
Topics in Galois Theory

Jean-Pierre Serre

Course at Harvard University, Fall 1988

Notes written by Henri Darmon

- 1991 -



Henri Darmon, Mathematics Department, Fine Hall, Princeton University,
Princeton NJ 08544, USA.
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Foreword

These notes are based on “Topics in Galois Theory,” a course given by J-P.
Serre at Harvard University in the Fall semester of 1988 and written down by
H. Darmon. The course focused on the inverse problem of Galois theory: the
construction of field extensions having a given finite group G as Galois group,
typically over Q but also over fields such as Q(T ).

Chapter 1 discusses examples for certain groups G of small order. The
method of Scholz and Reichardt, which works over Q when G is a p-group
of odd order, is given in chapter 2. Chapter 3 is devoted to the Hilbert irre-
ducibility theorem and its connection with weak approximation and the large
sieve inequality. Chapters 4 and 5 describe methods for showing that G is
the Galois group of a regular extension of Q(T ) (one then says that G has
property GalT ). Elementary constructions (e.g. when G is a symmetric or
alternating group) are given in chapter 4, while the method of Shih, which
works for G = PSL2(p) in some cases, is outlined in chapter 5. Chapter 6
describes the GAGA principle and the relation between the topological and
algebraic fundamental groups of complex curves. Chapters 7 and 8 are devoted
to the rationality and rigidity criterions and their application to proving the
property GalT for certain groups (notably, many of the sporadic simple groups,
including the Fischer-Griess Monster). The relation between the Hasse-Witt
invariant of the quadratic form Tr (x2) and certain embedding problems is the
topic of chapter 9, and an application to showing that Ãn has property GalT
is given. An appendix (chapter 10) gives a proof of the large sieve inequality
used in chapter 3.

The reader should be warned that most proofs only give the main ideas;
details have been left out. Moreover, a number of relevant topics have been
omitted, for lack of time (and understanding), namely:

a) The theory of generic extensions, cf. [Sa1].
b) Shafarevich’s theorem on the existence of extensions of Q with a given

solvable Galois group, cf. [ILK].
c) The Hurwitz schemes which parametrize extensions with a given Galois

group and a given ramification structure, cf. [Fr1], [Fr2], [Ma3].
d) The computation of explicit equations for extensions with Galois group

ix
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PSL2(F7), SL2(F8), M11, . . ., cf. [LM], [Ma3], [Ma4], [Ml1], . . .
e) Mestre’s results (not yet published) on extensions of Q(T ) with Galois

group 6 · A6, 6 · A7, and SL2(F7).

We wish to thank Larry Washington for his helpful comments on an earlier
version of these notes.

Paris, August 1991.

H. Darmon J-P. Serre



Notation

If V is an algebraic variety over the field K, and L is an extension of K, we
denote by V (L) the set of L-points of V and by V/L the L-variety obtained
from V by base change from K to L. All the varieties are supposed reduced
and quasi-projective.

An is the affine n-space; An(L) = Ln.
Pn is the projective n-space; Pn(L) = (L(n+1) − {0})/L∗; the group of

automorphisms of Pn is PGLn = GLn/Gm.
If X is a finite set, |X| denotes the cardinality of X.
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Introduction

The question of whether all finite groups can occur as Galois groups of an
extension of the rationals (known as the inverse problem of Galois theory) is
still unsolved, in spite of substantial progress in recent years.

In the 1930’s, Emmy Noether proposed the following strategy to attack the
inverse problem [Noe]: by embedding G in Sn, the permutation group on n
letters, one defines a G-action on the field Q(X1, . . . , Xn) = Q(X). Let E be
the fixed field under this action. Then Q(X) is a Galois extension of E with
Galois group G.

In geometric terms, the extension Q(X) of E corresponds to the projection
of varieties: π : An −→ An/G, where An is affine n-space over Q. Let
P be a Q-rational point of An/G for which π is unramified, and lift it to
Q ∈ An(Q̄). The conjugates of Q under the action of Gal(Q̄/Q) are the sQ
where s ∈ HQ ⊂ G, and HQ is the decomposition group at Q. If HQ = G,
then Q generates a field extension of Q with Galois group G.

A variety is said to be rational over Q (or Q- rational) if it is birationally
isomorphic over Q to the affine space An for some n, or equivalently, if its
function field is isomorphic to Q(T1, . . . , Tn), where the Ti are indeterminates.

Theorem 1 (Hilbert, [Hi]) If An/G is Q-rational, then there are infinitely
many points P,Q as above such that HQ = G.

This follows from Hilbert’s irreducibility theorem, cf. §3.4.

Example: Let G = Sn, acting on Q(X1, . . . , Xn). The field E of Sn-invariants
is Q(T1, . . . , Tn), where Ti is the ith symmetric polynomial, and Q(X1, . . . , Xn)
has Galois group Sn over E: it is the splitting field of the polynomial

Xn − T1X
n−1 + T2X

n−2 + · · ·+ (−1)nTn.

