
Determining the zeta function of curves via
p-adic cohomology and deformation theory

Jérôme Grand’Maison

Master of Science

Department of Mathematics and Statistics

McGill University

Montréal, Québec, Canada

August 2007

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial
fulfillment of the requirements of the above stated degree.

Copyright c© Jérôme Grand’Maison 2007

DEDICATION

Je désire dédier ma thèse à ma mère Rosette et à mon père Clermont.

ii

ACKNOWLEDGEMENTS

Firstly I would like to thank my supervisor Professor Henri Darmon for the con-

tinuous support and above all for the great liberty he gave me during this endeavor.

That allowed me to spend three weeks in Wyoming and a semester in Toronto to

learn about cryptography in mathematics, then to attend the Arizona Winter School

where I first got involved with what will be described in Chapter 3, and finally to a

Summer School in Germany on higher dimensional geometry over finite field, which

is also obviously related to this thesis and to mathematical cryptography. I would

also like to thank NSF, NATO, MITACS, etc. to have paid for this. On a more

personal note I would like to deeply thank Ralf Gerkmann for his generous help in

almost all areas of this thesis, Hugo Chapdeleine for his great improvised lectures,

Christian Wuthrich for several enlightening discussions, Wouter Castryck for useful

suggestions and the number theory group at McGill University for listening to my

presentations. Finally I would like to thank FQRNT, NSERC and McGill University

for providing me with money to live with.

iii

ABRÉGÉ

Cette thèse comporte deux parties principales: les deux ont pour objet de cal-

culer la fonction Zêta de certains types de courbes. La première partie contient

des considérations théoriques et pratiques pour faire fonctionner l’algorithme de K.

Kedlaya et certaines de ses généralisations. On résume les propriétés importantes

de la cohomologie de Monsky et Washnitzer, les conjectures de Weil et on rassemble

les pièces du casse-tête pour en arriver à un algorithme de P. Gaudry et N. Gürel

pour calculer la fonction Zêta d’une courbe superelliptique. Dans la deuxième partie,

nous présentons un algorithme pour calculer la fonction Zêta d’une courbe Cab en

utilisant la théorie de la déformation. La stratégie générale, attribuée à A. Lauder,

est d’étudier la variation de l’action de Frobenius le long d’une certaine famille de

courbes. Cet algorithme, presque prêt à utiliser, généralise des travaux similaires de

R. Gerkmann et H. Hubrechts.

iv

ABSTRACT

This thesis has two main parts: both of which aim at computing the Zeta

function of some curves. The first part contains the theoretical and practical consid-

erations to make K. Kedlaya’s algorithm and some of its generalizations work. We

review important properties of the Monsky-Washnitzer cohomology, the Weil conjec-

tures and piece the bits together in order to provide an algorithm that would compute

the Zeta function of a superelliptic curve, due to P. Gaudry and N. Gürel. In the

second part, we present an algorithm to compute the Zeta function of a Cab curve

using deformation theory. The general strategy, due to A. Lauder, is to study the

variation of the Frobenius action along a certain family. This almost fully practical

algorithm generalizes similar work by R. Gerkmann and H. Hubrechts.

v

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

ABRÉGÉ . iv

ABSTRACT . v

1 Introduction . 1

1.1 Introduction to the rational-point counting problem 1

2 Determining the Zeta Function of Certain Types of Curves 4

2.1 Setting . 4
2.2 The Monsky–Washnitzer cohomology 8
2.3 The Weil conjectures . 13
2.4 Details of an implementation: theoretic 17
2.5 Details of an implementation: computational 19

3 The Zeta Function of Cab Curves via Deformation Theory 31

3.1 Setting . 31
3.2 Details of the algorithm . 35
3.3 Correctness of chosen bounds . 55
3.4 The experiments . 59

4 Conclusion . 61

4.1 Possible improvements and future investigation 61

References . 63

INDEX . 65

KEY TO ABBREVIATIONS . 66

vi

CHAPTER 1
Introduction

1.1 Introduction to the rational-point counting problem

Counting rational points of algebraic varieties over finite fields is one of the

most important question of computational algebraic geometry. For some classes of

varieties, this problem has been studied extensively. The most notable case is that

of elliptic curves, for which many algorithms exist. This is not surprising since these

curves play a central role in many parts of mathematics. They are also used in

cryptography and coding theory. Many other types of curves have been considered,

for example hyperelliptic curves and so-called non-degenerate curves, as well as higher

dimensional varieties. A major open problem is to find an algorithm for curves that

would run in polynomial time in both the genus and the logarithm of the field size.

Sometimes the requirement of being polynomial in the log of the degree of the curve

is also asked for, in order to reflect more properly to size of the input data.

Typically one wants to determine the Zeta function of the variety, which encodes

its number of rational points over all finite extensions of its field of definition. Half

a century ago, André Weil studied these functions in great depth and was able to

formulate his beautiful conjectures. To compute the Zeta function of some curves,

an “l-adic method” has been developed a few decades ago by Schoof. Very roughly,

these methods compute the numerator of Zeta modulo small primes l not equal to

the characteristic p of the field. Such methods are now seen as reinterpretation of

1

l-adic (étale) cohomological tools, and are very efficient for elliptic curves over a field

of large characteristic. This was initially suggested by Schoof, and later improved

by several people such as Elkies, Atkin and Couveignes; it now runs in Õ((log q)4),

where q is the field size. Pila generalized the algorithm to abelian varieties, but

it requires explicit equations for its definition and group law, which is generally a

very hard task to find. This was of special interest because Jacobians of curves are

of prime importance in public-key cryptography. Gaudry, Harley and Schost worked

out the genus 2 case with slow time complexity. Adleman, Huang and Ierardi also

improved Pila’s result, but the result is still exponential in the genus.

Much more recently (2000) Satoh introduced p-adics methods. Although not

explicitly, he used the action of the q-Frobenius in the deRham cohomology of the

canonical lift (to characteristic zero) of the elliptic curve. Many authors have worked

to improve this algorithm, which now runs with Harley’s version at a complexity

Õ(n2) in both time and space, where q = pn and p is fixed. It is however

exponential in log p, which is an unfortunate characteristic of p-adics methods.

Attempts to take advantage of the more explicit nature of p-adic cohomologies for

other types of curves led to computing the action of the q-Frobenius endormorphism

on their cohomological complexes. The most successful of these attempts was done

by Kedlaya, using MW (Monsky-Washnitzer) cohomology (i.e. a “rigid analytical

lift”). It applies to hyperelliptic curves, and is the first part of my thesis. It has time

complexity Õ(g4n3) and space complexity O(g3+εn3), where g is the genus of the

curve. Hence for fixed p it is polynomial in the size of the input data! Furthermore,

the relatively small constants make it very efficient for small characteristics.

2

We also mention that as long as one can efficiently compute these cohomology

groups and a lift of the Frobenius endomorphism, there seems to be no theoretical

obstruction in generalizing this to more exotic types of curves and even to higher

dimensional varieties. The implementation presented in the first part of the thesis is a

straightforward generalization to superelliptic curves by Gaudry and Gürel, whereas

the analysis in the second part of the thesis will rely heavily on a generalization to

Cab curves by Vercauteren and Denef.

Other p-adic approaches include that of Lauder and Wan, who obtained a very

general method using the ideas of Dwork (maybe one could argue that all p-adic

methods are based on ideas of Dwork, but anyway). That unfortunately did not

produce a practical algorithm. On the other hand, Mestre (and later Lercier, Lubicz,

Ritzenthaler) has adapted his elliptic curve method to yield a practical algorithm for

low genus, but it applies to a much narrower class of curves.

Finally a very promising approach but still less known is that of Lauder using

deformation theory. This will be the object of Chapter 3.

3

CHAPTER 2
Determining the Zeta Function of Certain Types of Curves

In this chapter we present the main ingredients that gave life to Kedlaya’s al-

gorithm [Ked01], his following overview article [Ked04] and its generalizations. We

also provide theoritical considerations to support the ideas involved. For reasons that

will become clear in the next chapter, the focus is going to be on the superelliptic

curves implementation by Gaudry and Gürel [GG01]. We believe that this does not

hide any of the initial ideas of Kedlaya, and to the contrary shows to some extent

how “generalizable” his algorithm his. Whenever there are important differences, we

will also present the point of view of the Cab curves algorithm by Vercauteren and

Denef [DV06]. This is not the most general as of now, because there is also a version

for all non-singular curves by Castryck, Vercauteren and Denef [CDV06]; the reason

for spending more time on [DV06] is also to prepare for the next chapter.

2.1 Setting

We start with a smooth affine plane curve C̄ defined over the finite field Fq,

with q = pn and p � 3. We fix an algebraic closure F̄ of Fq. We are interested in

finding the number of Fqi-rational points of C̄ : the cardinality of Ei with

Ei := {(a, b) ∈ F2
qi | (a, b) ∈ Ĉ := C̄ ×Fq F̄}, i ≥ 1.

4

Ei is also sometimes denoted C̄(Fqi) and Ĉ = C̄×Fq F̄ is the corresponding curve

over the algebraic closure F̄ of Fq. For this purpose, we define the Zeta function of

C̄ :

Definition 2.1. The Zeta function of C̄ is given by

Z(C̄;T) := exp

(∞∑
i=1

�Ei
T i

i

)
∈ Q[[T]].

In a similar way the Zeta function is defined for any scheme of finite type over

a finite field. In particular, it is defined for the set of solutions in affine or projective

space of a finite number of polynomials, the finiteness being automatic if the ambiant

space is finite dimensional. We will discuss the Zeta function in more depth in 2.3.

We now define the two classes of curves that will be of prime importance in this

chapter. Note that the first class is actually a subclass of the second.

Definition 2.2. A superelliptic curve Ȳ is given by an equation

f̄(x, y) = yr − h̄(x) ∈ Fq[x, y],

such that

i) p � r.

ii) deg h̄ is relatively prime to r.

iii) Its affine part C̄ is non-singular: this is equivalent to requiring that h̄ has

no repeated roots in F̄.

Definition 2.3. A Cab curve Ȳ is defined by an equation of the form

f̄(x, y) = ya +
a−1∑
i=1

f̄i(x)y
i + f̄0(x) = 0,

5

with

i) deg f̄0 = b and a deg f̄i + bi < ab for i = 1, . . . , a− 1.

ii) a and b are coprime.

iii) Its affine part C̄ is non-singular.

Matsumoto showed that a projective Cab curve is absolutely irreducible and has

a unique Fq-rational place at infinity. Since this is also true for superelliptic curves

as defined above, one sees by a projection from the (projective) curve to P1 and

the use of Riemann-Hurwitz formula that their genus is respectively

(r − 1)(deg h̄− 1)

2
,

(a− 1)(b− 1)

2
.

Unlike l-adic methods, we hope to recover exactly the Zeta function of the curve, so

the story begins by lifting C̄ to characteristic zero. If C̄ is defined over Fp then we

will work in the p-adic numbers Qp and the coefficients of f̄ will be lifted arbitrarily

to the ring of p-adic integers Zp. If the curve is only defined over some degree n

extension Fq of Fp, then we will work over the unique degree n unramified extension

of Qp, denoted Qq. The p-adic norm on Qp induces a norm on Qq, which is the

n-th root of the norm of the product of all Galois conjugates of the element. Its ring

of integers will be denoted by Zq and its unique maximal ideal by m. Note that

as a set, m consist of the elements with norm less than one, and that the residue

field Zq/m ∼= Fq. The ring Zq is isomorphic to the ring of Witt vectors over Fq.

