleng's homomorphism can be obtained via a height pairing introduced by Mazur and

Tate [Mazur and Tate(1983)], under certain conditions. Then the technique developed in

the proof of this result is used to �nd new homomorphisms. Examples of explicit compu-

tations of the Mazur-Tate pairing are also given.
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ABRÉGÉ

Dans les articles [Buell(1977)] et [Soleng(1994)], Buell et Soleng mettent en évidence

des homomorphismes explicites entre le groupe de Mordell-Weil des courbes elliptiques et

le groupe des classes d'idéaux des corps quadratiques. Après avoir introduit les théories des

formes quadratiques, des corps quadratiques et des courbes elliptiques, il sera démontré que

l'homomorphisme de Soleng, qui est essentiellement équivalent à celui de Buell, peut être

obtenu à l'aide d'un accouplement de hauteur dû à Mazur et Tate [Mazur and Tate(1983)].

Par la suite, les idées rencontrées dans la preuve de ce résultat seront utilisées pour découvrir

de nouveaux homomorphismes. Des exemples de calculs explicites de l'accouplement de

Mazur-Tate sont aussi donnés.
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Introduction

The subject of elliptic curves is a fascinating one. A celebrated example of the power

of this theory is the proof of Fermat's last theorem in 1995, which relies on an unexpected

connection between the hypothetical solutions of the equation xn+yn = zn and a particular

family of elliptic curves.

Given an elliptic curve, a central question is to understand and describe explicitly its

group of rational points, also called the Mordell-Weil group. In 1922, Mordell proved that

this abelian group is �nitely generated. The (algebraic) rank of an elliptic curve de�ned

over Q is de�ned as the rank of its Mordell-Weil group. Some techniques, based on in�nite

descent, can be used to compute the Mordell-Weil group. However, it has not been shown

yet that these techniques are algorithmic, i.e. that they always end in a �nite number

of steps. Many important problems in the �eld, such as the Birch and Swinnerton-Dyer

Conjecture, remain unsolved. As another example, it is still not known whether the rank

of elliptic curves can be arbitrarily large.

In this thesis, we study homomorphisms between the Mordell-Weil group of elliptic

curves and the class group of quadratic �elds. It seems that the �rst illustration of this

relation was established in 1976 by Buell. In [Buell(1977)], he describes a natural map

between the Mordell-Weil group of certain elliptic curves and groups of binary quadratic

forms. This map turned out to be a homomorphism. The proof of this is tedious and

uses the language of quadratic forms. In 1992, Soleng found a homomorphism between a

subgroup of the Mordell-Weil group of elliptic curves and the ideal class group of quadratic
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�elds (see [Soleng(1994)]). Unlike Buell, Soleng used the more modern language of ideals

to prove that his map was a homomorphism.

As Buell noted in his article, homomorphisms like those introduced above can give

valuable information about Mordell-Weil groups. The basic idea is that it is relatively

easy to �nd the order of ideal class groups. Moreover, it is not hard to construct ideal

class groups with arbitrarily large 2-rank. If one could �nd conditions under which these

homomorphisms are surjective, it could be possible to obtain information about the rank

of elliptic curves.

Around 1982, Mazur and Tate de�ned their so-called canonical height pairing using

the notion of biextensions of abelian varieties (see [Mazur and Tate(1983)]). In a second

article (see [Mazur and Tate(1987)]), they de�ne the S-pairing and give explicit formulas

to compute it on elliptic curves. Using this S-pairing with a speci�c choice of S, it is

possible to obtain a bilinear pairing between the F -rational points on an elliptic curve and

the ideal class group of F , where F is a number �eld. In this thesis, this pairing is denoted

〈·, ·〉 : E(F ) × E(F ) −→ Cl(F ), where E is an elliptic curve de�ned over F and Cl(F ) is

the class group of F .

More recently in 2009, during a discussion between Bhargava and Darmon, Bhargava

mentioned that he had found an explicit homomorphism between the Mordell-Weil group

of certain elliptic curves of the form ED : Y 2 = X3 − DX, where D is an integer,

and the class group of Q(
√
D). Darmon believed that this homomorphism might coincide

with coincide with the homomorphism P 7−→ 〈P, P0〉 : ED(Q) −→ Cl(Q(
√
D)), where

P0 = (
√
D, 0) ∈ E(Q(

√
D)). This idea is the starting point of this thesis.

In this thesis, it will �rst be shown that the homomorphisms of Buell and Soleng

coincide in most cases. Then it will be proven that Soleng's homomorphism can be obtained

via the Mazur-Tate pairing under certain conditions. Since Bhargava's homomorphism
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was not published, no explicit description of it is known. However, using the techniques

developed to prove the above result, an explicit homomorphism ED(Q) −→ Cl(Q(
√
D))

will be described. The techniques will also be used to study an example of homomorphism

between the Mordell-Weil group of a particular elliptic curve and the class group of a

certain cubic extension. In the last chapter, the injectivity and surjectivity of some of

Soleng's homomorphism will be brie�y studied.

In the �rst chapter, the basic theory of integral binary quadratic forms is recalled and

Gauss's composition laws are introduced. Then the theory of orders in quadratic �elds is

presented. Elliptic curves are introduced in the second chapter. The presentation will be

very short, but not much of the theory is necessary to understand the results. The next

chapter contains a description of Buell and Soleng's homomorphisms. Their relation will

also be analysed. The main tool of this work, the Mazur-Tate pairing, is introduced in the

fourth chapter. It will not be de�ned in whole generality, but only for elliptic curves and

under a certain conditions. This pairing is used in chapter 5 to prove the main result of this

thesis, namely that Soleng's homomorphism can be obtained via the Mazur-Tate pairing.

In the next chapter, the pairing is used to obtain what could be Bhargava's homomorphism.

Finally, other uses of the pairing and further research directions are presented.
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CHAPTER 1
Quadratic forms and quadratic �elds

This chapter introduces one of the main concept of this text, namely quadratic �elds.

Before that, the classical theory of integral binary quadratic forms, as elaborated by Fermat,

Lagrange and Gauss is recalled.

1.1 Integral binary quadratic forms

A good reference for this subject is [Flath(1989)].

De�nition 1. An integral binary quadratic form f , or quadratic form if there is no risk of

confusion, is a polynomial of the form

f(x, y) = ax2 + bxy + cy2,

where a, b and c are integers. The discriminant D of f is de�ned as D = b2−4ac. The form

f is called positive de�nite if D < 0 and a > 0 and negative de�nite if D < 0 and a < 0.

A quadratic form f is said to (properly) represent an integer n if there exist (coprime)

integers x and y such that f(x, y) = n. If f is positive de�nite, it represents only positive

integers.

The discriminant of a form f is always congruent to 0 or 1 mod 4. Conversely, given

D ≡ 0, 1 (mod 4), the principal forms

fD(x, y) =


x2 − D

4 y
2 if D ≡ 0 (mod 4)

x2 + xy + 1−D
4 y2 if D ≡ 1 (mod 4)

(1.1)

have discriminant D. For this reason, the integers congruent to 0 or 1 mod 4 are sometimes

called discriminants. Of these discriminants, some are important to distinguish.
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De�nition 2. A discriminant D is called fundamental if it cannot be written as D = f2D0,

where f ∈ Z and D0 ≡ 0, 1 (mod 4).

It is clear that any square-free discriminant is fundamental. However, the converse is

not true since 8 is fundamental, for example. One can still give a simple description of the

fundamental discriminants. They are the integers D such that D is congruent to 0 mod 4

and D/4 is square-free or D is congruent to 1 mod 4 and D is square-free.

The main question in the theory of quadratic forms is to determine explicitly which

integers are properly represented by a given quadratic form. To simplify the question, one

introduces an equivalence relation on the set of quadratic forms of discriminant D by letting

GL2(Z), the group of integral 2× 2 matrices with determinant ±1, act on them as follows:

given a matrix γ =

r s

t u

 ∈ GL2(Z) and a form f(x, y) = ax2 +bxy+cy2 of discriminant

D, one de�nes

γf(x, y) = f(rx+ ty, sx+ uy) = a(rx+ ty)2 + b(rx+ ty)(sx+ uy) + c(sx+ uy)2

= f(r, s)x2 + (2(art+ csu) + b(st+ ru))xy + f(t, u)y2

A direct computation shows that this formula de�nes a group action. In particular, γf

has discriminant D. Note also that γf is positive de�nite whenever f is and both f and

γf represent the same integers.

If there exists γ ∈ SL2(Z), the group of integral 2 × 2 matrices with determinant 1,

such that g = γf , f and g are called properly equivalent (not just equivalent). This relation

is denoted f ∼ g. The distinction between equivalent and properly equivalent forms, �rst

introduced by Gauss, is crucial in the theory: it allowed Gauss to de�ne a group law on

proper equivalence classes of quadratic forms (see Section 1.2). The proper equivalence class

of f is denoted [f ]. Note that since positive de�nite forms are in bijection with negative
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de�nite forms and the action of GL2(Z) preserves those two sets, it su�ces to study positive

de�nite forms.

To determine if a form represents a given integer, one could check if a simpler equivalent

form does. This leads us to the theory of reduction.

De�nition 3. A quadratic form f(x, y) = ax2+bxy+cy2 is almost reduced if |b| ≤ |a| ≤ |c|.

If f is positive de�nite, it is reduced if it is almost reduced and b = a in case |b| = a and

b ≥ 0 in case a = c.

The term almost reduced is used in [Serre(1999)], but is not common in the literature.

Note that the principal forms introduced above are reduced (when they are positive

de�nite). A basic theorem in the subject is the following.

Theorem 1. There is a unique reduced form in every proper equivalence class of positive

de�nite quadratic forms.

Proof. See [Flath(1989), II�8, Theorem 8.7].

Given a negative discriminant D, one can easily �nd the reduced forms by using the

following proposition:

Proposition 1. Let f(x, y) = ax2 + bxy+ cy2 be a positive de�nite almost reduced form of

discriminant D. Then 0 < a ≤
√
|D|/3.

Proof. Since f is almost reduced,

4a2 ≤ 4ac = b2 −D ≤ a2 −D

and the result follows.

It also follows from this proposition that the number of proper equivalence classes of

discriminant D is �nite. Let us look at two examples.
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Example 1. If D = −4, every almost reduced positive de�nite form is such that 0 < a ≤√
4/3. It follows that a = 1. Since |b| ≤ 1 and b has the same parity as D, b has to be

zero. Finally, c is determined by the equation −4 = 02− 4c. This proves that the principal

form f−4(x, y) = x2 + y2 is the only reduced form of discriminant −4.

Example 2. If D = −3, the same argument as above forces a to be 1, but now b can

be ±1. It follows that x2 ± xy + y2 are the only positive de�nite almost reduced forms of

discriminant −3. Of these two forms, only the principal form x2 + xy + y2 is reduced.

The reduction theory of forms that are not de�nite (these forms are called inde�nite)

is more sophisticated. The problem is that many almost reduced forms can be properly

equivalent and there is no canonical choice of reduced form in the proper equivalence classes.

For more detail, see [Flath(1989), IV�6].

1.2 Gauss composition laws

In the previous section, the set of quadratic forms of discriminant D was partitioned

into proper equivalence classes. If D < 0, the number of classes is easy to compute.

Moreover, a canonical representative can be found in each class. Recall also that each

equivalence class represents a certain set of integers. The main question is to describe

precisely this set of integers. For example, Fermat claimed that the odd primes represented

by the quadratic form x2+y2 were precisely the primes congruent to 1 mod 4. To determine

if an arbitrary integer is represented by x2 + y2, one uses a reasoning based on the identity

(x2
1 + y2

1)(x2
2 + y2

2) = (x1y1 − x2y2)2 + (x1y2 + x2y1)2

This is an example of a composition law. It says that if two integers are represented by

x2 +y2, then so is their product. Gauss generalized this idea to other forms. Before stating

his beautiful theorem, one more de�nition is needed: a form f(x, y) = ax2 + bxy + cy2

is called primitive if gcd(a, b, c) = 1. A proper equivalence class is called primitive if it
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contains a primitive form. One can see that all the forms in a primitive class are primitive.

