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Abstract

In this thesis we give a geometric theory of vector-valued modular forms attached to Weil
representations, and in particular of modular forms of half-integral weight. More specifically,
we construct over the integers a ‘metaplectic’ stack of elliptic curves and vector bundles
Vm ⊗ ωk/2 over it, k ∈ Z, whose sections over the complex numbers give weight k/2 vector-
valued modular forms attached to rank 1 lattices with quadratic form x 7→ mx2/2, for
m ∈ 2Z>0.

The metaplectic stack is the stack of elliptic curves endowed with a non-degenerate rank
one quadratic form. It is canonically endowed with a square root ω1/2 of the Hodge bundle
ω of the moduli stack of elliptic curves. The vector bundles Vm are obtained from the
Schrödinger representations of Heisenberg groups of elliptic curves: though the Vm’s do
not exist over the moduli stack of elliptic curves, we show that they can be defined over
the metaplectic stack. We can then define q-expansions of vector-valued modular forms by
pulling back sections of Vm ⊗ ωk/2 to Tate curves endowed with a quadratic form.

We then find a canonical isomorphism between Vm ⊗ ω−1/2 and the ‘geometric’ repre-
sentations Jm of Heisenberg groups, given by the sections of totally symmetric invertible
sheaves of degree m on elliptic curves. Using this isomorphism, we are able to give entirely
geometric constructions of the classical level m single-variable theta functions and their
theta constants, and prove that they are indeed vector-valued modular forms of half-integral
weight, in our algebro-geometric sense. We also compute their q-expansions and show that
they agree with the classical analytic q-expansions. In the case m = 2, we obtain a geometric
theory of modular forms of half-integral weight, as defined by Shimura.

Finally we show that over the category of analytic spaces, the previous constructions
recover the usual notions of vector-valued modular forms and modular forms of half-integral
weight. In particular, the canonical isomorphism between Vm ⊗ ω−1/2 and Jm turns into a
well-known theorem of Eichler and Zagier relating vector-valued modular forms to Jacobi
forms, and can be used to give a purely geometric proof of the analytic transformation laws
of single-variable theta functions.
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Abrégé

Dans cette thèse, nous présentons une théorie géometrique des formes modulaires à valeurs

dans un fibré vectoriel attachées aux représentations de Weil et nous nous intéressons plus

particulièrement aux formes modulaires de poids demi-entier. Plus précisément, nous con-

struisons un champs ‘métaplectique’ et des fibrés vectoriels Vm ⊗ ωk/2 (k ∈ Z) au dessus de

ce champs, dont les sections sur C nous donnent des formes modulaires à à valeurs dans un

fibré vectoriel de poids k/2 attachées aux réseaux de rang 1 munis d’une forme quadratique

x 7→ mx2/2 avec m ∈ 2Z>0.

Le champs métaplectique est un champs de courbes elliptiques dotées d’une forme quadra-

tique non-dégénérée de rang 1. Il est canoniquement muni d’une racine carrée ω1/2 du fibré

de Hodge ω du champs de modules des courbes elliptiques. Les fibrés vectoriels Vm provi-

ennent des représentations de Schrödinger des groupes d’Heisenberg des courbes elliptiques:

ces Vm n’existent cependant pas au dessus du champs de modules des courbes elliptiques

mais nous montrons qu’ils peuvent être construits au dessus du champs métaplectique. Ceci

nous permet ensuite de définir les q-expansions des formes modulaires à valeurs dans un fibré

vectoriel en considérant les sections sur les courbes de Tate.

Nous trouvons ensuite un isomorphisme canonique entre les Vm⊗ωk/2 et les représentations

géometriques Jm des groupes d’Heisenberg données par les sections des faisceaux inversibles

totalement symétriques de degré m sur les courbes elliptiques. Grâce à cet isomorphisme,

nous sommes capables de donner des constructions géometriques des fonctions theta clas-

siques de niveau m à une varable et de leur constante theta et nous prouvons qu’elles sont

véritablement des formes modulaires à valeurs dans un fibré vectoriel de poids demi-entier

dans le sens algebrico-géometrique que nous avons donné précedement.

Finalement, lorsque nous nous plaçons au dessus de la catégorie des espaces analytiques,

les constructions précédentes nous redonnent les notions classiques de formes modulaires à

valeurs dans un fibré vectoriel, de fonctions theta, de constantes theta et de formes mod-

ulaires à poids demi-entier. En particulier, l’isomorphisme canonique entre Vm ⊗ ω−1/2 et

Jm correspond à un théorème bien connu d’Eichler-Zagier reliant les formes modulaires à

valeurs dans un fibré vectoriel et les formes de Jacobi et peut être utilisé pour donner une

preuve purement géometrique des lois de transformations analytiques des fonctions theta à

une variable.
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Introduction

The purpose of this work is to give a geometric interpretation to the theory of vector-valued

modular forms. To be more precise, to construct vector bundles over the moduli stack of

elliptic curves whose sections over the complex numbers correspond to the analytic notion

of vector-valued modular forms. We thus want to liberate these objects from the formation

of automorphic quotients, and instead give them a purely moduli-theoretic definition. The

advantage of doing so is that we are then able to give purely algebraic definitions (for example,

integral or mod p) of vector-valued modular forms, and in particular of modular forms of

half-integral weight.

Vector-valued modular forms are a natural generalization of integral weight modular

forms, at least from the point of view of embeddings of elliptic curves into projective space.

In particular, let Eτ = C/〈τ, 1〉 be an elliptic curve over C, with τ ∈ h = {τ ∈ C : =(τ) > 0},
the complex upper half-plane. It is well-known that Eτ admits an embedding

Eτ ↪→ P2,

cut out in homogeneous coordinates [X0, X1, X2] by the equation

X2X
2
1 = 4X3

0 − g2(τ)X0X2 − g3(τ)X3
2 .

As functions of τ , it is not hard to show that the coefficients g2(τ) and g3(τ) are holomorphic

on h and satisfy a functional equation of the form

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ), ∀

(
a b

c d

)
∈ SL2(Z), (1)

for k = 4 and k = 6 respectively. These are the prototypical examples of modular forms of

integral weight, essentially corresponding to the Eisenstein series E4 and E6. The functional

equation (1) is then taken as the definition of modular forms of integral weight: a modular

form of integral weight k ∈ Z is a holomorphic function f : h→ C that transforms like (1).

What about embeddings in projective spaces of higher dimension? For any n ≥ 3, there
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are indeed embeddings

Eτ ↪→ Pn−1.

The equations cutting out the image of Eτ in Pn−1 are very classical and go back to 19th

century, to Bianchi and Klein (see e.g. [34], §1 for a beautiful account). For example, for

m = 2n ≥ 4 a positive even integer, these equations are given in homogeneous coordinates

[Xµ]µ∈Z/mZ by quadratic expressions of the form

sα−β(τ)sγ−δ(τ)Xα+βXγ+δ + sα−γ(τ)sδ−β(τ)Xα+γXδ+β + sα−δ(τ)sβ−γ(τ)Xα+δXβ−γ = 0,

where (α, β, γ, δ) are either all in Z/mZ or all in 1/2 + Z/mZ ([34], 1.2). The vector of

functions (sµ(τ))µ∈Z/mZ is holomorphic on h. It is the prototypical example of a vector-

valued modular form, essentially corresponding to the vector of theta constants θnull,m(τ),

whose µ-component is given by:

θm,µ(τ) =
∑
n∈Z

n≡µ mod m

eπiτn
2/m.

The functional equations of (sµ(τ))µ∈Z/mZ with respect to linear fractional transformations

are more involved than (1). In particular, we have ([14], §5, (6) and (8)):

sµ(τ + 1) = eπiµ
2/m sµ(τ)

sµ

(
−1

τ

)
=
√
τ/mi

∑
ν∈Z/mZ

e−2πiµν/m sν(τ),
(2)

where
√

is the principal value of the square root, with −π/2 < arg(
√

) ≤ π/2. The functional

equations (2) are taken as the definition of vector-valued modular forms of weight 1/2: a

vector-valued modular form of weight 1/2 is a holomorphic function f : h → Cm such that

its components (fµ(τ))µ∈Z/mZ transform according to (2). Vector-valued modular forms of

weight k/2, for k ∈ Z, are similarly defined by replacing
√
τ with

√
τ
k

in the second line of

(2). These natural generalizations of modular forms of integral weight were first introduced

by Eichler and Zagier ([14]), and the theory was further developed by Borcherds (e.g. [4], [5],

[3]) in the context of theta lifts, automorphic infinite products and Gross-Kohnen-Zagier-

type formulas. Today, they appear prominently in the work of Bruinier and Ono (e.g. [6],

[7]) as the overarching framework for the arithmetic and combinatorial study of q-series,

especially those arising from modular forms of half-integral weight.

Vector-valued modular forms can alternatively be viewed as a ‘theta-function free’ way

of packaging and studying the transformation laws of single-variable theta functions. This

approach was pioneered by Shimura ([31]) in his theory of modular forms of half-integral

weight, which indeed arise as a special case of vector-valued modular forms. In particular,
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consider the theta series

θ0(τ) := θ2,0(τ) =
∑
n∈Z

n≡0 mod 2

qn
2/4 =

∑
n∈Z

qn
2

, q = e2πiτ ,

which is the first component of θnull,2(τ), a vector-valued modular form of weight 1/2. Then

Shimura defines:

Definition ([31]). Let k ∈ Z. A modular form of half-integral weight k/2 is a holomorphic

function f : h→ C such that:

f(τ)θ0(τ)−k

is a weight 0 modular function.

Modular forms of half-integral weight are extremely useful as generating series for arith-

metic data arising from quadratic extensions. For example, consider

f(q) := θ0(q)3 = 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + . . . ,

a modular form of half-integral weight 3/2. The coefficients of f(q) essentially correspond

to class numbers of imaginary quadratic fields (e.g. [28], §8.2). Understanding f(q) thus

provides insights into the arithmetic of imaginary quadratic fields. More generally, the whole

family of modular forms of half-integral weight contains many other q-series of arithmetic

interest, for example generating series for real quadratic class numbers, generating series for

special L-values of quadratic twists of elliptic curves and so on. For a survey of these results,

the reader may consult [28], especially Sections 8 and 9.

Now the theory of modular forms of integral weight has a very meaningful geometric in-

terpretation, first pioneered by Shimura and fully developed later by authors such as Deligne

([11]) and Katz ([19]). This geometric interpretation is the cornerstone for the construction

and classification of 2-dimensional Galois representations, one of the central topics of mod-

ern number theory. The goal of this thesis is to lay the foundations for a similar geometric

theory of vector-valued modular forms.

To better explain what we mean by a ‘geometric theory’, let’s recall briefly the geometric

theory of modular forms of integral weight, which will serve as a model in all that follows.

The first observation is that the transformation law (1) of modular forms of integral weight

k defines a cocycle
jk : SL2(Z) −→ O∗h

γ =

(
a b

c d

)
7−→ (cτ + d)k.

This cocycle defines a line bundle ωk over the orbifold (in the sense of [17]) SL2(Z)\\h: mod-
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ular forms can then be viewed as holomorphic global sections of ωk. Now the automorphic

quotient SL2(Z)\\h has a moduli-theoretic interpretation as the moduli stackMan
1 of elliptic

curves over an analytic space. Under this interpretation, ωk corresponds to the invertible

sheaf on Man
1 given by the functor

{E → S} 7−→ Γ(S, ωkE/S), (3)

that to each elliptic curve E → S over an analytic space assigns the Γ(S,OS)-module of

global sections of tensor powers of its Hodge bundle.

The functor (3) also makes sense over the moduli stack M1 of elliptic curves E → S

over a scheme S. As such, it defines an invertible sheaf ωk over M1 whose global sections

are the algebraic incarnations of modular forms of integral weight. We thus can speak, for

example, of modular forms mod p, by restricting ωk to the moduli stack of elliptic curves

over a Fp-scheme. We can also restrict ωk to the Tate elliptic curve, defined over the power

series ring Z((q)): the sections so obtained are power series in q, and when we substitute

q = e2πiτ for τ ∈ h we obtain the classical q-expansions of modular forms ([11], [13], [19]).

This is what we mean by a ‘geometric theory’ of modular forms: a theory that unifies

the arithmetic, combinatorial and analytic aspects of modular forms by replacing the study

of cocycles over automorphic quotients by that of vector bundles over the moduli space of

elliptic curves. It is the goal of this thesis to formulate a similar theory for vector-valued

modular forms. In particular, we would like to understand in what sense q-series of the form

θ0(q) =
∑
n∈Z

qn
2

, f(q) = θ0(q)3 ∈ Z[[q]],

are modular forms of half-integral weight, without having to plug in q = e2πiτ and appeal

to the analytic theory. Yet in other words, to interpret the functional equations satisfied by

single-variable theta functions as an intrinsic property of their definition as elements in Z[[q]],

where q is an abstract variable, and not as a property of the analytic functions they define

when letting q = e2πiτ . The impatient reader might wish to jump directly to the very end of

Chapter 2 to see how this is accomplished.

For the patient reader, we would now like to give an overview of our constructions and

of our results.

The first complication that arises when considering vector-valued modular forms is the

appearance of square roots in the functional equation (2). Namely, we have only defined the

transformations laws with respect to generators of SL2(Z). To extend the transformation

laws (2) to a representation of all of SL2(Z) we must specify compatible choices of square

roots. In particular, following Shimura [31], define the metaplectic group Mp2(Z) as the
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group of pairs((
a b

c d

)
, φ(τ)

)
,

(
a b

c d

)
∈ SL2(Z), φ(τ) ∈ O∗h, φ2(τ) = cτ + d,

with multiplication given by:

(A1, φ1(τ)) · (A2, φ2(τ)) = (A1A2, φ1(A2τ)φ2(τ)).

The metaplectic group is the unique non-trivial central extension of SL2(Z) by µ2 = {±1}.
It is generated by

T =

((
1 1

0 1

)
, 1

)
, S =

((
0 −1

1 0

)
,
√
τ

)
.

Let now m ∈ 2Z>0 be a positive even integer, and let Vm := C[Z/mZ] be the vector space of

C-valued functions on Z/mZ. We can define a representation ρm of Mp2(Z) on Vm by the

formulas
ρm(T )(δµ) = eπiµ

2/m δµ

ρm(S)(δµ) =
1√
im

∑
ν∈Z/mZ

e−2πiµν/m δν ,

where by {δµ}µ∈Z/mZ, we denote the basis of delta functions of Vm, such that δµ takes the

value 1 at µ and 0 everywhere else. This is the Weil representation ρm attached to rank

1 lattices (Z, x 7→ mx2/2) (e.g. [4]). It is a not-so-distant relative of certain Hilbert-space

representations appearing in quantum mechanics: it was Weil ([36]) who first discovered

arithmetic analogs of these physical phenomena which could explain, among other things,

generalized quadratic reciprocity laws.

Using the Weil representation we can make a more rigorous definition of vector-valued

modular forms:

Definition. Let k ∈ Z and m ∈ 2Z>0. A weight k/2, ρm-valued modular form is a

holomorphic function f : h→ Vm satisfying the transformation law:

f

(
aτ + b

cτ + d

)
= φkρm(γ)f(τ), ∀ γ =

((
a b

c d

)
, φ

)
∈ Mp2(Z).

In particular, plugging in S and T in the above definition gives back the transformation

laws (2).

The ‘geometrization’ of vector-valued modular forms begins as in the integral weight case.
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We can indeed consider them as holomorphic global sections of the vector bundle

Vm ⊗ ωk/2

over the orbifold Mp2(Z)\\h, where Mp2(Z) acts on h via the map Mp2(Z) → SL2(Z), i.e.

via linear-fractional transformations of the underlying matrix, and:

(i) Vm is the local system over Mp2(Z)\\h corresponding to the representation ρm,

(ii) ωk/2 is the line bundle over Mp2(Z)\\h corresponding to the cocycle:

jk/2 : Mp2(Z) −→ O∗h(
γ =

(
a b

c d

)
, φ

)
7−→ φk.

The problem now is to give these objects an interpretation in terms of moduli of elliptic

curves. As in the geometric theory of modular forms of integral weight, the starting point is

to give an algebraic description of the automorphic quotient Mp2(Z)\\h. We show that this

can indeed be viewed as the moduli stack Man
1/2 of elliptic curves E → S over an analytic

space equipped with a non-degenerate rank 1 quadratic form:

q : Q −→ ωE/S,

i.e. an invertible sheaf Q and a map of abelian sheaves q such that q induces a OS-module

isomorphism Q⊗2 ' ωE/S. This interpretation leads to the definition of the metaplectic stack

M1/2 (rigorously defined in Definition 2.1.2):

Definition. The metaplectic stackM1/2 is the moduli stack of pairs (E/S,Q) of an elliptic

curve E → S over a scheme equipped with a quadratic form q : Q → ωE/S.

The metaplectic stack is canonically endowed with an invertible sheaf ω1/2 given by the

functor

{(E/S,Q)} 7−→ Γ(S,Q),

and such that

p∗ω ' (ω1/2)⊗2,

where p : M1/2 → M1 is the ‘forget the quadratic form’ functor. Over the category of

analytic spaces the two definitions of ω1/2 via the cocycle j1/2 and via this algebraic definition

coincide. Thus, the invertible sheaf ω1/2 overM1/2 can be viewed as a purely algebraic analog

of the line bundle over Mp2(Z)\\h defined by j1/2, and similarly for the higher tensor powers

ωk/2.
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The construction of vector bundles Vm over M1/2 which give the Weil representation

overMan
1/2 = Mp2(Z)\\h is a bit more involved, but it is what gives life to the theory. These

vector bundles naturally stem out of Mumford’s theory of algebraic theta functions ([22],

[23]), a foundational piece of mathematics that has inspired the development of this thesis.

In fact it is Mumford, in the introduction to [22], who states that

”There are several interesting topics which I have not gone into in this paper,

but which can be investigated in the same spirit: for example, [...] a discussion

of the transformation theory of theta-functions”.

The idea is to consider, for any elliptic curve E → S over a scheme and m ∈ 2Z>0 a positive

even integer, the level m Heisenberg group GE(Lm) (see Section 1.3.2 below for definitions),

a flat affine group scheme over S. We can construct weight 1, rank m representations VH
of GE(Lm) starting from lagrangian subgroups H ⊂ GE(Lm). These are called Schrödinger

representations of GE(Lm), in analogy with their analytic relatives in quantum mechanics.

From the general theory of Heisenberg groups, if there is a weight 1, rank m representation

VH of GE(Lm) it must be unique up to tensoring with an invertible sheaf over S. Thus the

functor:

{E → S} 7−→ EndOS(VH)

is independent of the choice of H and defines a sheaf Am of OM1-algebras over the moduli

stackM1. This is an Azumaya algebra ([16]), whose order in the Brauer group H2(M1,Gm)

is two. From Giraud’s general theory of torsor lifting (see Section 1.1.3), we can then find a

locally free sheaf Vm of rank m over the metaplectic stack M1/2 such that:

p∗Am ' End(Vm).

Over the analytic category, Vm (or rather its dual V∨m, but conventions vary) is precisely the

local system corresponding to the Weil representation ρm defined above.

We can now define:

Definition. Let k ∈ Z and let m ∈ 2Z>0. A weight k/2, Vm-valued modular form is a

global section of

Vm ⊗ ωk/2

over M1/2.

This gives a purely algebraic definition of vector-valued modular forms. For example, we

could restrict Vm ⊗ ωk/2 to the moduli stack of elliptic curves over a Fp-scheme to obtain

a mod p theory of vector-valued modular forms. Or we could restrict to the Tate curve to

obtain the q-expansions of vector-valued modular forms in a purely algebraic way.

An interesting phenomenon is that when k is odd the sheaf Vm ⊗ ωk/2 descends to the
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modular stackM1 (Theorem 2.2.14). In fact, we can prove that there is a canonical isomor-

phism (Theorem 2.2.20):

Vm ⊗ ω−1/2 ' Jm

where Jm is the sheaf on M1 associated to the functor

{π : E → S} 7−→ Γ(S, π∗Lm),

where Lm = OE(me)⊗(Ω1
E/S)⊗m is the unique totally symmetric invertible sheaf of degree m

on E, normalized along e. Over the analytic category, sections of Jm essentially correspond

to weight 0, index m/2 Jacobi forms up to a simple factor. In particular, by tensoring both

sides with ωk we obtain an isomorphism

Vm ⊗ ωk−1/2 ' Jm ⊗ ωk, (4)

between weight k − 1/2, Vm-valued modular forms and weight k, index m/2 Jacobi forms.

This is an algebraic analog of the isomorphism discovered by Eichler and Zagier in [14].

The reader fluent in geometric quantization theory might start to see an analogy between

our theory and that of projectively flat connections and the metaplectic correction (e.g. [18]).

Indeed, we show in Theorem 2.2.19 that the vector bundle Vm is flat for the étale topology

of M1/2. Thus the sheaf Jm ⊗ ω1/2 can be endowed with a canonical integrable connection

∇. This connection essentially corresponds to the heat equations satisfied by theta functions

([18], [37]).

Finally, we would like to mention how to obtain an algebraic interpretation of the func-

tional equations of single-variable theta functions, and in particular of Shimura’s modular

forms of half-integral weight.

The geometric construction of theta constants is well-known. It follows from the fact

that over an elliptic curve E/S the sheaf Lm defined above is normalized along the identity

e, i.e. e∗Lm ' OS. Hence the map e∗ defines an ‘evaluation at e’ element

eve ∈ Γ(S,L∨m).

The assignment

{E → S} 7−→ eve ∈ Γ(S,L∨m)

gives a section of J ∨m over M1. By our theorem (4), it must also define a section

θnull,m ∈ Γ(M1,V∨m ⊗ ω1/2),

i.e. theta constants are modular forms of half-integral weight, in our algebro-geometric sense,

as they should be. To make the connection with q-expansions, we pull-back θnull,m to the Tate
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curve and compute it as a vector of power series in q (Section 2.3.2) to recover the classical

q-expansions of theta constants. This is a standard computation in the theory of modular

forms. Our contribution is that we can now speak of q-series defining theta constants as

vector-valued modular forms of half-integral weight without having to plug in q = e2πiτ and

appealing to the analytic theory.

