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Abstract

We give a brief overview of the problem of lifting elliptic curves, and of the classical

theory of complex multiplication. We then concretize the results of B. Gross [3] on lifting

endomorphism of formal groups from characteristic p to characteristic 0 by applying them

to elliptic curves, with a view toward developing explicit numerical methods to compute

the lift of the j-invariants with reduction in Fp. Chapter 1 and Chapter 2.1 are review

of well-known results, while the results of Chapter 2.2 and Chapter 3 have been derived

independently except where otherwise mentioned.
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Abrégé

Nous présentons sommairement le problème de relèvement pour les courbes elliptiques

et la théorie de la multiplication complexes. Par la suite, nous appliquons les résultats de

B. Gross [3] sur le relèvement d’endomorphismes de groupes formels de caractéristique

p en caractéristique 0 au courbes elliptiques. Notre but est de développer des méthodes

numériques explicites pour calculer le le relèvement des j-invariants de courbes ellip-

tiques. Le chapitre 1 et le chapitre 2.1 présentes des résultats déja connus dans la littérature,

tandis que les résultats des chapitre 2.2 et 3 ont été trouvé de manière indépendante, sauf

lorsque qu’il en est indiqué autrement.
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Chapter 1

Introduction

1.1 Background on lifting

Let L be a local field with ring of integer (O,m), and denote the corresponding residue

field by o. Any abelian scheme over O with good reduction gives rise to a corresponding

scheme over o in the obvious manner. The question of lifting an abelian scheme X 7→

Spec(o) amounts to the converse: Can we complete the cartesian diagram

? Spec(O)

X Spec(o)

and if so, can we complete it uniquely? An important result of Serre-Tate, summarized in

a 1964 seminar (for which complete proofs were published by Messing [5] and Drinfeld

[2]), goes a long way to answering this question on a theoretical level:

Theorem 1 [7] Let R be an Artinian local ring with residue field k. Then there is an equivalence

of categories C1 7−→ C2 where
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C1 is the category whose objects are abelian schemes over R and whose morphisms are regular

group homomorphism.

C2 is the category whose objects are pairs (Φ, X) with Φ an abelian scheme over k and X is

a p-divisible group lifting Φ[p∞] := lim−→Φ[pn], and whose morphisms are pairs of regular group

homomorphisms compatible with the inclusions Φ[pn] ⊂ Φ.

Here Φ[pn] is the group scheme ker(pn : Φ 7−→ Φ) and Φ[p∞] the ind-group scheme corre-

sponding to the inclusions Φ[pn] 7→ Φ[pn+1]. While the theorem is ostensibly only about

Artinian rings, by passing to the limit we can generalize to complete local Noetherian

rings, at the cost of having what may only be formal abelian schemes.

To use this theorem, we need more explicit descriptions of the objects of the category

C2. There are two extreme cases, which we summarize below [7].

1) Φ has the maximal number of p-torsion points. Then Φ[p] is a sum of an étale k-

group of the form (Z/pZ)n twisted by a Galois action and infinitesimal k-group whose

functor of points has the form R  {r ∈ R|rn = 1} twisted by a Galois action. In fact,

when k is perfect we can decompose Φ[p∞] = Φ[p∞]ét + Φ[p∞]inf in a canonical fashion.

The étale part has a unique lift by Hensel’s lemma, and the infinitesimal part has a unique

lift by Cartier duality. Combined this gives a canonical lifting of Φ[p∞] to Artinian local

rings R ; the limit over R gives rises to an actual abelian scheme and partially inverts the

reduction functor. In particular, if E −→ Spec(o) is an ordinary elliptic curve, it has a

canonical lift Ẽ −→ Spec(O) whose p-divisible group splits as a sum of an étale group

and a connected group.

2) Φ has no p-torsion points. In this case, the ind-object Φ is to be understood as the

formal group of Φ∗, and the theorem says that lifting Φ amounts to lifting its formal group.

This is the case of interest when we want to lift a supersingular elliptic curveE 7→ Spec(o)

We also note that a canonical lift corresponds to a lift on the level of abelian variety [7].

Gross [3] investigated the structure of quasi-canonical lifts of formal groups in more

detail, which we summarize below: Let K be a local field complete with respect to a
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discrete valuation, let A be its ring of integers, let π be a uniformiser of A and let k := A/.

We assume that k is finite of characteristic p. Furthermore, assume that L/K is a separable

quadratic extension. Now, letG be a formalA-module of height 2 over k, and note that the

endomorphism ring EndA(G) is isomorphic to a maximal order in a quaternion algebra

over F . A formal A-module is a pair (G, g) where G is a commutative formal group

of dimension 1 over k and g : A 7−→ Endk(G) is a homomorphism corresponding to

reduction modulo π on the tangent spaces. Fix an embedding α : O ↪→ EndA(G) of the

ring of integers of L such that the induced action on Lie(G) is compatible with reduction

modulo m. This gives G the structure of a formal O-module. Finally, let M/L be the

completion of the maximal unramified extension of L, let W be its ring of integers and let

m be the maximal ideal of W.

Theorem 2 There is a formal O-module G over W which reduces to G mod m. Moreover, G is

unique up to W -isomorphism.

Proof: From the work of Lubin and Tate, there exist a formal O-module G of height 1.

G must then become isomorphic to G over W/mW because the latter is separably closed.

Moreover,G is the unique lifting since height 1 formal modules have a trivial deformation

space [4]. �

We call G a canonical lifting of the pair (G,α). This is consistent with the usage above

as, in light of Theorem 2, the choice of an embedding α : O ↪→ End(G) trivialise the for-

mal moduli space. Note that as G is a height 1 O-module, EndW (G) = O. The work of

Gross also gives a very useful explicit description of the endomorphism over the inter-

mediate Artinian local rings W/mnW , which will be used to ensure that we can construct

the canonical lifting stepwise.