Then Gauss proved the following theorem.

Theorem 2. Let D be a �xed non-zero discriminant. There exists a composition law ◦ on

primitive proper equivalence classes of forms of discriminant D which makes these classes

into a group. Moreover, this composition law has the following properties:

1. If the class of f1 represents m and the class of f2 represents n, then the class [f1]◦ [f2]

represents mn.

2. The identity class is the class containing the principal form of discriminant D.

3. The inverse of the class containing the form ax2 + bxy + cy2 is the class containing

the form cx2 + bxy + ay2.

When D > 0, the group of primitive classes of discriminant D is called the form class

group and will be denoted Cl∗(D). When D < 0, the form class group Cl∗(D) is de�ned

as the subgroup of positive de�nite forms. The order of Cl∗(D) (which is also �nite when

D > 0) is called the form class number. The examples above show that both Cl∗(−4) and

Cl∗(−3) are trivial.

The simplest way of de�ning the composition law is probably via Dirichlet's method of

united forms, described in [Flath(1989), Chapter 5]. To simplify the notation, a quadratic

form f(x, y) = ax2 + bxy + cy2 is denoted (a, b, c) or simply (a, b, ∗) since c is determined

by a, b and D, when a 6= 0. Two forms f1 = (a1, b1, c1) and f2 = (a2, b2, c2) are called

united if a1a2 6= 0, b1 = b2 and a1|c2 and a2|c1. If f1 and f2 are united, f1 = (a1, b, a2c)

and f2 = (a2, b, a1c), where b = b1 = b2 and c = c1/a2 = c2/a1. Then Dirichlet de�nes

[f1]◦ [f2] = [(a1a2, b, c)]. Assuming that this composition law is well-de�ned, one can verify

that it satis�es the properties of Theorem 2. To begin, we can suppose that f1 and f2 are

united, since the composition law is well-de�ned. Then the �rst property follows from the
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identity

(a1x
2
1 + bx1y1 + a2cy

2
1)(a2x

2
2 + bx2y2 + a1cy

2
2) = a1a2X

2 + bXY + cY 2,

where X = x1x2 − cy1y2 and Y = a1x1y2 + a2x2y1 + by1y2. For the second property, note

that 1 0

n 1

 (a, b, c) = (a, b+ 2an, ∗).

If f = (a, b, c) is a quadratic form, this formula implies that fD ∼ (1, b, ∗), since b ≡ D (mod 2).

Now (a, b, c) and (1, b, ∗) are concordant and [(a, b, c)] ◦ [(1, b, ∗)] = [(a, b, c)]. For the last

property, let f = (a, b, c) be a quadratic form such that ac 6= 0. Then (a, b, c) and (c, b, a)

are united and [(a, b, c)] ◦ [(c, b, a)] = [(ac, b, 1)] = [fD].

Dirichlet's composition law is natural in the sense that it leads to a composition law

which satis�es the �rst property on Theorem 2. With this composition law, the inverse

of the proper class of (a, b, c) is the proper class of the equivalent form (c, b, a) (they are

equivalent via

0 1

1 0

). The reason why it is important to consider proper equivalence

classes and not just equivalence classes for composition is apparent: otherwise any proper

class would be equivalent to its inverse proper class.

This method of united forms is natural and simple to de�ne, but most modern com-

position algorithms use Arndt's method. This method can even be generalised to com-

pose forms of di�erent discriminants, under certain conditions. We will follow the de-

scription given in [Buell(1977)]. Let f1 be a primitive form of discriminant D1 and f2

be a primitive form of discriminant D2. Suppose that D = gcd(D1, D2) is a discrimi-

nant and that both |D1/D| and |D2/D| are perfect squares. For example, D1 = −4 and

D2 = −16 satisfy those hypotheses, but not D1 = −4 and D2 = 8. Let ni =
√
|Di/D|,
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k = gcd(a1n2, a2n1, (b1n2 + b2n1)/2) and de�ne b to be a solution to

knib ≡ kb1 (mod 2ai)

k(b1n2 + b2n1)b ≡ k(b1b2 +Dn1n2) (mod 4a1a2).

Then f1◦f2 = (a, b, (b2−D)/(4a)), where a = a1a2/k
2. Note that here the forms themselves

are composed, whereas before the equivalence relation was needed to �nd united forms.

Nevertheless, this composition law is well-de�ned on classes. Note also that f1 ◦ f2 has

discriminant D. If D = D1 = D2, this composition law is the same as Dirichlet's. Arndt's

method has important properties.

1. Let D be a discriminant and let D′ = f2D. For any primitive class C ∈ Cl∗(D), we

have that CD′ ◦ C = C, where CD′ is the identity class of Cl∗(D′).

2. Using the notation of the previous point, the map from Cl∗(D′) to Cl∗(D) sending C ′

to C ′ ◦ CD is a surjective homomorphism.

Those properties are easier to understand in the modern language of ideal and orders,

which we will recall in the next section. Arndt's generalised composition laws and their

properties are needed to de�ne Buell's homomorphism.

1.3 Quadratic �elds

In this section, we recall some basic concepts in the algebraic theory of quadratic �elds.

A good reference for this material is [Cox(1989), II].

1.3.1 Orders in quadratic �elds

For the rest of this text, K will be a quadratic �eld and OK will be its ring of integers.

De�nition 4. An order O is a subring of K containing 1 and having the following prop-

erties:

1. O is a �nitely generated Z-module;

2. O contains a Q-basis for K, i.e. Q⊗O = K;
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An order in a quadratic �eld is necessarily free of rank 2 as a Z-module. Since the

elements of an order are integral over Z, every order is contained in OK . The index of an

order O in OK is called the conductor of O and is denoted f .

Now suppose that K = Q(
√
d), where d is an integer, and write d = `2d0 with d0

square-free. Then

OK = [1, ω],

where

ω =


√
d0 if d0 6≡ 1 (mod 4)

1+
√
d0

2 if d0 ≡ 1 (mod 4)

and the square brackets mean that OK is generated by 1 and ω as a Z-module. With this

notation, one can prove that if O is an order of conductor f in K, then O = [1, fω]. In

particular, there is a unique order of conductor f in K for any f ≥ 1. As for the maximal

order, the discriminant of an order can be de�ned. Using the Z-basis {1, fω} for O, one

sees that O has discriminant f2d0 if d0 ≡ 1 (mod 4) and 4f2d0 if d0 6≡ 1 (mod 4). A more

enlightening way of stating this result is to say that O has discriminant f2DK , where DK

is the discriminant of K. The reader may have noticed at this point that the fundamental

discriminants introduced in the �rst section correspond precisely to the discriminants of

quadratic �elds. For simplicity, let ωf = fω, so that [1, ωf ] is the order of conductor f in

K.

1.3.2 Ideals in quadratic �elds

It is sometimes useful to consider ideals as Z-modules and a Z-basis for a Z-module I

is denoted with square brackets. The following theorem characterises ideals in orders:

Theorem 3 (Ideal Criterion). Let I be a non-zero ideal in the order O of conductor f

in K. Then I is of the form I = [a, b + cωf ], where a, b, c ∈ Z are such that c|a, b and
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ac|N(b + cωf ). Conversely, every Z−module of the form [a, b + cωf ], where a, b, c ∈ Z are

such that c|a, b and ac|N(b+ cωf ), is an ideal in O.

Proof. First, we prove that I can be put it the desired form. If I is not the zero ideal, it

contains an element x 6= 0 and so it contains the integer N(x). Then the natural surjective

homomorphism O −→ O/I factors through N(x)O and since O/N(x)O has �nite order

N(x)2, I has �nite index in O. In particular, I must be a free Z-module of rank 2. Write

I = [α1, α2], where α1 = x1 +y1ωf , α2 = x2 +y2ωf ∈ A. Then for any k ∈ Z, {α1−kα2, α2}

and {α1, α2 − kα1} are also Z−basis for I. It follows that the Euclidean algorithm can be

performed on y1 and y2 and so I can be written as I = [a, b+ cωf ], where c = gcd(y1, y2).

The rest of the theorem follows from the identities

−aωf =
b

c
a− a

c
(b+ cωf ),

(b+ cωf )ωf =


−aN(b+cωf )

ac + b
c(b+ cωf ) if D0 6≡ 1 (mod 4)

−aN(b+cωf )
ac + b+c

c (b+ cωf ) if D0 ≡ 1 (mod 4)

and the fact that I is a free Z−module.

Some care must be taken when searching for a Z-basis for an ideal. For example, if

d0 ≡ 1 (mod 4) the Z-module [a,
√
d0] is not an ideal in OK = [1, (1 +

√
d0)/2] whenever

a|d0. However, (a,
√
d0) is an ideal in OK , by de�nition.

1.3.3 Norm of ideals

The main tool that will be used in the explicit computations is the norm. There are

at least three de�nitions of the norm of an ideal. They coincide most of the time. In this

section, E/L will be an extension of number �elds and OE and OL will be their ring of

integers, respectively. Our �rst de�nition of the norm is the following.
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De�nition 5. Let a be an integral ideal in OE . The norm of a, denoted NE/L(a), is

de�ned as the integral OL-ideal generated by the norm of the elements of a, i.e. NE/L(a) =

(NE/L(a)|a ∈ a).

This de�nition is very simple and elegant, but not suitable for computations, so an

equivalent de�nition must be found. First, one can show that this norm is multiplicative.

Using this property, it su�ces to determine NE/L(P) for all primes P of OE to know the

norm of all the ideals of OE .

Proposition 2. Using the notation above,

NE/L(P) = pf(P/p),

where p = P ∩ OL and f(P/p) is the residue class degree.

Proof. See [Janusz(1996), I�8, Proposition 8.4].

This result allows us to extend the norm to a function on the whole ideal group

NE/L : IE −→ IL

by letting NE/L(P) = pf(P/p) and extending multiplicatively. This is sometimes taken as

the de�nition of the norm.

One would like the norm to measure, in some sense, the size of the ideals. If O is an

order in E and a is an ideal in O, the numerical norm, denoted N(a), is de�ned as index of

a in O, i.e. N(a) = (O : a). When a is not the zero ideal, N(a) is �nite (the proof of this is

similar to the argument given in the proof of Theorem 3). One can show that

Proposition 3. Using the notation above,

NE/Q(a) = N(a)Z.

Proof. See [Milne(2012), Proposition 4.2].
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Note that the numerical norm makes sense in any order, not just the maximal order.

The norm has a few important properties.

Proposition 4. Let a and b be fractional OE-ideals, c be an integral OL-ideal and x be any

element in E. Then the norm function has the following properties:

1. NE/L(ab) = NE/L(a)NE/L(b).

2. NE/L(cOE) = c[E:L].

3. NE/L(xOE) = NE/L(x)OL.

4. if E/L is Galois with Galois group G and P is a prime of E, then

NE/L(P)OE =
∏
σ∈G

σP.

Proof. The �rst property follows from the de�nition. For the other properties, see [Milne(2012),

Proposition 4.1].

Now there is the question of e�ectively computing this norm, at least for ideals in

quadratic �elds K. To this end, the following result can be useful.

Proposition 5. Let I = [a, b+ cωf ] be an ideal in the order O of conductor f in K. Then

N(I) = ac.

Proof. This follows from the fact that N(I) = (O : I).

This result is easy to apply, but an integral basis for I is needed. The following result

is not as easy to use, but it can be applied to any ideal in the maximal order of a quadratic

number �eld:

Proposition 6. Let a = (α, β) be an integral OK-ideal. Then

N(a) = gcd(N(α),Tr(αβ), N(β)).

Proof. See [Conrad(2014), Theorem 5.6].
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1.3.4 Ideal class group of orders in quadratic �elds

A fractional ideal of O is a �nitely generated O-module contained in K. It is not hard

to see that a is a fractional ideal of O if and only if αa is an ordinary ideal of O for some

α ∈ K.

De�nition 6. Let a be a fractional ideal of an order O in K. Then a is a proper O-ideal

if O = {α ∈ K : αa ⊆ a}. The set of proper ideals of O is denoted I(O).