So we will lift a coefficient of f̄ to an arbitrary representative in Zq under that

isomorphism, lifting 0 to 0. If Fq
∼= Fp[z]/(ḡ(z)) then Qq

∼= Qp[β] = Qp[z]/(g(z))

for any lift g(z) of ḡ(z) and zero β of g(z). Write C for the corresponding curve

6

over Qq. The theory will imply that the specific lift chosen will not matter for the

purpose of computing the Zeta function, as long as one is consistent in making the

same choices throughout the process. As in many other geometric theories over finite

fields, the Frobenius endomorphism will be crucial. We will denote the p-Frobenius

F̄ → F̄, a �→ ap, by F̄ and the q-Frobenius F̄ → F̄, a �→ aq by F̄ (so F̄ = F̄
n
).

We can also look at F̄ on Ĉ (component-wise), and since Gal(F̄/Fq) =< F̄ >,

we have

Ei = {(a, b) ∈ F̄2 | F̄i
(a, b) = (a, b)}.

In algebraic topology, we have a Lefschetz formula to count the number of fixed

points of a morphism. However, as stated above, we wish to work in characteristic

zero. The degree of F̄ being pn, the Riemann-Hurwitz formula implies that if

the curve C has genus ≥ 2 then it is impossible to lift F̄ to an endomorphism

F : C → C, or equivalently to an homomorphism A⊗Zq Qq → A⊗Zq Qq of the ring of

coordinates of C, where A is the Zq-algebra Zq[x, y]/(f). The natural thing to look

at is the p-adic completion of Â := Zq〈x, y〉/(f) of A (ie completion with respect to

pA; it consists of the power series in x, y that converge on the closed disc in Q2
q of

radius 1 and centered at the origin) , which M. Artin showed to be an Henselian ring

[Art68]. Starting with f, we will see later that it is easy to construct a polynomial

G(Z) ∈ Â[Z] such that G(0) ≡ 0 (mod pG′(0)2Â), which is sufficient to find a

solution G(Z0) = 0 and from which one can easily recover F(x) and F(y). However

it is well-known that the algebraic deRham cohomology of Â, i.e. (because we are in

the affine case) the homology of the complex 0 −→ Â
d0−→ Ω1

Â

d1−→ Ω2
Â

d2−→ . . . (see

below), is too large and does not have the properties we need for our computations.

7

Typically, contrary to archimedean analysis, in non-archimedean analysis one loses

convergence on the boundary: a common example is the limit (as N → ∞) of the

exact forms
∑N

i=0 p
ixpi−1dx is not exact, because

∑∞
i=0 x

pi ∈ Â This is unfortunate

because Â⊗Zq Qq is a Qq-affinoid algebra, being the quotient of the Tate algebra

in 2 variables over Qq by the ideal generated by f, and we know a lot of things

about Qq-affinoids. Still one is tempted to think that working inside Â should be

sufficient, and to fix the cohomological problem we could possibly restrict to some

A � A† � Â.

2.2 The Monsky–Washnitzer cohomology

The Monsky-Washnitzer cohomology is based on the work of Dwork, and was

initially developed precisely to find an explicit expression for the Zeta function of

an algebraic variety X̄ over the finite field Fq. As introduced above, one wishes

to find cohomology groups H i(X̄; Qq) (which by construction will be modules over

Qq, and hence Qq -vector spaces) with an induced Frobenius F and for which a

Lefschetz fixed-point formula holds true.

Assume that X̄ is affine. In a similar fashion as done in the introduction, one

constructs the finitely-generated, smooth Zq-algebra

B := Zq[x1, . . . , xn]/(f1, . . . , fm)

such that B/pB is the coordinate ring of B̄ of X̄. The fact that this is possible is

due to Elkik [Elk73]. Now intuitively speaking and in light of the comments above,

one would like to extend B to include power series converging on a disc of radius at

least greater than 1 (to be in p-adic completion B̂ and to prevent the cohomology

8

from getting too large), but at the same time should not require convergence on a

disk of radius much more than 1 hoping to avoid loosing the possibility of lifting the

Frobenius. It turns out that requiring convergence on the disc of radius 1 + ε with

ε > 0 varying is precisely what is is needed.

Definition 2.4. (cf [VdP86], Definition 2.1) A weakly complete finitely generated

(w.c.f.g.) algebra over Zq is a homomorphic image of the ring

Zq〈t1, . . . , tn〉†, where Zq〈t1, . . . , tn〉† is{ ∑
i1,...,in≥0

ei1,...,int
i1
1 · · · tinn

∣∣ ∃ c > 0, 0 < ρ < 1 such that |ei1,...,in |p ≤ cρ(i1+···+in)

}
.

Note that the condition ∃c > 0, 0 < ρ < 1 such that |ei1,...,in |p ≤ cρ(i1+···+in) is

equivalent to ∃a > 0, b such that vp(ei1,...,in) > a(i1 + · · · + in) − b, which justifies

talking about a linear growth requirement on the valuation of the coefficient. For

B† := Zq〈x1, . . . , xn〉†/(f1, . . . , fm), we denote the universal finite module of (Kähler)

differentials of B†/Zq by Ω1
B† . It is the B†-module

B†dx1 + · · · +B†dxn /
m∑

i=1

B†
(
∂fi

∂x1

dx1 + · · · + ∂fi

∂xn

dxn

)
.

Finally we look at the deRham complex

0 −→ B† d0−→ Ω1
B†

d1−→ Ω2
B†

d2−→ . . .

where Ωi
B† is the wedge product ∧iΩ1

B† and di is the corresponding exterior

derivative. For the remaining part of this thesis we will write H i(X̄; Zq) for the ith

9

cohomology group of this complex, and H i(X̄; Qq) := H i(X̄; Zq) ⊗Zq Qq (or some-

times with B̄ instead of X̄). The latter is called the ith Monsky-Washnitzer coho-

mology group of X̄. To prove that this notation makes sense, i.e. that H i(X̄; Qq)

does not depend on the arbitrary choices made along the way (for example how we

obtained B from B̄), proved to be quite a laborious task. More precisely, for a

smooth finitely generated Fq-algebra B̄ the map B̄ �→ H ·(B̄; Qq) :=
⊕
i≥0

H i(B̄; Qq)

is well-defined and functorial. This is seen by applying the following theorem to the

identity map B̄ → B̄ :

Theorem 2.5. (cf [VdP86], Theorem 2.4.4) Let Ā/Fq be smooth and f.g. Then

there exist a lift A of Ā, i.e. a w.c.f.g. algebra that is flat over Zq and with

A/pA ∼= Ā. Moreover:

i) Every lift of Ā is Zq-isomorphic to A.

ii) Let D̄/Fq be smooth and f.g., let D be a lift of D̄ and let h̄ : Ā→ D̄ be a

Fq-homomorphism. Then there exists a Zq-homomorphism h : A→ D lifting

h̄.

iii) Let E be a w.c.f.g. algebra and h1, h2 : A → E two homomorphism with

h1 ≡ h2 (mod p). The induced mappings h1�, h2� : Ω1
A ⊗Zq Qq → Ω1

E ⊗Zq Qq

are homotopic.

This theorem is obviously relevant for our purpose, not only for providing us

a cohomology to work with, but on which we are sure to have a lift F of the

Frobenius F̄. Moreover, whichever lift we use, it will produce the same morphism

on the cohomology! This will turn out very useful in the next chapter.

10

Monsky and Washnitzer could not prove that their cohomology vector spaces

are finite dimensional, but they introduced a “trace map” ψ on the differentials

(which induces a map on H ·(B̄; Qq) equal to qdF−1
� , with d = dim B̄) and were

able to find enough of its properties to get a Lefschetz formula for it:

Theorem 2.6. (cf [VdP86], Theorem 4.1) Let Ā/Fq be smooth and integral of

dimension d. Then the number of Fq -homomorphisms Ā → Fq (or in geometric

language, Fq-rational points) is equal to

d∑
i=0

(−1)iTr (qdF−1
� |H i(Ā; Qq)).

Note that so far we have only worked with smooth affine algebraic sets. The

integral requirement simply means that we want our affine set to be irreducible (ie,

a (single) affine variety) and reduced (i.e. Ā has no nilpotent elements). In

fancier language, we build an affine scheme SpecB† over Zq such that its special

fiber is SpecB̄ and the deRham cohomology of its generic fiber has the properties

that Weil hoped for (see 2.3). B† is an analytic object, which makes it less easy

to compute with; but under certain conditions, could we expect (say via a rigid

analytic version of Serre’s GAGA and cohomological comparison theorems) to move

toward more algebraic objects? Some comparisons already appear in [VdP86], but a

more general answer was provided by Berthelot as part of a masterpiece called rigid

cohomology. Roughly speaking, rigid cohomology coincides with MW cohomology

for smooth affine varieties and with crystalline cohomology for smooth projective

varieties. Computationally the latter comparison can help to keep track of the p-

adic precision required (crystalline cohomology is integral, i.e. over Zq in our

11

context), whereas as the former tells us that we can work with forms of finite degree.

More precisely, we have the following:

Theorem 2.7. (cf [Ked04], Theorem 1) Let Y be a smooth proper

Zq -scheme, let Z ⊂ Y be a relative normal crossing divisor, and set X := Y \Z.
Then there is a canonical isomorphism

H i
dR(X ×Zq Qq)

∼=−→ H i
rig(X ×Zq Fq).

This comparison also implies that the MW cohomological vector spaces are

finite dimensional, and even better have the same dimension as other cohomological

theories. For Cab curves, we will take Z to be the unique point at infinity; for

superelliptic curves it is possible (and more convenient) to take the point at infinity

together with the Weierstrass points (y = 0).

We finish this section with a theorem on the Artin-Approximation property of

w.c.f.g. algebras. This result has been generalized by Bosch [Bos81], however the

theorem as it appears in [VdP86] will be sufficient for us.

Theorem 2.8. Let h1, . . . , hs ∈ Zq〈X1, . . . , Xn, Y1, . . . , Ym〉†, let ε > 0 and let

ŷ1, . . . , ŷm ∈ Zq〈X1, . . . , Xn〉 satisfy hi(X1, . . . , Xn, ŷ1, . . . , ŷm) = 0 for i = 1, . . . , s.

Then there are y1, . . . , ym ∈ Zq〈X1, . . . , Xn〉† with |yi − ŷi| ≤ ε for i = 1, . . . ,m

and hi(X1, . . . , Xn, y1, . . . , ym) = 0 for i = 1, . . . , s.

Combined with [Art68], we will use this result to lift the Frobenius action to

B†.

12

2.3 The Weil conjectures

For a superelliptic or Cab curve Ȳ and its affine affine part C̄, one can compute

that H0(C̄; Qq) = Qq and H i(C̄; Qq) = 0 ∀ i ≥ 2. Therefore from Theorem 2.6

applied to C̄, one may use Newton’s determinant formula to find

Z(C̄;T) =
det (1 − qF−1

� T |H1(C̄; Qq))

1 − qT
. (2.1)

Also, since Z(Ȳ ;T) = Z(C̄;T)Z({∞};T), we get

Z(Ȳ ;T) =
det (1 − qF−1

� T |H1(C̄; Qq))

(1 − T)(1 − qT)
.

We will need to lift the Frobenius action on H1(C̄; Qq), and computationally

this can only be done up to some finite p-adic precision. Therefore we need more

information on the numerator above. This information will be provided by the Weil

conjectures, which will be presented here with an historical motivation inspired by

Dieudonné.