Theorem 3 (Gross [3]) Let Rn = EndW/mnW (G). Then

1) We have a system of compatible injections Rn ↪→ Rn−1 ↪→ Rn−2 ↪→ ... ↪→ R0
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2) Rn = O + mnR0

3) R0 is a maximal order in a quaternion algebra

A third result of Gross’s 1986 article will be useful for our purpose. The ring R0 has

many subrings isomorphic to non-maximal orders in an imaginary quadratic field, and it

is natural to ask whether these too can be lifted. For some ` 6= p, let T be the Tate module

at ` of G over M , and let T ⊂ T ′ ⊂ T ⊗O L be an A-module with [T ′ : T ] < ∞. Then

T ′ gives rise to a formal A-module G′ isogenous to G over M̄ . In fact, there is an explicit

formula due to Serre that can be found in Gross’s article which gives such an isogeny.

This isogeny is rational over the integers W ′ of the finite extension M ′ corresponding to

Stab(T ′) ⊂ Gal(M̄ |M). The ring O′ := EndW ′(G
′) is an order in O, and consists of the

endomorphisms fixing the A-module T ′. As A ⊂ O′, we deduce that O′ = A + msO for

some uniquely determined s ≥ 0. The case s = 0 is that of the canonical lift, and for s ≥ 1,

we say that G′ is a quasi-canonical lift of level s.

Theorem 4 (Gross 1986)

1) There exist quasi-canonical lifts of all levels

2) The lifts of level s are rational over W ′, and Gal(M ′|M) acts simply transitively on them.

Note that 1) implies the existence of lifts for any subring of rank 2 in EndA(G), since

they are contained in a maximal subring of rank 2. Moreover, 2) implies that the (poten-

tially formal) moduli of lifts of level s is finite, so both usages of the term ’quasi-canonical’

are consistent.

1.2 Complex Multiplication

Elliptic curves that arise as lifts have special number theoretic properties which are ex-

plained by the theory of complex multiplication (CM), so we give a brief review of the

parts of the theory that are relevant. All results in this section are adapted from [9]. While

it may seem strange to use complex analytic methods to study something that is a priori
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only p-adic, the fact that elliptic curves having exceptional endomorphism correspond

to specific algebraic points in a moduli space defined over Spec(Z) implies that a lift as

above corresponds abstractly to a curve of the form EQp := E ×K Spec(Qq) for a finite

extension K of Q embedded into a finite extension Qq of Qp. Consequently, we can apply

the theory of complex multiplication to EC to gain insight into our curve.

The main result concerning CM curves that interest us is the following:

Theorem 5 Let E/C be an elliptic curve with CM by the ring of integers RK of an imaginary

quadratic field K/Q. Then

1) j(E) is an algebraic integer.

2) (K(j(E))|K) is the maximal abelian unramified extension of K

We fix some notation: Let ELL(R) := {Elliptic curves E/C with End(E)'R}
{Isomorphisms over C} and let CL(R) be the

class group of R. K denotes an imaginary quadratic field, while RK denote its ring of

integers. Given a lattice Λ ⊂ C, we denote the corresponding complex elliptic curve by

EΛ
∼= C/Λ, and identify its endomorphism ring with {α ∈ C|αΛ ⊂ Λ}. The basic results

that we’ll need are the following:

Proposition 6 Let Λ ⊂ C be a lattice such thatEΛ ∈ ELL(RK) and let a, b be nonzero fractional

ideals in RK . Then

(i) aΛ is a lattice such that EaΛ ∈ ELL(RK).

(ii) EaΛ ' EbΛ if and only if [a] = [b] in CL(RK).

(iii) CL(RK) acts simply transitively on ELL(RK)

Proof: (i) By assumption, RKΛ = Λ. Choosing d, d′ ∈ Z such that dRK ⊂ a ⊂ 1
d′
RK ,

which we can do by the definition of a fractional ideal, and multiplying by our lattice, we

get that dΛ ⊂ aΛ ⊂ 1
d′

Λ, establishing that aΛ is indeed a lattice. Moreover, given α ∈ C,

we deduce from the group structure on the set of fractional ideals of RK that

αaΛ ⊂ aΛ ⇐⇒ a−1αaΛ ⊂ a−1aΛ ⇐⇒ αΛ ⊂ Λ ⇐⇒ α ∈ RK
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(ii) Say EaΛ ' EbΛ. Then we have aΛ = cbΛ for some c ∈ C∗. Multiplying by a−1 and

c−1b−1, we see that both ac−1b−1 and its inverse map Λ into itself, hence both are contained

in End(Ea) ' RK . We conclude that a = cb ⇐⇒ [a] = [b].

(iii) Now, define the action CL(RK) y ELL(RK) by [a] ∗EΛ = Ea−1Λ. By (ii), the stabilizer

of any isomorphism class is trivial, so it remains to show that this action is transitive.

Given two isomorphism classes, take two representatives EΛ1 , EΛ2 . Choose λi ∈ Λi − {0}

and define ai := 1
λi

Λi. Then ai ⊂ K is a finitely generated RK-module, hence a fractional

ideal, and λ2
λ1
a2a
−1
1 Λ1 = Λ2. As a result, [a1a

−1
2 ] ∗ EΛ1 ' EΛ2 . �

Proposition 7 Let E/C be an elliptic curve.

(i) If σ ∈ Aut(C), then End(Eσ) ' End(E).

(ii) If E has CM by RK , then [Q(j(E)) : Q] ≤ hK and therefore j(E) ∈ Q̄.

(iii) ELL(RK) := {Elliptic curves E/Q̄ with End(E)'RK}
{Isomorphisms over Q̄}

Proof: (i) Since σ is compatible with isomorphisms between Weierstrass models, it is

clear that if φ ∈ End(E) then φσ ∈ End(Eσ).

(ii) Thinking of Eσ as being obtained from a Weierstrass model of E by letting σ act on

the coefficients, we see that j(Eσ) = j(E)σ. On the other hand by (i) Eσ ∈ ELL(RK) and j

uniquely determines the isomorphism class of an elliptic curve over C, so by Proposition

6 j(E)σ takes on at most hK values as σ ranges over Aut(C). Thus [Q(j(E)) : Q] ≤ hK .