Note that if a is a fractional O-ideal, {α ∈ K : αa ⊆ a} is always an order of K which

contains O. If this order properly contains O, the ideal comes from a larger order and it is

not proper by de�nition. The main result for these ideals is the following:

Theorem 4. Let O be an order of K. Then I(O) is a group under multiplication.

Proof. The only di�culty is to prove that proper ideals are invertible. See [Cox(1989),

Proposition 7.4] for a proof of this.

One can verify that the principal O-ideals form a subgroup of I(O), denoted P (O).

The quotient

Cl(O) = I(O)/P (O)

is called the ideal class group of the order O. Of course, Cl(OK) = Cl(K) is the usual ideal

class group of K, since all OK-ideals are proper. Since the orders in quadratic �elds are in

bijection with discriminants (i.e. integers congruent to 0 or 1 mod 4), Cl(O) can also be

denoted Cl(D), where D is the discriminant of O.

An integral ideal a in an orderO of conductor f is prime to the conductor if a+fO = O.

One can show that these ideals are proper and form a subgroup of I(O), denoted I(O, f).

If P (O, f) denotes the group of principal fractional O-ideals generated by the elements of

O of norm prime to f , one can prove the following theorem.
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Theorem 5. Let O be the order of conductor f in K, then

I(O, f)/P (O, f) ∼= I(O)/P (O)

.

Proof. The idea of the proof is that any ideal class in Cl(O) contains an ideal prime to f .

See [Cox(1989), Proposition 7.19].

One can also show that an ideal in an order of conductor f is prime to the conductor

if and only if its norm is prime to f .

Theorem 6. Let O be the order of conductor f in K.

1. Let a be an ideal of OK prime to f . Then a ∩ O is an ideal of O of the same norm.

2. Let a be an ideal of O prime to f . Then aOK is an ideal of OK of the same norm.

3. The map a 7→ a ∩O induces an isomorphism I(OK , f)→ I(O, f), and the inverse of

this map is given by a 7→ aOK .

Proof. See [Cox(1989), Proposition 7.20].

This gives a way to go from the ideals of OK prime to f to the ideals of O prime to f .

1.3.5 Factorisation of ideals in quadratic �elds

As before, let K = Q(
√
d) be a quadratic �eld, where d = `2d0 and d0 is square-free.

Let also OK be the ring of integers of K. One of the basic results of algebraic number

theory says that any non-zero integral OK-ideal a can be written uniquely as

a =
∏
p

pαp , (1.2)

where the product runs over the prime ideals of OK and where each αp is non-negative.

One can also show that the ideal group I(OK) (also denoted IK) is the free abelian group
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generated by the primes ideals of OK . Similarly, I(OK , f) is the free abelian group gen-

erated by the prime ideals which are prime to f (i.e. the prime ideals p such that p - f

if p ∩ Z = pZ). It follows that any fractional OK-ideal admits a unique decomposition as

above, where the exponent can be negative.

In quadratic �elds, the splitting behaviour of rational primes is related to the Legendre

symbol.

Proposition 7. Let p be a prime in Z. Then pOK factors as follows:

1. If p = 2, then

2OK =



(
2,
√
d0

)2
if d0 ≡ 0 (mod 2)(

2, 1 +
√
d0

)2
if d0 ≡ 3 (mod 4)(

2, (1 +
√
d0)/2

) (
2, (1−

√
d0)/2

)
if d0 ≡ 1 (mod 8)

prime if d0 ≡ 5 (mod 8)

2. If p is odd, then

pOK =



(
p,
√
d0

)2
if d0 ≡ 0 (mod p)(

p, n+
√
d0

) (
p, n−

√
d0

)
if d0 ≡ n2 6≡ 0 (mod p)

prime if d0 is not a square mod p

Proof. See [Cox(1989), Proposition 5.6].

1.4 Correspondence between forms and ideals

A well-known result in the theory of quadratic �elds says that there is a correspondence

between the form class group of discriminant D and the narrow-class group of the order of

discriminant D. A precise description of this correspondence is given in this section.
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De�nition 7. Let O be an order in a quadratic �eld and let P+(O) be the group of ideals

generated by the principal ideals αO, where N(α) > 0. Then the quotient

I(O)/P+(O)

is called the narrow-class group and is denoted Cl+(O) (or Cl+(D) if O has discriminant

D).

In quadratic �elds, N(α) > 0 if and only if α is totally positive, i.e. α is positive

under every real embedding of K. When K is imaginary, N(α) > 0 for every α ∈ K×, so

Cl+(O) = Cl(O) in this case. If K is real, the same is true if there is an element with norm

equal to −1. This is equivalent to saying that the fundamental unit of K has norm equal

to −1. Finally, if K is real and the fundamental unit has positive norm, the narrow-class

group is not isomorphic to the class group, but [Cl+(O) : Cl(O)] = 2.

Theorem 7. Let D be a non-square discriminant. Then the form class group of discrimi-

nant D is isomorphic to the narrow-class group of discriminant D:

Cl∗(D) ∼= Cl+(D).

Proof. See [Cox(1989), Theorem 7.7 and Exercises 7.12,7.17].

The isomorphism of the theorem is fairly simple. First, letD be a negative discriminant

and let f(x, y) = ax2 + bxy + cy2 be a positive de�nite quadratic form of discriminant D.

Then the isomorphism sends the class of f to the (narrow) class of the ideal

[a, (−b+
√
D)/2].

The inverse map is de�ned as follows: let a = [α, β] be a proper ideal of the order of

discriminant D and suppose that =(β/α) > 0. Then the inverse map sends a to the class
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of
N(αx− βy)

N(a)
.

Now let D be a positive non-square discriminant and let f(x, y) = ax2 + bxy + cy2 be a

quadratic form of discriminant D. Then the isomorphism sends the class of f to the class

of the ideal

[a, aτ ],

where τ = r + s
√
D is such that f(τ, 1) = 0 and sgn(s) = sgn(a). The inverse map sends

the proper ideal a = [α, β] of the order of discriminant D to the form

N(αx− βy)

N(a)
.

An important part in the proof of Theorem 7 is the proof that the maps given above are

well-de�ned on classes. One also needs to check that the form corresponding to an ideal

is primitive and of the right discriminant. Similarly, one needs to show that the ideal

corresponding to a form is proper. Needless to say that this proof is tedious!
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CHAPTER 2
Elliptic curves

Let F be a perfect �eld. The main reference in this chapter is [Silverman(2009)]

De�nition 8. An elliptic curve is a pair (E, 0) where E is a smooth projective curve of

genus one and 0 is a point on E. The elliptic curve is de�ned over F , written E/F , if E is

de�ned over F as a curve and 0 ∈ E(F ). We generally denote the elliptic curve by E, the

point 0 being understood.

Using the Riemann-Roch theorem, one can show that any elliptic curve E is isomorphic

to a plane cubic of the form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where ai ∈ F if E is de�ned over F . When E is written in this form, the distinguished

point is [0, 1, 0]. The a�ne part

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2.1)

is called the Weierstrass equation of E. The only point of E missing in this a�ne curve is

0 = [0, 1, 0]. For this reason, 0 is called the point at in�nity.

When char(F ) 6= 2, the Weierstrass equation can be put in the form

Y 2 = X3 + a′2X
2 + a′4X + a′6

by doing a change of variales. If char(F ) 6= 2, 3, the x2 term can also be eliminated, which

gives an equation of the form

Y 2 = X3 +AX +B. (2.2)
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To each Weierstrass equation for E, one associates the following quantities:

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, b6 = a2

3 + 4a6,

b8 = a2
1 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4,

c6 = −b32 + 36b2b4 − 216b6

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6.

In the case where a1 = a2 = a3 = 0, these quantities simplify to

b2 = 0, b4 = 2a4, b6 = 4a6,

b8 = −a2
4,

c4 = −243a4

c6 = −2533a6

∆ = −16
(
4a3

4 + 27a2
6

)
.

What makes elliptic curves so special is that the points of E(F ) can be added: given

two points P1 and P2 in E(F ), a third point P1 +P2 can be found and with this operation,

E(F ) is an abelian group.

To de�ne this operation, we consider the set E(R). For simplicity, suppose that the

points P1 and P2 are distinct. If they lie on the same vertical line, their sum is de�ned to

be 0. Otherwise, consider the line joining the two points. In general, this line will intersect
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the curve in three points: P1, P2 and a third point, which is denote P1 ∗ P2. Then P1 + P2

is de�ned to be the re�ection of P1 ∗ P2 about the x-axis. It can be shown that this makes

E(R) into an abelian group, where the identity is the point at in�nity. The hard part is to

show that the operation is associative.

To de�ne the operation in arbitrary �elds, one �rst �nds explicit formulas for the

operation de�ned above. Since these formulas make sense over any �eld, they can be used

to de�ne a group operation on E(F ). In particular, the formula for the x-coordinate of

P1 +P2, where P1 6= ±P2, will be used later. If P1 = (x1, y1) and P2 = (x2, y2) are in E(F ),

the formula is

x(P1 + P2) =

(
y2 − y1

x2 − x1

)2

+ a1

(
y2 − y1

x2 − x1

)
− a2 − x1 − x2. (2.3)

A natural question is to ask about the nature of the group E(F ). Is it �nite? Is it

�nitely generated as a Z-module? In general, it is hard to answer those questions. However,

when F is a number �eld, the Mordell-Weil gives important information about E(F ).

Theorem 8 (Mordell-Weil). Let F be a number �eld, and let E/F be an elliptic curve.

Then E(F ) is �nitely generated as an abelian group.

Proof. See [Silverman(2009), VIII�6, Theorem 6.7].

It follows that if F is a number �eld,

E(F ) ∼= Etors(F )⊕ Zr

for some non-negative integer r and �nite group Etors(F ). The integer r is called the rank

of E. For the moment, no algorithm to compute the rank is known. As mentioned in

the introduction, the most e�cient general approach to calculate the Mordell-Weil group

is based on Fermat's method of in�nite descent, but it has not been proven yet that these

methods will always terminate in a �nite number of steps.
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CHAPTER 3
The Homomorphisms of Buell and Soleng

In this chapter, the homomorphisms of Buell and Soleng are presented and compared.

Since the �rst uses the language of quadratic forms and the second uses the language of

ideals, the correspondence introduced in the �rst chapter will be used.

3.1 Buell's homomorphism

We follow the introduction of Buell's article [Buell(1977)]. Let a, b and c be integers

and let D be a fundamental discriminant (see de�nition 2). Let E be an elliptic curve of

the form

E : Y 2 = 4(X + a)(X2 + bX + c) +D. (3.1)

Then any rational point in E is of the form P =
(
A
C2 ,

B
C3

)
, where gcd(A,C) = 1 and

gcd(B,C) ≤ 2. If D < 0, assume also that A+ a and A2 + bA+ c are both positive (note

that they must be of the same sign). Since P ∈ E(Q), it satis�es the equation

B2 = 4(A+ aC2)(A2 + bC2A+ cC4) + C6D

and so the quadratic form fP = (A+ aC2, B,A2 + bC2A+ cC4) has discriminant C6D and

is positive de�nite if D < 0. If CD denotes the identity class of Cl∗(D), composition with

CD is a homomorphism from the form class group of discriminant (C3)2D to the form class

group of discriminant D (see Chapter 1). Therefore a function φ : E(Q) −→ Cl∗(D) can

be de�ned by sending P to [fP ] ◦CD. The whole point of Buell's article is to prove that φ

is a homomorphism.

23



Buell mentions at the end of his article that his results may be extended to non-

fundamental discriminants. However, he admits that he has not been able to do it. He also

points out the importance of analysing the surjectivity of the homomorphism, because this

could help us �nd elliptic curves of high rank.

3.2 Soleng's homomorphism

Here we follow the introduction of Soleng's article [Soleng(1994)]. Letting (x, y) be a

rational point on the elliptic curve

E : Y 2 = X2 + a2X
2 + a4X + a6

de�ned over Q, Soleng notes that

y2 − (x+ n)(n2 − (a2 + x)n+ x2 + a2x+ a4) = −n3 + a2n
2 − a4n+ a6 (3.2)

for any integer n. Multiplying this equation by 4, he then notes that the quadratic form

(x+ n)X2 + 2yXY + (n2 − (a2 + x)n+ x2 + a2x+ a4)Y 2

has discriminant 4(−n3 + a2n
2 − a4n+ a6) (this quadratic form is not necessarily integral,

however). This establishes a relation between elliptic curves and quadratic forms.