E. Artin in 1923 looked at D̄ : y2 = P (x) over Fq, where P (x) has no

repeated roots in F̄. He considered L0 := Fq(x), L := L0[y]/(y
2 − P (x)) and o

the integral closure of Fq[x] in L. Then o is a Dedekind ring and for every p�o we

have [o/p : Fq] <∞. Artin studied Dedekind’s generalization of the Zeta function,

defining

ζL(s) :=
∑
a�o

(Na)−s =
∏

prime p�o

(1 − (Np)−s)−1,

where Na := �a/o. Then Hecke showed that ζL can be extended to a meromorphic

function and satisfies a functional equation. For a � o write

13

deg a := [o/p : Fq] so that Na = qdeg a. Define ZD̄(u) :=
∏

prime p�o

(1 − u−deg p)−1

so that ζL(s) = ZD̄(q−s). Artin was able to show that ZD̄(u) is rational with

coefficient in Z. He also verified for several examples that the zeroes of ZD̄(u)

would have |u| =
√
q. Now homomorphisms o → Fq are surjective, so they are

in bijection with primes p with o/p ∼= Fq (i.e. Np = q). These homomorphisms

correspond to Fq -rational points of D̄ under the map (x, y) �→ (a, b) ∈ F2
q. So

logZD̄(u) = �D̄(Fq)u + . . . Putting all this together (and assuming his Riemann

hypothesis type conjecture) he was led to approximate the number of Fq -rational

points by �E1 = �D̄(Fq) = q +O(q1/2).

With the purpose of counting rational points of more exotic varieties in mind,

one would like to move away from number theory toward a completely algebraic

geometry based approach. How can we express the Zeta function in that language,

and what can we say about it? For example, one could start with a nonsingu-

lar affine hypersurface V̄ defined over Fq, say by Q̄(x1, . . . , Xr) = 0. Let

V := V̄ ×Fq F̄. As usual, given x = (x1, . . . , xr) ∈ V one may produce a ho-

momorphism Fq[T1, . . . , Tr] → F̄, Ti �→ xi having kernel m and get that

Fq(x) := Fq[T1, . . . , Tr]/m is the smallest field extension of Fq containing the

x′js : define deg(m) := [Fq(x) : Fq]. Finally let ZV̄ (u) :=
∏

Q̄∈m

(1 − udeg(m))−1. If

V̄ = D̄ then this agrees with Artin’s definition. It is not hard to see that for every

m such that Q̄ ∈ m there are deg(m) points x ∈ V that would give a kernel m

in the evaluation map Ti �→ xi. Hence Nw =
∑

Q̄∈m

deg(m)|w

deg(m) Using this, a simple

14

calculation shows that uZ′
Z

=
∑∞

i=1Niu
i. Solving the ODE we get

ZV̄ (u) = e
�∞

i=1 Ni
ui

i .

Since everything was done completely algebraically and every step seemed pretty

harmless, one could be tempted to believe that this should be generalizable to other

types of nonsingular varieties, not necessarily affine. This is what Schmidt did for a

nonsingular projective curve D̄/Fq, showing that the Zeta function produced was of

the form P2g(u)

(1−u)(1−qu)
with the numerator a polynomial of degree twice the genus with

integral coefficients. He obtained the functional equation ZD̄(1
qu

) = (qu2)1−gZD̄(u).

Then the conjecture that the zeroes of P2g have |u| =
√
q is equivalent to

|Ei − qi − 1| ≤ 2gqi/2 ∀ i ≥ 1.

Theorem 2.9. (The Weil conjectures) Let Ū/Fq be smooth, projective, of dimension

d. Then

i) Rationality: Z(Ū ;T) = g(T)
h(T)

with g, h ∈ Z[T]

ii) Functional equation: There exist E ∈ Z such that

Z
(
Ū ; 1

qdT

)
= ±q dE

2 TEZ(Ū ;T). That is ζ(s) = ζ(1 − s) for

ζ(s) := Z(Ū ; q−s).

iii) Analogue of Riemann hypothesis: Z(Ū ;T) = P1(T)P3(T)···P2d−1(T)

P0(T)P2(T)···P2d(T)
where

• P0(T) = 1 − T

• P2d(T) = 1 − qdT

• Pi(T) =
Bi∏
j=1

(1 − αijT) ∈ Z[T]

15

• The αij’s are algebraic integers that imbedded into C have

|αij| = qi/2

That is, the zeroes of ζi(s) = Pi(q
−s) have real(s) = i/2.

iv) Betti numbers: E =
2d∑
i=0

(−1)iBi

Furthermore if Ū is the reduction modulo p � oL of some variety W over

oL for some number field L, one can look at the complex analytic space Wh

associated with the corresponding scheme W ×oL
C over C. Then

Bi = rankZH
i
singular(Wh,Z) = ith Betti number.

The proof for Ū a curve is due to André Weil himself. The first proof of

i) and ii) for higher dimensional varieties is due to Dwork. In a similar fashion

as presented at the beginning of this section, note that if one had a well behaved

cohomology theory for Ū with coefficients in a characteristic zero field and with

a Lefschetz fixed point formula, then modulo some facts about rational functions

over that field one would get i). This was accomplished by Grothendieck’s étale

cohomology, by Lubkin’s p-adic cohomology (maybe not very rigourously) and by

Grothendieck’s crystalline cohomology. ii) can be obtained from Poincaré duality

on these theories and some facts about pairings, whereas iv) can be obtained from

comparison theorems. iii) proved to be the hardest to establish. Deligne finally

succeeded within the framework of étale cohomology, and more recently Kedlaya

(with ideas of Crew and Mebkhout) repeated the exploit within the framework of

rigid cohomology (thereby completing a fully p-adic proof of the conjectures).

16

2.4 Details of an implementation: theoretic

In this section we present concretely how one may determine the Zeta function

of one of the curves C̄ defined in 2.1, the main focus being on the superelliptic

curve case. We need to find the numerator PC̄ of (2.1). If we assume for now

that H1(C̄; Qq) has dimension 2g, following Theorem 2.9 i) we may write

PC̄(T) = T 2g − a1T
2g−1 + · · · − a2g−1T + a2g ∈ Z[T]. Poincaré duality implies that

for some labelling, the α1j’s in Theorem 2.9 iii) satisfy α1jα1,g+j = q and this in

turn gives

a2g−i = qg−iai ∀ 0 ≤ i ≤ g. (2.2)

So we only need to compute ai for 0 ≤ i ≤ g, and we observe that we have

|ai| ≤
(
2g
i

)
qi/2. Therefore one needs to know the ai’s as elements of Zq/p

NZq

where pN ≥ 2
(
2g
g

)
qg/2. Considering the eigenvalues of qF−1

� and F� together with

α1jα1,g+j = q we get

det (1 − qF−1
� T |H1(C̄; Qq)) = det (1 − F�T |H1(C̄; Qq)).

Lemma 2.10. For the superelliptic curve C̄ in Definition 2.2, H1(C̄; Qq) has

Qq-basis: {
xidx

yj
: 0 ≤ i ≤ (deg h̄− 2), 1 ≤ j ≤ (r − 1)

}
.

For the Cab curve C̄ in Definition 2.3, H1(C̄; Qq) has

Qq-basis: {
xiyjdx : 0 ≤ i ≤ (b− 2), 1 ≤ j ≤ (a− 1)

}
.

17

We are implicitly using the fact that the proposed basis for the superelliptic

curve has no pole at y = 0, which is true by Equation 3.7. In order to show that

the proposed basis spans H1(C̄; Qq) one can use the reduction algorithms that will

be presented below. To show that it is linearly independent, one can work directly

or use Theorem 2.7 together with the known dimensions of the algebraic DeRham

cohomology of these curves. For hyperellptic curves (r=2), a similar result is proved

in a great level of details in the proofs of Propositions 4.3.1, 4.3.2 in [Edi03] (Actually

he proves that these 1-forms form a basis of H1(C̄ ′; Qq)
− : see below).

Let us now see how we can lift F̄. We will actually lift the p-th power Frobenius

F̄ to F, and then take its n-power. We will start with the Cab curves case. F leaves

Qp fix, and if Qq = Qp[σ] ∼= Qp[z]/(g(z)) one can use Hensel’s lemma to find F(σ)

such that g(F(σ)) = 0 and F(σ) ≡ σp (mod p). To lift x and y the first thing

to try is probably to send x �→ xp and see where y would have to map to in order

to get F(f) = 0. It is easy to see that in general the image of y will unfortunately

not lie in A†. Following [DV06], we try next x �→ xp + δxV and y �→ yp + δyV

for some V ∈ A†, V ≡ 0 (mod p). Let G(V) = fF(xp + δxV, y
p + δyV). Since C̄

is non-singular, the Nullstellensatz implies that there exist ᾱ, β̄, γ̄ ∈ Fq[x, y] such

that

ᾱ(x, y)
∂f̄

∂x
(x, y) + β̄(x, y)

∂f̄

∂y
(x, y) + γ̄(x, y)f̄(x, y) = 1. (2.3)

So if δx is a lift of ᾱp and δp
y is a lift of β̄, then

G′(0) ≡ δx
∂f̄F

∂x
(xp, yp) + δy

∂f̄F

∂y
(xp, yp) ≡ 1 (mod p). (2.4)

18

Thus by Theorem 2.8 we can find a solution V ∈ A†. Now for the superelliptic case,

we could do the same on A† = Zq〈x, y〉†/(f) to get a lift of Frobenius F1. However

as noted after Theorem 2.7, we will instead remove the points y = 0 from C̄, and

denote the resulting affine curve C̄ ′. Its ring of coordinates is Fq[x, y, y
−1]/(f) so

we will use the w.c.f.g. algebra A
′† = Zq〈x, y, y−1〉†/(f). This will allow us to set

F(x) = xp without running into trouble; the advantage is that the lift created will

be much faster to compute. To see what F(y) is, write h(x) := yr − f(x, y) and

F(yr) = F(h(x)) = h(x)p

(
1 +

F(h(x)) − h(x)p

h(x)p

)
= yrp

(
1 +

pE

yrp

)
(2.5)

where E := F(h(x))−h(x)p

p
∈ Zq[x]. By the binomial expansion theorem this give

F(y) = yp

∞∑
k=0

(
1/r

k

)(
pE

yrp

)k

. (2.6)

Clearly, F1 also induces a lift of Frobenius on A
′†, and by Theorem 2.5 both

induced map F�, F1� on H1(C̄ ′; Qq) are equal. This means that H1(C̄; Qq) as a

Qq-subspace of H1(C̄ ′; Qq) is stable under the action of F�, and that

det (1 − F1�T |H1(C̄; Qq)) = det (1 − F�T |H1(C̄ ′; Qq)
−)

where H1(C̄ ′; Qq)
− := spanQq

{
xidx
yj ∈ Ω1

A′† : 0 ≤ i ≤ (deg h̄− 2), 1 ≤ j ≤ (r − 1)
}
.

By naturality of F� we get F�

(
xidx
yj

)
= pxp−1F

(
xi

yj

)
dx, hence we can compute

the endomorphism F� on the 2g-dimensional vector space H1(C̄ ′; Qq)
−.

2.5 Details of an implementation: computational

At this point we are theoretically ready to go; however of course computationally

there are still several things to sort out. Among them is how we truncate (2.6) and

19

with what p-adic precision the calculations must be done. For the reader who is

interested in specific implementation details, we believe that including the Maple

implementation of [GG01] is much more precise and efficient than trying to write

everything up. The major advantage of Maple in this context is that it provides

an algorithm just “as one would do it by hand”, without using any fancy hidden

structures. This comes at the price of not being computationally efficient, but for

understanding purpose it is perfect!