Hilbert’s irreducibility theorem says that the Ti can be specialized to infinitely
many values ti ∈ Q (or even ti ∈ Z) such that the equation

Xn − t1Xn−1 + t2X
n−2 + · · ·+ (−1)ntn = 0

xiii
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has Galois group Sn over Q. In fact, “most” ti work: of the Nn n-tuples (ti)

with ti ∈ Z, 1 ≤ ti ≤ N , only O(Nn− 1
2 logN) may fail to give Sn, cf. [Ga],

[Coh], [Se9].
In addition to the symmetric groups, the method works for the alternating

groups An with n ≤ 5, cf. [Mae] (For n ≥ 6, it is not known whether the
field of An-invariants is rational.) Somewhat surprisingly, there are groups for
which the method fails (i.e. An/G is not Q-rational):

• Swan [Sw1] has shown that the field of G-invariants is not rational when G
is a cyclic group of order 47. The obstruction is related to the automorphism
group of G which is a cyclic group of order 46 = 2× 23, and to the fact that
Q(ζ23) does not have class number 1 (since h(−23) = 3).

• In [Le] H. Lenstra gives a general criterion for the field of G-invariants to be
rational when G is an abelian group: in particular, he shows that this criterion
is not satisfied when G is cyclic of order 8.

(The above counter-examples are over Q. Counter-examples over C (involving
a non-abelian group G) are given by the following result of Saltman [Sa2]: if
there is a non-zero α ∈ H2(G,Q/Z) such that ResG

H(α) = 0 for all abelian
subgroups H generated by two elements, then An/G is not C-rational. It is
not hard to construct groups G satisfying the hypothesis of Saltman’s theo-
rem: for example, one may take a suitable extension of abelian groups of type
(p, . . . , p).)

It is easy to see (e.g., using the normal basis theorem) that the covering
map

π : An −→ An/G

is generic (or versal) in the sense that every extension of Q (or of any field of
characteristic zero) with Galois group G can be obtained by taking the π-fibre
of a rational point of An/G over which π is unramified. Hence, if An/G is Q-
rational, then the set of all G-extensions of Q can be described by a system of
n rational parameters. Such a parametrization implies the following property
of extensions with Galois group G [Sa1]:

Theorem 2 Assume An/G is Q-rational. Let {pi} be a finite set of primes,
Li extensions of Qpi

with Galois group G. Then there is an extension L of Q
with Gal(L/Q) = G such that L⊗Qpi

= Li.

Remark: There is a more general statement, where the Li are allowed to
be Galois algebras, and Q is replaced by a field endowed with finitely many
independent absolute values.

Proof (sketch): Each Li is parametrized by (X (i)) ∈ An(Qpi
). A “global”

parameter (X) ∈ An(Q) which is sufficiently close to each of the (X (i)) in the
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Qpi
-topology gives an extension of Q with group G having the desired local

behaviour (Krasner’s lemma). QED.

The cyclic group of order 8 does not satisfy the property of th. 2. Indeed, if
L2/Q2 is the unique unramified extension of Q2 of degree 8, there is no cyclic
extension L of degree 8 over Q such that L2 ' L ⊗Q2 (an easy exercise on
characters, see [Wa]).

One could perhaps extend Hilbert’s theorem to a more general class of va-
rieties. There is an interesting suggestion of Ekedahl and Colliot-Thélène in
this direction [Ek], [CT] (see §3.5).

Since An/G is not always Q-rational, one has to settle for less:

Question: If G is a finite group, can it be realized as a Galois group of
some regular extension F of Q(T )? (Recall that “F is regular” means that
F ∩ Q̄ = Q.)

Remarks:
1. If F is a function field of a variety V defined over Q, then F is regular if
and only if V is absolutely irreducible. The regularity assumption is included
to rule out uninteresting examples such as the extension E(T ) of Q(T ) where
E is a Galois extension of Q.
2. If such an F exists, then there are infinitely many linearly disjoint extensions
of Q with Galois group G.

The existence of regular extensions of Q(T ) with Galois group G is known
when G is:
• Abelian;
• One of the 26 sporadic simple groups, (with the possible exception of the
Mathieu group M23);
•PSL2(Fp), where at least one of ( 2

p
), (3

p
), (7

p
) is −1 [Shih1], [Shih2];

• An, or Sn, cf. [Hi];
• Ãn, cf. N. Vila [Vi] and J-F. Mestre [Me2];
• G2(Fp) [Th2], where G2 is the automorphism group of the octonions,
and the list is not exhaustive.

The method for finding F proceeds as follows:

1. Construction (by analytic and topological methods) of an extension FC

of C(T ) with Galois group G.