Soleng's homomorphism is not de�ned on the whole group E(Q), but on the subgroup

of primitive points of E(Q), which is de�ned as follows.

De�nition 9. Let E be an elliptic curve whose Weierstrass equation

E : Y 2 = X2 + a2X
2 + a4X + a6

has coe�cients in Z. Then a point P = (A/C2, B/C3) in E(Q), where gcd(A,C) =

gcd(B,C) = 1, is primitive if gcd(A, 2B,A2 + a2AC
2 + a4C

4).
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It is not clear at �rst sight, but the set of primitive points of E(Q) is a group. For a

proof of this, see [Soleng(1994), Proposition 2.1].

Now let P = (A/C2, B/C3) be a primitive point in E(Q). Then (A,B) is an in-

tegral point on the curve Y 2 = X3 + a2C
2X2 + a4C

4X + a6C
6. Soleng associates this

point with the ideal [A,−B +
√
C6a6] = [A,−B + C3√a6] in the order Z[C3√a6]. This

ideal is proper and so it de�nes a class in Cl(Z[C3√a6]). In general, the ideals asso-

ciated with di�erent points will be in di�erent orders, so he composes with [1,
√
a6] to

obtain an ideal in Cl(Z[
√
a6]). A short computation shows that [A,−B+C3√a6][1,

√
a6] =

[A,−kB +
√
a6], where kC3 ≡ 1 (mod A). This de�ned a map Eprim(Q) −→ Cl(Z[

√
a6]),

where (A/C2, B/C3) is sent to [A,−kB+
√
a6]. Soleng shows in his article that this de�nes

a homomorphism.

3.3 Correspondence between the two homomorphisms

The two homomorphisms are described using di�erent theories, but as we saw in the

�rst chapter, these theories are equivalent in many cases. One could think that the two

homomorphisms are equal whenever a6 is a fundamental discriminant. However, this is not

exactly the case. In this section, the relation between the two functions is analysed.

An important point to make here is that both homomorphisms depend on the choice

of Weierstrass equation. For instance, the elliptic curves E : Y 2 = X3 + a4X + a6 and

E′ : Y 2 = X3+16a4X+64a6 are isomorphic over Q, but a primitive point in E(Q) = E′(Q)

can be mapped to an ideal in Cl(Z[
√
a6]) or Cl(Z[8

√
a6]), depending on the equation that

is chosen. Therefore, some care must be taken when comparing the two homomorphisms.

Suppose that D is an even and negative fundamental discriminant. Then D = 4a6,

where a6 is negative, square-free and congruent to 2 or 3 mod 4. In this case, all points of

E(Q) are primitive.
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Lemma 1. Let E be an elliptic curve de�ned by the equation

Y 2 = X3 + a2X
2 + a4X + a6

where a6 is square-free and congruent to 2 or 3 mod 4. Then Eprim(Q) = E(Q).

Proof. Let P = (A/C2, B/C3) be a point on E, where gcd(A,C) = gcd(B,C) = 1. Then

A,B and C satisfy the equation

B2 = A(A2 + a2C
2A+ a4C

4) + a6C
6.

Suppose that an odd prime p divides gcd(A, 2B,A2 + a2AC
2 + a4C

4). Then p divides

A,A2 + a2AC
2 + a4C

4 and B so p2 divides a6, a contradiction. Similarly, if 2 divides

gcd(A, 2B,A2 + a2AC
2 + a4C

4), then A and A2 + a2AC
2 + a4C

4 are even, so a4 is even

and B2 ≡ a6 (mod 4), a contradiction.

Now let P = (x, y) be a (primitive) point on the elliptic curve

E : Y 2 −X(X2 + a2X + a4) = a6.

Then P ′ = (x, 2y) is a point on the curve

E′ : Y 2 − 4X(X2 + a2X + a4) = D.

Writing P = (A/C2, B/C3), it follows that P ′ = (A/C2, 2B/C3). Then Soleng's homo-

morphism sends P to the ideal [A,−B + C3√a6]Z[
√
a6]. On the other hand, Buell's map

sends P ′ to the quadratic form

(A, 2B,A2 + a2C
2A+ a4C

4) ◦ CD

of discriminant D, where CD is the identity class of discriminant D. Using the correspon-

dence between quadratic forms and ideals for negative discriminant, the quadratic form
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(A, 2B,A2 + a2C
2A+ a4C

4) corresponds to the ideal [A, −2B+
√
C6D

2 ] = [A,−B + C3√a6].

Since the following diagram commutes

Cl(Z[
√
C6a6])

·Z[
√
a6]

−−−−→ Cl(Z[
√
a6])

∼
x ∼

x
Cl∗(C6D)

◦fD−−−−→ Cl∗(D)

,

it follows that this diagram commutes:

E(Q)
Soleng−−−−→ Cl(Z[

√
a6])

∼
x ∼

x
E′(Q)

Buell−−−−→ Cl∗(D)

.

This proves that in the case where D is an even and negative fundamental discriminant,

the two homomorphisms are equivalent in a natural way.

Suppose now that D is a negative fundamental discriminant, but that it is odd (e.g.

D = −3). In this case, the form class group and the ideal class group are isomorphic.

However, Soleng's homomorphism lands in the class group of an order that is not maximal.

Since the two homomorphisms have image in groups that are not necessarily isomorphic, I

would not say that they are equivalent.

Suppose now that D is a positive discriminant. Then the form class group of discrimi-

nant D is isomorphic to the narrow-class group of the order of discriminant D. In general,

these groups are not isomorphic. Again, I would not say that the homomorphisms are

equivalent in this case.

To conclude, the idea and motivation behind the two homomorphisms are the same.

In both cases, they essentially come from the basic identity Y 2 −X(X2 + a2X + a4) = a6

(modulo a factor of 4). The main di�erence is that Buell's homomorphism has image in

the form class group of a fundamental discriminant. Soleng removes the condition that

the discriminant is fundamental, but his homomorphism is restricted to primitive points.
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Moreover, Soleng's homomorphism never lands in the class group of the order Z[(1+
√
D)/2]

(the maximal order of Q(
√
D) when D ≡ 1 (mod 4)), whereas Buell's homomorphism can.
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CHAPTER 4
The Mazur-Tate Canonical Height Pairing

The Mazur-Tate pairing was �rst introduced in [Mazur and Tate(1983)]. In a second

article [Mazur and Tate(1987)], Mazur and Tate gave a method to compute the pairing on

elliptic curves. Before presenting it, local �elds and valuations in quadratic �elds will be

discussed. Then the notion of minimal Weierstrass equations will be introduced.

4.1 Local �elds and valuations on quadratic �elds

Let F be a �eld. An absolute value on F is a function | · | : F −→ R satisfying the

following three properties:

1. |x| > 0, for all x ∈ F , except that |0| = 0.

2. |xy| = |x||y|, for all x, y ∈ F .

3. |x+ y| ≤ |x|+ |y|, for all x, y ∈ F .

If the stronger condition |x + y| ≤ max{|x|, |y|} holds, the absolute value is called nonar-

chimedian.

De�nition 10. A local �eld is a �eld which is complete with respect to an absolute value

and locally compact with respect to the topology induced by this absolute value.

De�nition 11. A place or prime of F , denoted ν, is an equivalence class of absolute values

on F .

From now on, let F is a number �eld. In this case, there is exactly one place of F

� for each prime ideal,

� for each real embedding,

� for each pair of complex conjugate embeddings
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and the completion of F at ν, denoted Fν , is a local �eld. The primes corresponding to

prime ideals are called �nite primes. The others are called in�nite primes. An absolute

value representing the place ν will be denoted | · |ν or | · |p if ν corresponds to the prime p.

The integers of Fν , denoted Rν , are the elements of Fν with absolute value less than 1, i.e.

Rν = {x ∈ Fν : |x|ν ≤ 1}.

The units are R×ν = {x ∈ Fν : |x|ν = 1}.

With each place ν of F is associated an additive valuation v : F× −→ R de�ned as

v(x) = − log |x|ν . When ν corresponds to a prime p, v is discrete and so its image in R is

isomorphic to nZ for some n. If n = 1, this discrete valuation is called normalized and is

denoted ordp. Each �nite place of F contains an absolute value which induces a normalized

discrete valuation. Indeed, if the discrete valuation corresponding to the absolute value | · |

has image isomorphic to nZ, then the valuation corresponding to | · |1/n will be normalized.

Note that any normalized discrete valuation ordp : F× � Z satis�es the following properties:

1. ordp(xy) = ordp(x) + ordp(y) for all x, y ∈ F×.

2. ordp(x+ y) ≥ min{ordp(x), ordp(y)} for all x, y ∈ F×.

The last property follows from the fact that the absolute value corresponding to a �nite

place is always nonarchimedian.

By construction of the completion of a �eld, the absolute value on F can be extended

to an absolute value on Fν . Similarly, ordp can be extended to a discrete valuation on Fν

(and the extension will also be normalized). With this valuation, Rν becomes a discrete

valuation ring. An element π of Rν such that ordp(π) = 1 is called a uniformizer at p.
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Note that ordp has a simple and explicit description on F×. Given x ∈ F×, the ideal

generated by x factors uniquely as a product of prime ideals

(x) =
∏

p prime

pαp .

Then ordp(x) = αp.

In brief, the situation is simple for number �elds. There are the �nite primes and the

in�nite primes. When ν is a �nite prime corresponding to p, an absolute value | · |p and

a (normalized discrete additive) valuation ordp are attached to it. The question is: given

an element in a �eld F , can ordp be evaluated explicitly? The answer is yes, at least in

quadratic number �elds. In fact, one can do even more than that.

Proposition 8. Let a be a fractional OK-ideal and let p be a prime of K dividing pOK ,

where K is a quadratic �eld and p is a rational prime. Then

ordp(N(a)) =


ordp(a) if pOK = p2

ordp(a) + ordp̄(a) if pOK = pp̄

2ordp(a) if pOK = p is prime

.

Moreover, if a ⊆ OK , α = x+yω ∈ a and p does not divide α (i.e. p - x, y), then ordp(a) = 0

or ordp̄(a) = 0 whenever pOK = pp̄ in K.

Proof. The �rst part of this statement follows from the multiplicativity of the norm function

N = NK/Q introduced in the �rst chapter and the fact that N(p) = p if p is rami�ed or

split and N(p) = p2 if p is inert.

The last statement follows from the fact that in Dedekind domains "to divide is to

contain". If a is an integral ideal, α ∈ a and ordp(a), ordp̄(a) > 0, then α ∈ p∩p̄ = pp̄ = pOK

and so p|a, b.
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If x ∈ OK , this result says that in order to �nd ordp(x), one can analyse ordp(N(x)),

where pZ = p ∩ Z. The only di�culty is the case where p splits, but for this the last part

of the proposition is helpful in many cases.

To illustrate some of the concepts introduced so far in quadratic �elds, let us look at

the following example.

Example 3. Let d0 be a square-free integer and let p be an odd rational prime that splits

in OK , where K = Q(
√
d0). Then pOK = (p, n+

√
d0)(p, n−

√
d0), where n2 ≡ d0 (mod p).

By Hensel's lemma, there exists a p-adic integer x = (xk) such that x2 = d0 and x1 ≡ n

(mod p). In particular, xk ≡ xk−1 (mod pk−1) and x2
k ≡ d0 (mod pk). We claim that

pk = (pk, xk +
√
d0), where p = (p, x1 +

√
d0) = (p, n+

√
d0).

To prove this, the ideal (pk, xk +
√
d0) will be factored. First,

N((pk, xk +
√
d0)) = gcd(N(pk),Tr(pk(xk +

√
d0)), N(xk +

√
d0))

= gcd(p2k, 2pkxk, x
2
k − d0) = pk gcd(pk, 2xk, (x

2
k − d0)/pk) = pk.