The case m = 2 is of particular interest. In Section 2.3.4 we define an invertible subsheaf

LShi ⊆ V∨2 ⊗ ω1/2

over the moduli stack M0(4), and a section θ0 ∈ Γ(M0(4),LShi) such that the q-expansion

over the Tate curve is given by:

θ0(q) =
∑
n∈Z

qn
2 ∈ Z[[q]].

We thus have a completely algebraic theory of modular forms of half-integral weight, by

considering sections of tensor powers L⊗kShi. In particular, one could construct the generating

series f(q) for quadratic imaginary class numbers and consider it as a section of L⊗3
Shi modulo

a prime p. This could be a possible approach for studying divisibility properties of class

numbers.

The above theory is worked out in the following order, though more details on how the

thesis is structured can be found in the introductions to each chapter.

Chapter 1 contains general tools and techniques needed for the construction of algebraic

vector-valued modular forms. Perhaps the key tool is the ‘torsor-lifting’ theory of Giraud

([15]), which measures the obstruction to extending the structure group of a torsor in terms of

gerbes. In Section 1.3 we also review the theory of Heisenberg groups and their Schrödinger

representations, mainly following Moret-Bailly ([20]) and Mumford ([24]).

In Chapter 2 we turn to the construction of a geometric theory of vector-valued modular

forms as outlined above. In Section 2.1.1 we construct the metaplectic stack M1/2. In

Section 2.2.2 we construct the bundle Vm of Schrödinger representations and then we proceed

in proving (4) in Sections 2.2.4 and 2.2.5. We then define q-expansions of vector-valued

modular forms (Section 2.2.7) and compute the q-expansions of theta constants (Section

2.3.1). The theory of half-integral weight modular forms and their q-expansions is given in

2.3.4.

In Chapter 3, we work out the theory of Chapter 2 in the analytic category, to recover

the usual notions of vector-valued modular forms, Jacobi forms and modular forms of half-

integral weight. This chapter was written, and was meant to be read, in parallel with Chapter

2: the reader will notice that the sections in each chapter mirror each other.

Finally, in Chapter 4 we draw some philosophical conclusions about the geometric study

of vector-valued modular forms, and speculate about directions for future investigations in
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the subject.

A note about terminology Throughout this work, by a ‘scheme’ S we mean a scheme

which is separated and locally noetherian. On the other hand, we almost always invert m,

where m is a positive even integer. In particular, we almost always invert 2 in our base

schemes.

20



Chapter 1

Background

In this chapter we lay out the basic tools needed for the development of a geometric theory

of vector-valued modular forms. Perhaps the most important concept of the chapter is that

of ‘torsor-lifting’: roughly speaking, this is a technique that given a central exact sequence

of groups

0→ A→ B → C → 0,

it measures the obstruction to lifting a C-torsor over a ‘space’ X (a topological space, a

scheme, a stack, a site...) to a B-torsor in terms of H2(X,A). It can be viewed as a vast

generalization of the theory of lifting projective representations to linear representations via

Schur multipliers. Our main reference for this torsor-lifting theory is Giraud ([15]). In this

work, among many other ideas, it is shown that the obstruction vanishes if one is willing to

move from the base space X to an A-gerbe K → X, some kind of higher-categorical version

of a torsor. In later chapters, this technique will be used (a) to construct canonical square

roots of line bundles over the moduli stack of elliptic curves, and (b) to lift projective bundles

over the moduli stack of elliptic curves to vector bundles. These projective bundles will arise

from the canonical projective representations attached to level m Heisenberg groups, which

are central extensions of the m-torsion of elliptic curves.

The torsor-lifting theory of Giraud is summarized in Section 1.1. Since this theory makes

essential use of the language of stacks and gerbes, we also recall the basic definitions related

to these concepts following the open-source reference [33].

In Section 1.2, we make use of Giraud’s theory to study the problem of existence of rank

one quadratic forms over Deligne-Mumford stacks, and the problem of lifting vector bundles

defined up to ±1 over Deligne-Mumford stacks to honest vector bundles. These problems

are motivated, respectively, to (a) and (b) above.

Finally, in Section 1.3 we summarize the theory of Heisenberg group schemes following

[20], §5, and [24], §23. We depart a bit from our sources in Section 1.3.5, where we con-

struct canonical Azumaya algebras of order 2 in the Brauer group associated to symmetric

Heisenberg group schemes.
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1.1 Stacks, gerbes and torsor-lifting

1.1.1 Deligne-Mumford stacks

Let C be a category and let p : S → C be a functor from a category S. For any U ∈ Ob(C)
let SU be the fiber category over U ([33], Tag 02XH).

Definition 1.1.1. ([33], Tag 003T) The category S is fibered in groupoids over C if

(a) For every morphism f : V → U in C and y ∈ Ob(SU) there is a morphism φ : y → x

in S such that p(φ) = f .

(b) For every pair of morphisms φ : y → x and ψ : z → x and any morphism f : p(z) →
p(y) such that p(φ) ◦ f = p(ψ) there exists a unique lift χ : z → y of f such that

φ ◦ χ = ψ.

Properties (a) and (b) above imply that for each morphism f : V → U there is a ‘pull-

back’ functor f ∗ : SU → SV .

Suppose now that the category C has the further structure of a site ([33], Tag 00VH).

For any U ∈ Ob(C) denote by C/U the site whose objects are morphisms V → U ([33], Tag

00XZ).

Definition 1.1.2 ([33], Tag 02ZI). Let C be a site. A stack in groupoids, or simply a stack,

is a category S equipped with a functor p : S → C such that:

(a) S is fibered in groupoids over C.

(b) For any triple U ∈ Ob(C) and x, y ∈ Ob(SU), the functor on C/U that to any f : V → U

it associates IsomSV (f ∗x, f ∗y) is a sheaf on C/U .

(c) For any covering {fi : Ui → U} of the site C, any descent datum in S relative to the fi
is effective.

Property (c) in the definition of a stack means that if objects xi ∈ Ob(SUi) are given

together with gluing isomorphisms over the products Ui × Uj, satisfying a cocycle condition

over triple products, then the xi descend to define an object x ∈ Ob(SU) such that f ∗i x = xi
([33], Tag 02ZC).

The category of stacks p : S → C over a fixed base forms a 2-category where the

1-morphisms are functors commuting with the projection functor p to C, and whose 2-

morphisms are natural transformations of functors ([33], Tag 02ZG). If X → S and Y → S
are 1-morphisms in the category of stacks over C, then the 2-fiber product X ×S Y exists

([33], Tag 026G).
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For any U ∈ Ob(C), the category C/U → C is a stack which we simply denote by U . If

p : S → C is a stack, the 2-Yoneda Lemma ([33], Tag 004B) says that there is an equivalence

of categories:

SU = HomStacks/C(U,S) (1.1)

for any U ∈ Ob(C), viewed as a stack.

Let now Schétale be the site given by the category of schemes endowed with the big étale

topology, i.e. coverings of an object S ∈ Ob(Schétale) are collections of étale morphisms of

schemes {Uα → S} with
∐
Uα → S surjective. As above, for any scheme S we will also

denote by S the corresponding stack S → Schétale.

Definition 1.1.3 ([33], Tags 026O, 03YO). A Deligne-Mumford stack is a stack S →
Schétale such that:

(i) For any triple S ∈ Ob(Schétale) and X, Y ∈ Ob(SS), the functor on Schétale/U that to

any f : U → S it associates IsomSU (f ∗X, f ∗Y ) is representable.

(ii) There exists a scheme U and a 1-morphism of stacks U → S that is étale and surjec-

tive, i.e. for any other scheme Y and 1-morphism Y → S, the morphism of schemes

U ×S Y → Y is étale and surjective.

Note in condition (ii) that U ×S Y is a scheme by property (i).

Remark 1.1.4. Compared to the definitions in [33], we have replaced the fppf topology by

the étale topology, and in (i) we require IsomSU (f ∗X, f ∗Y ) to be representable by a scheme

and not by an algebraic space.

The étale topology of a Deligne-Mumford stack p : S → Schétale is the topology inherited

from the étale topology of Schétale ([33], Tag 06NU). Explicitly:

Definition 1.1.5. Let S → Schétale be a Deligne-Mumford stack. The étale site Sét of S
is the site whose underlying category is S and whose coverings of an object X ∈ Ob(S) are

families of morphisms {Xi → X} such that {p(Xi)→ p(X)} is a covering family in Schétale.

Equivalently (by (1.1)), it is the category whose objects are 1-morphisms x : X → S with

X a scheme, and whose morphisms (X, x) → (Y, y) are morphisms of schemes f : X → Y

plus a natural transformation between x and y, and whose coverings (Xi, xi) → (X, x) are

morphisms whose underlying morphisms of schemes are coverings in Schétale.

A sheaf on a Deligne-Mumford stack S is a contravariant functor F : Sét → A into some

category A (sets, abelian groups, rings...) satisfying the usual descent properties of a sheaf

with respect to the étale topology of S ([33], Tag 06TR). In particular, the structure sheaf

OS of S is the sheaf of rings defined by the functor ([33], Tag 06TV):

{X ∈ Ob(S)} 7−→ Γ(p(X),Op(X)).
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Thus the pair (Sét,OS) has the structure of a ringed site. The notions of quasi-coherent

OS-module, coherent OS-module, locally free OS-module and so on are defined as for any

ringed site ([33], Tags 06WG, 03DL).

The categories of sheaves of abelian groups and of sheaves of OS-modules have enough

injectives, hence if F is a sheaf in any of these two categories, the étale cohomology groups

H i
ét(S,F) are well-defined ([33], Tag 075E).

1.1.2 Torsors and gerbes

Let C be a site.

Definition 1.1.6 ([33], Tag 03AH). Let G be a sheaf of groups on C. A G-torsor over C is

a sheaf of sets F together with an action G×F → F such that:

(i) Whenever U ∈ Ob(C) is such that F(U) is non-empty, the action:

G(U)×F(U)→ F(U)

is simply transitive.

(ii) For every U ∈ Ob(C), there exists a covering {Ui → U} such that F(Ui) is non-empty

for all i.

A morphism of G-torsors is a morphism of sheaves commuting with the G-action. The

trivial G-torsor is the sheaf G endowed with the left action on itself. We denote by:

H1(C, G)

the set of isomorphism classes of G-torsors over the site C ([15], III.2.4.2). The class of the

trivial torsor gives a canonical element in this set, hence H1(C, G) has the structure of a

pointed set.

Intuitively, a G-torsor is an object that locally on C looks like the group G acting on itself.

The next natural step is to construct categories that locally on C look like the category of

G-torsors. This is accomplished by the notion of a G-gerbe:

Definition 1.1.7 ([33] Tag 06NZ, [15] IV.2.2.2). Let G be an abelian group. A stack K → C
is a G-gerbe over C if it satisfies:

(a) For every U ∈ Ob(C), there exists an open covering {Ui → U} such that KUi is non-

empty.

(b) For any triple U ∈ Ob(C), x, y ∈ Ob(KU) there exists an open covering {ϕi : Ui → U}
such that ϕ∗ix ' ϕ∗i y in KUi .
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(c) For any pair U ∈ Ob(C) and x ∈ KU , the sheaf on C/U that to each f : V → U it

associates AutKV (f ∗x) is isomorphic to the constant sheaf of fiber G.

Two G-gerbes K1,K2 over C are equivalent if they are equivalent as categories over C.
The trivial G-gerbe is the category Tor(C, G) of G-torsors over C ([15], IV.3.1.1.2). For any

two G-gerbes K1,K2 over C, the product category K1 × K2 is a G × G-gerbe over C. The

contracted product K1×GK2 ([15], IV.2.4) is the G-gerbe over C whose objects are the same

as those of K1 × K2 and the morphisms X = (X1, X2) → Y = (Y1, Y2) of objects over

U ∈ Ob(C) are the quotient:

HomK1×GK2,U
(X, Y ) := HomK1,U

(X1, Y1)×G HomK2,U
(X2, Y2)

by the diagonal action of G. Denote by

H2(C, G)

the set of equivalence classes of G-gerbes over C ([15], IV.3.1.1). This is a group under

contracted product with identity the class of the trivial gerbe Tor(C, G).

1.1.3 Lifting of torsors over a site

Let C be a site and consider a central extension:

0 −→ A −→ B −→ C −→ 0 (1.2)

of sheaves of groups on C. Given a B-torsor Q on C, we denote by Q/A the C-torsor given

by the presheaf:

U ∈ Ob(C) 7→ Q(U)/A.

In this section we examine to what extent this construction can be reversed, namely:

Question 1.1.8. Given a C-torsor P over C, is there a B-torsorQ over C such thatQ/A ' P
as C-torsors?

The question can be approached via the gerbe of lifts of P , constructed as follows.

Definition 1.1.9 ([15], IV.2.5.8). For P a C-torsor over C, let K(P) → C be the category

such that over each object U ∈ Ob(C), K(P)U is the category whose objects are all pairs

(QU , α) of a B-torsor QU over C/U together with an isomorphism of C-torsors

α : QU/A ' P|U ,

where P|U is the restriction of the sheaf P to C/U ([33], Tag 00Y0). The morphisms
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ψ : (QU,1, α1)→ (QU,2, α2) in K(P)U are isomorphisms ψ : QU,1
'→ QU,2 of B-torsors over

C/U such that the following diagram:

QU,1/A QU,2/A

P|U

ψ

α1

α2

is commutative.

The gerbe K(P) is in fact an A-gerbe ([15], IV.2.5.8 (i)). Its class:

[K(P)] ∈ H2(C, A)

is precisely the obstruction to lifting P to a B-torsor Q, in the following sense:

Theorem 1.1.10 ([15], IV.2.5.8 (ii)). Let P be a C-torsor over C. Then P can be lifted to

a B-torsor Q such that Q/A ' P if and only if the class [K(P)] ∈ H2(C, A) is trivial.

By analogy with cohomology with abelian coefficients, it is helpful to ‘visualize’ the

theorem as saying that there exists an exact sequence of pointed sets:

H1(C, B) −→ H1(C, C)
δ2−→ H2(C, A), (1.3)

where the first arrow is [Q] 7→ [Q/A] and the second arrow is

δ2(P) := [K(P)].

Remark 1.1.11. Note that essentially by definition, the A-gerbe p : K(P)→ C is canonically

equipped with a B-torsor Q such that:

Q/A ' p−1P

as C-torsors overK(P), where p−1P is the pull-back of P toK(P) ([33], Tag 00X0). Explicitly,

this torsor is given by the presheaf of sets:

Q : K(P) −→ Sets

(QU , α) 7−→ Γ(U,QU)

that to each torsor Q over C/U it assigns its corresponding set of global sections over U . By

Theorem 1.1.10, this torsor over K(P) descends to a torsor Q over C with Q/A ' P if and
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only if the class δ2(P) is trivial in H2(C, A).

In light of the remark, we can say that the obstruction to lifting a C-torsor P to a

B-torsor can be ‘eliminated’ by passing from the site C to the A-gerbe K(P).

1.2 Existence problems over Deligne-Mumford stacks

1.2.1 Existence of rank 1 quadratic forms

Let L be an invertible sheaf over a Deligne-Mumford stack p : S → Sch[1/2].

Definition 1.2.1. A non-degenerate rank 1 quadratic form (N ,L, q) is an invertible sheaf

N together with a map of abelian sheaves q : N → L which factors as:

q : N ∆−→ N⊗2 ' L,

where ∆ is the diagonal map.

Thus, a rank 1 non-degenerate quadratic form can be thought of as a square root of L.

Definition 1.2.2. A similitude between rank 1 non-degenerate quadratic forms (N1,L1, q1)

and (N2,L2, q2) is a pair of OS-module isomorphisms φ : N1 → N2 and ϕ : L1 → L2 such

that the following diagram:

N1 N2

L1 L2

φ

q1 q2

ϕ

is commutative. A similitude with L1 = L2 and ϕ = id is called an isometry.

In this section we want to examine the question:

Question 1.2.3. Given a Deligne-Mumford stack p : S → Sch[1/2] and an invertible sheaf

L on S, is there an invertible sheaf N such that N⊗2 ' L? Equivalently, is there a L-valued

non-degenerate rank 1 quadratic form over S?

Of course the question has a negative answer in general, even in the case when L is trivial

over an affine scheme. In fact, this problem is a special instance of the ‘torsor lifting’ problem

of Section 1.1.3. In particular, let O∗S be the sheaf of groups associated to the presheaf:

X ∈ Ob(S) 7−→ Γ(p(X),O∗p(X)).
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The squaring map λ2 : O∗S → O∗S gives an exact sequence of étale sheaves over S

0→ µ2/S → O∗S → O∗S → 0,

where µ2 is the constant sheaf of square roots of unity. This is called the Kummer sequence for

µ2. It is a simple instance of a central exact sequence of the type (1.2). In the corresponding

exact sequence

H1(S,O∗S)
λ2→ H1(S,O∗S)

δ2→ H2(S, µ2),

given by 1.3, we have

H1(S,O∗S) ' Pic(S)

since O∗S-torsors correspond to invertible sheaves and vice-versa ([33], Tag 09NU). We can

then associate to the isomorphism class of L in Pic(S) a class δ2(L) ∈ H2(S, µ2). By Theorem

1.1.10, this class represents the obstruction to finding a square root of L, in the following

sense:

Proposition 1.2.4. Let L be an invertible sheaf over a Deligne-Mumford stack S → Sch[1/2].

The class δ2(L) is trivial in H2(S, µ2) if and only if there exists an invertible sheaf N over

S such that N⊗2 ' L.

Proof. This is just a restatement of Theorem 1.1.10 in terms of invertible sheaves instead of

torsors. In fact, if P(L) is the O∗S-torsor attached to L ([33], Tag 09NU), then the theorem

says that an O∗S-torsor Q(L) with ψ : Q(L)/µ2 ' P(L) exists if and only if δ2(L) is trivial

in H2(S, µ2). Now the invertible sheaf N associated to Q(L)/µ2 has the property that

ψ : N⊗2 ' L.

By Remark 1.1.11, the obstruction to finding N can be lifted by passing from S to the

µ2-gerbe of lifts of L of Definition 1.1.9. Unpacking Definition 1.1.9, we obtain:

Definition 1.2.5. For an invertible sheaf L over S, denote by K1/2(L) → S the cate-

gory whose objects above X ∈ Ob(S) are non-degenerate, rank 1, L|X-valued quadratic

forms (N ,L|X , q) over X and whose morphisms above X1 → X2 are similitudes between

(N1,L|X1 , q1) and (N2,L|X2 , q2). Here we viewX as the Deligne-Mumford stack jX : S/X → S
and L|X is the restriction j∗XL of L to X.

Remark 1.2.6. By Remark 1.1.11, p : K1/2(L) → S is endowed with a canonical square

root of p∗L. In particular, consider the presheaf given by:

(N ,L|X , q) 7−→ Γ(X,N )

that to each rank 1, L|X-valued quadratic form over X it associates the global sections of
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the underlying invertible sheaf N . This is an invertible sheaf over the gerbe K1/2(L), with

the property that:

p∗L ' N⊗2

as invertible sheaves over K1/2(L).

Definition 1.2.7. The invertible sheaf over K1/2(L) constructed above is the square-root of

L, denoted by L1/2.

In passing, note that we have:

Proposition 1.2.8. The µ2-gerbe K1/2(L)→ S is a Deligne-Mumford stack.

Proof. Let {ui : Ui → S} be a collection of étale morphisms from schemes Ui such that∐
i Ui → S is surjective and such that u∗iL is trivial for each i. It suffices to show that

the product K1/2(L) ×S Ui is a Deligne-Mumford stack for each i. But since u∗iL is trivial,

K1/2(L)×S Ui is equivalent to the trivial µ2-gerbe Tor(Ui, µ2), which is a Deligne-Mumford

stack.

1.2.2 Existence of locally free sheaves with given endomorphisms

Let S be a Deligne-Mumford stack.

Definition 1.2.9 ([16],[15], V.4). An Azumaya algebra of rank r2 over S is a sheaf A of

OS-algebras of rank r2 such that there exists a collection {ui : Ui → S} of étale morphisms

from schemes Ui with
∐

i Ui → S surjective with the property that for every i,

u∗iA 'Mr(OUi)

as OUi-algebras, where Mr is the algebra of r × r matrices, for some positive integer r.

If V is a locally free OS-module of finite rank, the OS-algebra EndOS (V) is an Azumaya

algebra. Define an equivalence relation on Azumaya algebras by declaring that A1 ∼ A2 if

and only if

A1 ⊗ End(V1) ' A2 ⊗ End(V2),

for some locally free OS-modules V1,V2.

Definition 1.2.10. ([16], 1.2) The Brauer group of S, denoted by Br(S), is the group of

equivalence classes of Azumaya algebras on S under tensor product.

Definition 1.2.11. A 2-torsion datum for an Azumaya algebra A is a triple (A,W , ι) of

an Azumaya algebra A of rank r2 over S, a locally free sheaf W of rank r2 over S and an
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OS-algebra isomorphism

ι : A⊗A ' End(W).

In particular, A is of order 2 in the Brauer group. An isomorphism of 2-torsion data

(A1,W1, ι1) and (A2,W2, ι2) is a pair (φ, ϕ) of an OS-algebra isomorphism φ : A1 → A2

and an OS-module isomorphism ϕ :W1 →W2 such that the following diagram

A1 ⊗A1 A2 ⊗A2

End(W1) End(W2)

φ⊗2

ι1 ι2

ϕ

is commutative.

In this section we would like to study the question:

Question 1.2.12. Given an Azumaya algebra A of rank r2 over a Deligne-Mumford stack

S together with a 2-torsion datum (A,W , ι), is there a locally free sheaf V of rank r and

isomorphisms φ : A ' EndV and ψ :W ' V ⊗ V , such that the following diagram

A⊗A End(V ⊗ V)

End(W)

ι

φ⊗2

ψ

commutes?