(iii) By the previous part, any isomorphism class in ELL(RK) is represented by a curve de-

fined over Q̄, so the natural map {Elliptic curves E/Q̄ with End(E) ' RK} 7−→ ELL(RK)

surjects. Since Q̄ is algebraically closed, two elliptic curves over Q̄ are C-isomorphic if

and only if they are Q̄-isomorphic [8]. �

By Proposition 7(iii), G(K̄|K) acts naturally on ELL(RK), and thus by fixing a curve

E ∈ ELL(RK) we obtain a well-defined map φ : G(K̄|K) 7−→ CL(RK) uniquely charac-

terized by φ(σ) = [a] ⇐⇒ [a] ∗ E ' Eσ. This is actually a group homomorphism, which

turns out to be independent of our choice of E.

As noted in Theorem 5, a bit more is true. Namely, for a CM curve E, j(E) is actually

an integral element of Q̄. Below we present a conceptual proof of this fact that relies
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on `-adic techniques, but we note that the minimal polynomial of j(E) can be explicitly

constructed, using for examples complex analytic methods and modular forms.

Proposition 8 Let L be a number field and E/L be an elliptic curve with CM. Then E has

potentially good reduction at every prime v of L, and j(E) is an algebraic integer.

Proof: We want to apply the following corollary to the criterion of Néron-Ogg-Shafarevitch:

E/L has potentially good reduction if and only if there exists some ` 6= char(L) such that

the action of the inertia group I(L̄v|Lv) on the Tate module T`(E) factors through a finite

quotient [8]. In other words, we need to show that the image of I(L̄v|Lv) ↪→ Aut(T`(E)) is

finite for some prime ` 6= p. The target is abelian, and by local class field theory we have a

compatible isomorphism I(Labv |Lv) ' R∗v, so it suffices to show that the image of the latter

is finite. But we have a diagram

R∗v,1 R∗v Rv/m
∗
v

GL2(Zl)1 Aut(T`(E)) GL2(Z/lZ)

0 0

0 0

Since R∗v,1 ' Ĝm(mv) is a pro-p-group while GL2(Zl)1 is a pro-`-group, ` 6= p implies

that the image of the first is disjoint from the image of the second, hence #im(R∗v,1) ≤

#GL2(Z/lZ) < +∞. But Rv/mv is also finite, hence im(R∗v 7→ Aut(T`(E)) must also be

finite, as desired.

Now, if we take an equation for E with coefficients in Q(j(E)), we see that E has

potentially good reduction at every prime, hence by [9] j(E) is an algebraic integer. �

To explain why j(E) generates the Hilbert class field, we’ll need some notation and

terminology from global class field theory. Given a finite abelian extension (L|K), for

any unramified prime p ∈ Spec(RK) we denote the corresponding Frobenius element by

σp ∈ G(L|K). If c ⊂ RK is an ideal divisible by all primes of RK which ramify in RL, we

define I(c) := {fractional ideal of Krelatively prime to c}. We define the Artin symbol by
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(L/K· ) : I(c) 7−→ G(L|K) : a 7−→ (L/K
a

) := Πσ
vp(a)
p

with the product taken over the primes of RK (note that only finitely many terms are

nontrivial). We will take for granted the technical result that there exist a finite set of

primes S ⊂ Spec(Z) such that if p /∈ S splits in RK , say as (p) = pp′, then φ(σp) = [p]. We

break down the proof that (K(j(E))|K) is the maximal unramified abelian extension of

K into 3 steps.

Proposition 9 Let (L|K) be the finite extension corresponding to the kernel of G(K̄|K) −→

CL(RK) (i) L = K(j(E)) is an abelian extension of K

(ii) L is an unramified extension

(iii) [L : K] = hK

Proof: (i) Since CL(RK) acts simply transitively, the definition of φ yields

ker φ = {σ ∈ G(K̄|K)|φ(σ) ∗ E = E} = {σ ∈ G(K̄|K)|E = Eσ} = {σ ∈ G(K̄|K)|j(E) =

j(E)σ} = G(K̄|K(j(E)). Hence, L = K(j(E)) by elementary Galois theory. Moreover,

(L|K) is abelian as G(L|K) ↪→ CL(RK) is injective.

(ii) Consider the map I(cL/K) 7−→ G(L|K) 7−→ CL(RK) obtained by composing the

Artin symbol with φ. For any fractional ideal [a], by Dirichlet theorem on arithmetic

progression we can find some prime ideal p /∈ S such that [p] is in the same ideal class as

[a]. Using the technical result mentioned above, we then have for some α ∼= 1 mod cL/K

that

φ((
L/K

a
)) = φ((

L/K

αp
)) = φ((

L/K

p
)) = [p] = [a]

But φ is injective, so L/K
· vanishing on all principal ideal. It follows that cL/K = (1),

but every prime that ramifies in (L|K) divides the conductor, so (L|K) must actually be

unramified.

(iii) It is clear that the map I(cL/K) = I(1) 7−→ CL(RK) is surjective, thus [L : K] = hK .

�
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Chapter 2

Canonical lifts

2.1 Lifting curves over Fq − Fp2

The existence of a canonical lift in this case is a classical [1] (p. 424), and so our approach

is based on the following result, which reduces the problem of finding a canonical lift of

an elliptic curve Ē over Fq to the problem of finding a curve E reducing to Ē and a lift

E 7→ Eσ of the Frobenius morphism.

Theorem 10 (Serre, Tate) Let q be a fixed power of p, let j̄ ∈ Fq − Fp2 , let Qq be the unramified

extension of Qp with residue field Fq and let σ : Qq 7−→ Qq be the Frobenius endomorphism. Then

there exist a j̃ ∈ Qq above j̄ corresponding to a canonical lift Ej̃ of Ej̄ , and this j̃ is uniquely char-

acterised by being a solution to Φp(j̃, σj̃) = 0 where Φp is the p-th classical modular polynomial.

With this theorem, what remains to be done is to find an effective method to find the

corresponding points on the modular curve X0(p). For this, we use a standard iterative

method closely related to Newton’s method [1] (Ch. 12), which will be amenable to gen-

eralization.

Let j denote a canonical lift and say we have an estimate jN ≡ j mod pN . Denoting

the p-th classical modular polynomial by Φp(y, z), and letting δN = j−jN
pN

, we take the

Taylor expansion of Φp about (j, σj) to find
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0 ≡ Φp(jN , σjN) + pN(∆yδN + ∆zσδN) mod p2N

0 ≡ Φp(jN ,σjN )

pN
+ ∆yδN + ∆zσδN mod pN

where ∆y := ∂y(Φp)|(jN ,σjN ) and ∆z := ∂z(Φp)|(jN ,σjN ) are the partial derivatives.