Indeed, p is odd and if p|xk, d0 ≡ 0 (mod p), which contradicts our hypothesis. It follows

that (pk, xk +
√
d0) = pαp̄ᾱ for some non-negative integers α and ᾱ such that α + ᾱ = k.

Now xk 6∈ pZ, so one of α or ᾱ is zero. Using the compatibility of the xk, there exists an

integer c such that xk = x1 + cp. Then pk and xk +
√
d0 = cp+x1 +

√
d0 belong to p, which

shows that (pk, xk +
√
d0) ⊆ p and proves the claim.

4.2 Minimal Weierstrass equations

Let F be a local �eld, complete with respect to a place ν inducing a normalized

discrete additive valuation ord. For instance, F could be the completion of a number �eld

at a �nite place. Let R = {x ∈ F |ord(x) ≥ 0} denote its ring of integers. Then R is a

discrete valuation ring with a unique (up to unit) prime element π (the uniformizer). Let
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E be an elliptic curve de�ned over F with Weierstrass equation

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6.

By making a change of variables of the form X = u2X ′ and Y = u3Y ′, where u is a

su�ciently big power of π, we can suppose that all the ai belong to R.

When working with such an elliptic curve over a local �eld, one is often interested in

reducing it mod π. The problem is that di�erent choices of Weierstrass equations can

lead to very di�erent reduction maps. For example, by arti�cially introducing powers of π

in the ai via a change of variables, one could conclude that every elliptic curve over a local

�eld reduces to the singular curve Y 2 = X3. To avoid this problem, a canonical choice of

Weierstrass equation should be found.

De�nition 12. Using the same notation as above, a Weierstrass equation for E is said

to be a minimal Weierstrass equation for E at ν if ord(∆) is minimized subject to the

condition that the ai belong to R.

Since ord(∆) is a positive integer, every elliptic curve has a minimal Weierstrass equa-

tion. One can check that the only change of variables that �x the point at in�nity and

preserve the shape of a Weierstrass equation are those of the form X = u2X ′ + r and

Y = u3Y ′+u2sX ′+ t, where r, s, t, u ∈ F . When such a change of variables is applied, one

can check that ∆′ = u−12∆, c′4 = u−4c4 and c′6 = u−6c6. It follows that if ord(∆) < 12 or

ord(c4) < 4 or ord(c6) < 6, the Weierstrass equation is minimal. If the characteristic of the

residue �eld R/πR is not 2 or 3, a converse is true: any minimal Weierstrass equation for

E is such that ord(∆) < 12 or ord(c4) < 4.

Finding a minimal Weierstrass equation by hand can be di�cult, especially if the

characteristic of the residue �eld is 2 or 3. There is an algorithm due to Tate, called Tate's

algorithm, that produces a minimal Weierstrass equation (and more). A description of
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this very general algorithm can be found [Silverman(1994), IV�9]. Another algorithm, due

to Laska, produces a minimal Weierstrass equation for E in a simple and straightforward

manner (see [Laska(1982)]).

Minimal Weierstrass equations are not unique, but the relation between them can be

explicitly described.

Proposition 9. A minimal Weierstrass equation is unique up to a change of coordinates

of the form

X = u2X ′ + r, Y = u3Y ′ + u2sX ′ + t

with u ∈ R∗ and r, s, t ∈ R. Conversely, if one starts with a Weierstrass equation whose

coe�cients are in R, then any change of coordinates

X = u2X ′ + r, Y = u3Y ′ + u2sX ′ + t

used to produce a minimal Weierstrass equation satis�es u, r, s, t ∈ R.

Proof. See [Silverman(2009), VI�1, Proposition 1.3].

Example 4. Let K = Q(
√

5), let p be a prime of K and let p be the prime of Q such that

p ∩ Z = pZ. The elliptic curve given by the Weierstrass equation

Y 2 +XY + Y = X3 +X2 + 22X − 9

over the �eld Kp, the completion of K at p, has discriminant ∆ = −21552 and c4 = −5 ·211.

It follows that this equation is minimal at p since νp(c4) = 2 < 4 if p = 5 and νp(c4) = 1 < 4

otherwise.

4.3 Explicit formulas for the Mazur-Tate pairing on elliptic curves

The Mazur-Tate S-pairing is a bilinear pairing de�ned on the product of two abelian

varieties satisfying certain conditions, like a variety and its dual, for example. For elliptic
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curves, the pairing can be described quite explicitly. The main reference in this section

is [Mazur and Tate(1987)].

Let E be an elliptic curve de�ned over a number �eld F and let MF be a complete

set of inequivalent absolute values on F . Let M0
F ⊆ MF be the set of nonarchimedian

absolute values and let M∞F ⊆ MF be the set of archimedian absolute values. In the

general de�nition of the S-pairing, S can be any �nite subset ofM0
F . In our case, we choose

S = ∅. Then the S-pairing 〈·, ·〉S : E(F ) × E(F ) −→ C with S = ∅ is de�ned as follows.

The target group C is a quotient of the idèle class group of F :

C = IF /

F× ∏
ν∈MF

Uν

 ,

where

Uν =


F×ν if ν ∈M∞F

R×ν if ν ∈M0
F

.

As before, Rν is the ring of integers of Fν . Roughly speaking, taking the quotient suppresses

the in�nite places and only preserves the prime powers at the �nite places.

In order to compute the pairing of P and Q explicitly, Mazur and Tate suppose that

there is another point P ′ satisfying certain local conditions at some of the primes of S. In our

case S is empty so these conditions are satis�ed for any choice of P ′. Then 〈P,Q〉S = (cν),

where

cν is arbitrary in F×ν for ν ∈M∞F ,

cν =
tpν (P + P ′)tpν (Q+ P ′)

tpν (P ′)tpν (P +Q+ P ′)
mod R×ν for ν ∈M0

F ,

where pν is the prime ideal of F corresponding to ν and tpν (P ) denotes an element of F×ν

such that tpν (P )2 is a denominator for the x-coordinate of P in a minimal Weierstrass

equation for E at ν.
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At this point, the S-pairing takes values in a quotient of the idèle class group, but

a map between this group and the ideal class group can be found. First, there is a well

de�ned homomorphism ρ′ : IF −→ Cl(F ), where Cl(F ) is the ideal class group of F . This

homomorphism sends (cν) ∈ IF to the class of the fractional ideal
∏
ν∈M0

F
p
ordpν (cν)
ν . Since

F×
∏
ν∈MF

Uν is contained in the kernel of ρ′, the homomorphism ρ′ induces a well-de�ned

homomorphism ρ : C −→ Cl(F ).

Putting everything together gives a bilinear pairing

〈·, ·〉 : E(F )× E(F ) −→ Cl(F )

(note that the subscript S has been dropped to denote this pairing). With this description

of the pairing, there are two computational di�culties. First, the point P ′ must be chosen.

We choose P ′ to be the identity of E(F ). Second, the elements tpν (P ), tpν (Q), tpν (P ′) and

tpν (P + Q) must be computed at every ν ∈ M0
F . This is the main problem and it will be

solved under certain conditions in the next chapter.
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CHAPTER 5
Obtaining Soleng's homomorphism via the Mazur-Tate pairing

As we saw, Soleng considered a map from the primitive points of an elliptic curve

E : Y 2 = X3 + a2X
2 + a4X + a6

with coe�cients in Z to the class group of the order Z[
√
a6] ⊆ K, where K = Q(

√
a6). To

obtain this homomorphism via the Mazur-Tate pairing, a point P0 in E(K) is �xed and

explicit formulas for the homomorphism

〈·, P0〉 : Eprim(Q) −→ Cl(K),

which sends P to 〈P, P0〉, are found. This is the content of Theorem 9. In Corollary 1

it will be seen that this homomorphism coincides with Soleng's homomorphism in certain

cases.

Lemma 2. Let E be an elliptic curve with Weierstrass equation

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

and let P0 = (0, θ) ∈ E(Q(θ)), where θ = (−a3 +
√
a2

3 + 4a6)/2 is a root of Y 2 + a3Y − a6.

Then for any point P = (A/C2, B/C3) ∈ E(Q), where gcd(A,C) = gcd(B,C) = 1 and

A 6= 0,

x(P + P0) =
(a4AC

2 + 2a6C
4 − a3BC)− (2BC + a1AC

2 + a3C
4)θ

A2
(5.1)
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and

NK/Q((a4AC
2 +2a6C

4−a3BC)− (2BC+a1AC
2 +a3C

4)θ) = −A2C2(b6A+ b8C
2), (5.2)

so that

NK/Q(x(P + P0)) = −C
2(b6A+ b8C

2)

A2
. (5.3)

Proof. The proof is a simple but tedious calculation.

In the case where a1 = a3 = 0, the point P0 is (0,
√
a6) ∈ E(K), K = Q(

√
a6) and the

formulas in lemma 2 become much simpler.

Theorem 9. Let P =
(
A/C2, B/C3

)
, where gcd(A,C) = gcd(B,C) = 1, be a primitive

point on the elliptic curve

E : Y 2 = X3 + a2X
2 + a4X + a6

de�ned over Z, with a6 not a square, and suppose that the curve is minimal at all primes

of K. Let a6 = `2d0, where d0 is square-free. Then the ideal class 〈P, P0〉 is given explicitly

by the class of

I2

∏
p|A,p-a6

p split,p odd

p
−ordp(A)
p

∏
p|A,p|a6

p odd, pOK=p2

p−ordp(A)
∏

p|A,p|a6
p odd, pOK=pp̄

p
1
2
ordp(x(P+P0))p̄

1
2
ordp̄(x(P+P0)),

where

I2 =


p−ord2(A) if 2OK = p2

p
1
2
ordp(x(P+P0))p̄

1
2
ordp̄(x(P+P0)) if 2OK = pp̄

1 if 2OK is prime

and where

pp =
(
p, rpkB +

√
d0

)
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with kC3 ≡ 1 (mod A) and rp` ≡ 1 (mod p). Moreover,

1

2
ordp(x(P + P0)) +

1

2
ordp̄(x(P + P0)) = −ordp(A)

if p = 2 and 2OK = pp̄ or if p|A, p|a6 and pOK = pp̄.

Remark 1. One sees in these explicit formulas that if the prime p splits as pOK = pp̄, the

p and p̄-parts in x(P + P0) are di�cult to separate. However, it will be shown that both

primes appear in the denominator of the ideal x(P +P0)OK . In particular, whenever a6 is

not a fundamental discriminant, the ideal is not prime to the conductor of Z[
√
a6].

Proof. The main part of the proof is the computation of

cp =
tp(P )tp(P0)

tp(0)tp(P + P0)
mod O×Kp

at every prime p of K. To do so, x(P ), x(P0) and x(P + P0) are carefully analysed. First,

note that A 6= 0, otherwise a6 is a square. Using Lemma 2 with a1 = a3 = 0 gives

x(P + P0) =
a4AC

2 + 2a6C
4 − 2BC

√
a6

A2
. (5.4)

Since b6 = 4a6 and b8 = 4a2a6 − a2
4 when a1 = a3 = 0, the same Lemma gives

NK/Q(a4AC
2 + 2a6C

4 − 2BC
√
a6) = A2C2(a2

4C
2 − 4a6(a2C

2 +A)) (5.5)

and

NK/Q(x(P + P0)) =
C2(a2

4C
2 − 4a6(a2C

2 +A))

A2
. (5.6)

In the computations, the relation satis�ed by the coordinates will be frequently used:

B2 = A3 + a2A
2C2 + a4AC

4 + a6C
6. (5.7)
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Let p be a �nite prime of K. Looking at equation (5.4), we see that the case where

p divides A is special, as x(P + P0) could have a denominator in Kp. The proof will be

divided in a few cases, starting with the following one:

Case 1: p does not divide A.

Since the equation for E is minimal at p by hypothesis and the x-coordinate of P0, 0

and P + P0 do not have denominators in Kp,

tp(P0) = tp(0) = tp(P + P0) = 1.

Using the minimality of the equation again,

tp(P ) = π
ordp(C)
p ,

where πp is a uniformizer at p, i.e. an element of K×p with valuation exactly 1.

Case 2: p divides A.