Suppose we have a hyperelliptic curve y3 = (1 + β)x4 + β3x3 + 1 + 2β over

F73 = F7[β] = F7[z]/(z
3 + z2 + 4z+ 6). Then one would define beta and Hc and run

FullProgram as follows:

alias(beta=RootOf(z^3+z^2+4*z+6));

Hc := [y,3, (1+beta)*x^4+beta^3*x^3+1+2*beta, 7,3,beta,z^3+z^2+4*z+6];

FullProgram;

In this thesis’ notation Hc := [y, r, h(x), p, n, β, g(z)], i.e. we use a naive lift

of h̄(x) so that lifted coefficients lie in {0, . . . , p− 1}. We begin by presenting two

small programs that imitate the traditional mod pN1 :

#Mod polns by p^N1, taking care of possible p in the denominators

precision:=proc(f,N1,p,x,tauu,alpha)

local kkk,ff,ffi,i,j,kk,ffij,fff,k,ffijk;

options system;

fff:=0;

ff:=evala(Simplify(evala(f)),expanded);

kkk:=padic[ordp](denom(ff),p);

20

#lprint("precision ", ff);

if kkk=0 then

fff:=modp(ff,p^N1);

else

lprint("divided by p to the ",kkk);

for i from 0 to degree(ff,tauu) do

ffi:=coeff(ff,tauu,i);

for j from 0 to degree(ffi,x) do

ffij:=coeff(ffi,x,j);

for k from 0 to degree(ffij,alpha) do

ffijk:=coeff(ffij,alpha,k);

kk:=padic[ordp](denom(ffijk),p);

fff:=fff+modp(p^kk*ffijk,p^(N1+kk))*x^j*tauu^i*alpha^k/p^kk;

od;

od;

od;

end if;

end: #end precision

#Mod matrices by p^N1, taking care of possible p in the denominators

matrixprecision:=proc(M,n,alpha,p,N1)

local i,j,k,Mijk,kk,MMM;

options system;

21

MMM:=Matrix(n);

for i from 1 to n do

for j from 1 to n do

for k from 0 to degree(M[i,j],alpha) do

Mijk:=coeff(M[i,j],alpha,k);

kk:=padic[ordp](denom(Mijk),p);

MMM[i,j]:=MMM[i,j]+modp(p^kk*Mijk,p^(N1+kk))*alpha^k/p^kk;

od;

od;

od;

MMM;

end: #matrixprecision

One sees that we really work mod pN1 fixed instead of working in Qq with

“floating precision N1”; the reason for this is how the analysis (to show that the

chosen precisions are sufficient) is done. Next we present 3 little programs that

correspond to Step 1 to 3 of the reduction process in [GG01].

#Gaudry/Gurel Reduction 1

Red1:=proc (f, tauu, Q, x,N1,p,alpha)

local i,ff,ffi,rr,qq, deg;

options system;

deg := degree(f, tauu);

ff:=f;

for i from deg by -1 to 1 do

22

ffi:=coeff(ff, tauu, i);

rr:=rem(ffi,Q,x,’qq’);

ff:=precision(ff+(rr-ffi)*tauu^i+qq*tauu^(i-1),N1,p,x,tauu,alpha);

ff:=sort(collect(evala(Simplify(evala(ff)),expanded),tauu),tauu);

end do;

#ff:=sort(collect(ff,tauu),tauu);

end: #Red1

#Gaudry/Gurel Reduction 2

Red2:=proc (f, tauu, Q, x,r,Qp,u,v,vp,l,N1,p,alpha)

local ff,deg,ffi,U,Vp,i,ffip;

options system;

deg := degree(f, tauu);

ff:=f;

for i from deg by -1 to 1 do

ffi:=coeff(ff, tauu, i);

U:=ffi*u;

ffip:=diff(ffi,x);

Vp:=vp*ffi+v*ffip;

ff:=ff-ffi*tauu^i+(U+(r/(r*(i-1)+l))*Vp)*tauu^(i-1);

ff:=sort(collect(precision(ff,N1,p,x,tauu,alpha),tauu),tauu);

end do;

ff:=sort(collect(ff,x),x);

23

end: #Red2

#Gaudry/Gurel Reduction 3

Red3:=proc (f, Q, tauu, x,r,Qp,l,d,Qd,N1,p,alpha)

local ff,deg,alphaa,i;

options system;

deg := degree(f, x);

ff:=f;

for i from deg by -1 to (d-1) do

alphaa:=coeff(ff, x, i)/(Qd*(i-d+1+(r-l)*d/r));

ff:=ff-alphaa*(i-d+1)*x^(i-d)*Q-alphaa*(r-l)*x^(i-d+1)*Qp/r;

ff:=sort(collect(precision(ff,N1,p,x,tauu,alpha),x),x);

end do;

end: #Red3

Basically, Reduction 1 rewrites the series using the equation of the curve to have

degrees in x less than deg h̄ (except when that would produce monomials with a

positive power of y), then Reduction 2 uses the cohomological equivalence

Qk(x)τ
k dx

yl
≡ (U +

r

r(k − 1) + l
V ′)τ k−1dx

yl

where Qk = Uh + V h′, τ = 1
yr to increase the powers of y appearing. Finally

Reduction 3 reduces the degree in x of Q(x)dx
yl using

d(xdeg Q−deg h+1yr−l) ≡ 0.

24

Finally, we present the program that make everything run together, with comments

at each step.

Note that as it stands, the variable INCREASE has to be adjusted by hand.

There is an explicit bound in [GG01] for it, however as observed by Vercauteren and

later documented by Edixhoven [Edi03] and then Kedlaya, the matrix of Frobenius

does not necessarily have integral entries for small primes, and hence the stated

bound is not big enough. One could fix this by taking the non-integrality into

consideration in the loss-of-precision analysis, similar to what we will do in Section

3.3, but for our purpose fixing it by hand will be sufficient. If one is interested

to carry out this analysis, we would suggest to follow that of [Edi03], noting that

a superelliptic generalization of Lemma 2 in [Ked01] gives that the reduction of

Qk(x)τ
k dx

yl becomes integral upon multiplication by p�logp(rk+l)�.
FullProgram:=proc (hc)

options system;

local Q, p, t, g, T,TT,h, Dh,Dhe,Fa,tt,alphap,Falpha,f,x,r,d,n,N,N1,

i,sqt,yis,Qp,Qd,gg,u,v,ll,f1,f2,f3,M,k,vp,j,MM,alpha,INCREASE,Mn;

Decoding input

#y := hc[1];

Q := evala(Simplify(hc[3]),expanded);

alpha:=hc[6];

x := indets(Q)[1];

p := hc[4];

r:=hc[2];

25

d:=degree(Q,x);

if (modp(r,p) = 0) then lprint("p divide r"); end if;

genus and Precision

g := (degree(Q, x)-1)*(r-1)/2;

n:=hc[5];

h:=hc[7];

if h<>0 then T:=indets(h)[1]; end if;

N := ceil(log[p](2^(2*g+1)*p^(n*g/2)));

INCREASE:=3;

#INCREASE IS TO BE ADJUSTED

N1:=N+INCREASE;

for i from 1 by 1 while i <= (N1-1/r+log[p]((r+1)*i-1.0)) do

end do;

MM:=i:

lprint("N = ", N);

lprint("N1 = ", N1);

lprint("MM = ", MM);

lprint("g = ", g);

#action of Frobenius on alpha (=beta) using Hensel’s Lemma

Falpha[1]:=alpha;

Dh:=diff(h,T);

for j from 1 to (n-1) do

26

alphap:=evala(alpha^(p^j)) mod p;

Dhe:=evala(eval(Dh,T=alphap)^(-1) mod p) mod p;

Fa:=alphap;

for i from 1 to (N1-1) do

tt:=evala(simplify(expand((-eval(h,T=Fa)/p^i)*Dhe))) mod p;

Fa:=Fa+tt*p^i;

od;

Falpha[j]:=Fa;

od;

#Frobenius of y^-i

lprint("Handling 1/y^sigma");

t := sort(modp(evala(Simplify(evala((subs(alpha=Falpha[1],

subs(x=x^p, Q))-Q^p)*tauu^p)),expanded),p^N1), x);

tauu = 1/y^r

for i from 1 to (r-1) do

sqt[i] := modp(convert(series((1+TT)^(-i/r), TT, MM+1), polynom),p^N1);

yis[i] := sort(collect(evala(Simplify(evala(subs(TT=t, sqt[i])*

tauu^iquo(i*p,r))),expanded), tauu), tauu);

od;

Preparation - Frobenius applied on differential basis

Qp := modp(diff(Q,x),p^N1);

27

Qd:=coeff(Q,x,d);

gg:=gcdex(Q, Qp, x, ’u’, ’v’);

u:=precision(u,N1,p,x,tauu,alpha);

v:=precision(v,N1,p,x,tauu,alpha);

vp:=precision(diff(v,x),N1,p,x,tauu,alpha);

if (gg <> 1) then lprint("GCD Q,Qp not 1"); end if;

Frob of x^i*y^(-j)*dx

for j from 1 to (r-1) do

lprint("Handling y=", j, "-th differential");

ll:=irem(j*p,r);

for i from 0 to (d-2) do

lprint("Handling x=", i, "-th differential");

t := modp(expand(p*x^(p*i+p-1)*yis[j]),p^N1);

f[i,j] := sort(collect(t, tauu), tauu);

f1[i,j] := Red1(f[i,j], tauu, Q, x,N1,p,alpha);

f2[i,j] := Red2(f1[i,j], tauu, Q, x, r,Qp,u,v,vp,ll,N1,p,alpha);

f3[i,j] := Red3(f2[i,j], Q, tauu, x,r,Qp,ll, d,Qd,N1,p,alpha);

od;

od;

Matrix of p-Frob

lprint("Computing matrix");

28

M:=Matrix(2*g);

for j from 1 to (r-1) do

for i from 0 to (d-2) do

for k from 0 to (d-2) do

M[(d-1)*(irem(j*p,r)-1)+k+1,(d-1)*(j-1)+i+1] := coeff(f3[i,j], x, k);

od;

od;

od;

#Matrix of q-Frob

#To be faster here we could use a "square and multiply" kind of technique,

#using the binary expansion of n, as suggested by Kedlaya

Mn:=M;

for j from 1 to (n-1) do

Mn:=matrixprecision(evala(Mn.subs(alpha=Falpha[j],M)),2*g,alpha,p,N1);

od;

Characteristic polynomial using Newton’s trace formula

M:=Mn;

CharCoeff:=Vector(2*g+1);

charCoeff[1]:=1;

Traces:=Vector(g);

for i from 1 to g do

29

Traces[i]:=evala(linalg[Trace](M));

CharCoeff[i+1]:=evala(-sum(Traces[j]*CharCoeff[i+1-j,j=1..i)/i);

CharCoeff[i+1]:=mods(charCoeff[i+1],p^N);

if i < g then M:=matrixprecision(evala(Mn.M),2*g,alpha,p,N1);; end if;

od;

for i from 1 to g do

CharCoeff[2*g+2-i]:=(p^(n*(g-i+1)))*CharCoeff[i];

od;

#Output Zeta function

t:=’t’;

ZetaNum:=0;

for i from 1 to (2*g+1) do

ZetaNum:=ZetaNum + CharCoeff[i]*t^(i-1);

od;

lprint("The Zeta function of the curve is:");

ZetaNum/((1-(p^n)*t)*(1-t));

end: # FullProgram

30

CHAPTER 3
The Zeta Function of Cab Curves via Deformation Theory

Another promising technique for computing the Zeta function of some curve is

to place it in a family and study how the Frobenius action on the cohomology varies

from one curve to another in that family. This has been suggested by Lauder, who

was building on ideas of Dwork. It is actually a very general technique and curves are

theoretically only a small subset of all varieties on which we can hope to use it. Far

less work seems to have been done as of now in this direction, but there are already

implementations. Ralf Gerkmann has done this for, among others, elliptic curves

in [Ger05]. Also, Hubrechts has done an implementation for hyperelliptic curves

[Hub07] which is available in MAGMA and which is really advantageous in certain

situations. In this chapter we present a generalization of this algorithm to families

of Cab curves. To our knowledge, this is the first time that this has been done. Both

the algorithm and the subsequent analysis are inspired by that of [Hub07] and we

will rely on [DV06] for convergence estimates.