If vp(∆y) > vp(∆z) and vp(Φ(jN , σjN)) ≥ vp(∆z) + N , dividing the entire equation by

pvp(∆z) gives an Artin-Schreier equation i.e an equation of the form ασ(x) + βx + γ = 0,

with α ∈ Z×q and β, γ ∈ Zq. If we can find an integral solution δ′, setting x2N−vp(∆z) =

xN + pNδ′, we get Φ(x2N−vp(∆z), σx2N−vp(∆z)) ≡ 0 mod p2N . Moreover, if N > vp(∆z), the

updated partial derivatives will still satisfy the conditions on their valuation above, so

we can iterate this process to approximate j to an arbitrary precision pM using O(log(M))

recursive calls.

We now investigate when an Artin-Schreier equation has a solution over Zq. To do

this, we leverage the simple fact the Frobenius of an unramified extension of degree d

satisfies σd = id. Note that without loss of generality we can take α = 1 and then rewrite

the equation as σ(x)+a1x+b1 = 0. Applying σ to both side, we can use recursion to write

σk(x) = akx + bk for ak, bk ∈ Zq. Then x = σd(x) = adx + bd, so if ad 6= 1, or equivalently

Nm
Qq

Qp
(a1) 6= 1, the unique solution in Qq is x = bd

1−ad
. In addition, this solution is integral

if and only if 1−ad ∈ Z×q , which is definitely the case when v(a1) > 0. Thus, what remains

is to find an efficient algorithm to solve Artin-Schreier equations.

A solution to this problem is given by the Lercier–Lubicz algorithm, an implementa-

tion of which can be found in Chapter 3. It is based on repeated squaring. Namely, since

the Frobenius is an endomorphism, we have the formula

σn+k(x) = σk(an)σk(x) + σk(bn)

from which we easily deduce that

an+k = σk(an), bn+k = σk(bn) + σk(an)bk

Consequently, we can compute ad, bd using O(log(d)) recursive calls, each of which in-

volves O(1) additions, multiplications, and applications of a Frobenius endomorphism.
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While the time complexity of these three operations depend on low-level implementation

details concerning, for example, how p-adic values are represented, in all efficient imple-

mentation the time complexity will be O(poly(N)) for some polynomial of small degree.

In light of the explanation above, we conclude the following more constructive version

of Theorem 10

Theorem 11 Let j̄ ∈ Fpd − Fp2 and let j̃ ∈ Qpd above j̄ be the j-invariant of the canonical lift.

Then there exist an algorithm with time complexity O(poly(N)log(d)) that takes as input (j̄, N)

and returns as output a p-adic integer jN such that vp(j̃ − jN) ≥ N .

2.2 The case of Fp

2.2.1 Endomorphism of degree p

We use the following classical results concerning modular curves:

1. Φp(x, y) ≡ (xp − y)(yp − x) mod p

2. deg(Φp(x, x)) = 2p

From these, we see that over Qalg
p , Φp(x, x) has precisely two roots with multiplicity con-

gruent modulo m to a residue class r ∈ {0, 1, ..., p− 1}. Let pr(x) ∈ ¯Qalg
p [x] be the quadratic

polynomial whose roots are the roots of Φp(x, x) congruent to r.

Lemma 12 Let F be a formal group over a local field K of characteristic 0 with uniformiser π, and

assume vπ(a) = 0. Then the equation [a]x2 + [b]x = [π], where products denote compositions of

power series, has a solution in OK [[T ]] of height 1 if and only if vπ(b) = 0.

Proof: Recall that [a] = aT + O(T 2), and likewise for [b]. Therefore, if the desired power

series S =
∑∞

n=1 cnT
n exists, by comparing the first term we get that c1(ac1 + b) = π. As S

has height 1, vπ(c1) = 1 so c1
π

(ac1 + b) = 1 =⇒ vπ(ac1 + b) = 0, hence the condition vπ(b) =

11



0 is clearly necessary. In fact, it is equivalent to the existence of an approximate solution

to order O(T 2).

To see that it suffices, assume that we can solve for c1, ..., cn−1. Then the only possibility

for cn is

cn = (ac1 + b)−1 ∗ ([p][n+ 1]−
∑

k∈N,|j|=n+1

ck(dj1 ...djk))

where [π][j] is the jth coefficent of [p] and dj is jth coefficent of [a]S + [b]. This is well-

defined since (ac1 + b) is a unit and all the terms which occur on the RHS are uniquely

determined by c1, ..., cn−1. Taking the limit, we obtain the desired solution S. �

Theorem 13 1. The factorization Φp(x, x) = Πr∈Fppr(x) can be realized over Qp

2. pr(x) splits over Qp[x] if and only if the curve E(r)/Fp has a canonical lift over Qp if and

only if E(r)/Fp is ordinary. In this case pr(x) has a double root and the lift is unique.

Otherwise, pr(x) has two distinct roots which lie in the ramified extension of degree 2.

Proof: Given r ∈ {0, 1, ..., p− 1}, Φ(x− r, x− r) has precisely two roots in m, and all other

roots are units. Thus, this polynomial has Newton slopes (i, i, 0, .., 0) for some i ∈ Q>0.

Consequently, Φ(x − r, x − r) factors in Qp[x] as f(x)g(x) for some quadratic polynomial

f whose roots are nonunits [6]. Shifting by x 7→ x+ r, we get that Φp(x, x) = pr(x)g(x+ r).

Repeating this for all residue classes, Φp(x, x) = h(x)Πr∈Fppr(x) for some h(x) ∈ Qp[x], but

Φp(x, x) and Πr∈Fppr(x) are both monic polynomial of degree 2p, which proves 1.