2. A descent from C to Q. This is the hardest part, and requires that G
satisfies a so-called rigidity criterion.

The outline of the course will be:
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1. Elementary examples, and the Scholz-Reichardt theorem.

2. Hilbert’s irreducibility theorem and applications.

3. The “rigidity method” used to obtain extensions of Q(T ) with given
Galois groups.

4. The quadratic form x 7→ Tr (x2), and its applications to embedding
problems, e.g., construction of extensions with Galois group Ãn.



Chapter 1

Examples in low degree

1.1 The groups Z/2Z, Z/3Z, and S3

• G = Z/2Z: all quadratic extensions can be obtained by taking square roots:
the map P1 −→ P1 given by X 7→ X2 is generic (in characteristic different
from 2 - for a characteristic-free equation, one should use X2 − TX + 1 = 0
instead).

• G = Z/3Z: A “generic equation” for G is:

X3 − TX2 + (T − 3)X + 1 = 0,

with discriminant ∆ = (T 2 − 3T + 9)2. (In characteristic 3, this reduces to
the Artin-Schreier equation Y 3− Y = −1/T by putting Y = 1/(X + 1).) The
group G acts on P1 by

σX =
1

1−X ,

where σ is a generator of G. The function

T = X + σX + σ2X =
X3 − 3X + 1

X2 −X
is G-invariant and gives a map Y = P1 −→ P1/G. To check genericity,
observe that any extension L/K with cyclic Galois group of order 3 defines a
homomorphism φ : GK −→ G −→ Aut Y which can be viewed as a 1-cocycle
with values in Aut Y . The extension L/K is given by a rational point on
P1/G if and only if the twist of Y by this cocycle has a rational point not
invariant by σ. This is a general property of Galois twists. But this twist has
a rational point over a cubic extension of K, and every curve of genus 0 which
has a point over an odd-degree extension is a projective line, and hence has at
least one rational point distinct from the ones fixed by σ.

1



2 Chapter 1. Examples in low degree

• G = S3: The map

S3 ↪→ GL2 −→ PGL2 = Aut (P1)

gives a projection
P1 −→ P1/S3 = P1

which is generic, although the reasoning for C3 cannot be applied, as the order
of S3 is even. But S3 can be lifted from PGL2 to GL2, and the vanishing of
H1(GK,GL2) can be used to show that

P1 −→ P1/S3

is generic.

Exercise: Using the above construction (or a direct argument), show that every
separable cubic extension of K is given by an equation of the form

X3 + TX + T = 0, with T 6= 0,−27/4.

1.2 The group C4

Let K4/K be Galois and cyclic of degree 4, and suppose that Char K 6= 2.
The extension K4 is obtained from a unique tower of quadratic extensions:

K ⊂ K2 ⊂ K4,

where K2 = K(
√
ε), and K4 = K2(

√

a + b
√
ε).

Conversely, let K2 = K(
√
ε) be a quadratic extension of K, where ε ∈ K∗

is not a square. If a, b ∈ K and K4 = K2(
√

a + b
√
ε), then K4 may not be

Galois over K (its Galois closure could have Galois group isomorphic to D4,
the dihedral group of order 8).

Theorem 1.2.1 The field K4 is cyclic of degree 4 if and only if a2− εb2 = εc2

for some c ∈ K∗.

Proof: Let G be a group, ε a non-trivial homomorphism from G to Z/2Z,
and χ a homomorphism from H = Ker ε to Z/2Z. Let Hχ denote the kernel
of χ.

Lemma 1.2.2 The following are equivalent :

(a) Hχ is normal in G, and G/Hχ is cyclic of order 4.



1.2. The group C4 3

(b) CorG
Hχ = ε, where CorG

H is the corestriction map.

(We abbreviate H1(G,Z/2Z) = Hom(G,Z/2Z) to H1(G). The corestriction
map H1(H) −→ H1(G) can be defined by

(CorG
Hχ)(g) = χ(VerG

Hg),

where VerG
H : G/(G,G) −→ H/(H,H) is the transfer.)

The proof that (a) ⇒ (b) is immediate: replacing G by G/Hχ, it suffices to
check that the transfer C4 −→ C2 is onto: but this map is given by s 7→ s2.

Now, assume (b). Select s ∈ G−H. The transfer is given by:

VerG
H(h) = h · shs−1 mod (H,H).

Hence for all h ∈ H:

χ(VerG
Hh) = χ(h) + χ(shs−1) = ε(h) ≡ 0 (mod 2).

But if h ∈ Hχ, then χ(h) = 0. It follows that χ(shs−1) = 0, so that Hχ is
normal in G. Now, applying the hypothesis to s shows

χ(s2) = CorG
Hχ(s) = ε(s) ≡ 1 (mod 2),

so s2 6= 1 (mod Hχ). It follows that G/Hχ is cyclic of order 4, and this
completes the proof of lemma 1.2.2.