3.1 Setting

We start with a curve C̄t : {f̄(t, x, y) = 0},
f̄ = ya +

∑a−1
i=1 f̄i(x, t)y

i + f̄0(x, t) ∈ Fq[t, x, y] such that degxf̄0 = b and

a degxf̄i + bi < ab for i = 1, . . . , a − 1. Assume that C̄0 : {f̄(0, x, y) = 0} de-

fines a Cab curve as in Definition 2.3 and that the coefficient of xb does not depend

on t. Let δ̄ ∈ F̄ and take m such that Fq(δ̄) = Fqm . We further assume that

31

C̄δ̄ : {f̄(δ̄, x, y) = 0} is also a Cab curve (i.e. is non-singular), and that lifting the

Frobenius (as done in Chapter 2) for the curve C̄0 is computationally cheaper than

for the curve C̄δ̄. A case of particular interest is when C̄0 is a superelliptic curve,

because in that situation we can, as we have seen, take away the points {y = 0}
and get a computationally much faster Frobenius lift. In that case we will be using

Theorem 2.5 iii) to compare two a priori different lifts of Frobenius. Another case

of interest is when m is sufficiently large, because then working over Qq is much

faster than over Qqm .

As in Chapter 2, we start by lifting f̄ to f ∈ Zq[t, x, y]. We take the resultant

R1(t, y) of f and ∂f
∂x

with respect to x, the resultant R2(t, y) of f and ∂f
∂y

with respect to x, and finally the resultant R3(t) of R1 and R2 with respect to

y. Since C̄ is non singular for some values of t, we know that R3 ≡ 0. We may

factorize it and find the lowest-degree product of its factors elevated to some powers

that lies in the ideal < f, ∂f
∂x
, ∂f

∂y
>; denote it r(t). That means that we can find

α, β, τ ∈ Zq[t, x, y] such that

α
∂f

∂x
+ β

∂f

∂y
+ τf = r. (3.1)

We define S := Qq

[
t, 1

r(t)

]†
, A := Zq

[
t, 1

r(t)
, x, y

]
/(f), T := A† ⊗Zq Qq and

r1(t, x, y) := αF(tp, xp, yp), r2(t, x, y) := βF(tp, xp, yp), r3(t, x, y) := τF(tp, xp, yp).

Hence from (3.1) we get

r1

(
∂f

∂x

)F

(tp, xp, yp) + r2

(
∂f

∂y

)F

(tp, xp, yp) + r3f
F(tp, xp, yp) = rF(tp). (3.2)

32

Now let z0 := rF(tp); z0 ≡ r(t)p (mod p) =⇒ z−1
0 ∈ A†. Write z0 = rp+pz(t) =⇒

z−1
0 = 1

rp

∞∑
i=0

(−1)i
(

pz
rp

)i
. Finally we let hi := z−1

0 ri for i = 1, 2, 3 to have the desired

equality

h1

(
∂f

∂x

)F

(tp, xp, yp) + h2

(
∂f

∂y

)F

(tp, xp, yp) + h3f
F(tp, xp, yp) = 1. (3.3)

Now we are ready to lift the Frobenius A/pA → A/pA to F : A† → A† as

we did in Section 2.4. We will try with t �→ tp and assume x �→ xp + h1V,

y �→ yp +h2V, V ≡ 0 (mod p). Again one lets G(V) := fF(tp, xp +h1V, y
p +h2V)

and easily sees that G(0) ≡ 0, G′(0) ≡ 1 (mod p); hence we can find a solution

V0. The significance of this is seen by letting

S :=
{
ω ∈ Cp | ω is a Teichmuller lift of ω̄ and r(ω) = 0

}
.

Then let δ be the Teichmuller lift of δ̄; we have 0, δ ∈ S and for any ω ∈ S

substituting ω → t in A and T gives structures as in Chapter 2 for the Cab curve

C̄ω̄. Writing Ω1
T/S for the differentials relative to S (in which dt = 0), we also

have a derivative map D : T → Ω1
T/S where D(θ) = 0 for any θ ∈ S, and the S

-module H1
MW := Ω1

T/S/D(T) has basis over S as in Lemma 2.10. Here is a rough

outline of the theory; describing it at the level of details of Chapter 2 would be a

big chapter by itself. We suggest to see [Dwo63] or Chapter 3 of [Ked] for more

details. Reminiscent of Theorem 2.7, H1
MW is canonically isomorphic to the relative

algebraic deRham cohomology group H1
dR(Ct/S); hence it is a vector bundle on S.

For ω ∈ S, the fiber H1
dR(Ct/S)ω of this bundle can be identified with H1

dR(Cω).

Denote by F (t) the (2g)× (2g) matrix of the action induced on H1
MW by the lift

33

of Frobenius. Our goal is to evaluate F at δ, which is the action of Frobenius on

H1
dR(Cδ) and hence will lead to the numerator of the Zeta function of C̄δ̄ by looking

at the characteristic polynomial of F̂ := Fmn−1(F (δ))Fmn−2(F (δ)) · · ·F(F (δ))F (δ).

The big question is how does one find F?

The vector bundle H1
dR(Ct/S) is equipped with the Gauss-Manin connection

� : H1
dR(Ct/S) → H1

dR(Ct/S) ⊗S Ω1
S, which can be thought of as differentiating in

t. By Berthelot (see [Ked], Theorem 3.6.4), � commutes with F. If {s1, . . . , s2g}
denote the basis as in Lemma 2.10, we may write the connection matrix C(t) to

satisfy

�(sj) =

⎛
⎜⎝ 2g∑

i=1

Cij(t)si

⎞
⎟⎠⊗ dt.

Then this commutativity condition together with the Leibniz rule for connections

are easily seen to imply

C(t)F (t) +
d

dt
F (t) = ptp−1F (t)F(C(t)). (3.4)

As done in [Hub07] we will first compute a solution J(t) to

d

dt
J(t) = C(t)J(t), J(0) = I (3.5)

and then (3.4) implies

F (t) = J(t)F (0)(F(J(t)))−1. (3.6)

34

3.2 Details of the algorithm

In this section we present a commented MAGMA implementation. For simplic-

ity, I assume that f is defined over Fp, i.e. n = 1. However I do not assume

δ̄ ∈ Fp, so that m might be greater than 1. For the analysis of the bounds involved

(in Section 3.3) we will remove the assumption n = 1. It should be noted that in

Section 3.3 we will work (mod pN) for some N (that is, the number of digits

used to store an element λ ∈ Qq\Zq is N plus −vp(λ); this was the method used

in Section 2.5). However in the presentation of the following algorithm we will work

with a mantissa of fixed length (i.e. the number of p-adic digits is fixed regardless

of the valuation of the scalar stored). Computationally this is much simpler and

seems to be much more used. We have observed in examples that the valuation of

the scalars appearing in the computation does not become much less than zero even

though there might be many operations of division by p that decrease the accuracy

(we don’t count additions and multiplications, which can increase the valuation), and

hence in these examples the difference between both methods was minimal. How-

ever we stress that these are only empirical results which might not be valid for all

examples; in which cases one could simply work over Q[z]/(g(z)) “mod pN ” as we

did in Section 2.5.

We start by presenting the initial setting of the algorithm.

Q:=RationalField();

Ptemp<Py,Px,Pt>:=PolynomialRing(Q,3);

f:=Py^3+Pt*Py^2-Px^4-Px^3-1; // For example ..

35

// Initial constants

// The algorithm outputs the numerator of the zeta function of f at

//t=\bar{delta}, delta is a Teichmuller lift of \bar{delta} mod p^Nb

delta:=1; // also for example.. p:=5; // prime p

a:=IntegerRing()!Degree(f,Py); b:=IntegerRing()!Degree(f,Px);

c:=Max(a,b); m:=1; // \bar{delta} \in F_{p^m}

g:=IntegerRing()!((a-1)*(b-1)/2); kappa:=IntegerRing()!Degree(f,Pt);

N0:=IntegerRing()!Ceiling(Log(p,2*Factorial(2*g)*p^(g*m/2)/Factorial(

g)^2));

theta:= Floor(Log(p,2*g + 2*a + 7*p*b/Log(p)) + 2*(a+b)/7) +

4*(a-1)*Floor(Log(p,2*a-1));

N8:= Floor((g)/(p-1))+(gm-1)*theta;

Nb:= N0+N8;

if not (Coefficient(f,Py,a) eq Ptemp!1) then print("We

assumed f=y^a+..."); end if;

// Find Resultant r(t)

fx:=Derivative(f,Px);

fy:=Derivative(f,Py);

ft:=Derivative(f,Pt);

R1:=Resultant(f,fx,2);

R2:=Resultant(fy,fx,2);

36

R3:=Resultant(R1,R2,1);

Fac:=Factorization(R3);

deg:=Fac[1][2]*Degree(Fac[1][1],Pt);

Resultant0:=Fac[1][1];

i:=2;

while deg lt Degree(R3,Pt) do

deg:=deg+Fac[i][2]*Degree(Fac[i][1],Pt);

Resultant0 := Resultant0*Fac[i][1];

i:=i+1;

end while;

// to get an integral resultant (i.e. that clear p in the denom of the

coefficients)

lcm:=1;

for i in [0..Degree(Resultant0,Pt)] do

lcm:=LeastCommonMultiple(Denominator(Q!Coefficient(Resultant0,Pt,i)),

lcm);

end for;

//lcm:=(lcm/p^Valuation(lcm,p));

Resultant0:=Resultant0*lcm;

if Valuation(lcm,p) gt 0 then print("Resultant not monic"); end if;

Inullst:=IdealWithFixedBasis([f,fx,fy]);

37

if not (Resultant0 in Inullst) then print("Multiply Resultant0 by

factors in Fac until Resultant0 lie in Inullst"); end if;

Coord:=Coordinates(Inullst,Resultant0);

// Coord[1]*f+Coord[2]*fx+Coord[3]*fy-Resultant0 eq Ptemp!0

// Computation constants

rho:=Degree(Resultant0,Pt);

phi:=Max(Degree(Coord[2],Pt),Degree(Coord[3],Pt));

tau1:=Floor(Nb*p*(rho+kappa+phi)*(1+(a+b-2)*((phi*c+kappa)/rho + kappa/

(rho+kappa+phi))));

tau2:=2*Nb*p*(1+(a+b-2)*c)-4*p*(a+b-2)*c;

tau3:=7*p*b*a*Nb + 2*p*b*(a+b)+2;

M:=tau2+kappa*tau3;

Nt:=tau1+rho*kappa*tau3+rho*M;

N6:=(2*g*theta+g)*(Ceiling(Log(p,Nt))+Ceiling(Log(p,Nt/p+1)));

Nc:=Nb+N6;

N3:=(4*g*theta+2*g+1)*Ceiling(Log(p,Nt));

Na:=Nc+N3;

F<t>:=FunctionField(Q); // and put Resultant0 in F

Resultant:=F!0;

for i in [0..Degree(Resultant0,Pt)] do

Resultant:= Resultant+(Q!Coefficient(Resultant0,Pt,i))*t^i;

38

end for;

Let’s now compute the connection matrix C of

� : H1
dR(Ct/S) → H1

dR(Ct/S) ⊗S Ω1
S. We are actually going to compute

N(t) := r(t)C(t) to clear denominators in t in the connection matrix, i.e. get entries

in Q[t]. This is possible since the initial assumptions on f imply that H1
dR(Cω)

and hence H1
dR(Ct/S)ω has the same generic basis at all non-singular fibers ω ∈ S.