Let (E(r̃)/K) be a lift of (E(r), σ) with deg(σ) = p. Without loss of generality we can

assume that K is a smallest field over which such an elliptic curve exists. Then K = Qp

if and only if pr(x) splits in Qp[x]. On the other hand, denoting the formal group of an

elliptic curve E by FE , we have a commutative diagram
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EndK(E(r̃)) EndK(FE(r̃))

EndFp(E(r)) EndFp(FE(r))

As the bottom row is a natural identification, both rings in the top row correspond to the

same order in EndFp(E(r)). Moreover, by the proof of Lemma 12 the endomorphism σ of

formal groups is defined over K. If σ has minimal polynomial x2 + bx + c, then by our

choice of σ,

vp(deg(c)) = 2

so σ̃2 + [b]σ̃ = [c′][p] where [c′] is a unit. Thus by Lemma 12 the lift of Frobenius for the

formal group can be defined over Qp if and only if vp(b) = 0. But E(r) is supersingular if

and only if b is divisible by p [8].

Say j0, j1 ∈ Qp are the two roots of pr(x). Assume that vp(j0 − j1) = k ∈ N. Since the

second partial derivative of Φp(x, x) evaluated at j0, j1 is a unit, we can expand Φp(x, x) to

second order about j0, j1 to get

(∂xΦp |x=j0)(j1 − j0) + (∂2
xΦp |x=j0)(j1 − j0)2 +O(p2k+1)

(∂xΦp |x=j1)(j0 − j1) + (∂2
xΦp |x=j1)(j0 − j1)2 +O(p2k+1)

On the other hand, by expanding the partial derivative about j0, the second line be-

comes

(∂x Φp(x, x) |x=j0)(j0 − j1) + (∂2
x Φp(x, x) |x=j1)(j1 − j0)2 − (∂2

x Φp(x, x) |x=j0)(j1 − j0)2

≡ (∂x Φp(x, x) |x=j0)(j0 − j1) mod p2k+1

and adding this together, we get that
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(∂2
x Φp(x, x) |x=j1)(j1 − j0)2 ≡ 0 mod p2k+1

which is absurd. It follows that vp(j0 − j1) = ∞ i.e. that j0 = j1. Finally, if pr(x) does

not split, it is irreducible, hence separable. It must also generate the unique ramified

extension of degree 2 since the Frobenius endomorphism acts trivially on its roots. �

As it turns out, Φp(x, y) also controls the structure of the set of quasi-canonical lifts

when the corresponding orders have index p. Fix an order O, not necessarily maximal,

and let γ denote a quasi-canonical lift.For any j ∈ Qalg
p , let I(j) := {j′ ∈ Qalg

p |Φ(j, j′) =

0},Ln = {j ∈ Qalg
p |End(j(E)) = Z + pnO}. Let K0 = Qp[γ] and we define Kn to be its

totally ramified abelian extension of degree pn.

Theorem 14 Every j ∈ Ln is in contained in I(j′) for precisely one j′ ∈ Ln. If Qp[γ] is ramified,

(Kn−1(j)|Kn−1) is a totally ramified extension of degree p. Otherwise, K0(j) is the maximal

tamely ramified extension.

Proof: Because each quasi-canonical lift of level n is p-isogenous to a quasi-canonical

lift of level n-1 [3], ∪j∈LnI(j)−Ln−1 ⊃ Ln+1. From the congruence Φ(x, y) ∼= (xp−y)(yp−x)

mod p we see that the roots of Φ(x, j′) lie in a totally ramified extension of K0(j′). By

induction, one of these roots lie in a proper subextension of Kn−1, hence the remaining

roots must be congruent to one of the roots of xp − j′. We easily deduce from this that if

j′ /∈ Qp then Φ(x+a,j′)
(x+a−j′′) is Eisenstein of degree p for some a ∈ Qp. Thus Kn−1(j) = Kn, and in

particular all conjugates of E(j) are p-isogenous to E(j′). But conjugates of E(j) are also

quasi-canonical lifts. Indeed, the isomorphism End(E(j)) ≡ End(E(σj)) induced by the

action of Gal(Kn|K0) on coefficient commutes with reduction mod πn, and is trivial mod

πn. Thus,

pn ≤ #Ln ≤ # ∪j∈Ln I(j)− Ln−1 ≤ p ∗ pn−1

Finally, if γ ∈ Qp, then Φ(x,γ)
(x−γ)2

is a polynomial over Qp of degree p − 1 congruent to

xp−1−1, so its roots correspond to the tamely ramified part of Qalg
p . Since gcd(p, p−1) = 1,

we see that the valuations of the roots of the centered polynomial Φ(x+a,j′)
(x+a−j′) satisfy 〈v(j +

a)〉 = 〈v(j′ + a)〉. Therefore K0(j) = K0(j′). �
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Corollary 15 Let j be a quasi-canonical lift of Frobenius of level n > 1. Then the extension

Qp[j]/Qp is abelian and corresponds to µp−1 if E(j) reduces to an ordinary elliptic curve, and

corresponds to {±1}U (1)/U (n) if E(j) reduces to a supersingular elliptic curve.

2.2.2 Numerical applications

Theorem 13 reduces the problem of computing canonical lifts to that of finding a root of a

polynomial in Qp(
√
p). Hence, in the supersingular case, we can proceed in an algorithmic

fashion as follows: Let K = Qp(
√
p) be a ramified extension of degree two, let E(r) be the

supersingular elliptic curve over Fp with j-invariant r ∈ Fp and let j0, j1 the two distinct

roots of pr(x) in K. Given j ∈ OK such that vπ(j0 − j) > vπ(j1 − j) > 0, j0 can be

computed by applying Hensel’s lemma to Φp(x, x) . Indeed, writing f := Φp(x, x) as a

product and its derivative as a sum of products, it is clear that vp(f(j0)) > 2vp(f
′(j0)) so

that the conditions of the general univariate Hensel’s lemma are satisfied. The precision

doubles at each step, so to find a root to precision N we need O(log(N)) steps assuming

unit cost for arithmetic operations.

In the ordinary case, Hensel’s lemma cannot be applied directly to Φp(x, x) to find an

ordinary j-invariant j. But j is also a root of the derivative of Φp(x, x) , and one might hope

that it has lower multiplicity, since this is true for a generic polynomial. The derivative of

the modular polynomial is of the form 2(xp − x)(pxp−1 − 1) +O(p), and since the Newton

slopes increase monotonically the last 2p − 1 − p = p − 1 slopes must be greater than 1.