The question is again an instance of the ‘torsor lifting problem’ of Section 1.1.3. In

particular, consider the central exact sequence of étale sheaves

0→ Gm → GLr → PGLr → 0

over a Deligne-Mumford stack S → Sch[1/r]. This exact sequence is an instance of the

central exact sequence (1.2). In the corresponding long exact sequence (1.3) of pointed sets:

H1(S,GLr)→ H1(S,PGLr)
δ2→ H2(S,Gm)

we have ([16], 1.1)

H1(S,GLr) = {isomorphism classes of locally free OS-modules of rank r},
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and ([16], 1.1)

H1(S,PGLr) = {isomorphism classes of Azumaya algebras of rank r2},

the map between the first set and the second being given by V 7→ End(V). Similarly, if

S → Sch[1/2r] is a Deligne-Mumford stack, we have a central exact sequence of étale

sheaves

0→ µ2 → GLr → GLr/µ2 → 0,

and an associated exact sequence of pointed sets

H1(S,GLr)→ H1(S,GLr/µ2)
δ2→ H2(S, µ2),

with

H1(S,GLr/µ2) = {isomorphism classes of Azumaya algebras of rank r2 with 2-torsion data},

the map between the first set and the second being given by V 7→ (End(V),V ⊗ V , id).

Theorem 1.1.10 in this case reads:

Proposition 1.2.13. Let (A,W , ι) be an Azumaya algebra of rank r2 over a Deligne-

Mumford stack S → Sch[1/2r], together with 2-torsion data. The class

δ2(A) ∈ H2(S, µ2)

is trivial if and only if there exists a locally free sheaf V of rank r and isomorphisms φ : A '
EndV and ψ :W ' V ⊗ V, such that the following diagram

A⊗A End(V ⊗ V)

End(W)

ι

φ⊗2

ψ

commutes.

Hence δ2(A) can be viewed as the obstruction to finding a positive answer to Question

1.2.12. By Remark 1.1.11, we can lift this obstruction by passing to the appropriate µ2-gerbe

of lifts constructed in Definition 1.1.9, which in this case it reads:

Definition 1.2.14. For an Azumaya algebra A together with 2-torsion data (A,W , ι) over

S, denote by K(A, ι)→ S the category whose objects above X ∈ Ob(S) are triples (V , φ, ψ)
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of locally free OS-modules V over X together with isomorphisms φ : A|X
'→ EndOX (V),

ψ : W|X ' V ⊗ V , commuting with ι as above. The morphisms in this category are

OS-isomorphisms making the obvious diagrams commute. Here we view X as the Deligne-

Mumford stack jX : X/S → S and denote by A|X the restriction j∗XA.

Note that as in Proposition 1.2.8, the stack K(A, ι) is a Deligne-Mumford stack.

Remark 1.2.15. By Remark 1.1.11, the µ2-gerbe p : K(A, ι) → S is canonically equipped

with a locally free OK(A,ι)-module V of rank r and isomorphisms φ : p∗A ' EndV and

ψ : p∗W ' V ⊗ V commuting with ι.

1.3 Heisenberg group schemes

1.3.1 Representations of group schemes

Let S be a scheme and let X be an affine scheme over S. Write X = Spec(A(X)) where

A(X) is a quasi-coherent OS-module of algebras. We identify A(X) with the sheaf given by:

{T → S} 7−→ Hom(XT (T ),A1
T (T ))

so that a section of A(X) can be represented by a family of functions fT on the set X(T ),

functorial with respect to base change.

For N a quasi-coherent OS-module, let AutOS(N ) be the group scheme over S represent-

ing the functor:

{T → S} 7−→ Aut(Γ(T,NT )).

Definition 1.3.1. ([20], V.1.1, V.2.3) A linear representation of a group scheme G/S on a

quasi-coherent OS-module M is a homomorphism of group schemes:

G −→ AutOS(M).

A quasi-coherent OS-module M equipped with a representation of G is called a G-module.

A G-module M is irreducible if the only G-submodules of M are of the form IM for an

ideal sheaf I ⊂ OS.

For any group scheme G/S, the quasi-coherent module A(G) has a natural structure of

G×G-module, given by the formula ([20], V.1.3)

(g1, g2)f(g) = f(g−1
2 gg1).

We denote by A(G)+ (resp. A(G)−), the G-module obtained by restricting the G×G-module

structure of A(G) to {1} ×G (resp. G× {1}).
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If M is a G-module, we denote by MG the subsheaf of G-invariants ([20], V.1.2).

1.3.2 Heisenberg groups

Let K be a finite commutative locally free group scheme over S.

Definition 1.3.2 ([24], §23 Definition). A Heisenberg group (or theta group) G is a central

extension

0→ Gm → G → K → 0

of group schemes over S.

The group G is flat and affine, being a Gm-torsor. It is generally not commutative, as

the commutator pairing:

eG : K ×K → Gm

maybe non-trivial. Whenever this commutator pairing is perfect we say that G is non-

degenerate. In this case Gm is precisely the center of G ([24], §23 Corollary). We will assume

throughout that this is always the case.

By the assumptions on K the exact sequence defining G splits Zariski-locally as a sequence

of S-schemes ([24], §23), and G ' Gm × K locally as an S-scheme. Once a splitting is

chosen, locally all the possible group structures are classified by the classes of 2-cocyles

f ∈ H2(K,Gm). Explicitly, the group law on G is given by

(α1, k1) · (α2, k2) = (α1 α2 f(k1, k2), k1 + k2)

for a morphism

f : K ×K → Gm

satisfying

f(k1 + k2, k3)f(k1, k2) = f(k1, k2 + k3)f(k2, k3)

and normalized so that f(0, 0) = 1 ([24], §23).

Locally, the commutator pairing eG can be expressed in terms of the cocycle f as:

eG(k1, k2) = f(k1, k2)/f(k2, k1).

Several operations can be performed on a Heisenberg group G over K:

(i) The inverse of G is the central extension

0→ Gm → G−1 → K → 0

determined by pushing forward G along the inversion map [−1] : Gm → Gm.
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(ii) The opposite of G is the central extension:

0→ Gm → Gop → K → 0

determined by switching the order of multiplication.

(iii) If n ∈ Z, and [n] : K → K denotes the addition map, then the Heisenberg group [n]∗G
is the central extension of K by Gm determined by pulling-back G along [n] : K → K.

1.3.3 The Stone-Von Neumann Theorem

Suppose now that G is a Heisenberg group where K has rank m2 over S. IfM is a G-module,

the action of Gm ⊂ G decomposes M into ‘weights’:

M =
⊕
i∈Z

M(i)

characterized by the fact that the scalar λ acts on M by λi. If M = M(i) we say that M
has weight i ([20], V.2.1).

Theorem 1.3.3 (Stone-Von Neumann, [20] V.2.4.2, [32] Theorem 1.1). Let V be G-module

of weight one which is locally free of rank m as an OS-module. Then

(a) V is irreducible.

(b) If V ′ is another weight one G-module which is locally free of rank m, then there is an

isomorphism of G-modules:

V ′ ' V ⊗OS LV,V ′

where LV,V ′ is an invertible OS-module equipped with trivial G-action.

(c) The isomorphism of part (b) is unique up to multiplication by Γ(S,O∗S).

Proof. Part (a) is [20] V.2.4.2 (ii). Also by [20] V.2.4.3, we know that there is an equivalence

of categories between quasi-coherent OS-modules and G-modules of weight 1 given by F 7→
V ⊗ F , where the quasi-coherent module F is given the trivial G-action. Therefore V ′ '
V ⊗FV,V ′ for some quasi-coherent module FV,V ′ , and since both V and V ′ are locally free of

rank m, we must have that FV,V ′ is locally free of rank 1 over OS, which proves (b). Finally,

if ψ and φ are two isomorphisms ψ, φ : V ′ ⊗L−1
V,V ′

'→ V , then ψ ◦ φ−1 is in AutG−mod(V). By

the equivalence of categories above stated, this is equal to AutOS(OS) = Γ(S,O∗S).
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Remark 1.3.4. By part (b) of Theorem 1.3.3, the isomorphism class of the projective G-

module PV := P(V) is canonically associated to G. Equivalently, the Azumaya algebra:

AG := EndOS(V)

is canonically associated to G, since for any other weight 1, rank m representation V ′ of G
we have:

EndOS(V ′) = EndOS(V ⊗ LV,V ′) = EndOS(V).

1.3.4 Representations coming from lagrangian subgroups

By Theorem 1.3.3, if a weight one G-module V locally free of rank m over S exists, it is

unique up to tensoring by an invertible sheaf. In this section we turn to the problem of

constructing such V ’s explicitly.

Definition 1.3.5 ([20], V.2.5.1). A level subgroup H ⊂ G is a subgroup scheme H ⊂ G,

finite and locally free over S, such that H ∩Gm = {1}. A level subgroup is called lagrangian

if it is of rank m over S.

In particular, a level subgroup H is isomorphic to its image H1 ⊂ K under the projection

map G → K. Hence it is commutative and it is therefore isotropic for the commutator

pairing eG. A lagrangian subgroup is maximal isotropic for eG.

The quotient H\G does not make sense as a group scheme, but we can still view it as

the Gm-torsor over K/H1 of H-invariant functions on G. Since K/H1 is finite, hence affine,

the torsor H\G is affine as well and its algebra of functions A(H\G) (notation as in the

beginning of Section 1.3.1) has a natural structure of G-module.

Proposition 1.3.6 ([20], Prop. V.2.5.2). Let H ⊂ G be a level subgroup of rank m′, and let

VH := A(1)(H\G),

with the notation of the beginning of Section 1.3.1. Then VH is a sub G-module of A(1)
+ (G),

locally free of rank m2/m′.

Corollary 1.3.7. For any lagrangian subgroup H ⊂ G, the G-module VH is of weight one

and locally free of rank m as OS-module.

Therefore from any lagrangian subgroup H ⊂ G we can construct an explicit model of

the representation of Theorem 1.3.3. Explicitly, VH can be identified with the functions

f ∈ A(G) such that:

(i) f(hg) = f(g), ∀h ∈ H
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(ii) f(λg) = λf(g), ∀λ ∈ Gm

just by unwinding the definitions ([20], V.3.3.3).

Definition 1.3.8. A Schrödinger representation of an Heisenberg group G is any represen-

tation of the form VH , for H ⊂ G a lagrangian subgroup.

1.3.5 Symmetric Heisenberg Groups

Recall from section 1.3.2 that if G is a Heisenberg group and [−1] : K → K is the inversion

map in K, then [−1]∗G is the Heisenberg group over K obtained by pulling back G along

[−1] : K → K.

Definition 1.3.9 ([29], §1). A Heisenberg group G over K is symmetric if there is an

isomorphism

G ' [−1]∗G

.

Symmetric Heisenberg groups G are remarkable because the product G ×G has a canon-

ical rank m2, weight 1 representation V∆. To construct this representation, consider the

Heisenberg group:

0→ Gm → G × G−1,op → K ×K → 0.

Locally, if f is the 2-cocycle in H2(K ×K,Gm) giving the group law in G, then the group

law of G × G−1,op is given by the 2-cocyle

g((k1, k2), (k3, k4)) = f(k1, k2)f(k4, k3)−1.

In particular, the extension G×G−1,op splits above the diagonal embedding ∆ : K → K×K,

since g is the commutator pairing above ∆ and K is commutative. Thus we can find a

canonical lagrangian subgroup H∆ by lifting the image of ∆ to G×G−1,op along the splitting.

The weight 1, rank m2 representation V∆ constructed from H∆ is then canonically associated

to G × G−1,op.

Lemma 1.3.10. If G is symmetric, we have:

G−1,op ' G,

hence G × G has a canonical weight 1, rank m2 Schrödinger representation induced by the

lagrangian subgroup ∆ : K → K ×K.

Proof. From the above discussion, only the first statement needs proof. Now for any
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Heisenberg group G, not necessarily symmetric, we claim that there is an isomorphism

G−1 ' [−1]∗Gop. To show this, note that if f ∈ H2(K,Gm) determines the group law of

G locally, then the 2-cocycles f(k1, k2)−1 and f(−k2,−k1) determine the group laws of G−1

and [−1]∗Gop, respectively. Now we want to show that these two cocycles are cohomologous

in H2(K,Gm) or, equivalently, that the 2-cocycle

g(k1, k2) := f(k1, k2)f(−k2,−k1)

is trivial in H2(K,Gm). Now the commutator pairing corresponding to g is trivial, since:

g(k1, k2)g(k2, k1)−1 = f(k1, k2)f(−k2,−k1)f(k2, k1)−1f(−k1,−k2)−1

= eG(k1, k2)eG(−k2,−k1)

= eG(k1, k2)eG(−k1,−k2)−1

= eG(k1, k2)eG(−k1, k2)

= eG(0, k2) = 1.

and therefore the central extension corresponding to the cocycle g is commutative. But

commutative Heisenberg groups are trivial extensions ([24], §23 Lemma 1 (i)). Therefore

G−1 ' [−1]∗Gop, or, equivalently:

G−1,op ' [−1]∗G

canonically. The isomorphism must the hold globally by descent. Finally, if G is symmetric,

we have [−1]∗G ' G, hence G−1 ' G−1,op ' G.

In particular, to any symmetric Heisenberg group G and any integer m we can canonically

attach an Azumaya algebra of rank m2 together with a 2-torsion datum for it, in the sense

of Section 1.2.2. In fact, by Remark 1.3.4 the Azumaya algebra

A := End(V),

where V is any weight 1, rank m representation of G, is canonically attached to G. Moreover,

by Lemma 1.3.10 we can also canonically attach to G a locally free sheaf W := V∆ of rank

m2 together with an isomorphism

ι : End(W) ' A⊗2.

In fact, note that V ⊗ V is also a weight 1, rank m2 representation of G × G. Thus, by

Theorem 1.3.3, we have

V ⊗ V ' W ⊗L,
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for some invertible OS-module. In turn, this gives

End(W) ' End(W ⊗L) ' End(V ⊗ V) ' End(V)⊗2 = A⊗2.

The triple (A,W , ι) is thus a 2-torsion datum for the Azumaya algebra A canonically asso-

ciated to the Heisenberg group G.
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Chapter 2

Algebraic Theory

In this chapter we work out a geometric construction of modular forms of half-integral

weight with values in a vector bundle Vm of Schrödinger representations. These modular

forms are algebro-geometric analogs of the complex analytic notion of vector-valued modular

forms with values in the Weil representation attached to rank 1 lattices with quadratic form

x 7→ mx2/2 (m will always be a positive even integer), a notion first introduced by Eichler

and Zagier in [14] and further developed by Borcherds (e.g. [4], [5]).

Geometrically, modular forms of integral weight are sections of the Hodge bundle ωk,

k ∈ Z, over the moduli stackM1 of elliptic curves, the modular stack. The first task is thus

to construct invertible sheaves ωk/2, whose sections should correspond to ‘modular forms

of half-integral weight’. This is done in Section 2.1.1. The point is that these sheaves do

not exists overM1, but rather over the metaplectic stack M1/2 (Definition 2.1.2), which we

construct as in Section 1.2.1. In Proposition 2.1.4, we compute the Picard group of M1/2

and we show that it is cyclic of order 24, generated by ω1/2. The sheaves ωk/2 are the tensor

powers of ω1/2. Since the term ‘modular forms of half-integral weight’ has already been

chosen to designate the modular forms studied by Shimura ([31]), we call sections of ωk/2

over M1/2 metaplectic forms of weight k/2 (Definition 2.1.5).

Next, in Section 2.2.2 we construct the vector bundle of Schrödinger representations

Vm. The idea is to patch together all the Schrödinger representations of Heisenberg groups

of elliptic curves of level m (Definition 2.2.4). This vector bundle cannot exist over the

modular stackM1, essentially by the Stone-Von-Neumann Theorem (Theorem 1.3.3): there

is no hope of choosing a Schrödinger representation for each elliptic curve functorially with

respect to morphisms of elliptic curves, since these representations will always differ by an

invertible sheaf. However, following ideas of Polishchuk ([29]), the endomorphism algebras

of Schrödinger representations over elliptic curves do patch functorially (Proposition 2.2.8),

and they define an Azumaya algebra together with 2-torsion data, in the sense of Definition

1.2.11. We can thus apply the theory of Section 1.2.2 to find a µ2-gerbe overM1 over which

Vm is properly defined (Definition 2.2.10). This gerbe is essentially the metaplectic stack
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(Remark 2.2.15), though we only make this identification when it is strictly necessary.

We can then define a vector-valued modular form of weight k/2 (Definition 2.2.11) as a

section of Vm ⊗ ωk/2 over the metaplectic stack M1/2 (more rigorously, over an appropriate

contracted product of µ2-gerbes). We prove that the bundles Vm ⊗ ωk/2, for k odd, do in

fact descend to M1 (2.2.14), thus some ‘miracolous’ cancellation occurs when choosing the

ambiguity of square roots of ω and the ambiguity in choosing a Schrödinger representation

over an elliptic curve.

In Section 2.2.4 we show (Theorem 2.2.16) that there is a canonical isomorphism

Vm ⊗ ω−1/2 ' Jm, (2.1)

defined up to a multiplication by an invertible function on M1, where Jm is the vector

bundle overM1 obtained by attaching to each elliptic curve the global sections of its unique

totally symmetric sheaf Lm of degree m, normalized along the identity section, in the sense

of Mumford ([23]). We call this bundle the sheaf of geometric representations of the level m

Heisenberg groups of elliptic curves, since by [22] and [23] we know that the global sections

of Lm carry Heisenberg representations.

In Section 2.2.5 we show that Vm is locally constant for the étale topology of M1/2

(Theorem 2.2.19). Thus the sheaf Jm ⊗ ω1/2 is also locally constant, i.e. it is endowed with

a canonical integrable connection ∇. By work of Welters [37], this connection is given by

algebraic analogs of heat operators. The horizontal sections of Jm⊗ω1/2, defined over an étale

cover ofM1/2, are thus algebraic analogs of the classical level m theta functions. A striking

consequence of the flatness of Vm is also that the isomorphism (2.1) can be normalized so

that it is defined up to a constant (Theorem 2.2.20).

Next, we give a geometric definition of q-expansions of vector-valued modular forms.

Following the geometric definition of q-expansions of modular forms of integral weight (e.g.

[19]), q-expansions of vector-valued modular forms are obtained by constructing canonical

trivializations of the sheaves Vm and ωk/2 over Tate curves. This is done in Sections 2.2.6

and 2.2.7.

In Section 2.3.1, we define the prototypical examples of vector-valued modular forms,

the vectors θnull,m of theta constants (Definition 2.3.1), and compute their q-expansions in

Section 2.3.2. We show that these q-expansions are exactly the same as the classical analytic

q-expansions of theta constants. We then briefly discuss the relationship between our theory

and that of Mumford’s theta structures ([22],[23]) in Section 2.3.3.

Finally, in Section 2.3.4 we construct algebro-geometric analogs of modular forms of

half-integral weight (Definition 2.3.11), in the proper sense of Shimura ([31]). We define q-

expansions for them (Definition 2.3.14) and recover the classical q-expansion of θ0(q) =
∑
qn

2

as the q-expansion of an (algebraic) modular form of weight 1/2 and level 4.
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2.1 The metaplectic stack and metaplectic forms of weight k/2

2.1.1 The metaplectic stack M1/2

Definition 2.1.1. An elliptic curve over a scheme S is a pair (E/S, e), where π : E → S is a

proper morphism, smooth of relative dimension 1 and whose geometric fibers are connected

curves of genus 1, together with a section e : S → E.

The classifying stack of elliptic curves is the category M1 → Sch whose objects above a

scheme S are elliptic curves (E/S, e) and whose morphisms E1/S1 → E2/S2 above ϕ : S1 → S2

are pairs (φ, ϕ) of morphisms of schemes fitting in the cartesian diagram:

E1 E2

S1 S2,

φ

ϕ

where E1 ' E2 ×S2 S1 and φ ◦ e1 = e2 ◦ ϕ. There is a functor M1 → Sch sending E → S

to S and (φ, ϕ) to ϕ which makes M1 a category fibered in groupoids over Sch: the fiber

M1,S above a scheme S is the category of all elliptic curves E → S over a fixed base scheme

S with morphisms being isomorphisms of S-schemes. In [21] and [12], it is shown that this

is a Deligne-Mumford stack over Schét, called the modular stack.

Let now π : E → S be an elliptic curve over a scheme S, and let Ω1
E/S be the sheaf of

relative differentials. Let

ωE/S := π∗Ω
1
E/S,

which is an invertible sheaf over S. The assignment

{π : E → S} 7−→ Γ(S, ωE/S)

defines an invertible sheaf ω on the modular stackM1, called the Hodge bundle ofM1. For

k ∈ Z an integer, sections of ωk are modular forms of weight k.

We would now like to apply the theory of Section 1.2.1 to the problem of finding a square

root of the invertible sheaf ω over the modular stack M1. Recall that the strategy is to

construct a µ2-gerbe p :M1/2 →M1 canonically endowed with an invertible sheaf ω1/2 such

that

p∗ω = (ω1/2)⊗2.

The stack M1/2 is the stack M1/2 := K1/2(ω) of Definition 1.2.5 of Section 1.2.1. In

particular:
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Definition 2.1.2. The metaplectic stack M1/2 → Sch[1/2] is the category whose objects

above a scheme S ∈ Ob(Sch[1/2]) are pairs (E/S,Q) of an elliptic curve π : E → S and a

non-degenerate rank one ωE/S-valued quadratic form q : Q → ωE/S, and whose morphisms

are similitudes lying above morphisms of elliptic curves.

The metaplectic stack is a µ2-gerbe p :M1/2 →M1, the functor p being given by ‘forget

the quadratic form’. By Proposition 1.2.8, M1/2 is a Deligne-Mumford stack. By Remark

1.2.6, M1/2 is endowed with a canonical square-root of ω, i.e. an invertible sheaf ω1/2 such

that:

p∗ω '
(
ω1/2

)⊗2
.

Explicitly, the invertible sheaf ω1/2 is given by the presheaf:

(E/S,Q) 7−→ Γ(S,Q).

The geometry of M1/2 is closely related to that of M1. For example, we have:

Proposition 2.1.3. Let M1/2 → Sch[1/6] be the metaplectic stack over the category of

schemes where 2 and 3 are invertible. Let k be an algebraically closed field of characteristic

6= 2, 3 and let

s̃ : Spec(k) −→M1/2

be a geometric point, classifying a pair (E/k, q) of an elliptic curve E/k together with a

non-degenerate rank 1 quadratic form:

q : Γ(Spec(k), s̃∗ω1/2)→ Γ(Spec(k), ωE/k).