First, suppose that p divides 2OK . For the same reasons as in the previous case,

tp(P0) = tp(0) = 1 and tp(P ) = π
ordp(C)
p .

The computation of tp(P + P0) is divided into two cases, depending if p divides 2.

Case 2.1.1: d0 ≡ 3 (mod 4) or d0 ≡ 0 (mod 2).

In this case, 2OK = p2. Then equation (5.5) gives

ordp(z) = ord2(N(z)) = ord2(A2C2(a2
4C

2 − 4a6(a2C
2 +A))) = 2ord2(A)
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because ord2(a2
4C

2) = 0 since gcd(A, 2B, a4) = 1 (recall that P is primitive) and A is even.

Since 2ord2(A) = ordp(A), it follows that

ordp(x(P + P0)) = ordp(z)− 2ordp(A) = −2ord2(A)

and so

tp(P + P0) = π
ord2(A)
p .

Case 2.1.2: d0 ≡ 5 (mod 8).

In this case, p = 2OK is prime and so tp(P + P0) is sent to 1 in Cl(K).

Case 2.1.3: d0 ≡ 1 (mod 8).

In this case, 2OK = pp̄ and

ordp(z) + ordp̄(z) = ord2(N(z)) = 2ord2(A).

Now z = a4AC
2 +2a6C

4−2BC
√
a6 ∈ p∩ p̄ because 2|z. It follows that ordp(z), ordp̄(z) > 0

and so ordp(z), ordp̄(z) < 2ord2(A) (using the previous equation). Now since ord2(A) =

ordp(A), it follows that

ordp(x(P + P0)) = ordp(z)− 2ordp(A) < 0

and similarly

ordp̄(x(P + P0)) = ordp̄(z)− 2ordp̄(A) < 0.

This is not a precise value, but it tells us at least that p and p̄ appear in the denominator

of x(P + P0) and so

tp(P + P0) = π
− 1

2
ordp(x(P+P0))

p 6= 1 and tp̄(P + P0) = π
− 1

2
ordp̄(x(P+P0))

p̄ 6= 1.
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Now consider the cases where p does not divide 2OK . First,

tp(P0) = tp(0) = 1 and tp(P ) = π
ordp(C)
p

by the minimality of the equation at p. For tp(P + P0), there are three cases to consider.

Let p be the rational prime such that p ∩ Z = pZ.

Case 2.2.1: p does not divide a6.

In this case, reducing equation (5.7) mod p gives

B2 ≡ C6`2d0 (mod p)

which is equivalent to

(rpkB)2 ≡ d0 (mod p),

where rp` ≡ 1 (mod p). This says that p splits in K as pOK = ppp̄p, using the same

notation as in the statement of the theorem, where pp = p. Since C2(a4A+ 2a6C
2) is not

divisible by p, the element z belongs to at most one of the ideals pp and p̄p. To prove that

z ∈ p̄p, we show that there exists integers m and n such that

a4AC
2 + 2a6C

4 − 2BC`
√
d0 = mp+ n(rpkB −

√
d0).

This is equivalent to

a4AC
2 + 2a6C

4 − 2B2C(`rp)k ≡ 0 (mod p)

⇔ a4AC
2 + 2a6C

4 − 2B2Ck ≡ 0 (mod p)

⇔ a4AC
2 + a4AC

2 + 2a6C
4 − 2B2Ck = 2a4AC

2 + 2a6C
4 − 2B2Ck ≡ 0 (mod p)

⇔ C2(2a4AC
2 + 2a6C

4 − 2B2Ck) = 2a4AC
4 + 2a6C

6 − 2B2(C3k) ≡ 0 (mod p)
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⇔ 2a4AC
4 + 2a6C

6 − 2B2 = −2(B2 − a4AC
4 − a6C

6) ≡ 0 (mod p)

which is clearly true since p|A. Since ordpp(A) = ordp(A), it follows that

ordpp(x(P + P0)) = ordpp(z)− 2ordpp(A) = 0− 2ordp(A).

For p̄p, the above computation shows that ordp(N(z)) = ordp̄p(z). Therefore

ordp̄p(z) = ordp(A
2C2(a2

4C
2 − 4a6(a2C

2 +A)))

= 2ordp(A) + ordp(a
2
4C

2 − 4a6(a2C
2 +A)) ≥ 2ordp(A)

and so

ordp̄p(x(P + P0)) = ordp̄p(z)− 2ordp̄p(A) = ordp̄p(z)− 2ordp(A) ≥ 0.

Case 2.2.2: p divides d0.

In this case p is rami�ed in K. Using equation (5.6), one sees that

ordp(x(P + P0)) = ordp

(
C2(a2

4C
2 − 4a6(a2C

2 +A))

A2

)
.

Since p|d0 and p|A, it follows that p|B and so p - a4, by the primitivity of P . Therefore

ordp(a2
4C

2 − 4a6(a2C
2 +A)) = 0 and so

ordp(x(P + P0)) = −2ordp(A).

Case 2.2.3: p does not divide d0 and p divides `.

In this case, p is either inert or split. If it is inert, it will be sent to 1 in the ideal class

group, so this case can be ignored. Suppose now that pOK = pp̄. Then

2ordp(A) = ordp(N(z)) = ordp(z) + ordp̄(z).
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Since p|z = a4AC
2 + 2a6C

4 − 2BC
√
a6, the element z belongs to p and p̄. It follows that

ordp(z), ordp̄(z) < 2ordp(A) and so

ordp(x(P + P0)), ordp̄(x(P + P0)) < 0.

To complete the proof, it su�ces to put everything together and map the idèle class to

an ideal of Cl(OK). First, both tp(P0) and tp(0) are 1 for all p, so they will not contribute

in Cl(K). For tp(P ), it is always equal to πordp(C)
p and so when mapped to Cl(OK), its

contribution is (C) = (1). Finally, combining all the di�erent values of tp(P +P0) gives the

statement of the theorem.

Corollary 1. Suppose that a6 is square-free and not congruent to 1 mod 4 (so that OK =

Z[
√
a6]). Suppose further that the equation for E is minimal at the primes above 2 and 3.

Then every point of E(Q) is primitive and the homomorphism obtained via the Mazur-Tate

pairing coincides with Soleng's homomorphism.

Proof. The fact that every point is primitive when a6 is square-free and congruent to 2 or

3 mod 4 was proven in Lemma 1.

In order to apply the previous theorem, is must be checked that the equation for E is

minimal at the primes p of K not dividing 2 or 3. This follows directly from the fact that

ordp(c6) = ordp(−2533a6) = ordp(a6) ≤ 2 < 6.

Since a6 is square-free, we have ` = 1 and d0 = a6. Then the formula of the theorem

becomes

p
−ord2(A)
2

∏
p|A,p-a6
p odd

(p, kB +
√
a6)−ordp(A)

∏
p|A,p|a6

p odd, pOK=p2

p−ordp(A),

where 2OK = p2
2 and kC3 ≡ 1 (mod A). Indeed if p|a6, p is rami�ed in K.
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To complete the proof, one must show that this ideal is in the same class as

a = (A,−kB +
√
a6) .

This can be done by computing ordp(a) for each prime p of K. The �rst step is to prove

that N(a) = A. By Proposition 6, it su�ces to show that

A = gcd(N(A),Tr(A(kB −
√
a6)), N(kB −

√
a6)) = gcd(A2, 2kAB, (kB)2 − a6)

= A gcd(A, 2kB, ((kB)2 − a6)/A),

which is equivalent to proving that gcd(A, 2kB, ((kB)2−a6)/A) = 1. Note that ((kB)2 − a6)/A

is an integer because

B2 ≡ a6C
6 (mod A)⇐⇒ (kB)2 ≡ a6 (mod A)

by de�nition of k. Suppose that a prime q divides gcd(A, 2kB, ((kB)2 − a6)/A). There are

two cases to consider.

Case 1: q odd.

Then q|A and q|B (because gcd(q, k) = 1), so q|a6. Taking the equation

B2 = A(A2 + a2AC
2 + a4C

4) + a6C
6,

multiplying it by k2 and rearranging the terms gives

(kB)2 − a6

A
+ a6

(kC3 − 1)(kC3 + 1)

A
= k2(A2 + a2AC

2 + a4C
4). (5.8)

Since q divides the left hand side, it divides the right hand side and so it divides a4. But

this contradicts the primitivity of the point P , i.e. the fact that gcd(A, 2B, a4) = 1.
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Case 2: q = 2.

Referring to equation (5.8) again, the left hand side is even (because kC3 + 1 is even)

and so the right hand side is also even. It follows that a4 is even, which contradicts the

primitivity of P . This completes the proof that N(a) = A.

This computation implies that ordp(a) > 0 if and only if p divides AOK . Let p be a

prime dividing AOK and let p be the rational prime such that pZ = p ∩ Z. Then

ordp(N(a)) = ordp(A) =


ordp(a) if pOK = p2

ordp(a) + ordp̄(a) if pOK = pp̄

2ordp(a) if pOK is prime

.

First suppose that p = 2. Then p is rami�ed and so ord2(A) = ordp2(a).

Now suppose that p is odd and that p|a6. Then p is rami�ed in K and again ordp(a) =

ordp(A).

Finally, suppose that p is odd and p - a6. Since

(kB)2 ≡ a6 (mod p)

(see the proof of the lemma), it follows that p splits as pOK =
(
p, kB +

√
a6

) (
p, kB −√a6

)
in K. Let p =

(
p, kB +

√
a6

)
. Now −kB +

√
a6 ∈ a, but −kB +

√
a6 6∈ pOK , so only one

of p or p̄ divides a. But clearly, a ⊆ p̄, so ordp(A) = ordp̄(a). This proves that

a = (A,−kB +
√
a6) = p

ord2(A)
2

∏
p|A,p-a6
p odd

(p,−kB +
√
a6)ordp(A)

∏
p|A,p|a6

p odd, pOK=p2

pordp(A)

which completes the proof because the inverse of p in Cl(K) is p if p is rami�ed and the

inverse of
(
p, kB +

√
a6

)
in Cl(K) is

(
p, kB −√a6

)
.
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There are two important hypotheses in Theorem 9: the minimality of the Weierstrass

at all primes of K and the primitivity of the point P . The second hypothesis is there to

help us �nd explicit formulas: if P is not primitive, the homomorphism is still de�ned at

P , but it might not be possible to �nd explicit formulas for its image in Cl(K). The �rst

hypothesis is much more important. Without it, it is not possible to �nd general explicit

formulas. Indeed, the primes at which a Weierstrass equation is not minimal depend on the

equation itself. Nevertheless, given a Weierstrass equation, there are at most �nitely many

primes at which this equation is not minimal. To �nd explicit formulas for this equation,

one can apply Theorem 9 and treat the non-minimal primes separately. An example of this

technique is given in the next chapter.

A well know fact in the theory of elliptic curves is that every elliptic curve E/Q has a

global minimal Weierstrass equation over Q, i.e. a Weierstrass equation that is minimal at

all �nite primes of Q (see [Silverman(2009), VIII�8, Corollary 8.3]). If the elliptic curve is

de�ned over a number �eld F with class number one, the corresponding statement is also

true. However, some elliptic curves E de�ned over F may fail to have a global minimal

Weierstrass equation if F has class number grater than 1. This depends on the so-called

Weierstrass class of E. Of course, if the quadratic �eld K has class number one the

homomorphism is trivial, so the homomorphism is interesting precisely in the cases where

some elliptic curves do not have a global minimal Weierstrass equation. It can be shown

that

Theorem 10. If F is a number �eld, then a positive proportion of elliptic curves E/F have

a global minimal Weierstrass equation.

Proof. See [Bekyel(2004)].
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The only problem is that this minimal Weierstrass equation might not have the desired

form, i.e. a1 = a3 = 0. This motivates a possible generalisation of Theorem 9 that will be

presented later.

48



CHAPTER 6
Other uses of the pairing and examples

So far, the Mazur-Tate pairing has been used on a particular type of elliptic curves

(those that had a global minimal Weierstrass equation with a1 = a3 = 0). Of course, the

techniques developed can be used in other cases. The purpose of this chapter is to illustrate

this.