Then by linearity of the ODE (3.5) we will solve for E(t) in r(t)dE
dt

= NE. First

the setting:

Ptemp2<Pyy,Pxx>:=PolynomialRing(F,2);

// Put f in Ptemp2, called f2

f2:=Ptemp2!0;

for i in [0..a] do for j in [0..Degree(Coefficient(f,Py,i),Px)] do

for k in [0..Degree(Coefficient(Coefficient(f,Py,i),Px,j),Pt)] do

f2:=f2+(Q!Coefficient(Coefficient(Coefficient(f,Py,i),Px,j),Pt,k))*

Pyy^i*Pxx^j*t^k;

end for; end for; end for;

I:=Ideal([f2]);

P<y,x>,toP:=Ptemp2/I;

// Put Coord[2] in P

39

A:=Ptemp2!0;

for i in [0..Degree(Coord[2],Py)] do

for j in [0..Degree(Coefficient(Coord[2],Py,i),Px)] do

for k in [0..Degree(Coefficient(Coefficient(Coord[2],Py,i),Px,j),Pt)]

do

A:=A+(Q!Coefficient(Coefficient(Coefficient(Coord[2],Py,i),Px,j),

Pt,k))*Pyy^i*Pxx^j*t^k;

end for; end for; end for;

A:=toP(A);

// Put Coord[3] in P

B:=Ptemp2!0;

for i in [0..Degree(Coord[3],Py)] do

for j in [0..Degree(Coefficient(Coord[3],Py,i),Px)] do

for k in [0..Degree(Coefficient(Coefficient(Coord[3],Py,i),Px,j),Pt)]

do

B:=B+(Q!Coefficient(Coefficient(Coefficient(Coord[3],Py,i),Px,j),

Pt,k))*Pyy^i*Pxx^j*t^k;

end for; end for; end for;

B:=toP(B);

// Put ft in Ptemp2

ft2:=Ptemp2!0;

40

for i in [0..Degree(ft,Py)] do

for j in [0..Degree(Coefficient(ft,Py,i),Px)] do

for k in [0..Degree(Coefficient(Coefficient(ft,Py,i),Px,j),Pt)] do

ft2:=ft2+(Q!Coefficient(Coefficient(Coefficient(ft,Py,i),Px,j),Pt,

k))*Pyy^i*Pxx^j*t^k;

end for; end for; end for;

// toP(fx2)*A+toP(fy2)*B-Resultant) eq P!0

fx2:=Derivative(f2,Pxx);

fy2:=Derivative(f2,Pyy);

// sum function

Summ :=function(w)

L:=0;

for i in [1..#w] do

L:=L+w[i];

end for;

return L;

end function;

//MaxOrder as defined in Denef/Vercauteren for Cab curves

MaxOrder :=function(w)

M:=-1;

41

for k in [1..#Terms(w)] do

if And([Exponents(Terms(w)[k])[2] gt (b-2)],[M lt

a*Exponents(Terms(w)[k])[2] + b*Exponents(Terms(w)[k])[1]])[1] then

M:=a*Exponents(Terms(w)[k])[2] + b*Exponents(Terms(w)[k])[1];

n:=k;

end if;

end for;

i := Exponents(Terms(w)[n])[2];

j := Exponents(Terms(w)[n])[1];

return i,j;

end function;

//coefficient of x^i*y^j

Coef := function(w,i,j,FF)

L:=FF!0;

if Degree(w,2) ge i then

if Degree(Coefficients(w,x)[i+1],1) ge j then

L:=FF!Coefficients(Coefficients(w,x)[i+1],y)[j+1];

end if;

end if;

return L;

end function;

42

//since g(x)dx congruent to 0 in H^1

killx:=function(w)

w:=w-Coefficients(w,y)[1];

return w;

end function;

// Denef/Vercauteren ’s reduction (algorithm 3)

// say f = sum (over 0<=k<=a) f_k * y^k

//put ff[k+1]=f_k , df[k+1]=d(f_k)/dx in their notation (or look

// below to see it defined)

Reduction:=function(w,ff,df,FF)

w:=killx(w);

while Degree(w,2) gt (b-2) do

i,j := MaxOrder(w);

l := i - b + 1;

Delta_x := (Summ([(j/(k+j))*df[k+1]*y^k : k in [0..(a-1)]]));

//not exactly same Deltax as in paper

Delta_y := -l*((a/(a+j))*y^a + Summ([(k/(k+j))*ff[k+1]*y^k : k in

[1..(a-1)]]));

if l gt 0 then Delta := killx(y^j*x^(l-1)*(x*Delta_x + Delta_y));

else Delta:=killx(y^j*(Delta_x)); end if;

gamma := Coef(Delta, i,j,FF);

nu := Coef(w,i,j,FF);

43

w:=w-nu*(gamma^-1)*Delta;

end while;

return w;

end function;

Now from 0 ≡ d
(

1
(j+1)

xiy(j+1)
)

= xiyjdy+ i
j+1

x(i−1)y(j+1)dx we get the function

dytodx, which outputs cdx congruent to wdy in H1
MW . Also in Ω1

T/S we have

0 = df = fxdx + fydy + ftdt, hence r(t)dy ∧ dx ≡ ((−Aft)dy + Bftdx) ∧ dt and

more generally r(t)∇(xiyjdx) ≡ jxiyj−1((−Aft)dy + Bftdx) ∧ dt, where A and

B are defined in the program and are analogous to respectively α and β in (3.1).

From the latter relation we get the function Buildconnection.

dytodx :=function(w)

c:=0;

for i in [1..Degree(w,2)] do

wi:=Coefficients(w,x)[i+1];

for j in [0..Degree(wi,1)] do

c:=c+Coefficients(wi,y)[j+1]*(-i/(j+1))*x^(i-1)*y^(j+1);

end for;

end for;

return c;

end function;

//DDx,DDy,ff,df defined below

44

Buildconnection :=function(DDx,DDy,ff,df,g,FF)

M:=Matrix(FF,2*g,2*g,[]);

for yval in [1..(a-1)] do

for xval in [0..(b-2)] do

w:=Reduction(dytodx(yval*x^xval*y^(yval-1)*DDy)+yval*x^xval*y^(yval-

1)*DDx,ff,df,FF);

for yvalp in [1..(a-1)] do

for xvalp in [0..(b-2)] do

M[(yvalp-1)*a+xvalp+1,(yval-1)*a+xval+1]:=Coef(w,xvalp,yvalp,FF);

end for;

end for;

end for;

end for;

return Matrix(FF,M);

end function;

// Let’s now actually compute the connection

DDy:=-A*toP(ft2);

DDx:=B*toP(ft2);

ff:=[toP(Coefficients(f2,Pyy)[k+1]): k in [0..a]];

//That is ff[k+1]=f_k

df:=[toP(Derivative(Coefficients(f2,Pyy)[k+1],Pxx)) : k in [0..a]];

//That is df[k+1]=d(f_k)/dx

45

N:=Buildconnection(DDx,DDy,ff,df,g,F);

//Check that there is no denominator in N

for i in [1..(2*g)] do for j in [1..(2*g)] do

if not (Denominator(N[i,j]) eq F!1) then print("The connection has

denominators, you will need to multiply the ODEs by their lcm");

end if;

end for; end for;

If f at t = 0 is a superelliptic curve, as we mentioned above we want to find

F (0) by “removing the points {y = 0}” and computing as in Section 2.5. This

computation is done in the basis dx/y, xdx/y, x2dx/y, dx/y2, . . . and we then have

to write F (0) in the suggested Cab basis ydx, xydx, x2ydx, y2dx, . . .

For this purpose (in the program’s notation and with ya = −f0), we find

BB ∗ (−f0) + CC ∗ (−Diff(f0, x)) = 1 and look at

0 ≡ d((a/(a− yval)) ∗ CC ∗ xxval ∗ y(a−yval)) : then in H1
MW

xxvaldx

yyval
≡ (x∗BB−(a/(a−yval))∗(x∗CCp+xval∗CC))∗x(xval−1)∗y(a−yval)dx. (3.7)

Ptemp2<Pyy,Pxx>:=PolynomialRing(Q,2);

// look at f at t=0 and put f in Ptemp2 (labelled f2)

fat0:=Evaluate(f,Pt,0);

46

if not ((fat0 - Py^a - Coefficient(fat0,Py,0)) eq Ptemp!0) then

print("f is not superelliptic at t=0"); end if;

if not (b eq Degree(fat0,Px)) then print("f at t=0 doesn’t have

degree in x equal to b, which changes the genus!"); end if;

f2:=Ptemp2!0;

for i in [0..a] do for j in [0..Degree(Coefficient(fat0,Py,i),Px)] do

f2:= f2+(Q!Coefficient(Coefficient(fat0,Py,i),Px,j))*Pyy^i*Pxx^j;

end for; end for;

I:=Ideal([f2]);

P<y,x>,toP:=Ptemp2/I;

// Here one has to reload (with new x and y defined) MaxOrder, Coef,

// killx and Reduction

// With y^a=-f0, find BB and CC s. th. BB*(-f0)+CC*(-Diff(f0,x))=1

f0:=f2-Pyy^a;

f0x:=Derivative(f0,Pxx);

Inullst:=IdealWithFixedBasis([f0,f0x]);

if not (1 in Inullst) then print("Curve singular at 0"); end if;

Coord:=Coordinates(Inullst,Ptemp2!-1);

if not ((Coord[1]*f0+Coord[2]*f0x+1) eq Ptemp2!0) then

print("Something wrong with Coord in change of basis"); end if;

BB:=Coord[1];

47

CC:=Coord[2];

CCp:=Derivative(CC,Pxx);

Buildchangeofbasis :=function(BB,CC,CCp,ff,df,g,FF)

M:=Matrix([[P!0 : i in [1..(2*g)]]: j in [1..(2*g)]]);

for yval in [1..(a-1)] do

for xval in [0..(b-2)] do

if xval gt 0 then

L:=(x*BB-(a/(a-yval))*(x*CCp+xval*CC))*x^(xval-1)*y^(a-yval); else

L:=y^(a-yval)*(BB-(a/(a-yval))*CCp); end if;

w:=Reduction(L,ff,df,FF);

for yvalp in [1..(a-1)] do

for xvalp in [0..(b-2)] do

M[(yvalp-1)*a+xvalp+1,(yval-1)*a+xval+1]:=Coef(w,xvalp,yvalp,FF);

end for;

end for;

end for;

end for;

return Matrix(FF,M);

end function;

ff:=[toP(Coefficients(f2,Pyy)[k+1]): k in [0..a]];

//That’s ff[k+1]=f_k

48

df:=[toP(Derivative(Coefficients(f2,Pyy)[k+1],Pxx)) : k in [0..a]];

//That’s df[k+1]=d(f_k)/dx

ynegtoypos:=Buildchangeofbasis(toP(BB),toP(CC),toP(CCp),ff,df,g,Q);

ypostoyneg:=ynegtoypos^-1;

Although it is not relevant for the current algorithm, it can be useful in practice

to change the Connection matrix from a basis to another. We would like to mention in

passing how this is done. Say C = N/r is the Connection matrix in the suggested

Cab basis and T is a change of basis matrix from some basis to the Cab basis

(for example T = ynegtoypos in this program). Then one can compute that

T−1
(
CT − dT

dt

)
is the Connection matrix in that other basis. This, for instance,

allows to compare the present work with that in [Ger05], [Hub07] and observe that

C does not seem to depend on the various choices made in the different algorithms.