That is, ∂xfhas at most p integral roots. But every lifted j-invariant is an approximate root

of ∂xf . Consequently, distinct integral roots of ∂xf lie in distinct residue class, so if j is the

lift of an ordinary elliptic curve, j is a root of ∂xfand ∂2
xf(j) 6= 0. Hence we can apply

Hensel’s lemma to ∂xf to obtain the canonical lift. In general, there is a robust version

of the Newton-Hensel root-finding method that handles the case where some roots may

have multiplicity > 1.

The reason this works is that if (x − r)k|f, (x − r)k−1|f ′ so h has only simple roots,

which are also roots of f . By looking at the degree, it is clear that h is not constant,
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Algorithm 1 Newton-Hensel, robust

1: procedure NH-R
2: Roots = []
3: for deg(f) ≥ 1 do
4: f ′ ← Differentiate(f )
5: g ← GCD(f, f ′)
6: h← f/g
7: for i in {1, ...deg(h)} do
8: r ← Hensel(f, ri).
9: Add r to Roots

10: f ← Divide(f, (x− r))
11: Return Roots

so every iteration of the outer loops find new roots of f . Computing the gcd can be

done efficiently with, say, Euclid’s algorithm, and likewise polynomial division can be

done using long division, so for polynomials of fixed degree this robust version still runs

in time O(poly(N)). This algorithm also illustrate a significant advantage of working

over p-adic fields. Namely, polynomial division is numerically stable in the sense that if

r + O(pN) is an approximate root of f, performing long division of f by r + O(pN) gives

a polynomial whose roots are approximate roots of order O(pN). This contrasts with the

case of archimedean fields, where polynomials with very close coefficients can have roots

that are very far apart.

If f has distinct but very close roots, Algorithm 1 will still find the roots when given

a sufficiently good approximation, but finding such an approximation by trial and error

might be infeasible. We can use the ideas in the preceding algorithm to improve the naive

version of Algorithm 1 when a polynomial has multiple close roots so that we merely

need an initial value which has a neighborhood containing only one root.

Lemma 16 Say we are given f with an approximate root r r0 + O(pN) and with true roots

r1, ..., rn ro + O(pM) for M < N . Let M ′ be the optimal such M . Take some s 6= r congruent

to r0, ..., rn mod pM . Then for N < (n + 1)M + v(n), the Newton-Hensel algorithm applied

to g := f
(x−s)n has faster convergence to r0, and for larger values of N it is equivalent to the

Newton-Hensel algorithm applied to f

16



Writing f(r) = Π(r − ri), we see that

v(f(r)) = N + nM ′

v(f ′(r)) = nM ′ + v(deg(f))

The rational function g := f
(x−s)n then also vanishes at r0 and v(g(r)) = N + n(M ′ −M).

The valuation of its derivative g′(r) = f ′(r)
(r−s)n −

nf(r)
(r−s)n+1 tends to v(f ′(r)) − nv(r − s) as

r 7→ r0. Indeed,

v(
f ′

(r − s)n
) = n(M ′ −M) + v(deg(f))

v(
f

(r − s)n+1
) = N −M + n(M ′ −M) + v(n)

The first value is constant while the second is O(N). Therefore, v( f(r)
f ′(r)2

) ≤ v( g(r)
g′(r)

2
), and

this inequality is strict for N ≤ (n+ 1)M + v(n). �

The description of Ln given by Theorem 14 suggests that an algorithm of the form

could be used to recursively compute all quasi-canonical lifts of a supersingular elliptic

Algorithm 2 A hypothetical algorithm for quasi-canonical lifts of Frobenius

1: procedure QCL
2: I(j’)←QCL(n− 1)
3: for j′ in I(j’) do
4: j ← Root(Φ(j′, x)).
5: if vp(j) = n then
6: Add j, ζj, ...ζp−1j to I(j).
7: Return I(j)

curve up to some level n using Root as a black-box subroutine which returns a root of

minimal valuation. Unfortunately, while the realization of the wildly ramified extension

of K0 as a tower K0 ⊂ K1 ⊂ ... ⊂ Kn ⊂ ... generated by j-invariant is arguably pleas-

ing, this theoretical insight concerning the fields Kn strongly suggests that even finding

a single element of L cannot be done efficiently. Indeed, any numerical implementation
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would need O([Kn : K0]) = O(pn) space just to store j to fixed precision, and the cost of

arithmetic operation similarly increase exponentially as n→∞.

2.2.3 Endomorphism of degree l, and endomorphism of arbibtrary de-

gree

Since the moduli of elliptic curves that have an isogeny of degree ` is defined over Q, the

j-invariant of these elliptic curves can be found in p-adic fields by finding the roots of

a suitable modular polynomial as in the `-adic case. In practice, this can easily be done

using Algorithm 1 and Lemma 16 if needed. On a theoretical level, we can deduce results

related to the theory of complex multiplication.

Theorem 17 Say α generates a Dedekind domain in the endomorphism ring of a supersingular

elliptic curve over F`. Let γ be the j-invariant of the corresponding canonical lift. For every prime

p the extension Qp[α, γ]/Qp[α] is trivial.

Let K be a Galois closure of the extension (Qp[α, γ]|Qp[α]). For any a ∈ Qp[α], consider

the symbol σ = (a,K|Q). By uniqueness of the canonical lift its action on γ is uniquely

determined by [α] 7−→ [ασ] which is uniquely determined by α 7−→ ασ. In particular all

norms of Q[α] act trivially, so the result follows from the functoriality of the local Artin

symbol. �

Combined with Theorem 14, we can deduce a well-known generalization of Theorem

5 using only p-adic methods.

Corollary 18 The extension Q[α, γ]/Q[α] := H/K of global fields is the ring class field of Z[α]

An example: The polynomial Φ5 splits over Q7[x], and in fact over Z[x], into

(x+ 884736)2(x− 287496)2(x− 1728)2(x+ 32768)2(x2 − 1264000x− 681472000)

Note that the roots 1728,−32768, 287496 reduce to 1728 ∼=7 0, which correspond to the

unique supersingular elliptic curve over F̄7, hence all of these roots correspond to a quasi-

canonical lift. The polynomial Φ3 splits completely over Q7[x], and in fact over Z[x], into
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x(x− 54000)(x− 8000)2(x+ 32768)2

so the roots corresponding to a quasi-canonical lift are 8000,−32768.