6.1 A homomorphism on a di�erent family of elliptic curves

When a6 is a square in Z, theorem 9 gives the trivial homomorphism. When a1, a2, a3

and a6 are zero, the Weierstrass has the form

ED : Y 2 = X3 −DX,

where D is an integer, not necessarily a discriminant (the notation for ED is standard). An

easily found point on this curve is P0 = (
√
D, 0) ∈ E(K), where K = Q(

√
D). The Mazur-

Tate paring then gives a homomorphism from E(Q) to Cl(K) de�ned by P 7→ 〈P, P0〉.

Under similar restrictions as in Theorem 9, explicit formulas for this homomorphism can

be found.

Theorem 11. Let P = (A/C2, B/C3), where gcd(A,C) = gcd(B,C) = 1, be a rational

point on the curve

ED : Y 2 = X3 −DX,

where D is square-free and congruent to 5 mod 8 (so that 2 is inert in Q(
√
D)). Then the

map sending (0, 0) to the trivial ideal class and P 6= (0, 0) to the ideal class of

(BA, kA−
√
D),
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where kC2 ≡ 1 (mod B) and BA =
∏
p|B,p-A p

ordp(B), is a homomorphism.

Proof. In order to �nd general explicit formulas for the Mazur-Tate pairing, we �rst prove

that the Weierstrass equation of ED is minimal at all primes of K. This follows at once

from the fact that ED has discriminant ∆ = 26D3 and that D is square-free and congruent

to 5 mod 8. Indeed, this implies that νp(∆) ≤ 6 < 12 for all primes p of K.

Let P0 = (
√
D, 0). First, the explicit formulas for addition on elliptic curves give

x((0, 0) + P0) = −
√
D and so the homomorphism sends (0, 0) to the trivial ideal class.

From now on, suppose that P = (A/C2, B/C3) with AB 6= 0 and gcd(A,C) =

gcd(B,C) = 1. Since the equation for ED is globally minimal, one sees that tp(P0) =

tp(0) = 1 and tp(P ) = pordp(C) for all the primes p of K. In particular,
∏

p tp(P ) = COK

does not contribute in Cl(K). For tp(P + P0), a more careful analysis is required.

On ED, the formulas of Lemma 2 give

x(P + P0) =
2DA2C2 + (A3 +DAC4)

√
D

B2
. (6.1)

Letting z = 2DA2C2 + (A3 +DAC4)
√
D, the same Lemma gives

N(z) = −DB4 (6.2)

and so

N(x(P + P0)) = −D. (6.3)

From now on, let p be a prime of K above the prime p of Z such that p divides B (the

other primes will not contribute, by Formula 6.1). There are a few cases to consider.

Case 1: p = 2.

Since D ≡ 5 (mod 8), 2 is inert in K and so

2ordp(x(P + P0)) = ord2(N(x(P + P0))) = ord2(−D) = 0.
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Case 2.1: p 6= 2 and p does not split in K.

In this case,

ordp(x(P + P0)) = 0

using the same idea as above.

Case 2.2: p 6= 2 and p splits in K.

In this case, p cannot divide D. Suppose that p|A. Then the equation

B2 = A(A2 −DC4)

implies that

2ordp(B) = ordp(A).

It follows that ordp(x(P + P0)) = ordp(z/A) + ordp(A) − 2ordp(B) = ordp(z/A) ≥ 0 since

z/A ∈ OK . Similarly, ordp̄(x(P + P0)) ≥ 0.

These computations imply that only the odd primes that divide B, but not A, can

contribute. Let p be such a prime. Then

0 ≡ B2 ≡ A(A2 −DC4) (mod B)⇐⇒ (kA)2 ≡ D (mod B),

where kC2 ≡ 1 (mod B). It follows that pOK = pp̄, where p = (p, kA +
√
D). Since

2DA2C2 is not divisible by p, the element z belongs to at most one of p or p̄ and in fact,

z ∈ p. To see this, note that there exists integers m and n such that

z = 2DA2C2 + (A3 +DAC4)
√
D = mp+ n(kA+

√
D).

Indeed, after replacing A3 by B2 +DAC4, one sees that this equation is equivalent to

2DAC2 − (B2 + 2DAC4)kA ≡ 0 (mod p)

⇐⇒ 2DA2C2(1− C2k)− kAB2 ≡ 0 (mod p)
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which is true since p|B. Then

ordp(x(P + P0)) = ordp(z)− 2ordp(B) = ordp(N(z))− 2ordp(B) = 2ordp(B) > 0

and

ordp̄(x(P + P0)) = 0− 2ordp(B) = −2ordp(B).

Putting everything together,

〈P, P0〉 = ideal class of
∏

p|B,p-2A

(p, kA−
√
D)ordp(B)

To complete the proof, it su�ces to show that this ideal class is equal to the ideal

class of a = (BA, kA −
√
D). The idea is the same as in Corollary 1. First, we show that

N(a) = BA or 2BA. By Proposition 6,

N(a) = gcd(N(BA),Tr(BA(kA−
√
D)), N(kA−

√
D))

= BA gcd(BA, 2kA, (k
2A2 −D)/BA).

Note that (k2A2 −D)/BA is an integer since

A(A2−DC4) ≡ 0 (mod B) =⇒ A2−DC4 ≡ 0 (mod BA) =⇒ k2A2−D ≡ 0 (mod BA)

because gcd(A,BA) = 1 and kC2 ≡ 1 (mod B). The claim now follows from the fact that

gcd(BA, 2kA) = gcd(BA, 2) ≤ 2.

When comparing the decomposition of a to the product representing 〈P, P0〉, the prime

2 can be ignored since it is inert in K. Now let p be an odd rational prime dividing

BA. Then p does not divide D (or else it would divide A) and it splits in K as pOK =

(p, kA+
√
D)(p, kA−

√
D), since (kA)2 ≡ D (mod p). Now kA−

√
D belongs to a, but p

does not divide kA. It follows that a is divisible by either (p, kA+
√
D) or (p, kA−

√
D),

but not both. Since a is clearly contained in (p, kA−
√
D), the ideal a is divisible exactly
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by (p, kA−
√
D)ordp(BA) = (p, kA−

√
D)ordp(B). This completes the proof that

class of a = class of
∏

p|B,p-A

(p, kA−
√
D)ordp(B) = 〈P, P0〉.

Soleng's work shows that the homomorphism obtained in Theorem 9 is valid even if

the Weierstrass equation is not globally minimal. It would be interesting to see if the

homomorphism in Theorem 11 is still valid when the equation is not globally minimal.

Maybe this could be proved using Soleng's type of argument.

6.2 A concrete example

As mentioned, the two main hypotheses in Theorem 9 are the global minimality of

the Weierstrass equation and the primitivity of the point to which the homomorphism is

applied. The next example shows what happens when those hypotheses are not satis�ed.

Let K = Q(
√

1625) and consider the elliptic curve E de�ned by the Weierstrass equa-

tion

E : Y 2 = X3 + 10X2 + 25X − 1625.

This curve has discriminant ∆ = −245713·71 and the �eldK has discriminantD = −4·5·13.

It follows that 5 rami�es in K, say 5OK = p2
5, and so the Weierstrass equation for E is

minimal at all primes of K, except p5. With the help of a computer, it can be seen that the

Weierstrass class of E/K is the class of p5 in Cl(K). Since this class is not trivial, it follows

that E does not have a global minimal Weierstrass equation over K (even if we allow a1

and a3 to be non-zero, see [Silverman(2009), VIII�8,Proposition 8.2]). Therefore it is not

possible to apply Theorem 9 directly.

With the help of a computer, one sees that the curve

Y ′2 = X ′3 +X ′2 − 56X ′ + 28705
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is a minimal Weierstrass equation for E at p5. The isogeny φ between the curves is given

by

X = u2X ′ + r, Y = u3Y ′ + su2X ′ + t,

where (u, r, s, t) = (
√

1625/65,−45/13, 0, 0).

The group E(Q) has rank 2 with generators P = (10, 25) and Q = (274/9, 5167/27).

The point Q is primitive, but not P .

Let us determine the image of 〈P, P0〉 in Cl(K), where P0 = (0,
√

1625). To do so, it

is necessary to compute tp5(P0), tp5(P ) and tp5(P + P0). First,

φ(P + P0) = (69 + 13/10
√

1625, 1859/4 + 65/4
√

1625)

and ordp5(69 + 13/10
√

1625) = 0. It follows that tp5(P +P0) = 1. The value of tp5(P0) and

tp5(P ) are also equal to 1 mod O×Kp5
. For all the other primes p of K, the p-part of 〈P, P0〉

is the same in Theorem 9. This proves that the formula of theorem 9 is not valid without

the primitivity assumption (the p5-parts di�er).

The image of 〈Q,P0〉 is computed in a similar way. In this case,

tp5(Q)tp5(P0)

tp5(0)tp5(Q+ P0)
= p5 mod O×Kp5

and it turns out that the class of 〈Q,P0〉 in Cl(K) coincides with the class given in Theorem 9

since p5 = p−1
5 .

This example shows that the formula of theorem 9 can still be useful in �nding the

value of the homomorphism. One simply needs to consider the prime(s) for which the

Weierstrass equation is not minimal separately and apply the formula for the other primes.

6.3 A homomorphism into the class group of a cubic extension

In [Soleng(1994)], Soleng asks if it is possible to �nd homomorphisms between the

Mordell-Weil group of elliptic curves and the class group of number �elds of degree greater
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than two. Considering what we have seen so far, the answer is yes. Indeed, if E is an elliptic

curve de�ned over Q and P0 is a point de�ned over a number �eld F , then the Mazur-Tate

pairing induces a homomorphism 〈·, P0〉 : E(Q) −→ Cl(F ). But one question remains: is it

possible to �nd explicit formulas for these homomorphisms?

In this section, the elliptic curve

E : Y 2 = X3 − 163X + 163

will be analysed and the last question will be discussed. This curve has been chosen because

is has some interesting properties. First of all, E(Q) is free of rank 3 as a Z-module with

generators Q = (−11, 25), R = (−7, 31) and S = (−3, 25) (i.e. there is no torsion) and has

discriminant ∆ = 24541632. Moreover, the cubic f(X) = X3 − 163X + 163 is irreducible

over the rational numbers (Eisenstein at p = 163) and has discriminant 541632, which is

a square. It follows that F = Q(θ) is a cubic Galois extension of Q, where θ is any root

of f(X). The number �eld F has discriminant DF = 1632 and class group isomorphic to

Z/2Z× Z/2Z (this was computed using the Sage computer algebra software). Since 163 is

the only rational prime that rami�es in F , it can be seen by looking at ∆ that the Weierstrass

equation for E is globally minimal over F . Fixing the point P0 = (θ, 0) ∈ E(F ), the Mazur-

Tate pairing induces a homomorphism 〈·, P0〉 : E(Q) −→ Cl(F ). Can this homomorphism

be described explicitly?

As in the proof of Theorems 9 and 11, the �rst thing to do is to take an arbitrary point

P = (x, y) = (A/C2, B/C3) ∈ E(Q) and to compute x(P + P0) explicitly. This gives

x(P + P0) =
(x− θ1)(x− θ2)− (x+ θ)y2

y2
,
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where θ1 and θ2 are the Galois conjugates of θ. Using the relations between θ, θ1 and θ2,

this expression can be rewritten as

x(P + P0) =
163(163− 3x− x2) + (x3 + 163x− 2 · 163)θ + (3x2 − 163)θ2

y2
.

Using Sage, one sees that this elements has norm

NF/Q(x(P + P0)) = −163
x9 − 163x8 + 3 · 7 · 23 · 163x6 − 5 · 1632x5 − 3 · 157 · 1632x4

y6

−163
32107 · 1632x3 + 2 · 3 · 521633x2 − 227 · 11 · 1633x− 5 · 31 · 1633

y6
.

Those formulas are not simple. For the moment, I have not been able to use them to �nd

a simple closed formula as in the previous theorems. However, given a particular point

P ∈ E(Q), it is possible to compute 〈P, P0〉 and to �nd the image of the homomorphism.