Then:

(i) Aut(E/k, q) ' Z/8Z, in the case when E = E1 is the elliptic curve

E1 : y2 = x3 − x = x(x+ 1)(x− 1).

(ii) Aut(E/k, q) ' Z/12Z, in the case when E = E2 is the elliptic curve

E2 : y2 = x3 − 1 = (x− 1)(x− ζ)(x− ζ2)

where ζ ∈ k is a primitive 3rd root of unity.

(iii) Aut(E/k, q) ' Z/4Z in all other cases.

Proof. Suppose E is given by the Weierstrass equation

y2 = x3 + a4x+ a6, a4, a6 ∈ k.
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Then there is a canonical choice of generator

Γ(Spec(k), ωE/k) = Γ(E,Ω1
E/k) ' k · ω,

where ω = dx/y. Now any automorphism α ∈ Aut(E/k) acts by functoriality on Γ(Spec(k), ωE/k)

via multiplication by a scalar ω 7→ αω · ω, and any automorphism α̃ ∈ Aut(E/k, q) acts on

q by a similitude lying above α, i.e. via multiplication by a scalar α̃ω1/2 such that:

α̃2
ω1/2 = αω.

Thus for any geometric point s̃ : Spec(k)→M1/2, the group of automorphisms Aut(E/k, q)

of the pair (E/k, q) classified by s̃ is a group extension:

0→ µ2 →Aut(E/k, q)→ Aut(E/k)→ 0

(α, αω1/2) 7−→ α.

There are three possibilities for Aut(E/k, q), each one corresponding to the three well-known

possibilities for Aut(E/k):

(i) The geometric point s̃1 : Spec(k)→M1/2, classifying the elliptic curve:

E1 : y2 = x3 − x = x(x+ 1)(x− 1),

together with a rank 1 non-degenerate quadratic form

q : Γ(Spec(k), s∗1ω
1/2)→ Γ(Spec(k), ωE1/k

).

In this case

Aut(E1/k) ' Z/4Z,

generated by the automorphism

σ : x 7→ −x
σ : y 7→ iy, i2 = −1.

(2.2)

Thus the group Aut(E1/k, q) is of order 8. Now σ acts on ω = dx/y by:

σω = i

and therefore Aut(E1/k, q) must contain an element generating a cyclic subgroup of

order 8, namely the automorphism

σ̃ := (σ,
√
i) (2.3)
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for some choice of
√
i ∈ k×. Therefore

Aut(E1/k, q) ' Z/8Z.

(ii) The geometric point s̃2 : Spec(k)→M1/2 classifying the elliptic curve

E2 : y2 = x3 − 1 = (x− 1)(x− ζ)(x− ζ2)

together with a rank 1 non-degenerate quadratic form q as above. In this case

Aut(E2/k) ' Z/6Z,

generated by the automorphism:

τ : x 7→ ζx

τ : y 7→ −y.
(2.4)

This automorphism acts on ω by:

τω = −ζ

therefore

Aut(E2/k, q) ' Z/12Z,

generated by

τ̃ := (τ,
√
−ζ), (2.5)

for some choice of
√
−ζ ∈ k×.

(iii) For any other elliptic curve E, we have:

Aut(E/k) = Z/2Z,

generated by the ‘inversion’ automorphism [−1]:

x 7→ x

y 7→ −y.
(2.6)

This automorphism acts on ω via:

[−1]ω = −1

thus

Aut(E/k, q) ' Z/4Z
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generated by the automorphism:

z = ([−1], i) (2.7)

for some choice of i =
√
−1 ∈ k×.

The computation of Aut(E/k, q) for E/k over an algebraically closed field k leads directly

to the computation of Pic(M1/2), following the direct method discovered by Mumford to

compute the Picard group of M1 ([21], §6).

Proposition 2.1.4. Let Pic(M1/2) be the group of isomorphism classes of invertible sheaves

over the metaplectic stack M1/2 → Sch[1/6]. Then there is a canonical isomorphism

Pic(M1/2) ' Z/24Z

given by [ω1/2] 7→ 1 mod 24.

Proof. Consider an invertible sheaf L over M1/2 and let s̃ : Spec(k) → M1/2 be a ge-

ometric point classifying a pair (E/k, q) of an elliptic curve E/k over an algebraically

closed field of characteristic 6= 2, 3 together with a rank 1 non-degenerate quadratic form

q : Γ(Spec(k), s̃∗ω1/2)→ Γ(Spec(k), ωE/k). Any automorphism of Aut(E/k, q) acts by func-

toriality on s̃∗L via a scalar. In particular:

(i) For E = E1, the automorphism σ̃ generating Aut(E1/k, q) given by (2.3) acts via an

8-th root of unity σ̃L.

(ii) For E = E2, the automorphism τ̃ generating Aut(E2/k, q) given by (2.5) acts via a

12-th root of unity τ̃L.

(iii) For all other pairs (E/k, q), the automorphism z generating Aut(E/k, q) given by (2.7)

acts via a 4-th root of unity zL.

Moreover, a similar argument to that of [21], §6, shows that in case (iii) the 4-th root of

unity zL must be the same for all pairs (E/k, q). Thus we can uniquely attach to L a 24-th

root of unity ηL defined by:

η3
L = σ̃L, η2

L = τ̃L, η6
L = zL.

This assignment gives a group homomorphism:

Pic(M1/2) −→ Z/24Z
L 7−→ ηL,
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which can be normalized by the requirement that

ω1/2 7−→ 1 mod 24,

since ηω1/2 is a primitive 24-th root of unity, as can be seen by (2.3) and (2.5).

In particular, the homomorphism must be surjective since the tensor powers of ω1/2 will

map to all the residue classes mod 24. But it is also injective, for if ηL = 1, then L descends

to an invertible sheaf over M1 with σL = τL = 1. Now by [21] §6, L must further descend

to the affine line over Z[1/6] under the map

M1/2
p→M1

j→ A1
Z[1/6],

where j is the usual j-function, and thus be trivial.

2.1.2 Metaplectic forms

A modular form of weight k ∈ Z is a global section of ωk over M1. Thus, it is a rule

f that to each elliptic curve E → S assigns an element f(E/S) ∈ Γ(S, ωkE/S) such that

ϕ∗f(E2/S2) = f(E1/S1) for any morphism of elliptic curves ϕ : E1/S1 → E2/S2. This is

precisely the definition of [19]. We define a similar notion of metaplectic forms, i.e. sections

of

ωk/2 := (ω1/2)⊗k

over the metaplectic stack M1/2.

Definition 2.1.5. A metaplectic form of weight k/2, with k ∈ Z, is a global section of ωk/2

over M1/2. In other words, it is a rule f that to each pair (E/S,Q) of an elliptic curve

over a scheme S ∈ Ob(Sch[1/2]) and a non-degenerate rank 1 ωE/S-valued quadratic form

q : Q → ωE/S, assigns an element

f(E/S,Q) ∈ Γ(S,Qk),

functorially with respect to similitudes lying above morphisms of elliptic curves.
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2.2 Vector-valued modular forms

2.2.1 Geometric representations of Heisenberg groups

Let π : E → S be an elliptic curve with identity section e : S → E, and let L be an invertible

sheaf on E.

Definition 2.2.1. ([23], §6) KE(L) is the group of sections P : S → E of π such that:

T ∗P (L) ' L⊗ π∗L0

for some invertible sheaf L0 over S. KE,0(L) is the subgroup of KE(L) given by those sections

P with:

T ∗P (L) ' L.

GE(L) is the group of pairs (P, ϕ) with P ∈ K0,E(L) and ϕ : T ∗P (L) ' L.

For any S-scheme T , the assignments

KE(L) : T 7−→ KE(L ×S T )

G
E

(L) : T 7−→ GE(L ×S T )
(2.8)

define functors from the category of S-schemes to the category of groups. If L is relatively

ample over S, then these functors are representable by group schemes which are flat and of

finite presentation over S (in fact the first functor is actually a finite subgroup scheme of E).

If we denote these schemes again by KE(L) and GE(L), respectively, then by ([23], Prop. 1)

there is an exact sequence of group schemes over S:

0→ Gm → GE(L)→ KE(L)→ 0,

which makes GE(L) into a Heisenberg group. In particular, the finite flat group scheme

KE(L) is always of order d2, for some integer d.

Definition 2.2.2 ([23], §6). An invertible sheaf L on E/S is symmetric if [−1]∗L ' L,

where [−1] : E → E is the inversion map. It is totally symmetric if there is an isomorphism

ϕ : L '→ [−1]∗L which restricts to the identity on L⊗OE[2d], where d2 is the order of KE(L)

and E[2d] is the subgroup scheme of 2d-torsion. The sheaf L is normalized if e∗L ' OS.

Let now m ∈ 2Z>0 be a positive even integer and suppose we work over the cat-

egory Sch[1/m] of schemes where m is invertible. For any elliptic curve E → S with

S ∈ Ob(Sch[1/m]), consider the invertible sheaf

Lm := OE(me)⊗ (Ω1
E/S)⊗m, (2.9)
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where Ω1
E/S is the sheaf of relative differentials on E.

Proposition 2.2.3. Let m ∈ 2Z>0. For any elliptic curve π : E → S, S ∈ Ob(Sch[1/m]),

the invertible sheaf Lm is relatively ample, totally symmetric and normalized along e.

Proof. The sheaf Lm is relatively ample since π is proper and Lm is ample at each geometric

fiber. It is symmetric since [−1]∗Ω1
E/S ' Ω1

E/S by functoriality of the sheaf of differentials

and since:

[−1]∗OE(me) = OE(m (−e)) ' OE(me).

Write m = 2m′. Then:

Lm ' L⊗2
m′

and Lm′ is symmetric, thus we can pick an isomorphism ϕ : Lm′ ' [−1]∗Lm′ . But then:

ϕ⊗2 : Lm
'→ [−1]∗Lm

is the identity over Lm ⊗OE[2m], thus Lm is totally symmetric.

To show that Lm is normalized, consider the exact sequence of sheaves:

0→ OE → OE(e)→ e∗e
∗OE(e)→ 0.

Taking the long exact sequence of derived functors of π∗, we get an exact sequence:

0→ π∗OE → π∗OE(e)→ e∗OE(e)→ R1π∗OE → R1π∗OE(e)→ . . .

But R1π∗OE(e) = 0, as can be verified on the geometric fibers, hence:

e∗OE(e) ' R1π∗OE,

since all the nonzero sheaves appearing in the sequence are locally free of rank 1. Now by

Serre duality

R1π∗OE ' ω−1
E/S

and thus:

e∗Lm ' (e∗O(e))⊗m ⊗ ωmE/S ' OS

so that Lm is indeed normalized along e.

For Lm as above the corresponding Heisenberg group GE(Lm) is an extension:

0→ Gm → GE(Lm)→ E[m]→ 0,
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where E[m] is the m-torsion subgroup scheme of E, and whose commutator pairing is the

Weil pairing:

em : E[m]× E[m]→ µm.

Definition 2.2.4. The group GE(Lm) is called the level m Heisenberg group of an elliptic

curve E → S.

Proposition 2.2.5. For m ∈ 2Z>0 a positive even integer, the level m Heisenberg group of

an elliptic curve E → S, S ∈ Ob(Sch[1/m]), is a symmetric Heisenberg group.

Proof. The sheaf Lm is symmetric. In particular, if ψ : Lm
'→ [−1]∗Lm is any isomorphism

then we can define an isomorphism δ−1 : GE(Lm)
'→ [−1]∗GE(Lm) given by ([22], Definition

on p. 308)

δ−1(P, ϕ) = (−P, (T ∗−Pψ)−1 ◦ ([−1]∗ϕ) ◦ ψ).

The Heisenberg group GE(Lm) acts on sections of π∗Lm via

U(P,ϕ)(s) = T ∗−P (ϕ−1(s)). (2.10)

With respect to this action, we have:

Proposition 2.2.6. Let m ∈ 2Z>0. For any elliptic curve π : E → S, S ∈ Ob(Sch[1/m]),

the sheaf π∗Lm is a weight 1, rank m representation of the Heisenberg group GE(Lm).

Proof. This follows directly from [23] p.81, since by Proposition 2.2.3 the invertible sheaf

Lm is relatively ample, totally symmetric and normalized along e.

Now the formation of π∗Lm is functorial with respect to morphisms of elliptic curves over

schemes S ∈ Ob(Sch[1/m]), thus the rule:

{π : E → S} 7−→ Γ(S, π∗Lm)

defines a rank m locally free OM1-module Jm over the modular stack M1 → Sch[1/m].

Definition 2.2.7. The sheaf Jm over M1 → Sch[1/m] is the geometric representation of

the level m Heisenberg group of elliptic curves.
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2.2.2 Schrödinger representations of Heisenberg groups

As in the previous section, we let m ∈ 2Z>0 be a positive even integer and we work over the

category Sch[1/m] of schemes over Z[1/m]. For an elliptic curve E → S, S ∈ Ob(Sch[1/m]),

let VH be a weight 1, rank m Schrödinger representation (Definition 1.3.8) of the level m

Heisenberg group GE(Lm) over E . This representation will in general depend on a choice

of lagrangian subgroup H ⊂ GE(Lm), so its formation is not functorial with respect to

morphism of elliptic curves. Thus there can be no ‘universal’ Schrödinger representation

over M1. However, following the approach of Polishchuk ([29], §2) we have:

Proposition 2.2.8. Let m ∈ 2Z>0 be a positive even integer. The rule

{E → S} 7−→ Γ(S,EndOS(VH)),

that to each elliptic curve E → S, S ∈ Ob(Sch[1/m]), assigns the endomorphism algebra of

a Schrödinger representation of GE(Lm), defines an Azumaya algebra with 2-torsion datum

(Definition 1.2.11) (Am,Wm, ι) over the modular stack M1 → Sch[1/m].

Proof. The formation of GE(Lm) is compatible under base-change, therefore if (φ, ϕ) :

E1/S1 → E2/S2 is a morphism of elliptic curves, equipped with Schrödinger representa-

tions VH1 and VH2 , we have GE1(Lm) ' GE2(Lm) and thus:

ϕ∗VH2 ' VH1 ⊗OS1 L

for some invertible sheaf L, by Theorem 1.3.3. But then

EndOS1 (VH1) ' EndOS1 (ϕ∗VH2),

hence the rule defining Am gives a sheaf of OM1-algebras on M1. To show that it is an

Azumaya algebra, choose a collection of étale morphisms {ui : Ui → M1} from schemes

Ui ∈ Ob(Sch[1/m]) such that
∐

i Ui → M1 is surjective. Then by refining the cover if

necessary, each of the elliptic curves Ei → Ui possesses a Lagrangian subgroup Hi ⊂ GEi(Lm),

since these always exists after étale base-change (as follows from example from the theory

of theta structures, [23], §6, or Section 2.3.3 below). But then by Corollary 1.3.7 we can

construct a Schrödinger representation VHi of GEi(Lm), and thus Am is an Azumaya algebra,

since

Am|Ei ' EndOUi (Vm,Ei)

by definition. Next, note that for any elliptic curve E/S the Heisenberg group GE(Lm) is

symmetric by Proposition 2.2.5. Hence by Lemma 1.3.10 the product GE(Lm)×GE(Lm) has
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a canonical Schrödinger representation WE/S of rank m2. The assignment

{E → S} 7→ Γ(S,WE/S)

is functorial with respect to morphisms of elliptic curves, since WE/S corresponds to the

lagrangian subgroup ∆ : E[m] → E[m] × E[m], whose formation is clearly functorial with

respect to morphisms of elliptic curves. Thus the assignment defines a locally free sheafWm

of rank m2 over M1 together with an isomorphism

ι :Wm ' A⊗2
m ,

as explained at the end of Section 1.3.5.

We now apply the theory of Section 1.2.2 to find a locally free sheaf Vm of rank m such

that End(Vm) ' Am and V⊗2
m ' Wm. Namely, we construct a µ2-gerbe

p : K(Am, ι)→M1,

canonically endowed with a locally free OK(Am,ι)-module Vm of rank m such that:

p∗Am ' EndOK(Am,ι)
(Vm),

and

p∗Wm ' V⊗2
m .

Definition 2.2.9. The gerbe p : K(Am, ι)→M1 is called the Schrödinger gerbe of level m.

It is the category whose objects above E/S are locally free OS-modules Vm of rank m such

that Am|E ' End(Vm), Wm|E ' V⊗2
m , and whose morphisms are isomorphisms making the

obvious diagrams commute.

Definition 2.2.10. The sheaf Vm over K(Am, ι) → Sch[1/m] is the Schrödinger represen-

tation of the level m Heisenberg group of elliptic curves.

2.2.3 Vector-valued modular forms

Again let m ∈ 2Z>0 be a positive even integer and consider the contracted product ([15],

§IV.2.4):

K(Am, ι)×µ2M1
M1/2 →M1

in the category of µ2-gerbes over M1 → Sch[1/m]. This is a µ2-gerbe over M1 classifying

triples (E/S,Q,VH) of an elliptic curve over a scheme S ∈ Sch[1/m], a non-degenerate,

rank 1, ωE/S-valued quadratic form QH and a Schrödinger representation VH of the level
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m Heisenberg group GE(Lm). For any integer k ∈ Z, the sheaf Vm ⊗ ωk/2 is defined over

K(Am, ι)×µ2M1
M1/2.

Definition 2.2.11. A weight k/2, Vm-valued modular form is a global section of Vm ⊗ ωk/2
over the stack K(Am, ι)×µ2M1

M1/2. In other words, it is a rule that to each triple (E/S,Q,VH)

of an elliptic curve over a scheme S ∈ Sch[1/m], a non-degenerate, rank 1, ωE/S-valued

quadratic form Q and a Schrödinger representation VH of the level m Heisenberg group

GE(Lm) it attaches an element

f(E/S,Q,VH) ∈ Γ(S,VH ⊗Qk),

functorially with respect to similitudes of Q and VH lying above morphisms of elliptic curves.

Remark 2.2.12. We would also like to consider vector-valued modular forms with coeffi-

cients in V∨m where V∨m is the dual of Vm. In particular, a weight k/2 V∨m-valued modular

form is a global section of V∨m ⊗ ωk/2.

Definition 2.2.13. Let m ∈ 2Z>0 and let R be a ring containing 1/m. A rank 1, index

m/2, weight k/2 vector-valued modular form is defined over R if it is a section of the sheaf

Vm ⊗ ωk/2 over the stack K(Am, ι)×µ2M1
M1/2 → Sch/R.

The adjectives weakly holomorphic, level one should also be added to our definition of

vector-valued modular forms. However, since in this work we do not discuss neither growth

conditions at the cusps nor extensions to higher level, these adjectives will be omitted to

lighten the terminology.

The reason why we use the term ‘modular form’, is the following theorem, which shows

that, at least for k odd, vector-valued modular forms are indeed defined over the modular

stack M1.

Theorem 2.2.14. Let m ∈ 2Z>0 be a positive even integer and let k ∈ Z be odd. Then

the sheaf Vm ⊗ ωk/2, defined over K(Am, ι)×µ2M1
M1/2, descends to a sheaf, also denoted by

Vm ⊗ ωk/2, over the modular stack M1.

Proof. The automorphism group of the map K(Am, ι)×µ2M1
M1/2 →M1 is µ2, generated by

an element [−1]∗ which acts diagonally on Vm ⊗ ωk/2. We must compute the action of this

automorphism on both Vm and ω1/2. For the latter, note that µ2 acts on ω1/2 via isometries

of the quadratic form ω1/2 → ω, i.e. as automorphisms of ω1/2 preserving the quadratic

form. Since automorphisms of ω1/2 are given by multiplication by a scalar, we have that:

[−1]∗ω1/2 = a · ω1/2
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where a ∈ Γ(M1/2,O∗M1/2
) such that a2 = 1. To compute a, it suffices to compute on

geometric points s̃ : Spec(k) → M1/2, classifying pairs (E, q) of an elliptic curve E/k over

an algebraically closed field of characteristic zero or not dividing m, together with a non-

degenerate rank 1 quadratic form q : Γ(Spec(k), s̃∗ω1/2)→ Γ(Spec(k), ωE/S). In this case, if

a = 1, then the action of the group Aut(E/k, q) on q factors through that of Aut(E/k). But

in the proof of Proposition 2.1.4 we showed that the action of Aut(E/k, q) on q is faithful,

so a = −1 and therefore:

[−1]∗ωk/2 = (−1)kωk/2.

For Vm, note that the group µ2 of automorphisms of the map K(Am, ι) → M1 acts on

Vm via transformations B in GL(Vm) which fix V⊗2
m , i.e. B2 = I, and whose inner action

fixes End(Vm), i.e. B is a scalar. Thus B = ±I. To compute B, again it suffices to look

at geometric points s̃ : Spec(k) → K(Am, ι) classifying pairs (E/k, Vm) of an elliptic curve

over an algebraically closed field of characteristic zero or not dividing m, together with a

Schrödinger representation of its level m Heisenberg group GE(Lm). If B = I, then the

action of Aut(E/k, Vm) on Vm would factor through that of Aut(E/k). Now the action of

Aut(E/k, Vm) on Vm is given by the Weil representation [36], for which there are explicit

formulas. In particular, if {δr}r∈Z/mZ is a basis of delta functions for Vm, and if we denote

by z a lift of the element −1 ∈ Aut(E/k) to Aut(E/k, Vm), then the action of z is ([27], Satz

2):

z(δr) = i · δ−r,

where i ∈ k× is a primitive 4-th root of unity. In particular, the action of Aut(E/k, Vm) on

Vm is faithful, so B = −I and thus:

[−1]∗Vm = (−1) · Vm.

Combining the two computations, we see that when k is odd we must have:

[−1]∗
(
Vm ⊗ ωk/2

)
' Vm ⊗ ωk/2

and thus Vm ⊗ ωk/2 descends to a locally free sheaf of rank m on M1.