Now, let G = GK = Gal(K̄/K). The extensions K2 and K4 define homo-
morphisms ε and χ as in the lemma. Via the identification of H1(GK) with
K∗/K∗2, the corestriction map Cor : H1(GK2) −→ H1(GK) is equal to the
norm, and the criterion CorG

Hχ = ε becomes:

N(a+ b
√
ε) = εc2,

where c ∈ K∗. This completes the proof of th. 1.2.1.

Remark: In characteristic 2, Artin-Schreier theory gives an isomorphism
H1(GK) ' K/℘K, where ℘x = x2 + x, and the corestriction map corresponds
to the trace. Hence the analogue of th. 1.2.1 in characteristic 2 is:

Theorem 1.2.3 Suppose CharK = 2, and let K2 = K(x), K4 = K2(y), where
℘x = ε, ℘y = a + bx. Then K4 is Galois over K and cyclic of degree 4 if and
only if Tr (a + bx)(= b) is of the form ε+ z2 + z, with z ∈ K.

Observe that the variables ε, a, z of th. 1.2.3 parametrize C4-extensions of K.
In particular, it is possible in characteristic 2 to embed any quadratic extension
in a cyclic extension of degree 4. This is a special case of a general result: the
embedding problem for p-groups always has a solution in characteristic p (as
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can be seen from the triviality of H2(G,P ) when G is the absolute Galois
group of a field of characteristic p and P is an abelian p-group with G-action.
See for example [Se1].)

The situation is different in characteristic 6= 2: the criterion a2 − b2ε = εc2

implies that ε must be a sum of 2 squares in K: if b2 + c2 6= 0, then:

ε =

(

ab

b2 + c2

)2

+
(

ac

b2 + c2

)2

.

Otherwise
√
−1 ∈ K, and any element of K can be expressed as a sum of 2

squares. Conversely, if ε is the sum of two squares, ε = λ2 + µ2, then setting

a = λ2 + µ2, b = λ, c = µ,

solves the equation a2 − b2ε = c2ε. Hence we have shown:

Theorem 1.2.4 A quadratic extension K(
√
ε) can be embedded in a cyclic

extension of degree 4 if and only if ε is a sum of two squares in K.

Here is an alternate proof of th. 1.2.4: the quadratic extension K2 can be
embedded in a cyclic extension K4 of degree 4 if and only if the homo-
morphism ε : GK −→ Z/2Z given by K2 factors through a homomorphism
GK −→ Z/4Z. This suggests that one apply Galois cohomology to the se-
quence:

0 −→ Z/2Z −→ Z/4Z −→ Z/2Z −→ 0,

obtaining:

H1(GK ,Z/4Z) −→ H1(GK,Z/2Z)
δ−→ H2(GK,Z/2Z).

The obstruction to lifting ε ∈ H1(GK,Z/2Z) to H1(GK ,Z/4Z) is given
by δε ∈ H2(GK,Z/2Z) = Br2(K), where Br2(K) denotes the 2-torsion in
the Brauer group of K. It is well-known that the connecting homomorphism
δ : H1 −→ H2, also known as the Bockstein map, is given by δx = x · x
(cup-product). This can be proved by computing on the “universal exam-
ple” P∞(R) = K(Z/2Z, 1) which is the classifying space for Z/2Z. The cup
product can be computed by the formula:

α · β = (α, β),

where H1(G,Z/2Z) is identified with K∗/K∗2 and (α, β) denotes the class of
the quaternion algebra given by

i2 = α, j2 = β, ij = −ji.
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But (ε,−ε) = 0 (in additive notation), so (ε, ε) = (−1, ε). Hence, δε is 0 if and
only if (−1, ε) = 0, i.e., ε is a sum of two squares in K.

Similarly, one could ask when the extension K4 can be embedded in a cyclic
extension of degree 8. The obstruction is again given by an element of Br2(K).
One can prove (e.g., by using [Se6]):

Theorem 1.2.5 The obstruction to embedding the cyclic extension K4 in a
cyclic extension of degree 8 is given by the class of (2, ε) + (−1, a) in Br2(K),
if a 6= 0, and by the class of (2, ε) if a = 0.

Hence, when a 6= 0, the C8-embedding problem is possible if and only if the
quaternion algebra (2, ε) is isomorphic to (−1, a).

There is also a direct proof of th. 1.2.1. Let K2 and K4 be as before, with

K2 = K(
√
ε), K4 = K2(

√

a+ b
√
ε). Let x =

√

a+ b
√
ε and y =

√

a− b√ε. If
Gal(K4/K) = C4, then we may choose a generator σ of Gal(K4/K) taking x
to y, and hence y to −x. Setting

c = xy/
√
ε,

we have σc = y(−x)/(−√ε) = c, so c ∈ K∗. Also

εc2 = x2y2 = a2 − b2ε,

and one obtains the same criterion as before. Conversely, if a, b, c, ε satisfy the
equation a2 − b2ε = c2ε, one verifies that K4 is a cyclic extension with Galois
group C4.