Finally, recall that by Galois theory, an isogeny E 7→ E ′ of degree l1l2 factors as a

composite E 7→ E ′′ 7→ E ′ of degree l1, l2 in at least two distinct ways. Thus, we can realize

Φl1l2,red as a subscheme ofX0(l1)∩X0(l2) ⊂ P2 with the same underlying space. Moreover,

in general we can factor an isogeny as a composite of cyclic isogenies, so in the general

case, to find a canonical lift of degree coprime to the characteristic of the residue field it

suffices to solve a system of equation

Φl1(x1, x2) = 0

Φl2(x2, x3) = 0

...

Φln(xn, x1) = 0

Since the solutions correspond to singular points, the determinant of J := (∂xiΦlj)(ij)

also vanishes at these points. However, every point in a generic intersection occur with

multiplicity 1. Because p-adic balls of arbitrarily small radius are Zariski dense in AN
Qp

,

we may perform an arbitrarily small perturbation ε of the coefficents occuring in ∗ to

obtain a nonsingular system of equation whose solution are arbitrarily close to those of

the original one. Indeed, a solution x to the original system is an approximate solution of

orderO(ε) to the second system, and the perturbed Jacobian is of order Ω(ε), so there exist

a point in B(x, ε) such that the condition of the multivariate Hensel lemma are satisfied.

�
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Chapter 3

Code and Numerical results

In this chapter we compile some examples of quasi-canonical lifts for small primes. For all

the examples, b :=
√
p will denote a generator of the quadratic ramified extension Qp/Q.

The SAGE code used to generate these j-invariants is listed below, and can be used to

fully automatically handle the case of endomorphism of degree p in characteristic p. To

find minimal polynomials of traces and norms, we use PARI’s algdep method. While

there is no guarantee that this method will find the true minimal polynomials, we can

and did check for overfitting by verifying that the output of the method is stable as the

precision of the input is increased.

1 import numpy as np

2 from sage.libs.pari.convert_sage import gen_to_sage

3 from sage.schemes.elliptic_curves.ell_finite_field import is_j_supersingular

4

5 class CLParam:

6 def __init__(self, p, f, e, prec):

7 """

8 Wrapper class for the background parameters.

9 INPUT:

10 p: Residue characteristic of the p-adic field

11 f: Degree of the maximal unramified subextension over the base p-adic

field
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12 e: Degree of the ramified subextension. Must be either 1 or 2, depending

on whether p is a square root in the relevant field.

13 prec: Working precision for the p-adic field.

14 OUTPUT: Wrapper class.

15 """

16 self.p = p

17 self.f = f

18 self.e = e

19 self.prec = prec

20 L.<z> = Qp(p, prec = prec, names = ’z’)[]

21 self.pol_ring = L

22 self.indeterminate = self.pol_ring.gen()

23 self.unr = Qq(pˆf, prec = prec, names = ’t’)

24 self.var_unr = self.unr.gen()

25 self.Frob = self.unr.frobenius_endomorphism()

26 K.<a> = self.unr[]

27 self.unr_pol = K

28

29 if e > 1:

30 R.<b> = Qp(p , prec = prec, names = ’b’).ext(self.indeterminateˆe-

p)

31 self.rm = R

32 self.var_rm = self.rm.gen()

33

34 #Stores modular polynomial phi_p and its first partial derivatives in

memory

35 pol_mod = pari.polmodular(p)

36 R.<x,y> = QQ[]

37 self.pol_mod = gen_to_sage(pol_mod, {’x’: x, ’y’: y})

38 self.partial_x = derivative(self.pol_mod,x)

39 self.partial_y = derivative(self.pol_mod,y)

40 self.diag = self.pol_mod(z,z)

41 self.g = self.diag.differentiate()

42 self.h = self.g.differentiate()
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43

44 def Frob_lift(self,x,k):

45 """

46 Wrapper to call the (lift to char = 0 of) Frobenius multiple times

47 INPUT

48 x : Element of the field K specified above. A polynomial expression in

the generator a

49 k : Number of times the Frobenius map is applied to k

50 OUTPUT

51 The k-th power of the Frobenius map applied to x

52 """

53 if k <= self.f:

54 if k == 0:

55 return x

56 if k == 1:

57 return self.Frob(x)

58 else:

59 return self.Frob(self.Frob_lift(x,k-1))

60 else:

61 return self.Frob(self.Frob_lift(x,k%self.f-1))

62

63 def asroot1(self,a,b,k):

64 """

65 Returns elements a_1, b_1 s.t Frobˆk(x) ˜= a_1*x+b_1 for

66 a hypothetical solution to an Artin-Schreier equation.

67 INPUT

68 a, b: coefficient of Artin-Schreir equation

69 k : Power of the Frobenius map

70 OUTPUT

71 Integral elements a_1, b_1

72 """

73 if k == 1:

74 a_1 = a

75 b_1 = b
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76 else:

77 l = np.floor(k/2)

78 a_0, b_0 = self.asroot1(a,b,l)

79 a_frob = self.Frob_lift(a_0,l)

80 b_frob = self.Frob_lift(b_0,l)

81 a_1 = a_0*a_frob

82 b_1 = b_0*a_frob + b_frob

83

84 if k%2 == 1:

85 b_1 = b*self.Frob_lift(a_1,1) + self.Frob_lift(b_1,1)

86 a_1 = a*self.Frob_lift(a_1,1)

87 return a_1, b_1

88

89 def asroot2(self,alpha,beta,gamma):

90 """

91 Wrapper for solving general a Artin-Schreier equation alpha*Frob(x)+

beta*x+gamma = 0

92 """

93 a_n, b_n = self.asroot1(-1*beta/alpha,-1*gamma/alpha,self.f)

94 return b_n/(1-a_n)

95

96 def Hensel(self,pol,dpol,root, N):

97 """