Therefore, even if neither Vm nor ωk/2 (k odd) descend toM1, their product does! Hence

when k is odd (which is usually the interesting case) sections of Vm ⊗ ωk/2 deserve to be

called modular forms.

Theorem 2.2.14 perhaps also justifies why we tensor sections of Vm by ωk/2, and do not

instead consider sections of Vm alone over the stack K(Am, ι). In particular, if we introduce

level structures to rigidifyM1 into a scheme, then we can speak of sections of Vm⊗ωk/2 over

a scheme: this cannot happen with sections of Vm or ωk/2 alone, since the stacks K(Am, ι)
and M1/2 cannot be rigidified into schemes using level structures.
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Remark 2.2.15. It should be noted that it many cases there is a canonical equivalence

M1/2 ' K(Am, ι)

as µ2-gerbes over M1/2. This is because these two stacks are classified by the cocycles

δ2(ω), δ2(Am, ι) ∈ H2(M1, µ2),

respectively. Now suppose that S ∈ Ob(Sch[1/m]) and let M1,S be the moduli stack of

elliptic curves over a scheme T → S. Consider the Leray spectral sequence

Ep,q
2 = Hp(A1

S, j∗R
qµ2) =⇒ Hp+q(M1,S, µ2)

of the map j :M1,S → A1
S. The two cocycles δ2(ω) and δ2(Am, ι) must agree over the fibers

of j, since, as shown in the proof of Theorem 2.2.14, the cocycles are always nontrivial and

H2(Aut(E/k), {±1}) = Z/2Z,

for all elliptic curves E over an algebraically closed field of characteristic zero or not dividing

m. Thus the product δ2(ω) · δ2(Am, ι)−1 always descends to

H2(A1
S, µ2) = Br(A1

S)[2],

the 2-torsion of the Brauer group of the affine line A1
S. This vanishes in many cases: for

example if S = Spec(R) is the spectrum of a ring, then

Br(A1
R) = Br(R),

which vanishes when R is an algebraically closed field or a finite field.

2.2.4 Comparison between geometric and Schrödinger representations

Consider the sheaf Vm⊗ω−1/2 of weight -1/2 Vm-valued modular forms. By Theorem 2.2.14,

this sheaf is defined overM1. The ‘Main Theorem’ below shows that Vm⊗ω−1/2 is canonically

isomorphic to the sheaf Jm of geometric representations of the level m Heisenberg group of

elliptic curves (Definition 2.2.7).

Theorem 2.2.16 (Main Theorem). Let m ∈ 2Z>0 and let M1 → Sch[1/3m] be the modular

stack of elliptic curves over schemes where 3 and m are invertible. Then there is a canonical

isomorphism

Vm ⊗ ω−1/2 ' Jm
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of locally free OM1-modules of rank m over M1, defined up to multiplication by an element

in Γ(M1,O×M1
).

Proof. Let s : S → M1 be a morphism from a scheme S and let π : E → S be the

corresponding elliptic curve. By Proposition 2.2.6, the sheaf s∗Jm ' π∗Lm is a weight 1,

rank m representation of the level m symmetric Heisenberg group GE(Lm). The same is true

for s∗(Vm ⊗ ω−1/2), if we endow ω−1/2 with the trivial action. Thus by Theorem 1.3.3, there

is an invertible sheaf LS on S such that:

s∗(Vm ⊗ ω−1/2) ' s∗Jm ⊗OS LS

as GE(Lm)-representations. This defines an invertible sheaf LS for every elliptic curve E → S.

Moreover, for any morphism of elliptic curves f : E ′/S ′ → E/S we must have f ∗LS ' LS′ ,
since the above isomorphism is an isomorphism of GE(Lm)-modules ([23], p.82). Thus we

have constructed an invertible sheaf L over M1 such that:

Vm ⊗ ω−1/2 ' Jm ⊗ L. (2.11)

We want to show that L ' OM1 , that is, the class of L in Pic(M1) is trivial. To prove it, we

again employ the direct method of [21] §6, as in our computation of Pic(M1/2) (Proposition

2.1.4). Namely, let k be an algebraically closed field of characteristic 0 or not dividing 3m,

and consider the two geometric points

s1, s2 : Spec(k)→M1,

classifying the two elliptic curves over k:

E1 : y2 = x3 − x = x(x+ 1)(x− 1)

E2 : y2 = x3 − 1 = (x− 1)(x− ζ)(x− ζ2),

for ζ ∈ k× a primitive 3rd root of unity. These elliptic curves are endowed with the special

automorphisms σ of (2.2) and τ of (2.4), respectively. Now σ acts on s∗1L by functoriality

via a scalar σL and τ acts on s∗2L via a scalar τL. We need to show that:

σL = 1, τL = 1.

In turn, to compute σL (resp. τL) we must compare the action of σ (resp. τ) on s∗1Jm (resp.

s∗2Jm) to the action of σ̃ (resp. τ̃) on s̃∗1Vm (resp. s̃∗2Vm), where

s̃1, s̃2 : Spec(k)→ K(Am, ι)
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are geometric points classifying E1 (resp. E2), together with a Schrödinger representation

Vm of the level m Heisenberg group, and σ̃ (resp. τ̃) is a generator for Aut(E1, Vm) (resp.

Aut(E2, Vm)).

(i) Action of σ, τ on Jm: For any elliptic curve E classified by s : Spec(k) → M1, we

have:

s∗Jm ' Γ(E,OE(me)⊗ (Ω1
E)⊗m).

This is a m-dimensional vector space spanned by

{ω⊗m, xω⊗m, yω⊗m, x2ω⊗m, xyω⊗m, . . . , xm/2−2yω⊗m, xm/2ω⊗m} (2.12)

where E is given by a Weierstrass equation of the form:

y2 = x3 + a4x+ a6, a4, a6 ∈ k,

and ω = dx/y.

In particular, for E = E1 the matrix of the action of σ on s∗1Jm with respect to this

basis is given by:

σJm = im


1

−1
. . .

(−1)m/2−2 · i
(−1)m/2

 .

as follows from (2.2). Thus σJm is a diagonal matrix with entries 1,−1, i,−i, whose

multiplicities depend on whether m ≡ 0, 2 mod 4 and can be computed as in Table

2.1 using a simple induction argument.

Table 2.1: Multiplicities of the eigenvalues of σJm

m 1 −1 i −i
4k + 2 k + 1 k+1 k k

4k k+1 k k k − 1
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For E = E2, the matrix of τJm with respect to the basis (2.12) is given by:

τJm = (−ζ)m


1

ζ
. . .

−ζm/2−2

ζm/2

 ,

as follows from (2.4). A simple induction argument shows that

Tr(τJm) = −ζ (2.13)

for all m.

(ii) Action of σ̃, τ̃ on Vm:

Let s̃ : Spec(k)→ K(Am, ι) be a geometric point classifying a pair (E, Vm) of an elliptic

curve E/k and a Schrödinger representation Vm of the level m Heisenberg group. The

automorphism group Aut(E/k, Vm) is a central extension:

0→ µ2 → Aut(E/k, Vm)→ Aut(E/k)→ 0,

which is nontrivial by the proof of Theorem 2.2.14. Thus, for E = E1 the group

Aut(E1/k, Vm) is cyclic of order 8, generated by a lift σ̃ of the automorphism σ ∈
Aut(E1/k) of (2.2), and for E = E2 the group Aut(E2/k, Vm) is cyclic of order 12,

generated by a lift τ̃ of the automorphism τ ∈ Aut(E2/k) of (2.4). We need to

compute the action of these generators on the k-vector spaces Vm. This action is given

by the Weil representation ([36]), which we now define.

Consider the subgroup E[2m] ⊂ E of 2m-torsion. The group Aut(E[2m], Vm) is a

central extension:

0→ µ2 → Aut(E[2m], Vm)→ Sp(E[2m])→ 0,

where we view E[2m] as a rank 2 symplectic Z/2mZ-module with symplectic form

given by the Weil pairing e2m : E[2m]×E[2m]→ µ2m. There is a natural embedding:

Aut(E/k, Vm) ↪→ Aut(E[2m], Vm)

given by the faithful action of the automorphisms of E on E[2m]. In particular, the

extension Aut(E[2m], Vm) is non-trivial: the automorphism [−1] acts on E[2m] via the

scalar matrix −I, thus Aut(E[2m], Vm) contains an element Z which lifts −I and is

of order 4, as we showed in the proof of Theorem 2.2.14. But if the extension were
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trivial, Z would have to be contained in a subgroup isomorphic to the Klein 4 group,

which is a contradiction.

Now it is well-known that E[2m] ' Z/2mZ× Z/2mZ, thus

Sp(E[m]) ' SL2(Z/2mZ).

The central extensions of SL2(Z/2mZ) by µ2 are classified by the cohomology group

H2(SL2(Z/2mZ), µ2), for which we have ([2]):

H2(SL2(Z/2mZ), µ2) ' Z/2Z.

Since Aut(E[2m], Vm) is a non-trivial extension, we must have:

Aut(E[2m], q) ' Mp2(Z/2mZ),

where the group on the right is the metaplectic cover of SL2(Z/2mZ), the unique

nontrivial central extension of SL2(Z/2mZ) by µ2. In particular, we see that the

isomorphism class of Aut(E[2m], Vm), just like that of Sp(E[2m]), does not depend on

the elliptic curve E.

Now the vector space Vm is the space of functions

f : H → k

where H ⊂ E[m] is a lagrangian subgroup. This space is a weight 1, rank m represen-

tation

U : GE(Lm)→ GL(Vm)

of the level m Heisenberg group over E/k. By Weil ([36]), there is a representation

ρm : Mp2(Z/2mZ) −→ GL(Vm),

by linear operators intertwining the representations U and Uγ, the representation U

twisted by an element γ ∈ Sp(E[m]). There are explicit formulas for this representa-

tion. For example, if we denote by S, T some lifts to Mp2(Z/2mZ) of the matrices(
0 −1

1 0

)
,

(
1 1

0 1

)
∈ SL2(Z/2mZ),

respectively, then the action of S, T on a basis {δr}r∈Z/mZ of delta functions for Vm is
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given by ([27], Satz 2):

ρm(T )(δr) = ζ−r
2

2m δr

ρm(S)(δr) =
Ω(ζ2m,

√
m)√

m

∑
s∈Z/mZ

ζ2rs
2m δs,

(2.14)

where ζ2m ∈ k× is a primitive 2m-th root of unity,
√
m ∈ k× is a choice of square root

of m and

Ω(ζ2m,
√
m) :=

1√
m

∑
r∈Z/mZ

ζr
2

2m

is a primitive eight root of unity depending on the choices of ζ2m and
√
m.

Let now E = E1. We can choose a basis for E1[2m] such that the automorphism σ

acts on E1[2m] via the matrix:

σE1[2m] =

(
0 −1

1 0

)
∈ Sp(E1[2m]),

for example by picking a generator P for a cyclic subgroup of order 2m and let

{P, σ(P )} be a basis. With respect to this basis, the generator σ̃ ∈ Aut(E1/k, Vm)

acts on Aut(E1[2m], q) via S, hence by (2.14) we can assume that it acts on Vm by:

ρm(S)(δr) =

√
i√
m

∑
s∈Z/mZ

ζ2rs
2m δs

where the choice of
√
i is the same as in (2.3). Thus:

σ̃Vm = ρm(S) =
√
iDFT(m)

where DFT is the discrete Fourier transform on Z/mZ. The matrix DFT(m) can be

diagonalized: the eigenvalues are 1,−1, i,−i and their multiplicities have been com-

puted by Schur (see for example [1], Theorem I.1.2′). They are given precisely by Table

2.1. Thus we must have: √
i σJm = σ̃Vm (2.15)

for all m.

Similarly, let E = E2. We can choose a basis for E2[2m] such that the automorphism

τ acts on E2[2m] via the matrix:

τE2[2m] =

(
0 −1

1 0

)
∈ Sp(E2[2m]),
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for example by picking a generator P for a cyclic subgroup of order 2m and let {P, τ(P )}
be a basis. Note that:(

0 −1

1 0

)
·
(

1 1

0 1

)
=

(
0 −1

1 0

)
∈ Sp(E2[2m]),

and therefore the automorphism τ̃ generating Aut(E2/k, Vm) acts on (E2[2m], Vm) as

ST and thus

τ̃Vm = ρm(ST ).

Using the formulas (2.14) we can compute:

Tr(τ̃Vm) =
Ω(ζ2m,

√
m)√

m

∑
r∈Z/mZ

ζr
2

2m = Ω(ζ2m,
√
m)2 (2.16)

for all m, where we can assume that

Ω(ζ2m,
√
m)2

−ζ
=
√
−ζ,

where
√
−ζ is chosen as in (2.5).

We are now ready to put everything together. By (2.11) we know that

σ̃Vm · σ̃ω−1/2 = σJm · σL

where σ̃Vm and σJm are m×m-dimensional linear transformations and σ̃ω−1/2 , σL are scalars.

By (2.15), we know that

σ̃ω1/2 · σL =
√
i,

but σ̃ω1/2 =
√
i by (2.3), hence

σL = 1.

Similarly, we have:

τ̃Vm · τ̃ω−1/2 = τJm · τL,

and thus

τ̃ω1/2 · τL =
Tr(τ̃Vm)

Tr(τJm)
.

By (2.13) and (2.16) we can compute the ratio of the traces on the right, so that:

τ̃ω1/2 · τL =
√
−ζ.
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But τ̃ω1/2 =
√
−ζ by (2.5), thus

τL = 1,

and the theorem is proved.

Corollary 2.2.17. For any integer k ∈ Z there is a canonical isomorphism

Vm ⊗ ωk−1/2 ' Jm ⊗ ωk

over the modular stack M1 → Sch[1/3m], defined up to an element of Γ(M1,O×M1
).

Remark 2.2.18. The notation Jm has been chosen because of the relation between this sheaf

and the notion of Jacobi forms of [14]. This relation is fleshed out in Section 3.2.4 below. In

particular, we will show that Corollary 2.2.17, and especially its refinement Corollary 2.2.21

given below, gives an algebraic proof of Theorem 5.1 of [14] relating vector-valued modular

forms to Jacobi forms.

2.2.5 Heat equations and algebraic theta functions

To simplify matters, in this section we consider the sheaf Vm as being defined over the

metaplectic stackM1/2. This can be done in light of Remark 2.2.15, or simply by replacing

Vm by (Vm ⊗ ω−1/2)⊗ ω1/2, which is indeed defined over M1/2.

Let M1(2m) → Spec(Z[1/2m]) be the moduli scheme of full level 2m arithmetic level

structures on elliptic curves, i.e. isomorphisms

λ : E[2m]
'−→ Z/2mZ× µ2m,

which are required to be symplectic with respect to the Weil pairing on E[2m] and the

natural symplectic pairing

ed((x1, ζ1), (x2, ζ2)) = ζx12 (ζx21 )−1

on Z/2mZ× µ2m.

Consider the fiber product:

M1/2(2m) :=M1(2m)×M1M1/2,

in the category of Deligne-Mumford stacks. The fundamental theorem of this section is that

Vm can be trivialized over M1/2(2m):

61



Theorem 2.2.19. There exists an isomorphism

p∗2mVm '
⊕

r∈Z/mZ

OM1/2(2m) · δr (2.17)

over the stack p2m :M1/2(2m)→M1/2, for some constant everywhere non-zero sections δr.

In particular, Vm trivializes over M1/2(2m).

Proof. Let (E/S,VH , λ) be a triple of an elliptic curve over a scheme S ∈ Ob(Sch[1/m]), a

Schrödinger representation (Definition 1.3.8)

VH = A(1)(H\GE(Lm))

of the level m Heisenberg group, for H ⊂ GE(Lm) a lagrangian subgroup, and an arithmetic

level 2m structure:

λ : E[2m] ' Z/2mZ× µ2m.

We want to show that the level structure λ can be used to trivialize VH . For ease of notation,

let G := GE(Lm). Let H1 be the projection of H onto E[m]. To trivialize VH we want to

find an isomorphism

A(1)(H\G) ' {Functions f : Ĥ1 → OS}, (2.18)

for then the lagrangian subgroup Ĥ1 ⊂ E[m] can be trivialized as a constant group scheme

using λ and we get

{Functions f : Ĥ1 → OS} '
⊕

r∈Z/mZ

OS δr

for the basis of delta functions on Ĥ1. To construct the isomorphism 2.18, we can proceed

as in [20], V.3.3.3.2. Namely, suppose we can find a section

σ : H1\E[m] −→ H\G.

Then we can construct an isomorphism:

{Functions f : H1\E[m]→ OS} ' A(1)(H\G)

by sending f to the function ϕσ(f) defined by:

ϕσ(f)(tσ(k)) = tf(k),

where we decomposed an arbitrary element of G as g = tσ(k). Since H1\E[m] ' Ĥ1

canonically, we would then be done.

In order to construct σ, note that such a section exists affine-locally on S ([20], V.3.3.3).
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This is because if U = Spec(R) ⊂ S is the spectrum of a local ring, then H\G × U is a

Gm-torsor over Ĥ1, but Pic(Ĥ1 × U) = 0 since Ĥ1 is semi-local. Thus we can cover S by

affine opens Ui and find sections σi over them. Over the intersections Ui ∩ Uj, σi and σj are

both lifts of H1\E[m] and they must differ by a morphism

αij : H1\E[m]→ Gm.

If we let σj = σiαij, we then have:

(ϕσj(f)− ϕσi(f))(tσ(k)) = t(αij(k)−1 − 1)f(k)

over the intersections Ui∩Uj. Now we want the isomorphism (2.18) to preserve the involution

ι on End(VH), thus we must require

αij(−k) = αij(k)

for all k ∈ H1\E[m], i.e. αij(k) ⊂ µ2 for all i, j.

Consider now the map

E[2m]→ E[m]

given by P → [2]P . As in [22], §2, this map extends to a map of Heisenberg groups:

η2 : GE(L2m) −→ G
(t, P ) 7−→ (t2, [2]P ).

Let now H̃1 be a maximal isotropic subgroup in E[2m] such that [2]H̃1 = H1 (which can be

found using the level structure), and let H̃ ⊂ GE(L2m) be a lagrangian subgroup such that

η2(H̃) = H. Proceeding as above, on affine charts Ui we can find sections

σ̃i : H̃1\E[2m]→ GE(L2m)

which differ on the intersections Uij by morphisms:

α̃ij : H̃1\E[2m]→ µ2.

Set now

σi(k) := η2(σ̃(k̃))

for k ∈ H1\E[m] and k̃ such that [2]k̃ = k. These are well-defined local sections σi :

H1\E[m] → H\G, since η2 has for kernel the 2-torsion of GE(L2m). Over the intersections
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Ui ∩ Ui, we have:

(ϕσj(f)− ϕσi(f))(tσ(k)) = t(α̃2
ij(k)−1 − 1)f(k) = 0

therefore the σi define the desired global isomorphism

{Functions f : H1\E[m]→ OS} ' A(1)(H\G)

which trivializes VH .

Now the triple (E,VH , λ) is classified by a morphism:

s : S →M1/2(2m),

where again we have implicitly identified the stacks M1/2 and K(Am, ι). In particular,

s∗Vm = VH can be trivialized over S as above. If we have a morphism φ : (E,VH , λ) →
(E ′,VH′ , λ′) of elliptic curves with a Schrödinger representation and a full level 2m arithmetic

level structure, the trivializations of VH and VH′ constructed above are functorial with respect

to φ, therefore we obtain the desired trivialization of Vm over the stack M1/2(2m).

By the Theorems 2.2.19 and 2.2.16 the sheaves

Vm, Jm ⊗ ω1/2,

defined over the metaplectic stack M1/2, are trivial over M1/2(2m). In particular, we can

normalize the isomorphism between Vm and Jm⊗ω1/2 by requiring that a basis of trivializing

sections for Jm ⊗ ω1/2 maps to the basis {δr} of (2.17). This uniquely determines the

isomorphism up to a constant Z[1/3m]×, as opposed to an element of Γ(M1,O×M1
). In more

abstract languange, we are choosing the isomorphism not only in the category of G(Lm)-

representations, but in the category of locally constant representations of G(Lm). We thus

obtain:

Theorem 2.2.20 (Main Theorem, Second Version). Let m ∈ 2Z>0 and letM1 → Sch[1/3m]

be the modular stack of elliptic curves over schemes were 3 and m are invertible. Then there

is a canonical isomorphism

Vm ⊗ ω−1/2 ' Jm

of locally free OM1-modules of rank m over M1, defined up to multiplication by an element

in Z×[1/3m], and compatible with the isomorphism

Vm ' Jm ⊗ ω1/2,

as étale locally constant sheaves over M1/2.
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Corollary 2.2.21. For any integer k ∈ Z there is a canonical isomorphism

Vm ⊗ ωk−1/2 ' Jm ⊗ ωk

over the modular stack M1 → Sch[1/3m], defined up to an element of Z[1/3m]×.

The structure of Jm ⊗ ω1/2 as a locally constant sheaf over M1/2 directly leads to a

notion of algebraic theta functions of level m. In fact, another way of stating that Jm⊗ω1/2

is locally constant is to say that Jm is endowed with a canonical integrable connection ∇,

defined up to µ2, whose monodromy is the Weil representation of the metaplectic group

0→ µ2 → Mp2(Z/2mZ)→ Sp2(Z/2mZ)→ 0,

the unique nontrivial central extension of Sp(Z/2mZ) by µ2, viewed as the automorphism

group of the cover

M1/2(2m)→M1.

By the theory of Welters ([37], [18]) the connection ∇ is an algebraic analog of the heat

equations satisfied by theta functions. In particular, we can find sections

{ϑm,r}r∈Z/mZ ∈ Γ(M1(2m),Jm), (2.19)

which correspond to horizontal sections of ∇ trivializing Jm ⊗ ω1/2 over M1/2(2m), hence

mapping to the delta functions δr of (2.17) up to a constant. These sections ϑm,r can be

viewed as algebraic analogs of the classical level m theta functions.

2.2.6 Tate curves

We would now like to illustrate some aspects of the theory so far developed by computing

explicitly with q-expansions over Tate curves. As an application of these computations, we

will be able to define q-expansions for vector-valued modular forms in Section 2.2.7.