Remarks:
1. The minimal polynomial for x over K is

X4 + AX2 +B = 0,

where A = 2a, B = a2 − εb2. The condition for a general polynomial of this
form to have Galois group C4 is that A2 − 4B is not a square and that

(

A2 − 4B

B

)

∈ K∗2.

2. The C4-extensions are parametrized by the solutions (ε, a, b, u) of the equa-
tion

a2 − εb2 = εu2,

with u 6= 0 and ε not a square. This represents a rational variety: one can
solve for ε in terms of a, b, and u. Hence the class of C4-extensions of Q
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satisfies the conclusion of th. 2: there are C4-extensions of Q with arbitrarily
prescribed local behaviour at finitely many places; recall that this is not true
for the cyclic group of order 8.

Exercises:

1. The group C4 acts faithfully on P1 via the map C4 −→ PGL2 which sends a

generator σ of C4 to

(

1 1
−1 1

)

. The corresponding map P1 −→ P1/C4 is given

by z 7→ (z4 + 6z2 + 1)/(z(z2 − 1)). This gives rise to the equation:

Z4 − TZ3 + 6Z2 + TZ + 1 = 0

with Galois group C4 over Q(T ).
1.1 If i ∈ K, show that this equation is generic: in fact, it is equivalent to the
Kummer equation.
1.2 If i /∈ K, show that there does not exist any one-dimensional generic family for
C4-extensions.
1.3 If a C4-extension is described as before by parameters ε, a, b and c, show that
it comes from the equation above if and only if (−1, a) = 0 or a = 0.

2. Assume K contains a primitive 2n-th root of unity z. Let L = K( 2n√
a) be a

cyclic extension of K of degree 2n. Show that the obstruction to the embedding of

L in a cyclic extension of degree 2n+1 is (a, z) in Br2(K).

1.3 Application of tori to abelian

Galois groups of exponent 2, 3, 4, 6

AK-torus is an algebraic group over K which becomes isomorphic to a product
of multiplicative groups Gm × . . .×Gm over the algebraic closure K̄ of K. If
this isomorphism is defined over K, then the torus is said to be split.

Let T be a K-torus and denote by X(T ) its character group,

X(T ) = HomK̄(T,Gm).

It is well known that X(T ) is a free Z-module of rank n = dimT endowed with
the natural action of GK. The functor T 7→ X(T ) defines an anti-equivalence
between the category of finite dimensional tori over K and the category of free
Z-modules of finite rank with GK action.

A split K-torus is clearly a K-rational variety; the same holds for tori which
split over a quadratic extension K

′

of K. This follows from the classification
of tori which split over a quadratic extension (whose proof we shall omit - see
[CR]):

Lemma 1.3.1 A free Z-module of finite rank with an action of Z/2Z is a
direct sum of indecomposable modules of the form :
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1. Z with trivial action.
2. Z with the non-trivial action.
3. Z × Z with the “regular representation” of Z/2Z which interchanges the
two factors.

The corresponding tori are :
1. Gm

2. A “twisted form ” of Gm, which corresponds to elements of norm 1 in (3)
below.
3. The algebraic group RK′/KGm obtained from Gm/K′ by “restriction of
scalars” to K ( cf. §3.2.1).

It is not difficult to show that the three cases give rise to K-rational varieties,
and the result follows.

If G is a finite group, the group G of invertible elements of the group algebra
Λ = K[G] defines an algebraic group over K. In characteristic 0, we have

G '
∏

GLni
over K̄,

where the product is taken over all irreducible representations of G and the ni

denote the dimensions of these representations.
In particular, if G is commutative, then G is a torus with character group

Z[Ĝ], where Ĝ = HomK̄(G,Gm). Therefore, G splits over the field generated
by the values of the characters of G. There is an exact sequence of algebraic
groups:

1 −→ G −→ G −→ G/G −→ 1,

and the covering map G −→ G/G is generic for extensions of K with Galois
group G. If G is of exponent 2,3, 4 or 6, then G splits over a quadratic
extension, since the characters values lie in Q, Q(

√
3), or Q(i). By the previous

result, G - and hence a fortiori G/G - is Q-rational. So the abelian groups of
exponent 2,3,4 or 6 yield to Noether’s method (but not those of exponent 8).

Exercise: Show that all tori decomposed by a cyclic extension of degree 4 are

rational varieties, by making a list of indecomposable integer representations of the

cyclic group of order 4 (there are nine of these, of degrees 1, 1, 2, 2, 3, 3, 4, 4, 4). See

[Vo2].
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Chapter 2

Nilpotent and solvable groups
as Galois groups over Q

2.1 A theorem of Scholz-Reichardt

Our goal will be to prove the following theorem which is due to Scholz and
Reichardt [Re]:

Theorem 2.1.1 Every l-group, l 6= 2, can be realized as a Galois group over
Q. (Equivalently, every finite nilpotent group of odd order is a Galois group
over Q.)