Now back to the current algorithm, at this point we need to find the Frobenius

matrix Frob0, mod pNc, of the curve f at t = 0. If the curve at the fiber

t = 0 is not superelliptic, this is done using [DV06]. Note that it is important to

be consistent in lifting the coefficient of the curve from elements of Fp to elements

of Zp as this does change the matrix F (0). In the present case one would use a

naive lift of -f0.

It is now time to solve Equation (3.5) mod tNt. In order to compute

F(J)−1 = F(J−1) we will solve r(t)dE
dt

= −EN (mod t�Nt/p�), whose solution

gives J−1, and then map t �→ tp (since we are working over Qp). The rest is the

same as solving for J, hence we will omit that function.

49

Qp:=pAdicField(p,Na);

Frob0:=Matrix(Qp,Frob0);

Qpt<t>:=PowerSeriesRing(Qp);

h:=Qpt!Resultant; // h(t) here corresponds to r(t) in Section 3.1

NN:=Matrix(Qpt,N);

//algorithm for finding J, i.e. solving hdE/dt=NE mod t^Nt

ODEEbasis := function(N,h,g,bound,p,Qp,Qpt)

//h:=Resultant; in a free precision power series ring in t

// N = ConnectionMatrix*h in a free precision power series ring in t

Mat := Matrix(Qp,2*g,2*g,[]);

E := [Mat : k in [0..bound]];

E[1] := ScalarMatrix(2*g,Qp!1);

mm:=0;

for i in [1..(2*g)] do for j in [1..(2*g)] do

if not (N[i,j] eq 0) then

mm:=Max(Degree(N[i,j]),mm); end if;

end for; end for;

print(mm);

mmm:=Degree(h);

hh:=[Coefficient(h,k):k in [0..mmm]];

NN := [Mat : k in [0..mm]];

50

for u in [0..mm] do for i in [1..(2*g)] do for j in [1..(2*g)] do

NN[1+u][i,j]:=Coefficient(N[i,j],u);

end for; end for; end for;

for v in [0..(bound-1)] do

L:=ZeroMatrix(Qp,2*g,2*g);

for u in [0..Min(v,mm)] do

L:=L+NN[1+u]*E[1+v-u];

end for;

for s in [1..Min(mmm,v)] do

L:=L+E[v+2-s]*(hh[1+s]*(s-v-1));

end for;

for i in [1..(2*g)] do for j in [1..(2*g)] do

E[v+2][i,j]:=Expand((1/((v+1)*hh[1]))*L[i,j]);

end for; end for;

end for;

EE:=Matrix(Qpt,2*g,2*g,[]);

for i in [1..(2*g)] do for j in [1..(2*g)] do

EE[i,j]:=Qpt![E[u+1][i,j] : u in [0..bound]];

end for; end for;

return EE;

end function;

Qpt<t>:=PowerSeriesRing(Qp,Nt);

51

C:=ODEEbasis(NN,h,g,Nt,p,Qp,Qpt);

FrobCinv:=ODEEinverse(NN,h,g,Nt,p,Qp,Qpt);

We are now ready to compute F (t) as in Equation (3.6). It can be shown that

the entries of F (t) converge on a disc of radius strictly less than 1; hence we cannot

evaluate F (t) at t = δ directly. The way to get around this obstacle is to perform

an analytic continuation, which can be thought of as clearing the denominators in r

that have appeared during the computation.

//finding Frob(t)

Frob0:=Matrix(Qp,Frob0);

Ft:=C*Frob0*FrobCinv;

// Analytic continuation

Qp:=pAdicField(p,Nb+theta);

Qpt<t>:=PowerSeriesRing(Qp,Nt);

Ft:=Matrix(Qpt,Ft);

Qptpoln<Z>:=PolynomialRing(Qp);

hpoln:=Qptpoln!Coefficients(h);

hmpoln:=hpoln^M;

hm:=Qpt!hmpoln;

for i in [1..(2*g)] do for j in [1..(2*g)] do

Ft[i,j]:=Ft[i,j]*hm;

52

end for; end for;

Qp:=pAdicField(p,Nb);

Qpt<t>:=PowerSeriesRing(Qp,Nt);

Ft:=Matrix(Qpt,Ft);

//Evaluate the Frobenius matrix at t=delta and take its m^{th} power

F1 := Matrix(Qp,2*g,2*g,[]); R1 :=

Qp!(Q!Evaluate(Resultant0,Pt,delta)); R1M := 1/R1^M;

for i in [1..(2*g)] do for j in [1..(2*g)] do

F1[i,j] := Evaluate(Ft[i,j],delta) * R1M;

end for; end for;

//Because the Frob on Qp is trivial & delta is a Teichmuller lift:

F1:=F1^m;

Finally the last step, we compute the characteristic polynomial of F1 via New-

ton Trace Formula as in Harrisons’ MAGMA implementation of Kedlaya’s algo-

rithm. Using Equation (2.2) we get the sequence of the coefficients corresponding

to xg+1, . . . , x2g of the characteristic polynomial of F1 using the trace method.

The MAGMA intrinsic function could be used but this is slightly more efficient

as only Trace(F1), Trace(F12), . . . , Trace(F1g) need be calculated rather than

Trace(F1), . . . , Trace(F12g).

53

function UpperCoeffs(MM,g,ppow,e_val)

// The sequence [r(v)] is returned where, for a p-adic int v,

// r(v) is the integer nn s.t.|nn|<ppow/2 and nn=v mod ppow.

pAd := pAdicField(Parent(MM[1,1]));

N := MM;

UCs := [pAd!1]; // coeffs (highest to lowest) of CharPoly(MM)

TrPows := [pAd|]; // [Trace(MM),Trace(MM^2),...]

for i in [1..g] do

Append(~TrPows,Eltseq(Trace(N))[1]);

Append(~UCs, (- &+[TrPows[j]*UCs[i+1-j] : j in [1..i]])/i);

if i lt g then N := N*MM; end if;

end for;

if Nrows(MM) ne 2*g then // original Q(x) of even degree

for i in [1..g] do

UCs[i+1] := UCs[i+1]+e_val*UCs[i];

end for;

end if;

return [((2*uc gt ppow) select uc-ppow else uc) where uc is

(IntegerRing()!x) mod ppow : x in UCs];

end function;

UCoeffs := UpperCoeffs(F1,g,p^N0,1);

54

CharP := PolynomialRing(IntegerRing())!([UCoeffs[i]*p^(g+1-i): i in

[1..g]] cat Reverse(UCoeffs));

f0 := Parent(CharP)!Reverse(Coefficients(CharP));

// Finally the numerator of the Zeta function of f at t=\bar{delta}

print(f0);

3.3 Correctness of chosen bounds

The analysis will follow rather closely that of [Hub07]; instead of rewriting

everything in our situation, we will generally focus on the differences and omit the

similarities. The way we will proceed somewhat follows [DV06] but working over

S := Qq[t,
1

r(t)
]† instead of over Qq. The following Lemma from [Hub07] will be

used repeatedly; it basically allows to reduce our situation to that of [DV06]. Let

vp of a polynomial be the minimum valuation of its coefficients.

Lemma 3.1. Let s(t) =
∑
k∈Z

dk(t)
r(t)k ∈ S such that deg dk < deg r for all k. Suppose

we have for infinitely many δ ∈ S that vp(s(δ)) ≥ ε for some real number ε, then

also for every k ∈ Z we get vp(dk) ≥ ε.

With the notation as in Section 3.1, let φ := max{degt(α), degt(β)}, κ :=

degtf, c := max{a, b} and ρ := deg r. It is easy to see that the highest total

x − y degree of the monomials of f is c. One could find upper bounds for ρ

using properties of the Resultant and for φ using [Kol88]; this would be useful to

estimate the complexity of the algorithm but not for the algorithm itself.

55

Applying the Weil conjectures to C̄δ̄, we need to know the characteristic poly-

nomial of F̂ modulo N0 :=
⌈
logp

(
2
(
2g
g

)
pmng/2

)⌉
.

Now we need to estimate the p-adic precision loss during the algorithm. Sup-

pose that A,B ∈ Qq (or A,B are matrices with entries in Qq) known up

to pPrecA , pPrecB and vp(A) ≥ DenomA, vp(B) ≥ DenomB. Then vp(AB) ≥
DenomA +DenomB and AB is known up to pmin{PrecA+DenomB ,P recB+DenomA}.

Working backwards, the first goal is to have a lower bound −θ on the p-adic

valuation of the coefficients of entries of the Frobenius matrix F (δ). Using Corollary

1 in [DV06] we have a lower bound on the valuation of the coefficient in S of the

monomials in x − y of the entries of the matrix, and using Lemma 4 in the same

article we have an upper bound on the powers of p in the denominator introduced

while reducing the differentials. The task is then to find

min
0≤i≤7pbNb+2pb(a+b)

{
i

7pb
− 2(a+ b)

7
− �logp((i+ 1)a+ (a− 1)b)� − 4(a− 1)b�logp(2a− 1)�

}

An easy calculation shows that

θ =

⌊
logp

(
2g + 2a+

7pb

ln p

)
+

2(a+ b)

7

⌋
+ 4(a− 1)�logp(2a− 1)�

is sufficient.

In particular, while taking F̂ := Fmn−1(F (δ))Fmn−2(F (δ)) · · ·F(F (δ))F (δ) we

may lose at most (mn− 1)θ p-adic digits, and vp(F̂) ≥ −mnθ. Then computing

det(1 − F̂ T) using Newton formula we must take F̂ g and divide by at most (g)!;

hence loosing at most
⌊

g
p−1

⌋
+ (g − 1)mnθ digits. This explains why N8 :=⌊

g
p−1

⌋
+ (gmn− 1)θ. Because vp(δ) = 0, vp(r(δ)) = 0, vp(r(t)) = 0 it is sufficient

56

to know r(t)MF (t) modulo pNb where Nb := N0 +N8 and hence we need F (t)

(mod pNb) and r(t) (mod pNb+θ).