To begin, we recall the description of the Tate curve Tate(q), as found for example in

[13]. In particular, let Spec(Z[[q]][xi, yi]) be an infinite collection of affine planes over Z[[q]]

indexed by i ∈ Z and let Gq

m be the scheme obtained as the union of all the affine schemes:

Uj = Spec(Z[[q]][xj−1/2, yj+1/2]/(xj−1/2, yj+1/2 − q)), j ∈ 1/2 + Z,

glued along the subschemes

Ti = Ui−1/2 ∩ Ui+1/2

by

xi = y−1
i .
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This is a scheme, locally of finite type over Spec(Z[[q]]), whose fiber above q = 0 is an infinite

chain of projective lines, given by

Di := Ti ∩ V (q), i ∈ Z,

and linked so that the i-th copy is attached to the i+ 1-th copy by gluing 0 on the i-th copy

to ∞ on the i+ 1-th copy. Over Spec(Z((q))) all the charts Uj are glued together by:

xi = t−ix0, yi = tiy0,

so that the scheme Gq

m over Spec(Z((q))) is given by T0 = Spec(Z((q))[x0, x
−1
0 ]). In particular,

the function

x := x0

gives a rational function to all of Gq

m, with divisor

div(x) =
∑
i∈Z

Di.

Now to form the Tate curve Tate(q) we restrict Gq

m to infinitesimal neighborhoods Spec(Z[[q]]/(qn))

of the special fiber V (q), so that non-consecutive Uj’s are now disjoint. There is an action

of Z on the Ui’s given by

(i, x) = q−ix

which sends Ui to Ui−1. The quotients

Taten(q) := Gq

m × Spec(Z[[q]]/(qn))/qZ

thus exist and the limit

Tate(q) := lim
→

Taten(q)

is a formal scheme over Spf(Z[[q]]). This formal scheme can be algebrized by a scheme Tate(q)

over Spec(Z[[q]]), whose restriction over Spec(Z((q))) is the elliptic curve Tate(q). The Tate

curves Tate(q1/k), for k ∈ Z, are similarly obtained, by taking the quotients

Taten(q1/k) := Gq1/k

m × Spec(Z[[q1/k]]/(qn/k))/qZ

and letting Tate(q1/k) be the algebraization of the formal scheme Tate(q1/k) := lim→ Taten(q1/k).

The restriction of Tate(q1/k) to Spec(Z((q1/k))) is the elliptic curve Tate(q1/k).

Let now m ∈ 2Z>0 be a positive even integer. There is a canonical inclusion of group

schemes ([13], VII.1.12.3)

µm ⊂ Tate(q)[m],
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which provides the m-th torsion Tate(q)[m] with a canonical maximal isotropic subgroup.

We now have:

Lemma 2.2.22. The subgroup µm ⊂ Tate(q)[m] lifts canonically to a lagrangian subgroup

Hcan ⊂ GTate(q)(Lm), where GTate(q)(Lm) is the central extension

0→ Gm → GTate(q)(Lm)
π→ Tate(q)[m]→ 0,

the level m Heisenberg group of Tate(q).

Proof. The group µm ⊂ Tate(q)[m] is isotropic, thus π−1(µm) is a commutative extension of

Gm. But any commutative extension of a commutative finite group scheme by Gm over an

affine scheme is trivial ([35], Theorem 1) thus π−1(µm) ' Gm × µm as a group scheme, and

we can take Hcan := {1} × µm.

Therefore, Tate(q) is endowed with a canonical Schrödinger representation

V can
m := VHcan . (2.20)

This representation can be canonically trivialized over Tate(q1/2m), as the following propo-

sition shows.

Proposition 2.2.23. Over Tate(q1/2m) → Spec(Z[1/m]((q1/2m)), there is a canonical trivi-

alization

V can
m ' {Functions f : Z/mZ→ Z[1/m]((q))} '

⊕
r∈Z/mZ

Z[1/m]((q1/2m)) · δr, (2.21)

by a basis of delta functions {δr}r∈Z/mZ.

Proof. By [13], VII.1.16.4, over Tate(q1/2m) there is a canonical splitting of:

0→ µm → Tate(q1/2m)[m]→ Z/mZ→ 0

given by sending the constant function 1 to the constant function q1/m. Thus we have a

canonical decomposition

Tate(q1/2m)[m] ' H1 × Ĥ1

into maximal isotropic subgroups, where H1 = µm. Now by Lemma 2.2.22, H1 lifts canoni-

cally to a lagrangian subgroup Hcan of GTate(q)(Lm), and by definition we have:

V can
m = A(1)(Hcan\GTate(q)(Lm)).
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By the proof of Lemma V.3.3.3 of [20], in particular V.3.3.3.2, if we choose a lifting

σ : Ĥ1 → GTate(q)(Lm)

of Ĥ1 to a lagrangian subgroup of GTate(q)(Lm) then there is an isomorphism

A(1)(Hcan\GTate(q)(Lm)) = {Functions f : Ĥ1 → Z[1/m]((q))}.

Thus, to prove the proposition, we need to provide a canonical such lift σ.

To do so, we need to compute the action of GTate(q)(Lm) on sections of Lm, given by

(2.10). In particular, we need to compute the action on Lm of translation by the element

q1/m, and find an explicit isomorphism:

ϕ : Lm → q1/m,∗Lm.

The map σ(q1/m) = (ϕ, q1/m) is then the required lift.

To compute the action of q1/m on Lm, note first that over Tate(q1/2m) the sheaf of relative

differentials is trivial, thus

Lm ' OTate(q1/2m)(me),

where e is the identity section. Now over Gq

m, consider the divisor given by

D :=
∑
i∈Z

i2

2
D

(q)
i .

The q-invariant sections of the invertible sheaf corresponding to this divisor over the quotients

Taten(q) descend to the sections of OTate(q)(e) over Tate(q). Under the map

π : Gq1/2m

m → Gq

m,

given by raising q1/2m to the 2m-th power, we have

π∗(D) =
∑
i∈Z

1

2
i2D

(q1/2m)
i .

At the level of the underlying elliptic curve, this map corresponds to a cyclic isogeny of

degree 2m

π : Tate(q1/2m)→ Tate(q),

for which π∗OTate(q)(e) = OTate(q1/2m)(2me). Now we are interested in the invertible sheaf
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OTate(q1/2m)(me), whose sections are the q-invariant sections over Gq1/2m

m of divisor

D(m) :=
∑
i∈Z

1

4
i2D

(q1/2m)
i .

Now the action of q1/m on Gq1/2m

m sends Di to Di−2, thus:

q1/m,∗D(m) =
∑
i∈Z

1

4
i2Di−2

=
∑
i∈Z

1

4
(i− 2)2Di−2 +

∑
i∈Z

iDi−2 −
∑
i∈Z

Di−2

= D(m) +
∑
i∈Z

(i− 2)Di−2 +
∑
i∈Z

Di−2

= D(m) +
∑
i∈Z

iDi +
∑
i∈Z

Di

= D(m) + div(x) + div(q1/2m).

In other words, we can choose a canonical isomorphism:

Lm ' q1/m,∗Lm

simply by multiplying sections by the rational function xq1/2m. This provides the required

map

σ : Ĥ1 → GTate(q)(Lm)

by sending q1/m to (xq1/2m, q1/m).

2.2.7 q-expansions

We would now like to define q-expansions of vector-valued modular forms, in a way analogous

to the q-expansions of modular forms of integral weight. In particular, consider the Tate

elliptic curve Tate(q)→ Spec(Z((q))). The Hodge bundle ωTate(q) has a canonical everywhere

non-vanishing section ωcan ([13], VII.1.12.2), which gives a canonical trivialization:

ωTate(q) ' Z((q)) · ωcan.

Therefore ωTate(q)-valued quadratic forms are in bijection with Z((q))-valued quadratic forms,

and in particular we can find a ωTate(q)-valued rank 1 non-degenerate quadratic form

q : Q → ωTate(q),
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corresponding to f 7→ f 2, together with a canonical trivialization:

Q ' Z((q)) · ω1/2
can. (2.22)

Next, for m ∈ 2Z>0, consider the Tate curve Tate(q1/2m) together with its canonical

Schrödinger representation (2.20). The triple (Tate(q1/2m),Q, V can
m ) taken over Z[1/m]((q1/2m))

corresponds to a morphism

ψ : Spec(Z[1/m]((q1/2m)))→ K(Am, ι)×µ2M1
M1/2,

with the property that:

ψ∗
(
Vm ⊗ ωk/2

)
' V can

m ⊗Qk

for any integer k ∈ Z. In particular, using the trivializations (2.22) and (2.21) we see

that a vector-valued modular form f ∈ Γ(K(Am, ι) ×µ2M1
M1/2,Vm ⊗ ωk/2) defines a unique

m-dimensional vector:

ψ∗(f) = {fr}r∈Z/mZ ∈ Z[1/m]((q1/2m))m.

Definition 2.2.24. The vector ψ∗(f) is called the q-expansion of f .

Remark 2.2.25. The q-expansions of V∨m-valued modular forms (Remark 2.2.12) can simi-

larly be obtained by considering trivializations dual to (2.22), and (2.21).

Using q-expansions, we can also define the notion of a holomorphic vector-valued modular

form, although this notion more properly belongs to compactifications of the moduli stacks,

which we do not discuss in this work.

Definition 2.2.26. Let m ∈ 2Z>0 and let R be a ring containing 1/m. A weight k/2 Vm-

valued modular form f defined over R is holomorphic if its q-expansion lies in (Z[[q1/2m]]⊗R)m.

More precisely, we require:

ψ∗R(f) ∈ (Z[[q1/2m]]⊗R)m,

where

ψR : Spec(Z((q1/2m))⊗R)→ K(Am, ι)×µ2M1
M1/2

is the morphism obtained by extending the triple (Tate(q1/2m),QTate(q1/2m), V
can
m ) to R.

Remark 2.2.27. A similar definition can be given for holomorphic V∨m-valued modular forms.

Remark 2.2.28. Note in particular that contrary to the integral weight case, vector-valued

modular forms always have q-expansions containing fractional powers of q. This is indeed a

feature of the complex analytic theory as well.
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2.3 Theta constants and modular forms of half-integral weight

2.3.1 Theta constants

We now introduce the prototypical example of vector-valued modular forms, the vector of

level m theta constants. In particular, let m ∈ 2Z>0 be a positive even integer and let

π : E → S be an elliptic curve over a scheme S ∈ Ob(Sch[1/m]) with identity section

e : S → E. The invertible sheaf

Lm = OE(me)⊗ (Ω1
E/S)⊗m,

is normalized along e, by Proposition 2.2.3. Therefore the pull-back e∗ along the identity

section gives a well-defined ‘evaluation’ homomorphism:

eve : Γ(E,Lm)→ H0(S,OS),

which can be viewed as an element

eve ∈ Γ(E,L∨).

The assignment

{π : E → S} 7−→ eve ∈ Γ(E,L∨) = Γ(S, π∗L∨)

is functorial with respect to morphisms of elliptic curves, since e and Lm are, and it gives a

well-defined global section

θnull,m ∈ Γ(M1,J ∨m).

By the main Theorem 2.2.20, second version, we obtain a vector-valued modular form

θnull,m ∈ Γ(M1,V∨m ⊗ ω1/2),

defined up to a constant in Z×[1/3m]. In particular, θnull,m is a V∨m-valued modular form of

weight 1/2, in the sense of Definition 2.2.11 and Remark 2.2.12.

Definition 2.3.1. The weight 1/2, V∨m-valued modular form θnull,m is called the vector of

theta constants of level m.

2.3.2 q-expansions of theta constants

We now want to compute the q-expansions of the vector-valued modular forms θnull,m, and

show that they indeed agree with the classical q-expansions of theta constants, obtained by

complex-analytic methods.

In order to compute the q-expansion of θnull,m, we first compute the canonical basis of
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Γ(Tate(q1/2m),Lm) given by the theta functions ϑm,r defined by (2.19). To do that, note

that over the Tate curve Tate(q1/2m) we have a canonical isomorphism

Γ(Tate(q1/2m),Lm) '
⊕

r∈Z/mZ

Z[1/m]((q)) · δr, (2.23)

obtained by pulling back the isomorphism of Theorem 2.2.20 and applying the canonical

trivializations (2.22) and (2.17). Thus a canonical basis of Γ(Tate(q1/2m),Lm) can be spec-

ified by computing the images of the delta functions δr under this isomorphism which are

horizontal for the integrable connection ∇ given by the heat equations, defined at the end

of Section 2.2.5. Note that over the Tate curve the connection ∇, in principle only defined

on Jm⊗ω1/2, descends to a canonical integrable connection on Jm, since we have trivialized

ω1/2.

Proposition 2.3.2. Let m ∈ 2Z>0 be a positive even integer and let Tate(q1/2m) be the

Tate elliptic curve over Spec(Z((q1/2m))). The invertible sheaf Lm over Tate(q1/2m) has a

canonical basis of global sections:

θm,r(x) =

( ∑
n≡r mod m

qn
2/2mxn

)
ωmcan, r ∈ Z/mZ,

defined up to a constant in Z[1/m]×, such that θm,r corresponds to the delta function δr in

(2.23).

Proof. The canonical differential ωcan sets up an isomorphism

Lm ' OTate(q)(me),

so we have to show that the theta functions correspond to the canonical trivialization of this

sheaf.

Recall from the proof of (2.21) that the invertible sheaf OTate(q1/2m)(me) is given by the

q-invariant sections over Gq1/2m

m of divisor

D(m) :=
∑
i∈Z

1

4
i2D

(q1/2m)
i .

We want to construct these q-invariant sections explicitly. To lighten notation, set Di =
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D
(q1/2m)
i . Note that the action of q on Gq1/2m

m sends Di to Di−2m, thus:

q∗D(m) =
∑
i∈Z

1

4
i2Di−2m

=
∑
i∈Z

1

4
(i− 2m)2Di−2m +

∑
i∈Z

imDi−2m −
∑
i∈Z

m2Di−2m

= D(m) +
∑
i∈Z

(i− 2m)mDi−2m +
∑
i∈Z

m2Di−2m

= D(m) +
∑
i∈Z

imDi +
∑
i∈Z

m2Di

= D(m) + div(xm) + div(qm/2).

In particular, q acts on sections of divisor D(m) by multiplication by xmqm/2. To construct

q-invariant sections, define the ‘slash operator’

f(x)|q = xmqm/2 f(qx),

and apply it infinitely many times to 1 ∈ Γ(Gq1/2m

m ,L(D(m))). We thus obtain the q-invariant

section:

ϑm,0 :=
∑
n∈Z

qmn
2/2xmn.

This section descends to a section over the formal scheme Tate(q1/2m) and then to a section

of OTate(q1/2m)(me) over Tate(q1/2m). We would like to compute the action of the level m

Heisenberg group

0→ Gm → GTate(q1/2m)(m)→ Tate(q1/2m)[m]→ 0

on ϑm,0, and on sections of Lm in general. In order to do so, it suffices to compute the actions

of the lagrangian subgroups Hcan and its dual Ĥcan. Now by Lemma 2.2.22, the lagrangian

subgroup

Hcan ' {1} × µm ⊂ GTate(q1/2m)(m)

acts simply by translation by a root of unity ζ ∈ µm, i.e.

(1, µm)θ(x) = θ(ζ−1x)

for any section ϑ(x) of Lm. On the other hand, by the proof of (2.21), we have:

Ĥcan ' {(xr qr/2m, qr/m)}r∈Z/mZ,
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so that

(xr qr/2m, qr/m)ϑ(x) = xr qr/2mθ(q−r/mx).

We thus define the theta functions

ϑm,r := (xr qr/2m, qr/m)ϑm,0(x), r ∈ Z/mZ,

by translating ϑm,0 by all the elements in Ĥcan. That these form a basis for Γ(Tate(q1/2m),Lm)

can be seen from the fact that their span is GTate(q1/2m)(m)-invariant and there are no non-

trivial GTate(q1/2m)(m)-invariant subspaces. Moreover, we claim that under the canonical

trivialization (2.23), we have:

ϑm,r = δr, r ∈ Z/mZ

up to a constant in Z[1/m]×. To see this, note that δ0 and ϑ0,r are both fixed by the action

of Hcan, thus

ϑ0,r = f · δ0

where f ∈ Z[1/m]((q1/2m)). But ϑ0,r is also horizontal for the connection ∇, since over the

Tate curve this connection is given by the heat operator

∇ = (∂q −
1

2m
∂2
x)
dq

q
,

where

∂q := q
∂

∂q
, ∂x := x

∂

∂x
,

(as can be deduced from the computations of [18], §3). Thus ϑ0,r is the unique (up to a

constant in Z[1/m]×) horizontal image of δ0 in Γ(Tate(q1/2m),Lm). Now the result follows

by noting that δr is the translate of δ0 by elements of Ĥcan, and that all the theta functions

ϑm,r satisfy the heat equation.

We can use the Proposition to find the q-expansions of theta constants, as follows. Let

ψ : Spec(Z[1/m]((q))) −→M1/2

be the point classifying the triple (Tate(q1/2m), V can
m ,Q). Then V can

m ' ψ∗Vm and the iso-

morphism of Theorem 2.2.20 gives an isomorphism:

V can
m ⊗Q−1 ' π∗Lm

where π : Tate(q1/2m)→ Spec(Z[1/3m]((q))) is the structure morphism. For ease of notation,

let R = Z[1/3m]((q)). There is a commutative diagram of isomorphisms:
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V can
m ⊗Q−1 π∗Lm

⊕
r∈Z/mZR (δr ⊗ ω−1/2

can )
⊕

r∈Z/mZR ϑm,r

where the vertical arrows are given by Proposition 2.3.2 and the trivializations (2.20),

(2.22). Moreover, the isomorphisms in the diagram are isomorphisms of locally constant

GTate(q1/2m)(Lm)-modules, so that in particular δr maps to ϑm,r, up to multiplication by a

constant.

There is a corresponding commutative diagram of duals

V can,∨
m ⊗Q π∗L∨m

⊕
r∈Z/mZR (δ∗r ⊗ ω

1/2
can)

⊕
r∈Z/mZR ϑ∗m,r,

where the ∗ superscript indicates that we are taking dual bases. In particular, the element

eve ∈ Γ(M1,J ∨m), defined in Section 2.3.1, pulls back over the Tate curve as

ψ∗(eve) =
∑

r∈Z/mZ

ϑm,r(q, 1)ϑ∗m,r

and thus

ψ∗(θnull,m) =
∑

r∈Z/mZ

ϑm,r(q, 1) δ∗r ⊗ ω1/2
can.

These are precisely the q-expansions of the classical level m theta constants, up to multip-

plication by the ever-present element of Z[1/3m]×.

2.3.3 Theta structures

We would now like to explain the relationship between our theory of the Schrödinger repre-

sentations Vm and that of Mumford’s theta structures ([22], [23]).

We begin by recalling the basic facts from the theory of theta structures, as first laid out

in much greater generality by Mumford in [23], §6. Let S be a scheme in Ob(Sch[1/m]) and

set:

H(m) := Z/mZ

Ĥ(m) := µm

K(m) := H(m)⊕ Ĥ(m)

75



as group schemes over S. Consider the central extension G(m) given as a S-scheme by:

G(m) := Gm ×H(m)× Ĥ(m)

and with multiplication defined by:

(a1, x1, ζ1) · (a2, x2, ζ2) = (a1 a2 ζ
x1
2 , x1 + x2, ζ1 ζ2).

The group scheme G(m) is a Heisenberg group. A model for its weight 1, rank m repre-

sentation can be constructed as follows: let

V (m) := {Functions f : Z/mZ→ Z[1/m]}.

This is a free module over Z[1/m], hence it gives rise to a free sheaf V(m) of rank m over

Spec(Z[1/m]). This sheaf is endowed with a representation ([22] §1, [23] §6):

G(m) −→ GL(V(m))

(a, x, ζ) 7−→ U(a,x,ζ)f(y) := a ζy f(x+ y)

which is clearly of weight 1 (and rank m).

In [23], §6 Mumford shows how these ‘abstract’ Heisenberg groups can be used to trivialize

Heisenberg groups on elliptic curves. In particular, suppose that an elliptic curve E → S is

endowed with an arithmetic level m structure (see Section 2.2.5 for definition)

λ : E[m]
'−→ Z/mZ× µm.

Then starting from λ, we can also trivialize the Heisenberg group of level m of E → S, as

follows:

Definition 2.3.3. Let m ∈ 2Z>0. A level m theta structure is an isomorphism (id,Θ, λ),

simply denoted by Θ, of exact sequences of group schemes over S:

0 Gm GE(Lm) E[m] 0

0 Gm G(m) H(m) 0.

id Θ λ

Remark 2.3.4. The existence of theta structures is discussed in [23].

The group G(m) is a symmetric Heisenberg group, and it has an automorphism D−1 ∈
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Aut(G(m)) given by the formula:

D−1(a, x, ζ) = (a,−x, ζ−1). (2.24)

We want this automorphism to be compatible with the automorphism δ−1 of GE(Lm) (see

proof of Proposition 2.2.5 for definition).

Definition 2.3.5. A theta structure Θ for Lm is called symmetric if

Θ ◦ δ−1 = D−1 ◦Θ.

Consider now the functor:

Sch[1/m] −→ Sets

S 7−→
{

isomorphism classes (E,Θ) of elliptic curves E → S

and a symmetric level m theta structure Θ

}
.

(2.25)

By [23], §6 this functor is representable by a scheme Mm,2m over Z[1/m]. The ‘forget

the theta structure’ functor gives a 1-morphism of stacks:

Mm,2m −→M1.

The following theorem, essentially contained in [23], shows that over the fiber product

M̃m,2m :=Mm,2m ×M1M1/2,

taken in the category of Deligne-Mumford stacks, the sheaf Vm of Schrödinger representations

can be decomposed into m copies of an invertible sheaf.

Theorem 2.3.6. Let m ∈ 2Z>0. Over pm,2m : M̃m,2m →M1/2, there is an invertible sheaf

Lθ,m and a canonical isomorphism

p∗m,2m(Vm) ' L⊕mθ,m,

defined up to multiplication by an element in Γ(M̃m,2m,O×M̃m,2m
).