98 Applies Hensel’s lemma to lift a root of an univariate polynomial

99 INPUT:

100 pol: Polynomial whose root is to be lifted

101 dpol: derivative of pol

102 root: Approximate root

103 N: Desired precision

104 """

105 if N <= 1:

106 return root

107 else:

108 M = np.ceil((N)/2)
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109 M = int(M)

110 x_1 = self.Hensel(pol,dpol, root, M)

111 if pol(x_1).valuation() - 2*dpol(x_1).valuation() <= 0:

112 print("Further iterations will not converge")

113 return x_1

114 x_2 = x_1 - pol(x_1)/dpol(x_1)

115 return x_2

116

117 def exponentiate(self,n):

118 """

119 Don’t ask

120 """

121 if n == 1:

122 return self.p

123 else:

124 x = self.p

125 if x%2 == 1:

126 x = self.p

127 return exponentiate(self.p,floor(n/2))ˆ2*x

128

129 def Canonical_lift(self,x_0, N):

130 """

131 (Generalized) Newton lift. The technique works for equations of the

form f(x,Frob(x))=0 in general, but

132 here f is hardcoded as a modular polynomial

133 INPUT:

134 x_0: Initial guess

135 N: Desired precision (limited by the precision given at the start of

the program)

136 OUTPUT:

137 A solution to phi(x,Frob(x)) over the p-adic

138 """

139 if self.f == 1:

140 x_2 = self.Canonical_lift_f1(x_0,N)
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141 return x_2

142 if N <= 1:

143 print(x_0)

144 return x_0

145 else:

146 M = int(np.ceil(N/2))

147 x_1 = self.Canonical_lift(x_0,M)

148 y_1 = self.Frob(x_1)

149 ev = self.pol_mod(x_1,y_1)

150 dx = self.partial_x(x_1,y_1)

151 dy = self.partial_y(x_1,y_1)

152 var = self.asroot2(dy,dx,ev/self.exponentiate(M))

153 x_2 = x_1+(var*self.exponentiate(M))

154 return x_2

155

156 def Canonical_lift_f1(self, x_0,N):

157 """

158 (Generalized) Newton lift. Deals with the case where x_0 lies in a

quadratic extension of Qp. If the

159 lifts of the supersingular values hasn’t been computed yet, this will

do so before lifting x_0

160 INPUT:

161 x_0: Initial guess

162 N: Desired precision (limited by the precision given at the start of

the program)

163 OUTPUT:

164 A solution to phi(x,x) over the p-adic

165 """

166 ss = is_j_supersingular(GF(self.p)(x_0))

167 if N == 1:

168 return x_0, ss

169

170 else:

171 #Iterative procedure
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172 x_1 , ss = self.Canonical_lift_f1(x_0,N-1)

173 if ss:

174 x_2 = x_1 - self.diag(x_1)/self.g(x_1)

175 else:

176 x_2 = x_1 - self.g(x_1)/self.h(x_1)

177 return x_2, ss

178

179

180 def Euclid(pol, root, degree):

181 temp = pol.coefficients()[::-1]

182 factor = [temp[0]]

183 var = 0

184 for i in range(1,len(temp)-1):

185 var = temp[i] + root*factor[i-1]

186 factor.append(var)

187

188 factor = factor[::-1]

189 var = 0

190 f = 0

191 for i in factor:

192 f = f + i*xˆ(var)

193 var += 1

194

195 return f
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In characteristic 5, we obtain the results tabulated below. Note that the only lift that

does not lie in Q5 is the supersingular one, as expected from the general theory devel-

opped in Chapter 2.

Input seed p-adic lift Supersingular Trace Norm
5 ∗ b b3 + b6 +O(b7) True x− 1264000 x - 681472000

1 + 5 ∗ b 1 + 4 ∗ b2 + 4 ∗ b4 + 4 ∗ b6 +O(b7) True x− 574992 x− 82653950016
2 + 5 ∗ b 2 + b2 + 4 ∗ b4 + 2 ∗ b6 +O(b7) False x+ 65536 x− 1073741824
3 + 5 ∗ b 3 + 4 ∗ b4 + 3 ∗ b6 +O(b7) False x− 3456 x− 2985984
4 + 5 ∗ b 4 + 2 ∗ b2 + 2 ∗ b6 +O(b7) False x+ 1769472 x− 782757789696

Table 3.1: Lifts of Frobenius in characteristic 5

In characteristic 7, the results for the ordinary lifts are tabulated below. The lift for the

supersingular value 6 ∈ Fp is found to be 6+4∗b+4∗b2+4∗b4+b5+5∗b6+O(b10), and while

it is easily computed to arbitrary precision, PARI’s algdep method seems to be sensitive

to our choice of generator for the quadratic ramified extension. Nonetheless, when these

approximate lifts are substituted back in the relevant modular polynomial, the resulting

value is approximately zero and shrinks as the precision is increased, as expected.

Input seed p-adic lift Supersingular Trace Norm
b 0 +O(10) False x - 0 x - 0
1 + b 1 + b2 + 4 ∗ b4 +

3 ∗ b6 +O(b7)
False x+ 1769472 x− 782757789696

2 + b 2+3∗b4 +3∗b6 +
O(b7)

False x− 108000 x− 2916000000

3 + b 3+3∗b2 +6∗b4 +
O(b7)

False x+ 24576000 x− 150994944000000

4 + b 4+6∗b2 +5∗b4 +
5 ∗ b6 +O(b7)

False x2 − 9669888x +
58680557568

x2 − 23347343204352x +
215212989780710129664

5 + b 5 + 2 ∗ b2 + b4 +
6 ∗ b6 +O(b7)

False x2 − 9669888x +
58680557568

x2 − 23347343204352x +
215212989780710129664

Table 3.2: Lift of the ordinary Frobenius in characteristic 7
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Conclusion

In conclusion, the results of Chapter 2 give a complete theoretical solution to the problem

of finding quasi-canonical lifts of curves in Fp. It would be interesting to see if the analogy

with the theory of complex multiplication could be pushed further. A large part of this

theoretical solution has been successfully implemented as shown in the code and exam-

ples given in Chapter 3. Nonetheless, from a numerical perspective, it remains to extend

those results by fully implementing the algorithms described and by extending them to

the case of curves over Fp2 .
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