Remarks:
1. This is a special case of a theorem of Shafarevich: every solvable group can be
realized as a Galois group over Q. [The proofs of that theorem given in [Sha1] and
[Is] are known to contain a mistake relative to the prime 2 (see [Sha3]). In the notes
appended to his Collected Papers, p.752, Shafarevich sketches a method to correct
this. See also [ILK], ch. 5.]
2. The proof yields somewhat more than the statement of the theorem. For example,
if |G| = lN , then the extension of Q with Galois group G can be chosen to be ramified
at at most N primes. It also follows from the proof that any separable pro-l-group
of finite exponent is a Galois group over Q.
3. The proof does not work for l = 2. It would be interesting to see if there is a way
of adapting it to this case.

4. It is not known whether there is a regular Galois extension of Q(T ) with Galois

group G for an arbitrary l-group G.

An l-group can be built up from a series of central extensions by groups
of order l. The natural approach to the problem of realizing an l-group G
as a Galois group over Q is to construct a tower of extensions of degree l
which ultimately give the desired G-extension. When carried out naively,
this approach does not work, because the embedding problem cannot always

9
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be solved. The idea of Scholz and Reichardt is to introduce more stringent
conditions on the extensions which are made at each stage, ensuring that the
embedding problem has a positive answer.

Let K/Q be an extension with Galois group G, where G is an l-group.
Choose N ≥ 1 such that lN is a multiple of the exponent of G, i.e., slN = 1
for all s ∈ G. The property introduced by Scholz is the following:

Definition 2.1.2 The extension L/Q is said to have property (SN) if every
prime p which is ramified in L/Q satisfies :
1. p ≡ 1 (mod lN).
2. If v is a place of L dividing p, the inertia group Iv at v is equal to the
decomposition group Dv.

Condition 2 is equivalent to saying that the local extension Lv/Qp is totally
ramified, or that its residue field is Fp.

Now, let
1 −→ Cl −→ G̃ −→ G −→ 1

be an exact sequence of l-groups with Cl central, cyclic of order l. The “em-
bedding problem” for G̃ is to find a Galois extension L̃ of K containing L,
with isomorphisms Gal(L̃/L) ' Cl and Gal(L̃/K) ' G̃ such that the diagram

1 −→ Cl −→ G̃ −→ G −→ 1
|| || ||

1 −→ Gal(L̃/L) −→ Gal(L̃/K) −→ Gal(L/K) −→ 1

is commutative.
The Scholz-Reichardt theorem is a consequence of the following (applied

inductively):

Theorem 2.1.3 Let L/Q be Galois with Galois group G, and assume that L
has property (SN). Assume further that lN is a multiple of the exponent of
G̃. Then the embedding problem for L and G̃ has a solution L̃, which satisfies
(SN) and is ramified at at most one more prime than L. (Furthermore, one
can require that this prime be taken from any set of prime numbers of density
one.)

The proof of th. 2.1.3 will be divided into two parts: first, for split extensions,
then for non-split ones.

First part: the case G̃ ' G× Cl

Let (p1, . . . , pm) be the prime numbers ramified in L. Select a prime number
q with the following properties:

1. q ≡ 1 (mod lN ),
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2. q splits completely in the extension L/Q,
3. Every prime pi, (1 ≤ i ≤ m) is an l-th power in Fq.

Taken together, these conditions mean that the prime q splits completely in
the field L( lN

√
1, l
√
p1, . . . , l

√
pm). The following well-known lemma guarantees

the existence of such a q:

Lemma 2.1.4 If E/Q is a finite extension of Q, then there are infinitely
many primes which split completely in E. In fact, every set of density one
contains such a prime.

Proof: The second statement in the lemma is a consequence of Chebotarev’s
density theorem; the first part can be proved by a direct argument, without
invoking Chebotarev. Assume E is Galois, and let f be a minimal polynomial
with integral coefficients of a primitive element of E. Suppose there are only
finitely many primes pi which split completely in E or are ramified. Then
f(x) is of the form ±pm1

1 . . . pmk

k , for x ∈ Z. When x is between 1 and X, the
number of distinct values taken by f(x) is at least 1

n
X. But the number of

values of f(x) which can be written in the form ±pm1
1 . . . pmk

k is bounded by a
power of logX. This yields a contradiction.

Having chosen a q which satisfies the conditions above, fix a surjective ho-
momorphism

λ : (Z/qZ)∗ −→ Cl.