Proof. Since the functor (2.25) is representable, there exists a universal elliptic curve

E −→Mm,2m

canonically endowed with a symmetric level m theta structure Θ. Via this theta structure,

theOMm,2m-modules V(m)⊗OMm,2m and Vm⊗ω−1/2, considered overMm,2m, are both weight
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1, rank m representations of the level m Heisenberg group GE(Lm). Hence by Theorem 1.3.3

we must have:

Vm ⊗ ω−1/2 ' V(m)⊗ L

for some invertible sheaf L over Mm,2m. But V(m) is free of rank m, hence:

Vm ⊗ ω−1/2 ' L⊕m,

over Mm,2m. The theorem is now obtained by tensoring both sides by ω1/2 and setting

Lθ,m := L ⊗ ω1/2.

Thus the theory of theta structures produces invertible sheaves Lθ,m which decompose

the Schrödinger representation over M̃m,2m.

Remark 2.3.7. By [22], §2, there is a morphism

φm :M1/2(2m)→ M̃m,2m,

which is finite étale of degree 4 on geometric fibers. Therefore Lθ,m must be of order 4 in

Pic(M̃m,2m), i.e. L⊗4
θ,m is trivial. But we can say even more. By Theorem 2.2.19, we know

that the invertible sheaves Lθ,m trivialize over M1/2(2m). Moreover, for each copy of Lθ,m
in the decomposition of Theorem 2.3.6, we must have

φ∗m(Lθ,m) ' OM1/2(2m) δr

for some r ∈ Z/mZ. This is because both the decomposition of Theorem 2.3.6 and the

trivialization of Theorem 2.2.19 are equivariant with respect to the Heisenberg action. If

we combine this observation with Theorem 2.2.20, we deduce that the invertible sheaves

Lθ,m ⊗ ω−1/2 each correspond to one of the level m theta functions ϑm,r of (2.19), i.e. the

theta function ϑm,r trivializes the r-th copy of Lθ,m over M1/2(2m).

2.3.4 Shimura’s modular forms of half-integral weight

As a final application of our algebraic theory of vector-valued modular forms, we would like

to construct algebro-geometric analogs of Shimura’s modular forms of half-integral weight

([31]), usually just called modular forms of half-integral weight.

To this end, let m ∈ 2Z>0 be a positive even integer an consider pairs (E/S,C) of an

elliptic curve E over a scheme S ∈ Ob(Sch[1/m]), together with a cyclic subgroup of order

2m:

C ⊂ E[2m].
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Let M0(2m) be the moduli stack of all such pairs and let

M̃0(2m) :=M0(2m)×M1M1/2

be the fiber product in the category of Deligne-Mumford stacks, classifying triples (E/S,C,Q)

of an elliptic curve over a scheme S ∈ Ob(Sch[1/m]) together with a cyclic subgroup

C of order 2m and a rank 1 non-degenerate ωE/S-valued quadratic form Q. The sheaf

Vm of Schrödinger representations pulls back to M̃0(2m) under the natural forgetful map

M̃0(2m)→M1/2. We then have:

Theorem 2.3.8. There is an invertible sheaf Dm over M̃0(2m) equipped with a canonical

injection

D2m ↪→ Vm.

Proof. Let (E/S,C,Q) be an elliptic curve over a scheme S ∈ Ob(Sch[1/m]) together with

a cyclic subgroup C of order 2m and a rank 1 non-degenerate ωE/S-valued quadratic form

Q. The subgroup

H1 := [2]C ⊂ E[m]

is cyclic of order m, hence it must be maximal isotropic in E[m]. By the same argument as

in the proof of Theorem 2.2.19, we also have a canonical lift

H1 → GE(Lm),

to a lagrangian subgroup H of GE(Lm) given by taking local lifts of C to lagrangian subgroups

of GE(L2m) and projecting them down to GE(Lm) using the map

η2 : GE(L2m)→ GE(Lm).

We can therefore define a canonical Schrödinger representation VH by using the subgroup

C. In particular there is an invertible sheaf over S,

DH := VHH ⊂ VH ,

given by the H-invariant sections of VH . Now the assignment:

(E,C,Q) 7−→ Γ(S,VH)

defines a locally free sheaf V of rank m over M̃0(2m), since our choice of Schrödinger
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representation is functorial in C. By universality of Vm, we must have

p0(2m)∗Vm ' V ,

under the map p0(2m) : M̃0(2m)→M1/2. On the other hand, the assignment

(E,C,Q) 7−→ Γ(S,DH)

defines an invertible sheaf D2m over M̃0(2m), equipped with the required canonical injection

D2m ↪→ p0(2m)∗Vm.

Remark 2.3.9. Note that in the proof we have implicitly defined a morphism

M0(2m) −→ M̃0(2m),

given by sending (E,C) to (E,VH).

Remark 2.3.10. The injection in Theorem 2.3.8 is Heisenberg-equivariant, thus it is com-

patible with the trivialization of Theorem 2.2.19. In particular, over M1/2(2m) we must

have:

φ∗D2m ' OM1/2(2m) δ0,

under the forgetful map φ :M1/2(2m)→ M̃0(2m).

Let now m = 2, and consider the sheaf:

LShi := D∨2 ⊗ ω1/2.

By Theorem 2.2.14, this invertible sheaf is defined over the stack M0(4).

Definition 2.3.11. Let k ∈ Z be an integer. A (Shimura) modular form of half-integral

weight k/2 is a global section of the invertible sheaf LkShi over M0(4).

Remark 2.3.12. It would be interesting to draw a comparison between our algebraic theory

of that of Nick Ramsey ([30]), who defines algebraic modular forms of half-integral weight

overM1(4). In particular, Ramsey analyzes what happens at the cusps and defines a theory

of Hecke operators for modular forms of half-integral weight, which we do not do in this

work.

To define q-expansions of modular forms of half-integral weight, consider the Tate curve
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Tate(q) → Spec(Z[1/2]((q))). This curve is endowed with a canonical cyclic subgroup of

order 4

µ4 ↪→ Tate(q)[4],

hence we can form the sheaf DH as in the proof of Theorem 2.3.8, where H is the lagrangian

subgroup obtained from µ4. In particular, we must have an injection

DH ↪→ V can
2 ,

since [2]µ4 = µ2 (notation as in Section 2.2.7). A simple modification of the argument used

in Theorem 2.2.19 now shows:

Proposition 2.3.13. The invertible sheaf DH ↪→ V can
2 associated to the pair (Tate(q), µ4)

has a canonical trivialization:

DH ' Z[1/2]((q)) δ0, (2.26)

compatible with the trivialization (2.21) of V can
2 over Tate(q1/4)→ Tate(q).

Consider now the triple (Tate(q), µ4,Q), where Q is chosen as in Section 2.2.7. This

triple defines a map

ψ : Spec(Z[1/2]((q))) −→ M̃0(4).

In particular, for any integer k ∈ Z we have a canonical trivialization:

ψ∗(L⊗kShi) ' Z[1/2]((q)) (δ∗0 ⊗ ω1/2
can)⊗k,

obtained by combining the duals of trivializations (2.22) and (2.26). If f is a modular form

of half-integral weight, then we can associate to it a well-defined element f(q) of Z[1/2]((q))

by

ψ(f) = f(q) (δ∗0 ⊗ ω1/2
can)⊗k.

Definition 2.3.14. The element f(q) ∈ Z[1/2]((q)) is the q-expansion of the modular form of

half-integral weight f . The modular form f is holomorphic if in in fact we have f ∈ Z[1/2][[q]].

The prototypical example of a holomorphic modular form of half-integral weight can

be constructed in a way analogous to our construction of the theta constants θnull,m. In

particular, let (E/S,C) be a pair of an elliptic curve π : E → S over a scheme S ∈
Ob(Sch[1/m]), together with a cyclic subgroup C of order 2m. As we have seen in the proof

of Theorem 2.3.8, this curve is endowed with a canonical lagrangian subgroup H ⊂ GE(Lm).

The rule

(E/S,C) 7−→ Γ(S, π∗Lm)H
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defines an invertible sheaf Jm,0 over M0(2m), equipped with a canonical injection

0→ Jm,0 → Jm.

Dually, there is a canonical surjection

J ∨m
β→ J ∨m,0 → 0.

Define now

eve,0 := β(eve).

This is a global section of J ∨m,0. For example, for m = 2 we get a modular form θ0 of

half-integral weight, in the sense of Definition 2.3.11, defined by:

J ∨2,0 ←→ LShi

eve,0 7−→ θ0.

By Proposition 2.3.13, to compute the q-expansion of θ0 we can pass to Tate(q1/4) where we

have:

θnull,2(q) = (ϑ2,0(q, 1)δ∗0 + ϑ2,1(q, 1)δ∗1)⊗ ω1/2
can,

by the computations of Section 2.3.2. In particular

θ0(q) = ϑ2,0(q, 1) =
∑
n∈Z

qn
2

,

up to a constant in Z[1/3m]×.

Thus we have proven, by purely algebraic/moduli-theoretic means, that the q-expansion∑
n∈Z

qn
2

is the q-expansion of a holomorphic modular form of half-integral weight 1/2, in the algebro-

geometric sense of Definition 2.3.11. Similarly, the q-expansion

θ3
0(q) = 1 + 6q + 12q2 + 8q3 + 6q4 + 24q5 + . . . ,

essentially the generating series of quadratic imaginary class numbers, is the q-expansion of

the section θ3
0 of L⊗3

Shi over M0(4), hence a holomorphic modular form of weight 3/2.
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Chapter 3

Analytic Theory

The same constructions of Chapter 2 apply when the base scheme S is replaced by an analytic

space. In this chapter we do precisely that and recover the usual analytic notions of vector-

valued modular forms attached to rank 1 lattices (Section 3.2.3), and of Shimura’s modular

forms of half-integral weight (3.2.5). We also explain in Section 3.2.4 the relation between

vector-valued modular forms and the Jacobi forms of [14] using the Main Theorem 2.2.20.

The key notion in this chapter is that of a basic orbifold ([17]), which we review in Section

3.1.1. This is a generalization of the concept of a quotient of a topological space by a group

action. It turns out (Theorem 3.1.5) that the stack Man
1/2 of elliptic curves over an analytic

space equipped with a quadratic form is equivalent to the orbifold Mp2(Z)\\h, where Mp2(Z)

is the metaplectic group given by acting on h by linear fractional transformations. Thus the

existence of the vector bundles Vm of Chapter 2 can be translated into transformation laws

for holomorphic functions on h, and similarly for the bundles LkShi of modular forms of

half-integral weight.

3.1 The metaplectic orbifold

3.1.1 Basic Orbifolds

We follow the definition of basic orbifold given in [17].

Definition 3.1.1 ([17], §3.1). A basic orbifold is a triple (X,Γ, ρ), often simply denoted by

Γ\\X, where:

(i) X is a connected, simply connected topological space.

(ii) Γ is a discrete group.

(iii) ρ : Γ→ Aut(X) is a homomorphism.

A morphism (X,Γ, ρ)→ (X ′,Γ′, ρ′) between orbifolds is a pair (f, φ) of:
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(i) A continuous map f : X → X ′

(ii) A group homomorphism φ : Γ→ Γ′,

such that the following diagram is commutative:

X X ′

X X ′

f

ρ(γ)

f

ρ′(φ(γ))

.

When X is a complex manifold, the orbifold (X,Γ, ρ) can be given a ‘complex structure’

by letting the holomorphic functions be the holomorphic functions onX which are Γ-invariant

([17], §3.1). A holomorphic vector bundle on the orbifold (X,Γ, ρ) is defined by giving the Γ-

invariant holomorphic sections of a vector bundle onX ([17], §3.2). The following Proposition

then follows from standard cocycle computations:

Proposition 3.1.2.

Let X be a simply connected manifold where every vector bundle is trivial. Let Γ\\X be

a basic orbifold with the inherited complex structure. Then

(i) Line bundles on the complex orbifold Γ\\X are in 1-1 correspondence with 1-cocycles

in H1(Γ,O∗X).

(ii) Rank r vector bundles on the complex orbifold Γ\\X are in 1-1 correspondence with

1-cocycles in H1(Γ,GLr(OX)).

The Proposition highlights the fact that Γ can be thought of as the ‘fundamental group’

of Γ\\X. This notion can be made rigorous, as in [17], §3.3. In particular, we can define

local systems on Γ\\X as follows:

Definition 3.1.3. Let V be a finite-dimensional complex vector space. A local system V
of fiber V on the complex orbifold Γ\\X is a finite dimensional complex representations

Γ→ GL(V ).

A complex orbifold Γ\\X gives rise to a category whose set of objects is the set of points

of X and whose set of morphisms is Γ ×X. This category is a groupoid in the category of

analytic spaces, hence a stack. In the following, when we speak of the ‘stack’ Γ\\X we mean

the above category determined by the orbifold Γ\\X.
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3.1.2 The metaplectic orbifold and metaplectic forms

Let Man
1 → AnSp be the stack of elliptic curves over a (complex) analytic space. It is

well-known (e.g. [21], §7) that this stack is equivalent to the stack determined by the orb-

ifold SL2(Z)\\h, where SL2(Z) acts on h by linear fractional transformations. The orbifold

SL2(Z)\\h is called the modular orbifold. Note that h is simply connected, and every holo-

morphic vector bundle over it is trivial, so Proposition 3.1.2 applies.

For each elliptic curve π : E → S over an analytic space, we can define the Hodge

bundle ωE/S := π∗Ω
1
E/S, an invertible sheaf over S. Precisely as in the algebraic setting,

this assignment defines the Hodge bundle ω over the stack Man
1 . This invertible sheaf ω

corresponds to a holomorphic line bundle over the orbifold SL2(Z)\\h, hence by Proposition

3.1.2 its isomorphism class corresponds to the class of a 1-cocycle j1 in H1(SL2(Z),O∗h) which

is given by ([17], Lemma 5.13):

j1 : SL2(Z) −→ O∗h

γ =

(
a b

c d

)
7−→ cτ + d.

For k ∈ Z, the holomorphic sections of ωk are given by holomorphic functions f : h → C
such that:

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ),

(
a b

c d

)
∈ SL2(Z).

These are the classical modular forms of integral weight k and level 1 (with no growth

conditions imposed at the cusps).

Next, consider the stack Man
1/2 → AnSp of pairs (E,Q) of an elliptic curve over an

analytic space together with a non-degenerate rank one ωE/S-valued quadratic form. As in

in section 2.1.1 this is a µ2-gerbe overMan
1 , canonically equipped with a square root ω1/2 of

ω. Passing to the category of orbifolds, we know that µ2-gerbes overMan
1 = SL2(Z)\\h must

correspond to classes in

H2(SL2(Z)\\h, µ2) = H2(SL2(Z), µ2) ' Z/2Z.

It is well-known that the H2 in group cohomology corresponds to central extensions. In

particular, the gerbe Man
1/2 corresponds to the unique nontrivial central extension

0→ µ2 → Mp2(Z)→ SL2(Z)→ 0

of SL2(Z) by µ2.

Definition 3.1.4. The group Mp2(Z) is called the metaplectic group. It is the set of pairs
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(γ, ε) ∈ SL2(Z)× {±1} with group structure given by the multiplication rule:

(γ1, ε1) · (γ2, ε2) = (γ1γ2, c(γ1, γ2)ε1ε2)

where c is any 2-cocycle c : SL2(Z)2 → {±1} representing the nontrivial class inH2(SL2(Z), µ2).

An explicit model of the metaplectic group is the set of pairs((
a b

c d

)
, φ(τ)

)
,

(
a b

c d

)
∈ SL2(Z), φ2(τ) = cτ + d, φ(τ) ∈ O∗h,

with multiplication given by:

(A1, φ1(τ)) · (A2, φ2(τ)) = (A1A2, φ1(A2τ)φ2(τ)).

We now have:

Theorem 3.1.5. The stack Man
1/2 is equivalent to the stack determined by the orbifold

Mp2(Z)\\h, where Mp2(Z) acts on h via the map Mp2(Z)→ SL2(Z), i.e. via linear fractional

transformations of the underlying matrix in SL2(Z).

Proof. Consider the the elliptic curve πh : Eh → h over the complex upper half-plane, an

elliptic curve over the analytic space h given by:

(h× C) /Z2 = Eh
πh

−→ h,

where Z2 acts by (τ, z) 7→ (τ, z + m + nτ). This is the universal framed elliptic curve ([17],

Prop. 2.4), i.e. the universal object over h, viewed as the moduli space of elliptic curves

over analytic spaces with ‘framings’ ([17], Def. 2.1). Now the Hodge bundle ωh of Eh can be

trivialized over h by

ωh ' Oh dz,

where dz is the everywhere nonzero section obtained by choosing the invariant differential

dz over the elliptic curve Eτ = C/ 〈τ, 1〉. We define a rank 1 non-degenerate ωh-valued

quadratic form as follows. Over the elliptic curve Eτ , the sheaf of differential Ω1
Eτ

is trivial,

thus the square roots of Ω1
Eτ

are in bijection with Pic(Eτ )[2] ' Z/2Z × Z/2Z. Thus there

are 4 square roots, the theta characteristics of Eτ . It follows from a simple Riemann-Roch

argument that only one of them, the ‘odd one’ Ω
1/2,odd
Eτ

has global sections. In particular

Ω
1/2,odd
Eτ

is trivial, and can be trivialized by a generator
√
dz compatible with our choice of

generator for Ω1
Eτ

. These odd theta characteristics on the fibers give rise to a line bundle
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Ω
1/2,odd
Eh over the universal elliptic curve. Now set:

Q := πh
∗(Ω

1/2,odd
Eh ).

This is a trivial line bundle over h, trivialized by

Q ' Oh

√
dz,

and is a non-degenerate rank 1 ωh-valued quadratic form:

q : Q → ωh.

The pair (Eh,Q) defines a map:

h→Man
1 .

Now there is an isomorphism SL2(Z) ' Aut(Eh) given by

γ · (τ, z) =

(
aτ + b

cτ + d
,

z

cτ + d

)
, γ =

(
a b

c d

)
∈ SL2(Z),

therefore the group Aut(Eh,Q) must be a central extension:

0→ µ2 → Aut(Eh,Q)→ SL2(Z)→ 0.

We claim this extension is nontrivial. This is because the action of the automorphism [−1] of

Eh on Q generates a cyclic subgroup of order 4. Therefore, the matrix −I ∈ SL2(Z) must lift

to an element of order 4 in Aut(Eh,Q), which cannot happen if the extension is trivial. But

the central extensions of SL2(Z) by µ2 are classified by H2(SL2(Z), µ2) ' Z/2Z, generated

by the metaplectic group Mp2(Z), thus

Aut(Eh,Q) ' Mp2(Z).

Now the pair (Eh,Q) defines a map of orbifolds

h→Man
1/2,

by the universal property ofMan
1/2. But h is simply connected, hence it must be the universal

cover of Man
1/2 and we must have:

Man
1/2 ' Aut(Eh,Q)\\h ' Mp2(Z)\\h.
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Definition 3.1.6. The orbifold Mp2(Z)\\h is called the metaplectic orbifold.

By construction, the stack Man
1/2 is canonically equipped with an invertible sheaf ω1/2,

which corresponds to a line bundle over the orbifold Mp2(Z)\\h. By Proposition 3.1.2, this

line bundle is determined by a corresponding 1-cocylce class in H1(Mp2(Z),O∗h), whose

computation is a simple corollary of Theorem 3.1.5.

Proposition 3.1.7. The line bundle ω1/2 over Mp2(Z)\\h corresponds to the 1-cocycle:

j1/2 : Mp2(Z) −→ O∗h(
γ =

(
a b

c d

)
, φ

)
7−→ φ.

For k ∈ Z, the holomorphic sections of ωk/2 are given by holomorphic functions f : h→ C
such that:

f

(
aτ + b

cτ + d

)
= φkf(τ),

((
a b

c d

)
, φ

)
∈ Mp2(Z),

by Proposition 3.1.7. These are the metaplectic forms of weight k/2, first considered in [31],

§1.

We can also compute the Picard group of Man
1/2 (compare with Proposition 2.1.4):

Proposition 3.1.8. Let Pic(Man
1/2) be the group of line bundles on the metaplectic orbifold.

Then there is a canonical isomorphism

Pic(Man
1/2) ' Z/24Z

given by sending ω1/2 7→ 1 mod 24.

Proof. Of course we can prove this by the same methods of Proposition 2.1.4. However, we

want to give a different, analytic proof of this fact. By Proposition 3.1.2 and Theorem 3.1.5,

we have

Pic(Man
1/2) = Pic(Mp2(Z)\\h) = H1(Mp2(Z),O×h ).

To compute H1(Mp2(Z),O×h ), consider the exponential sequence over h

0→ Z→ Oh
f 7→e2πif−→ O×h → 0,

which induces a long exact sequence:

. . .→ H1(Mp2(Z),Oh)→ H1(Mp2(Z),O×h )→ H2(Mp2(Z),Z)→ H2(Mp2(Z),Oh)→ . . . .
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By considering the Leray spectral sequence of the map h→ Mp2(Z)\\h, we know that

H1(Mp2(Z),Oh) = H2(Mp2(Z),Oh) = 0,

since the cohomology over h vanishes, and therefore

H1(Mp2(Z),O×h ) = H2(Mp2(Z),Z).

Now µ2 ⊂ Mp2(Z) is normal, so the fact that

H2(Mp2(Z),Z) ' Z/24Z

follows by applying the Hochschild-Serre spectral sequence and by the classical fact that

H2(SL2(Z),Z) ' Z/12Z.

To show that ω1/2 is a generator, note that (ω1/2)⊗2 ' ω and ω is a generator for

Pic(Man
1 ).

3.2 Vector-valued modular forms

3.2.1 Heisenberg groups over the complex torus Eτ

Consider the elliptic curve Eτ = C/Λτ , where Λτ is the rank 2 lattice Λτ = Z + Zτ ⊂ C,

τ ∈ h. For any positive even integer m ∈ 2Z>0, define the line bundle:

Lm := OEτ (m 0)⊗ (Ω1
Eτ )
⊗m,

the analytic analog of the invertible sheaf defined in (2.9). This line bundle is isomorphic

over Eτ to OEτ (m 0), which by the Appel-Humbert Theorem ([24], p.20) is given by the

1-cocycle:
Z× Z −→ O∗C

λ = (n1, n2) 7−→ eπHm(λ,λ)/2+πHm(z,λ),
(3.1)

where Hm is the Hermitian form on C:

Hm(z1, z2) := m
z1 z̄2

v
, τ = u+ iv.