First, using Sage it can be seen that Cl(F ) is generated by the class of p5 and the class of

p′5, where

p5 =

(
5,

67 + 11θ − θ2

25

)
and p′5 =

(
5,

167 + 11θ − θ2

25

)
are two of the three primes above 5Z. Let us now compute 〈Q,P0〉. The formula above

gives

x(Q+ P0)OF =

(
489− 138θ + 8θ2

25

)
= p163,

where 163OF = p3
163, and so 〈Q,P0〉 = 1 in Cl(F ) because the equation for E is globally

minimal and x(Q+ P0)OF has no denominator. To compute 〈R,P0〉, one �rst �nds that

x(R+ P0)OF = p163p14653p
−2
31 ,

where p14653 is one of the three primes above 14653Z and p31 = (31, (467 + 11θ − θ2)/25)

is one of the three primes above 31Z. It follows that 〈R,P0〉 = class of p31 = class of p5 in

Cl(F ). A similar computation gives 〈S, P0〉 = 1 in Cl(F ).
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Since E(Q) has no torsion, this determines the image of the homomorphism: it is

the subgroup of Cl(F ) generated by the class of p5. In theory, the homomorphism can be

computed for every point of E(Q) since it was computed on the generators. However, this

is not always possible in practice. Indeed, given a point P in E(Q), there is no quick way

of determining the integers a, b and c such that P = aQ+ bR+ cS. In fact, this observation

is at the basis of the cryptography systems that use elliptic curves.

To conclude this section, it seems like Soleng's question has only been partially an-

swered. Yes, there are homomorphisms between rational points on elliptic curves and the

class group of general number �elds, but it seems di�cult to �nd general formulas. Given

a speci�c elliptic curve and a rational point on it, it is theoretically possible to evaluate

the homomorphism using a computer. However, the coordinates of the points become so

large that the technique outlined above becomes rapidly impractical. The reason is that

the Mazur-Tate pairing is de�ned locally and essentially requires the factorisation of big

integers. For instance, I have never been able to �nd 〈10Q,P0〉 on a computer.
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CHAPTER 7
Further directions

7.1 A more general homomorphism

In his master's thesis [Sivertsen(2000)], Sivertsen studied the elliptic curves de�ned

over Z of the form

E : Y 2 + a3Y = X3 + a2X
2 + a4X + a6,

where a3 is odd. He found a homomorphism between the primitive points of this curve

and the ideal class group of Q(
√
a2

3 + 4a6). It seems reasonable to expect that this ho-

momorphism could be obtained and even generalised (a3 not necessarily odd and a1 not

necessarily 0) by using the Mazur-Tate pairing. Indeed, note that the point P0 = (0, (−a3 +√
a2

3 + 4a6)/2) is on this curve and its coordinates belong to Q(
√
a2

3 + 4a6). In fact, all the

necessary formulas are in Lemma 2. The computations will probably be tedious, though.

7.2 A geometric interpretation of the homomorphisms

In [Bhargava(2004)], Bhargava presented a new approach to Gauss composition, more

suitable to generalisations. To do so, he considered cubes, where each of the eight vertices

are integers. With each such cube, he associates three integral binary quadratic forms

(which are all of the same discriminant) and de�nes a composition law on forms in the

following way: the composition of the three forms associated with a cube is 1. In other

words, he considers the free abelian group generated by all forms of discriminant D modulo

the relation [f1] ◦ [f2] ◦ [f3] = 0 whenever there exists a cube whose associated forms are

f1, f2 and f3. The �rst main result of his paper is that this composition law is the same as

Gauss's composition law.
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As Bhargava mentioned, his composition law on forms is inspired from the addition law

on elliptic curves: imposing the relation P+Q+R = 0 whenever there is a line (in P2) going

through P,Q and R on the free abelian group generated by the points of E(F ) induces the

usual addition law on E(F ). This suggests that the homomorphisms between E(K) and

Cl(K) in Theorem 11 could be interpreted in terms of tangents, cords and Bhargava cubes.

If such a geometric interpretation could be found, it should be relatively easy to prove that

it is a homomorphism because of the similarity between the composition laws.

In [Buell(2012)], Buell found a method to make Bhargava's composition law algorith-

mic. More precisely, given two forms f1 and f2 which compose to f3, he gives a simple

method to �nd a cube whose corresponding forms are f1, f2 and f−1
3 . This could be a good

starting point in our search of a geometric interpretation. Given two points P and Q in

E(Q) mapping respectively to the ideals [A,−kB +
√
a6] and [A′,−k′B′ +√a6], one could

�rst �nd the cube corresponding to those two forms and then see if there is a pattern. This

direction will be explored in the near future.

7.3 Analysing the injectivity and surjectivity of the homomorphisms

As mentioned before, analysing the injectivity and surjectivity of the homomorphisms

from E(Q) to the class group of a quadratic �eld is important. Suppose for a moment that

one could �nd conditions under which one of these homomorphisms is surjective. Since it is

relatively easy to �nd the class number of a quadratic �eld, surjectivity could give a lower

bound on the rank of the elliptic curve. In this section, we present the �rst steps of this

analysis of injectivity and surjectivity.

Let E be an elliptic curve de�ned by the Weierstrass equation

E : Y 2 = X3 + a2X
2 + a4X + a6,
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where the ai are integers and a6 is square-free and congruent to 2 or 3 mod 4 and denote

Soleng's homomorphism by φ : E(Q) −→ Cl(K). To compute the kernel of φ and study its

image, the following lemma will be used:

Lemma 3. Let a be an ideal in an order O in K. Then a is principal if and only if there

exists α ∈ a such that N(a) = |N(α)|.

Proof. Recall that if α is an element in O, then N(αO) = |N(α)|. If a is principal, then

a = αO for some α ∈ a and the claim follows from the previous remark. Conversely,

if α ∈ a, then αO ⊆ a. Since N(a) = |N(α)| is the index of a and αO in O, equality

follows.

With this lemma, it is possible to �nd a system of Diophantine equations that describes

the kernel of φ. Let P = (A/C2, B/C3) be a rational point on E such that φ(P ) = 1 in

Cl(K). In Corollary 1, we saw that N(A,−kB +
√
a6) = |A|. It follows that

(A,−kB +
√
a6) = [A,−kB +

√
a6],

since the second ideal is contained in the �rst and they both have the same norm. Then

φ(P ) is principal if and only if there exists integers x and y such that

|N(xA+ y(−kB +
√
a6))| = N([A,−kB +

√
a6]) = |A|

⇐⇒ |A2x2 − 2kABxy + ((kB)2 − a6)y2| = |A|.

Since (kB)2 ≡ a6 (mod A), the last equation can be written as

Ax2 − 2kBxy +
(kB)2 − a6

A
y2 = ±1.
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Note that this quadratic form has discriminant 4a6. This proves that the kernel of φ is

described by the system of Diophantine equations
B2 = A3 + a2A

2C2 + a4AC
4 + a6C

6

Ax2 − 2kBxy + (kB)2−a6

A y2 = ±1

kC3 +Al = 1

,

where A,B,C, x, y, k and l are integers.

For surjectivity, �rst �x a class C in Cl(K) and let c be an integral ideal representing

this class. Suppose that c = [a′, b′ + g′
√
a6], where a′, b′ and g′ are integers. Since g′|a′, b′

(see Theorem 3), we can suppose that c = [a, b+
√
a6] since the ideals di�er by the principal

ideal g′OK . Determining if c is in the image of φ is equivalent to determining if there exists

a point P = (A/C2, B/C3) ∈ E(Q) such that [A,−kB +
√
a6][a, b +

√
a6] is principal.

Indeed, this would imply that φ(−P ) is C, the class of c. Using the lemma above again to

write this statement in terms of Diophantine equations gives

N([A,−kB+
√
a6][a, b+

√
a6]) = |N(raA+sA(b+

√
a6)+ta(kB−

√
a6)+u(b+

√
a6)(kB+

√
a6))|

⇔ |aA| = |N(raA+ sA(b+
√
a6) + ta(kB −

√
a6) + u(b+

√
a6)(kB +

√
a6))|,

where r, s, t and u are integers. Expanding the norm of the term on the right and grouping

like terms gives

|aA| =|a2
(
A2r2 − a6t

2
)

+ 2a
(
A2r(bs+Bkt) +A(−a6ru+ a6st+ bBkru) + a6b(k − 1)tu

)
+A2

(
(bs+Bkt)2 − a6s

2
)

+ 2Aku(bB(bs+Bkt)− a6(bs+Bt))

+ u2
(
a2

6 − a6b
(
b(k − 1)2 + 2Bk

)
+ b2B2k2

)
|.

In a similar way as above, this gives a systems of Diophantine equations.
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It would be interesting to see if those systems have a geometric interpretation in terms

of invariants of the elliptic curve. But recall that the homomorphism depends on the

Weierstrass equation that is chosen. For example, by changing the variables X = X ′ + n

and Y = Y ′, the constant term of the Weierstrass equation for E changes from a6 to

n3 + a2n
2 + a4n+ a6 and the homomorphism lands in the order Z[

√
n3 + a2n2 + a4n+ a6]

instead of Z[
√
a6]. For this reason, the existence of a criteria of the form "Let E be an elliptic

curve with invariant property X, then the homomprhism is surjective." seems unlikely.

Nonetheless, surjectivity certainly needs to be analysed in greater detail.
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CHAPTER 8
Conclusion

In this thesis, we proved that once the obvious point P0 = (0,
√
a6) was found on

the elliptic curve E : Y 2 = X3 + a2X
2 + a4X + a6, the Mazur-Tate pairing induces

Soleng's homomorphism under certain conditions. We also proved the Buell's homomor-

phism coincides with Soleng's at least in the case where a6 is negative and Z[
√
a6] is the

maximal order in Q(
√
a6). In the other cases, the two homomorphism are still essen-

tially equivalent. As noted in the last chapter, chances are that the Mazur-Tate pairing

could be used to �nd a homomorphism between the rational points of the elliptic curve

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 and the class group of Q(

√
a2

3 + 4a6),

generalising the above homomorphisms and generalising Sivertsen's homomorphism. The

only obstacle is to �nd the correct generalisation of the notion of primitive point, which

was of great help in the proof of Theorem 9.

The global minimality hypothesis may seem very restrictive in Theorems 9 and 11,

but it is essential. As the examples of Chapter 6 prove, the techniques can still be applied

if the equation is not globally minimal as one simply needs to consider the non-minimal

primes separately. In the same chapter, the question of the existence of homomorphisms

between the Mordell-Weil group of elliptic curves and the class group of general number

�elds has been partially answered. Indeed, given an elliptic curve E and a number �eld F ,

a homomorphism is given by 〈·, P0〉 : E(F ) −→ Cl(F ), where P0 ∈ E(F ). It is still not

clear however that these homomorphisms can be described by general explicit formulas.

As the reader may have noticed, the question of obtaining Soleng's homomorphism

using the Mazur-Tate pairing when Z[
√
a6] is not the maximal order remains unanswered.
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For many reasons, I believe the answer to this question is that the Mazur-Tate cannot

induce Soleng's homomorphism in its whole generality. The main reason is that in order to

compare the product of ideals obtained via the Mazur-Tate pairing with the ideal in Soleng's

homomorphism, unique factorisation of ideals was used. However, this unique factorisation

fails in every non-maximal order. In fact, the only ideals which factor uniquely in an order

are those that are prime to the conductor (this follows from the isomorphism I(OK , f) ∼=

I(O, f), where f is the conductor of O). But looking at the ideal in the statement of

Theorem 9, one sees that the ideal is not prime to the conductor (see Remark 1). One

could try to ignore the ideals that divide the conductor, i.e. de�ne a new homomorphism

C −→ Cl(Z[
√
a6]) which sends an idèle class to the corresponding product of primes in

Cl(Z[
√
a6]), except that the primes that divide the conductor are omitted. But the ideal

in Soleng's homomorphism is not always prime to the conductor (take the primitive point

P = (180, 2415) ∈ E(Q), where E : Y 2 = X3 + X + 325), so it seems unlikely that the

product of ideals prime to the conductor obtained via the pairing will be equal to this ideal.

Finally, many questions still need to be answered. Hopefully, most of them will be

answered in the near future.
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