(Such a λ exists because q ≡ 1 (mod l).) We view λ as a Galois character.
This defines a Cl-extension Mλ of Q which is ramified only at q, and is linearly
disjoint from L. The compositum LMλ therefore has Galois group G̃ = G×Cl.
Let us check that LMλ satisfies property (SN ). By our choice of q, we have
q ≡ 1 (mod lN). It remains to show that Iv = Dv at all ramified primes. If
p is ramified in L/Q, it splits completely in Mλ, and hence Dv = Iv for all
primes v|p. The only prime ramified in Mλ is q, and q splits completely in L
by assumption. Hence, for all primes v which are ramified in LMλ, we have
Dv = Iv as desired.

Second part: the case where G̃ is a non-split extension

The proof will be carried out in three stages:

(i) Existence of an extension L̃ giving a solution to the embedding problem.

(ii) Modifying L̃ so that it is ramified at the same places as L.

(iii) Modifying L̃ further so that it has property (SN), with at most one
additional ramified prime.
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(i) Solvability of the embedding problem

The field extension L determines a surjective homomorphism φ : GQ → G.
The problem is to lift φ to a homomorphism φ̃ : GQ → G̃. (Such a φ̃ is
automatically surjective because of our assumption that G̃ does not split.)
Let ξ ∈ H2(G,Cl) be the class of the extension G̃, and let

φ∗ : H2(G,Cl) −→ H2(GQ, Cl)

be the homomorphism defined by φ. The existence of the lifting φ̃ is equivalent
to the vanishing of φ∗(ξ) in H2(GQ, Cl). As usual in Galois cohomology, we
write H2(GQ,−) as H2(Q,−), and similarly for other fields. The following
well-known lemma reduces the statement φ∗ξ = 0 to a purely local question:

Lemma 2.1.5 The restriction map

H2(Q, Cl) −→
∏

p

H2(Qp, Cl)

is injective.

(A similar result holds for any number field.)

Sketch of Proof: Let K = Q(µl). Since [K : Q] is prime to l, the map
H2(Q, Cl) −→ H2(K,Cl) is injective. Hence, it is enough to prove the lemma
with Q replaced by K. In that case, H2(K,Cl) is isomorphic to Brl(K), the
l-torsion of the Brauer group of K. The lemma then follows from the Brauer-
Hasse-Noether theorem: an element of Br(K) which is 0 locally is 0. (Note
that, since l 6= 2, the archimedean places can be ignored.)

By the above lemma, it suffices to show that φ∗ξ = 0 locally at all primes.
In other words, we must lift the map φp : GQp

−→ Dp ⊂ G to φ̃p : GQp
−→ G̃.

There are two cases:

1. p is unramified in L, i.e., φp is trivial on the inertia group Ip of GQp
. Then

φp factors through the quotient GQp
/Ip = Ẑ. But one can always lift a map

Ẑ −→ G to a map Ẑ −→ G̃: just lift the generator of Ẑ.

2. p is ramified in L. By construction, p ≡ 1 (mod lN), hence p 6= l and Lv/Qp

is tamely ramified (as in 2.1.2, v denotes a place of L above p); since its Galois
group Dv is equal to its inertia group Iv, it is cyclic. The homomorphism
GQp

−→ Dv ⊂ G factors through the map GQp
−→ Gal(E/Qp), where E is

the maximal abelian tame extension of Qp with exponent dividing lN . The ex-
tension E can be described explicitly: it is composed of the unique unramified
extension of Qp of degree lN , (obtained by taking the fraction field of the ring
of Witt vectors over FplN ) and the totally ramified extension Qp( lN

√
p) (which

is a Kummer extension since p ≡ 1 (mod lN) ). It follows that Gal(E/Qp) is
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an abelian group of type (lN , lN); it is projective in the category of abelian
groups of exponent dividing lN . The inverse image of Dv in G̃ belongs to that
category (a central extension of a cyclic group is abelian). This shows that
the local lifting is possible.

(ii) Modifying the extension L̃ so that it becomes unramified outside
the set ram(L/Q) of primes ramified in L/Q

Lemma 2.1.6 For every prime p, let εp be a continuous homomorphism from
Gal(Q̄p/Qp) to a finite abelian group C. Suppose that almost all εp are un-
ramified. Then there is a unique ε : Gal(Q̄/Q) −→ C, such that for all p, the
maps ε and εp agree on the inertia groups Ip.

(The decomposition and inertia groups Dp, Ip are only defined up to conjugacy
inside GQ. We shall implicitly assume throughout that a fixed place v has been
chosen above each p, so that Dp and Ip are well-defined subgroups of GQ. )

Proof of lemma: By local class field theory, the εp can be canonically identified
with maps Q∗p −→ C. The restrictions of εp to Z∗p are trivial on a closed
subgroup 1 + pnpZp, where np is the conductor of εp. Since almost all np are
zero, there is a homomorphism ε : (Z/MZ)∗ −→ C, with M =

∏
pnp, and

ε(k) =
∏
εp(k

−1). If we view ε as a Galois character, class field theory shows
that it has the required properties. (Equivalently, one may use the direct
product decomposition of the idèle group IQ of Q, as:

IQ =

(
∏

p

Z∗p ×R∗+

)

×Q∗.)