The level m Heisenberg group GEτ (Lm) can also be described explicitly. Write C as a

two-dimensional real vector space by writing z = r1 + r2τ ∈ C with r1, r2 ∈ R. Let:

imHm(r1 + r2τ, s1 + s2τ) = m(r1s2 − r2s1)
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be the alternating form on C determined by Hm. Note that:

imHm(Λτ ,Λτ ) ⊂ Z.

The form imHm determines a Heisenberg group:

0→ S1 → Heis(2,m)→ C→ 0,

where the group law is given by:

(t1, z1 = r1 + r2τ) · (t2, z2 = s1 + s2τ) = (t1t2e
πim(r1s2−r2s1), z1 + z2).

The lattice Λ ⊂ C can be lifted to a Lagrangian subgroup of Heis(2,m) via:

σ : Λ −→ Heis(2,m)

λ = n1 + n2τ 7−→ (1, λ).

We then have an isomorphism of central extensions ([26], Prop. 3.1):

0 Gm GEτ (Lm) Eτ [m] 0

0 Gm NormHeis(2,m)(σ(Λτ ))/σ(Λτ ) Λ⊥τ /Λτ 0

' ' '

where

Λ⊥ = {z ∈ C : imHm(z, λ) ∈ Z,∀λ ∈ Λ}.

3.2.2 The Weil representation

Write m = 2m′ and let L = (Z, qm′) be the rank 1 lattice with quadratic form qm′(x) = m′x2.

Let Bm′ be the associated bilinear form (x, y) = mxy on Z2 and extend it to R2. Let:

L⊥ = {r ∈ R : Bm′(r, x) ∈ Z ∀x ∈ L}.

The group L⊥/L is cyclic of order m and the embedding:

L⊥/L ⊂ Λ⊥τ /Λτ

can be lifted to a Lagrangian subgroup of GEτ (Lm). The corresponding representation of

GEτ (Lm) is given by Vm = C[L⊥/L] or, equivalently, by the C-vector space of dimension m:

Vm = {f : L⊥/L→ C}.
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We can now define a local system of rank m on the metaplectic orbifold Mp2(Z)\\h by

considering the Weil representation:

ρm : Mp2(Z) −→ GL(Vm)

attached to L = (Z, qm′). This is given by the formulas ([4], §2):

ρm(T )(eγ) = e−πiγ
2/m eγ

ρm(S)(eγ) =
1√
im

∑
δ∈Z/mZ

e2πiγδ/m eδ

where:

T =

((
1 1

0 1

)
, 1

)
, S =

((
0 −1

1 0

)
,
√
τ

)
are the standard generators for Mp2(Z) and by eγ, eδ, . . . we denote the delta functions in

Vm which take the value 1 at γ, δ respectively and 0 everywhere else.

These formulas are the the same formulas (2.14) defining the vector bundle Vm of

Schrödinger representations over Man
1/2 → AnSp constructed as in Definition 2.2.10. Thus:

Theorem 3.2.1. The local system Vm over Mp2(Z)\\h given by the Weil representation ρm is

canonically isomorphic to the bundle Vm of Schrödinger representations over Man
1/2 → AnSp

constructed as in Definition 2.2.10.

Let now Γ(2m) be the principal congruence subgroup of level 2m and let

Γ̃(2m) ⊂ Mp2(Z)

be its preimage under Mp2(Z) → SL2(Z). Then using the classical fact that Man
2m '

Γ(2m)\h, where Man
2m denotes the moduli space of elliptic curves over an analytic space

together with a full level 2m structure, we have (notations as in Section 2.2.5):

M̃an
2m ' Γ̃(2m)\\h.

In particular, we can prove as in Theorem 2.2.19 that Vm trivializes over M̃an
2m. We thus

obtain a geometric proof of the well-known fact (e.g. [7]):

Theorem 3.2.2. The Weil representation ρm factors through the nontrivial extension:

0→ µ2 → Mp2(Z/2mZ)→ SL2(Z/2mZ)→ 0,
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viewed as the automorphism group of the map M̃an
2m →M1.

3.2.3 Vector-valued modular forms

Analogously to Definition 2.2.11, we define a weight k/2, Vm-valued modular form as a

section of Vm ⊗ ωk/2 over Man
1/2. This definition translates thanks to Proposition 3.1.7 and

Theorem 3.2.1 into the following.

Definition 3.2.3. A weight k/2, Vm-valued modular form is a holomorphic function f :

h→ Vm such that:

f

(
aτ + b

cτ + d

)
= φkρm

((
a b

c d

)
, φ

)
f(τ),

for any

((
a b

c d

)
, φ

)
∈ Mp2(Z).

Note that this definition is precisely the definition of vector-valued modular forms associ-

ated to the rank 1 lattice L = (Z, qm′) ([14], §5). Moreover, by the analog of Theorem 2.2.14

over the category of analytic spaces, the vector bundle Vm ⊗ ωk/2 descends to SL2(Z)\\h
whenever k is odd.

Remark 3.2.4. The definition of V∨m-valued modular forms (Remark 2.2.12) is similarly

obtained by conjugating the action of ρm. This is for example the definition of vector-valued

modular forms of [4].

3.2.4 Jacobi forms and the Eichler-Zagier Theorem

We would now like to explain how Theorem 2.2.20 is related to Theorem 5.1 of [14], linking

Jacobi forms of weight k and index m/2 to Vm-valued modular forms of weight k − 1/2.

To this end, let πh : Eh → h be the universal elliptic curve over the complex upper half-

plane, defined as in the proof of Theorem 3.1.5. For m a positive even integer, consider the

invertible sheaf over Eh:
Lm := OEh(m 0Eh)⊗ (Ω1

Eh/h)
⊗m,

analogous to the invertible sheaf (2.9). Sections of this sheaf are holomorphic functions

f : h× C→ C such that:

f(τ, z + λ) = eπHm(λ,λ)/2+πHm(z,λ) f(τ, z), λ = m+ nτ,

as can be deduced from (3.1).
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The group SL2(Z) acts on Eh via the automorphism:

γ(τ, z) =

(
aτ + b

cτ + d
,

z

cτ + d

)
, γ =

(
a b

c d

)
∈ SL2(Z), (3.2)

and thus acts on Ω1
Eh/h and Lm via multiplication by elements γΩ1

Eh/h
(τ), γLm(τ) ∈ O∗h. In

particular, we have:

Lemma 3.2.5. The element γ =

(
a b

c d

)
∈ SL2(Z) acts on Ω1

Eh/h and Lm by:

(i) γΩ1
Eh/h

(τ) = (cτ + d)−1

(ii) γLm(τ) = 1

respectively.

Proof.

(i) The invertible sheaf Ω1
Eh/h can be trivialized over Eh by the everywhere-non-vanishing

differential ω = dz, thus the computation of γΩ1
Eh/h

(τ) follows directly from (3.2).

(ii) We have that:

OEh(m 0Eh) = OEh(0Eh)⊗m

and

γOEh (0Eh )(τ) = cτ + d

as can be seen by noting that the invertible sheaf OEh(0Eh) can be trivialized by the

section 1 ∈ Γ(Eτ ,OEτ (0)), which gets sent to cτ + d by γ. Thus

γOEh (m 0Eh )(τ) = (cτ + d)m

which, combined with (i) above, proves the lemma.

By the Lemma, we deduce that the invertible sheaf Ω1
Eh/h descends to an invertible sheaf

Ω1
E/M1

over the orbifold:

E := SL2(Z)\\Eh

which can be thought of as the universal ‘elliptic curve’ overM1, and similarly for Lm. More

generally, for any integer k ∈ Z the sheaf Lm ⊗ (Ω1
E/M1

)⊗k gives an invertible sheaf over E
whose sections are holomorphic functions φ : h × C → C obeying the two transformation

laws:
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(i) φ
(
aτ+b
cτ+d

, z
cτ+d

)
= (cτ + d)k φ(z, τ), ∀

(
a b

c d

)
∈ SL2(Z),

(ii) φ(τ, z + λ) = eπH(λ,λ)/2+πH(z,λ) φ(z, τ), ∀λ ∈ Λτ .

From this computation, we deduce that the space of global sections

Jk,m := Γ(E ,Lm ⊗ (Ω1
E/M1

)⊗k)

is essentially the space of Jacobi forms of weight k and index m/2, in the sense of Eichler

and Zagier ([14]).

Remark 3.2.6. This is not exactly the definition of Jacobi forms of [14]. However, if we

correct our Jacobi form φ by the simple factor:

φ(z, τ) 7−→ φ′(z, τ) := eπmz2/v φ(z, τ), (3.3)

then the function on the right is a Jacobi form in the sense of [14]. The reason behind this

re-normalization is that if we consider the Fourier series

ϑm,0 =
∑
n∈Z

e2πi(mn2τ/2+mz),

obtained by ‘plugging in’ q = e2πiτ and x = e2πiz in our expression (2.3.2) for ϑm,0, we do not

get a section of Lm over Eτ , but rather of the re-normalized line bundle of [14]. Note that this

re-normalization is purely transcendental (it depends on v = im(τ)) and there is no way to

make sense of it algebraically. These types of inconsistencies are inevitable when comparing

the algebraic and analytic theories of elliptic curves: even when working with the simpler

line bundle Ω1
Eτ

, transcendental factors of 2πi appear when comparing algebraically-defined

and analytically-defined differentials.

The algebraic isomorphism of Corollary 2.2.21 carries over to the analytic setting. In

particular, by taking global sections of both sides of Corollary 2.2.21 we obtain a canonical

isomorphism:

Γ(Man
1 ,Vm ⊗ ωk−1/2) ' Γ(Man

1 ,Jk,m).

But in this case

Jk,m = π∗(Lm ⊗ (Ω1
E/M1

)⊗k)

where

π : E →Man
1

is the universal elliptic orbifold over Man
1 , thus we have a canonical isomorphism:

Γ(E ,Lm ⊗ (Ω1
E/M1

)⊗k) = Γ(Man
1 ,Jk,m).

94



Combining the two observations, we obtain a canonical isomorphism:

Γ(Man
1 ,Vm ⊗ ωk−1/2) ' Jk,m

between weight k−1/2, Vm-valued modular forms and Jacobi forms of index m/2 and weight

k. Factoring in the re-normalization of Remark 3.2.6, we have thus given a geometric proof

of the following well-known theorem of Eichler and Zagier:

Theorem 3.2.7 ([14], Theorem 5.1).

Let k be an integer and let m be a positive even integer. Let h(τ) =
∑

µ∈Z/mZ hµ(τ) be a

weight k − 1/2, Vm-valued modular form. For each µ ∈ Z/mZ, let

ϑm,µ(τ, z) := e−πmz2/v
∑
r∈Z

r≡µ mod m

e2πi (τ r2/2m+r z).

Then the function:

φh(τ, z) :=
∑

µ∈Z/mZ

hµ(τ)ϑm,µ(τ, z)

is a Jacobi form (in our sense) of weight k and index m/2. The map h(τ)→ φh(τ, z) induces

a canonical isomorphism between weight k−1/2, Vm-valued modular forms and Jacobi forms

of weight k and index m/2.

3.2.5 Theta structures, theta constants and modular forms of half-integral

weight

Consider now the analytification Man
m,2m of the moduli space of level m symmetric theta

structures on elliptic curves. According to Mumford ([25]):

Man
m,2m ' Γ(m, 2m)\h

as analytic spaces, where:

Γ(m, 2m) =

{(
a b

c d

)
∈ SL2(Z) : a, d ≡ 1 mod m, b, c ≡ 0 mod 2m

}
.

Let Γ̃(m, 2m) be the preimage of Γ(m, 2m) under the map Mp2(Z) → SL2(Z), so that

(notations as in 2.3.3):

M̃an
m,2m ' Γ̃(m, 2m)\\h.
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Now by the analytic analog of Theorem 2.3.6 we have a decomposition:

p∗m,2m(V∨m) ' L∨,⊕mθ,m

over pm,2m : M̃an
m,2m →Man

1/2, for some line bundle Lθ,m. Thus L∨θ,m determines a 1-cocycle

Γ̃(m, 2m) −→ O∗h, which we want to determine explicitly. This can be done by specifying

an extension of the Legendre symbol
(
c
d

)
as follows ([5], §5). The symbol is multiplicative in

both c and d. When d is an odd prime then it is the usual Legendre symbol. If d = 2 then

it is 1 if c ≡ ±1 mod 8 and −1 otherwise. When d = −1 it is 1 if c > 0 and −1 if c < 0.

Moreover,
(

0
±1

)
=
(±1

0

)
= 1. We then have ([5], Theorem 5.4):

Proposition 3.2.8. The line bundle L∨θ,m over M̃an
m,2m corresponds to the 1-cocycle:

Γ̃(m, 2m) −→ O∗h

γ =

((
a b

c d

)
,±
√
cτ + d

)
7−→ χθ(γ)(

−1
m )
(
d

2m

)
where χθ is the character:

χθ

((
a b

c d

)
,±
√
cτ + d

)
=

{
±
(
c
d

)
if d ≡ 1 mod 4

±(−i)
(
c
d

)
if d ≡ 3 mod 4

and
√

is the principal value of the square root, with −π/2 < arg(
√

) ≤ π/2.

Remark 3.2.9. Note that in [5], vector-valued modular forms are V∨m-valued modular forms.

Remark 3.2.10. As in Section 2.3.1, we can given a purely geometric definition of the section

eve ∈ Γ(Man
1 ,J ∨m)

and by the analytic analog of Theorem 2.2.20, we can give a geometric construction of the

V∨m-valued modular form of weight 1/2

θnull,m ∈ Γ(Man
1 ,V∨m ⊗ ω1/2).

As functions of τ , the components of this vector must transform according to Proposition

3.2.8. We have thus given a geometric proof of the transformations laws of single-variable,

level m theta constants.
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For m = 2, we can define the line bundle

LShi = D∨2 ⊗ ω1/2,

defined as in Section 2.3.4, is a line bundle over the orbifoldMan
0 (4) = Γ0(4)\\h. By definition,

the formation of the line bundle D∨2 is compatible with the decomposition of Proposition

3.2.8. In particular, D∨2 must be given by the cocycle χθ. Therefore LShi is given by the

1-cocycle:
Γ0(4) −→ O∗h

γ =

(
a b

c d

)
7−→ χθ(γ)

√
cτ + d.

For k ∈ Z, sections of L⊗kShi over Man
0 (4) are holomorphic functions f : h→ C such that:

f

(
aτ + b

cτ + d

)
=
(
χθ(γ)

√
cτ + d

)k
f(τ), (3.4)

for all γ =

(
a b

c d

)
∈ Γ0(4). This is precisely the transformation law of Shimura’s modular

forms of half-integral weight ([31]).
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Chapter 4

Conclusions and future directions

In this final chapter we would like to highlight some of the key themes that have emerged

in this work, and indicate some of the most natural directions towards which the geometric

theory of vector-valued modular forms could be developed.

The first theme, and the most general, is that geometric vector-valued modular forms

should be considered as stack-theoretic objects. There seems to be no way around this

aspect of the theory. If on the one hand this might seem discouraging, due to the many

nuances and technicalities of stack theory, on the other it must be noted that the modular

stack M1 (hence the metaplectic stack M1/2) is a very well-understood object, and many

computations on it reduce to computations on elliptic curves over fields and very basic

cohomological arguments. Moreover, modular forms of integral weight are also essentially

stack-theoretic objects: the coarse moduli space of M1 is the affine j-line, which has no

nontrivial line bundles. The existence of modular forms of level one such as E4 and E6 is a

purely stack-theoretic phenomenon, as is the fact that the ∆ function is of weight 12. We

seem to be perfectly comfortable working with these aspects of stack theory. Part of the

effort in this thesis has been devoted to convince the reader that the metaplectic stack is a

perfectly workable environment for the study of modular forms.

The second theme, a bit more specialized, is that when working with theta functions and

modular forms of half-integral weight we are better off working with vector-valued modular

forms. This philosophy has been pioneered by authors such as Borcherds, Bruinier and

Ono (e.g. [4], [5], [6], [7]) and has been successfully employed by many others. From our

point of view, a closer look at Section 2.3.4 reveals just how cumbersome it is to work with

modular forms of half-integral weight alone: their q-expansions are essentially defined ad-hoc

to recover θ0(q). Natural operators such as the U and V operators (e.g. [28], §3.2), which

are not defined in this thesis but whose geometric definition is not hard to guess, do not

preserve the space of modular forms of half-integral weight, whereas they have very natural

geometric interpretations when extended to vector-valued modular forms. More generally,

from a geometric point view it seems very hard to justify the way we cut out the sheaf of
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modular forms of half-integral weight, whereas the whole sheaf of Schrödinger representations

Vm is a much more natural object to work with.

In the following paragraphs I would like to highlight some future directions that deserve

to be explored in future work.

Higher rank lattices. In the analytic case, the theory of vector-valued modular forms has

been developed as to include modular forms which transform according to the Weil represen-

tation of lattices of any rank and signature, and not just rank 1 lattices like in this thesis. It

seems that geometrically the way to proceed is to consider Schrödinger representations over

the r-fold product of an elliptic curve and its dual. The relationship with theta functions

coming from higher rank lattices could be worked out along the lines of Theorem 2.2.20.

Hecke operators and Shimura lifts. Missing from our geometric theory of vector-valued

modular forms is a geometric theory of Hecke operators on them. In the complex-analytic

setting, these have been defined by Bruinier and Stein ([7]) by extending the Weil represen-

tation to matrices of square determinant. Thus it seems very possible to give a geometric

interpretation to their construction in terms of isogenies of elliptic curves together with a

quadratic form. These isogenies of course will need to be of square degree, if we want them

to act functorially on the quadratic form. Moreover, in connection with the previous para-

graph, it would be interesting to flesh out the combinatorial relation between eigenforms of

different weights. It seems that this relation must come from comparing the action of Hecke

operators on vector-valued modular forms of lattices of different rank, for example of rank 3

and 4. Similar relations exist for modular forms of weight 3/2 and 2, a phenomenon known

as Shimura lifting ([31]). Our geometric approach to modular forms of half-integral weight

seems perfectly suitable to sudy such relations.

Compactifications. A natural direction to pursue in expanding the results of this thesis

is to extend the notion of Vm-valued modular forms to the compactified moduli stackM1 of

generalized elliptic curves ([13]). This would lead directly to the construction of finite-rank

R-modules of vector-valued cusp forms, for any ring R, and possibly to dimension formulas

for these spaces. Given our very general approach to the metaplectic stack and Schrödinger

representations, and given the extensive literature on Heisenberg groups (esp. [20], V) it

does not seem out of reach to study Schrödinger representations and quadratic forms over

generalized elliptic curves, and their relation to geometric representations. In particular, the

fact that the q-expansions of theta functions are holomorphic at∞ suggests that the sheaves

Jm and their integrable connection should extend to M1, the one complication being of

course that the connection is only defined up to µ2. The analog of Theorem 2.2.20 should

then hold for these ‘extended’ sheaves over M1.
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p-adic vector-valued modular forms The work of Katz on p-adic modular forms of

integral weight ([19]) has been a major influence of this thesis. It is thus very natural to

expand our geometric theory in a p-adic direction. In fact, perhaps the main advantage of

working with modular forms geometrically is that it allows to define spaces of mod p and

p-adic modular forms in a very natural way. For example, the theory of mod p, Vm-valued

modular forms of weight k/2 is already contained in this thesis, at least for p - m: all that

we have to do is specialize our vector bundles to the moduli stack of elliptic curves over a

Fp-scheme. For example, we can prove as in Section 2.3.1 that the q-series θ0(q) reduced

modulo p is a mod p modular form of weight 1/2, in our algebraic sense. But the really

interesting aspect of the mod p theory is to study the action of Frobenius on our spaces of

modular forms. In particular, over the ordinary locus of the modular stack there should be

canonical lifts of Frobenius acting on our spaces of Schrödinger representations, which would

bring a p-adic theory of vector-valued modular forms to life.

Serre duality and harmonic weak Maass forms According to Serre duality, overM1

there should be an isomorphism between spaces of Vm-valued (weakly holomorphic) modular

forms of weight k and V∨m-valued cusp forms of weight 2 − k. In the analytic setting this

observation was, for example, the starting point for Borcherds’ generalization of the Gross-

Kohnen-Zagier formula ([4]). Serre duality also explains the existence of Vm-valued harmonic

weak Maass forms (e.g. [6]). In particular, given a weakly holomorphic Vm-valued form f of

weight k, we would like to find a V∨m-valued cusp form of weight 2−k in some way canonically

associated to f by Serre duality. The problem usually is that there are no holomorphic

sections of V∨m ⊗ ω−k ⊗ Ω1
M1

. The theory of harmonic weak Maass forms essentially picks

such canonical ‘duals’ by looking at anti-holomorphic sections of V∨m ⊗ ω−k ⊗ Ω1
M1

. The

results of this process can be surprising. For example, if g is a cusp form of weight 3/2, then

we can associate to (what is essentially) g a ‘dual’ f which is a weakly holomorphic modular

form of weight 1/2. If g is the Shimura lift of a cusp form of weight 2, then Bruinier and

Ono ([6]) show that the coefficients of f encode information about derivatives of L-series

of quadratic twists of f . Now as I have shown in [9], the construction of harmonic weak

Maass forms, hence the production of such canonical ‘duals’ of modular forms, can be given

a geometric interpretation in the integral weight case. This geometric interpretation leads to

p-adic analogs of (scalar-valued, integral weight) harmonic weak Mass forms, as in my M.Sc.

thesis ([8]).

With the geometric interpretation of vector-valued modular forms and modular forms of

half-integral weight presented in this thesis, we could attempt to construct harmonic weak

Maass forms geometrically and p-adically, mimicking [9] and [8]. Among other things, this

construction might explain the relation between the above-mentioned results of Bruinier-Ono

and the p-adic analogs of Darmon-Tornaria ([10]).
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