To bound the powers of t and 1
r

that will occur in F (t) (mod pNb), we will

theoretically solve for V using a fixed point iteration with the Taylor expansion of

G(V) about 0. We would like to thank Ralf Gerkmann for suggesting this; the

trick actually goes back to Monsky and Washnitzer.

c∑
i=1

biV
i = σ where bi :=

G(i)(0)

i!
, σ := −G(0). (3.8)

Since b1 ≡ 1 (mod p), we may rewrite (3.8) as

U +
c∑

i=2

b̂iU
i = σ where b̂i := b−i

1 bi. (3.9)

Working in the ring Z[b̂2, . . . , b̂c] with the b̂i seen as indeterminates, Monsky and

Washnitzer [MW68] proved that there is a unique solution U = σ +
∑
i≥2

dU,iσ
i ∈

Z[b̂2, . . . , b̂c][[σ]] to (3.9) and that deg dU,i ≤ i − 1. Since σ ≡ 0 (mod p), we

know that the degree in b̂i
′
s of the formal solution Û := U (mod pNb) is at most

Nb − 2.

Next write hi =
∑
ω

chi,ωv
ω where v = (x, y, t, 1

r
). Looking at the expansion

for z−1
0 we get that vp(chi,ω) ≥ ω3

ρp
− φ

ρ
, vp(chi,ω) ≥ ω4

p
− 1. These estimates allow

us to find vp(cbi,ω) ≥ ω3

pρ
− φi+κ

ρ
, vp(cbi,ω) ≥ ω4

p
− i and (since b1 ≡ 1 (mod p))

vp(cb1−1,ω) ≥ ω3

p(ρ+κ+φ)
, vp(cb1−1,ω) ≥ ω4

2p
. Thus b−1

1 =
∞∑

k=0

(1 − b1)
k also satisfies

vp(cb−1
1 ,ω) ≥ ω3

p(ρ+κ+φ)
, vp(cb−1

1 ,ω) ≥ ω4

2p
, which in turn imply vp(cb̂i,ω

) ≥ ω3

p(ρ+κ+φ)
−

57

φi+κ
ρ
, vp(cb̂i,ω

) ≥ ω4

2p
− i. Finally we can write vp(cσ,ω) ≥ ω3

p(ρ+κ+φ)
− κ

ρ+κ+φ
, vp(cσ,ω) ≥

ω4

2p
.

Using the above-mentioned result of Monsky and Washnitzer, we see that

vp(cdU,i,ω) ≥ ω3

p(ρ+κ+φ)
− (i − 1)φc+κ

ρ
, vp(cdU,i,ω) ≥ ω4

2p
− (i − 1)c, and therefore

vp(cÛ ,ω) ≥ ω3

p(ρ+κ+φ)
− (Nb −2)φc+κ

ρ
− (Nb −1) κ

ρ+κ+φ
, vp(cÛ ,ω) ≥ ω4

2p
− (Nb −2)c. Since

V̂ = b−1
1 Û these estimates yield vp(cF(x)iF(y)jd(F(x)),ω) ≥ ω3

p(ρ+κ+φ)
− (Nb − 2)(i+ j +

1)φc+κ
ρ

− (Nb − 1)(i+ j + 1) κ
ρ+κ+φ

, vp(cF(x)iF(y)jd(F(x)),ω) ≥ ω4

2p
− (i+ j + 1)(Nb − 2)c;

so while lifting the Frobenius action mod Nb, we only expect powers of t less than

τ1 := Nbp(ρ + κ + φ)(1 + (a + b − 2)(φc+κ
ρ

+ κ
ρ+κ+φ

)) and power of 1
r

less than

τ2 := 2Nbp(1 + (a+ b− 2)c) − 4p(a+ b− 2)c.

We then have to take into account the reduction process. Keeping track of the

parameter t in Algorithm 3 of [DV06] (working over S instead of over Zq) and

looking at the pole order of γ−1 at the zeroes of γ (γ defined at line 3.6 of

Algorithm 3), we get that each loop of the algorithm introduces at most tρκ and

(1
r
)κ. Also, from the estimates in [DV06] on the maximum degree in x appearing

in the image mod Nb of the chosen basis of differential elements under F and the

fact that each loop reduces the pole order at infinity (in x− y) of the differentials,

we see that there will be at most τ3 := 7pbaNb + 2pb(a + b) + 2 loops done. This

explains why M = τ2 + κτ3 and Nt = τ1 + ρκτ3 + ρM.

We now have results similar to that of Proposition 17 in [Hub07]. We can use

Lemma 19 of [Hub07] to get vp(F (0)−1) ≥ −(2g − 1)θ − g, and working through

Proposition 21 we get that while computing F (t) = C(t)F (0)(F(C(t)))−1 we may

lose at most N6 = (2gθ + g)
(
�logp(Nt)� +

⌈
logp

(
Nt

p
+ 1

)⌉)
. So we need to know

58

F (0) at least to precision Nc = Nb +N6. Finally we bound the precision loss while

computing C and F(C)−1. From Lemma 22 still in [Hub07] we get that both

(independently done) computation will lose at most N3 = (4gθ+ 2g+ 1)�logp(Nt)�.
That explains why we start the algorithm with Na = Nc +N3.

3.4 The experiments

It is hard to have a meaningful comparison between solving directly for the Zeta

function of fδ̄ using the algorithm in [DV06] and using this algorithm because the

predicted bounds are really not tight. For example, with

f := y3 + ty2 − x4 − x3 − 1, p = 5, δ = 1 we have a working precision of 42 using

[DV06] and bounds Nt = 217820, M = 17522, Na = 2361, Nb = 28, Nc = 1153

for the present algorithm. Even on a good computer both represent several hours

of computation, and it is possible that the computer actually runs out of memory

before terminating.

By using a method of trial-and-error, we can see that 8 is the minimal working

precision for the Cab algorithm [DV06] that will output the correct Zeta function,

Z(C̄1, T) =
125T 6 − 25T 5 + 10T 4 + 117T 3 + 2T 2 − T + 1

(1 − 5T)(1 − T)
.

Running Ralf Gerkmann’s MAGMA implementation of [DV06] at that p-adic pre-

cision takes 112 seconds and 29MB. We were using a 3.2GHz machine with 3 GB of

RAM memory.

As a comparison, trying the present algorithm with Nt = 200, M = 25, Na =

15, Nb = 6, Nc = 6 gives the same Zeta function in 8 seconds, and does so using

59

only 5MB! And this is a toy example with m = 1, so the advantage of the present

algorithm could be very significant.

60

CHAPTER 4
Conclusion

We looked at two ways of computing the Zeta function via p-adic cohomology of

some types of curves. It is in the author’s opinion a marvelous example of however

abstract and theoretical they can be, theories can sometimes be used to solve fairly

concrete problems. The second option discussed, using the Gauss-Manin connection,

yielded a new implementation. We conclude with things that are left open about it.

4.1 Possible improvements and future investigation

One obvious generalization of the algorithm presented in Section 3.2 is to include

the case where n > 1. This would be a fairly easy thing to do: one would work in

the unrammified degree n extension as we did in Section 2.5.

A major drawback of the algorithm as it stands now is that the chosen bounds

are not practical. This is not so surprising: even though the lift of Frobenius had a

closed form (hence was much easier to analyze), already Hubrechts ran into similar

problems while implementing [Hub07]. In the present case, the lift of Frobenius is

more complicated, and constantly going for the worst case scenario produces bounds

that are much too big. For example, we know that the degree in b̂i
′
s of the

formal solution Û := U (mod pNb) is at most Nb − 2, but we certainly do not

expect to have an occurrence of b̂c
Nb−2

as c and Nb get large. One could

possibly address this issue by looking at probabilistic bounds, but at first sight that

does not seem very implementable. Hubrechts in his implementation adresses the

61

issue in a more conventional way: he makes a loop on the bounds involved starting

with some relatively low values and increasing until some criterion is met. We have

experimented such a solution in our numerical experiments and it turned out very

useful. The hard thing to do is to “guess” ratios that will make the algorithm work,

because computing with very high bounds without satisfactory ratios among them

does not lead to the correct Zeta function.

Finally, it would be great to have complexity estimates for the algorithm. The

methods suggested to bound ρ and φ seemed to also give very large bounds

compared to what has been observed in our experiments. This, combined with the

worst case scenario analysis provided in Section 3.3, would give a complexity analysis

(at least the rough size of the constants) that would not give justice to the potential

of the algorithm. For this reason, we should probably omit it until better bounds

are to be found.

62

References

[Art68] M. Artin. On the solutions of analytic equations. Invent. math., 5:277–291,
1968.

[Bos81] S. Bosch. A rigid analytic version of M. Artin’s theorem on analytic equa-
tions. Math. Ann., 255:395–404, 1981.

[CDV06] W. Castryck, J. Denef, and F. Vercauteren. Computing zeta functions of
nondegenerate curves. International Mathematics Research Papers, 2006.

[DV06] J. Denef and F. Vercauteren. Counting points on Cab curves using Monsky-
Washnitzer cohomology. Finite Fields Appl., 12:78–102, 2006.

[Dwo63] B. Dwork. A deformation theory for the zeta function of a hypersurface.
Proc. Internat. Congr. Mathematicians (Stockholm, 1962), pages 247–259,
1963.

[Edi03] B. Edixhoven. Point counting after Kedlaya. notes of a EIDMA-Stieltjes
Graduate course given in Leiden, 2003.

[Elk73] R. Elkik. Solutions d’équations à coefficients dans un anneau henselien.
Ann. Scient. Ec. Norm. Syp. 6, 4:553–604, 1973.

[Ger05] R. Gerkmann. Relative rigid cohomology and point counting on families
of elliptic curves. preprint, 2005.

[GG01] P. Gaudry and N. Gürel. An extension of Kedlaya’s point-counting al-
gorithm to superelliptic curves. Advances in cryptology - ASIACRYPT,
2001.

[Hub07] H. Hubrechts. Point counting in families of hyperelliptic curves. Founda-
tions of Computational Mathematics, 2007.

[Ked] K. Kedlaya. p-adic cohomology: from theory to practice. Lecture notes
from the 2007 Arizona Winter School.

63

64

[Ked01] K. Kedlaya. Counting points on hyperelliptic curves using Monsky-
Washnitzer Cohomology. J. Ramanujan Math. Soc., 16:323–338, 2001.

[Ked04] K. Kedlaya. Computing Zeta Functions via p-adic Cohomology. Algorith-
mic Number Theory, Springer Lecture Notes in Computer Science, 3076:1–
17, 2004.

[Kol88] J. Kollar. Sharp effective Nullstellensatz. Journal of the American Math-
ematical Society, 1:963–975, 1988.

[MW68] P. Monsky and G. Washnitzer. Formal cohomology 1. Annals of Mathe-
matics. Second Series, 88:181–217, 1968.

[VdP86] M. Van der Put. The cohomology of Monsky and Washnitzer. Mémoires
de la Société Mathématique de France, 23:33–59, 1986.

INDEX

Artin-Approximation property of w.c.f.g. algebras 12

Connection matrix 44

Gaudry/Gürel’s superelliptic curves algorithm 3

Hubrechts’ algorithm for families of hyperelliptic curves 31

Kedlaya’s algorithm 2

Lefschetz formula for MW cohomology 11

Overconvergent functions, weak completion 9

Statement of the Weil conjectures 15

Vercauteren/Denef’s Cab curves algorithm 3

Zeta function 1, 5

65

KEY TO ABBREVIATIONS

A† : The overconvergent completion of A

Z: The Zeta function

Ω1
C : The module of Kahler differentials of C

Â: The p-adic completion of A

vp: The p-adic valuation

dR: deRham cohomology

f.g. : finitely generated

GAGA: Serre’s Géométrie algébrique et géométrie analytique

GM connection: The Gauss-Manin connection

MW Cohomology: The Cohomology of Monsky and Washnitzer ,

w.c.f.g. : weakly complete finitely generated

66