Proposition 2.1.7 Let 1 → C → Φ̃ → Φ → 1 be a central extension of a
group Φ, and φ be a continuous homomorphism from GQ to Φ which has a
lifting ψ : GQ −→ Φ̃. Let φ̃p : GQp

−→ Φ̃ be liftings of φp = φ|Dp
, such that

the φ̃p are unramified for almost all p. Then there is a lifting φ̃ : GQ −→ Φ̃
such that, for every p, φ̃ is equal to φ̃p on the inertia group at p. Such a lifting
is unique.

This proposition is also useful for relating Galois representations in GLn and
PGLn (Tate, see [Se7, §6]).)

Proof of prop. 2.1.7: For every p, there is a unique homomorphism

εp : GQp
−→ C

such that
ψ(s) = εp(s)φ̃p(s)
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for all s ∈ GQp
. By the previous lemma, there exists a unique ε : GQ −→ C

which agrees with εp on Ip. The homomorphism φ = ψε−1 has the required
property. This proves the existence assertion. The uniqueness is proved simi-
larly.

Corollary 2.1.8 Assuming the hypotheses of prop. 2.1.7, a lifting of φ can be
chosen unramified at every prime where φ is unramified.

Proof: Choose local liftings φ̃p of φ which are unramified where φ is; this is

possible since there is no obstruction to lifting a homomorphism defined on Ẑ.
Then, apply prop. 2.1.7.

The corollary completes the proof of part (ii): L̃ can be modified so that it
is ramified at the same places as L.

(iii) Modifying L̃ so that it satisfies property (SN)

We have obtained an extension L̃ which is ramified at the same places as L and
which solves the extension problem for G̃. Let p be in ram(L/Q) = ram(L̃/Q).
Denote by Dp, Ip (resp D̃p, Ĩp) the decomposition and inertia groups for L (resp
L̃) at p. We have Ip = Dp ⊂ G; this is a cyclic group of order lα, say. Let I

′

p

be the inverse image of Ip in G̃. We have Ĩp ⊂ D̃p ⊂ I
′

p. If I
′

p is a non-split

extension of Ip (i.e., is cyclic of order lα+1) we even have Ĩp = D̃p = I
′

p, and
the Scholz condition is satisfied at p. Let S be the set of p ∈ ram(L/Q) for
which I

′

p is a split extension of Ip; since Ĩp is cyclic, we have I
′

p = Ĩp×Cl. The

Frobenius element Frobp ∈ D̃p/Ĩp ⊂ I
′

p/Ĩp may be identified with an element
cp of Cl; the Scholz condition is satisfied at p if and only if cp = 1. If all cp’s
are equal to 1, L̃ satisfies (SN). If not, we need to correct φ̃ : GQ −→ G̃ by a
Galois character χ : (Z/qZ)∗ −→ Cl which satisfies the following properties:

1. q ≡ 1 (mod lN ).
2. For every p in S, χ(p) = cp.
3. The prime q splits completely in L/Q.

Conditions 1, 2, and 3 impose conditions on the behaviour of q in the fields
Q( lN
√

1), Q( l
√

1, l
√
p, p ∈ S), and L respectively. Write Q( lN

√
1) = Q( l

√
1) · F ,

where F is cyclic of order lN−1 and totally ramified at l.

Lemma 2.1.9 The fields L, F , and Q( l
√

1, l
√
p, p ∈ S) are linearly disjoint

over Q.

Proof: Since L and F have distinct ramification, L and F are linearly dis-
joint: L · F has Galois group G × ClN−1 . The extension Q( l

√
1, l
√
p, p ∈ S)

has Galois group V = Cl × Cl . . .× Cl (|S| times) over Q( l
√

1). The action of
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Gal(Q( l
√

1)/Q) = F∗l on V by conjugation is the natural action of multiplica-
tion by scalars. The Galois group of Q( l

√
1, l
√
p, p ∈ S) over Q is a semi-direct

product of F∗l with V . Since l 6= 2, this group has no quotient of order l: there
is no Galois subfield of Q( l

√
1, l
√
p, p ∈ S) of degree l over Q. This implies that

L · F and Q( l
√

1, l
√
p, p ∈ S) are linearly disjoint. QED.

If S = {p1, . . . , pk}, define integers νi, 2 ≤ i ≤ k, by cpi
= cνi

p1
. (This

is possible if c1 6= 1, which we may assume.) In order to satisfy conditions
1, 2 and 3, the prime q must have the following behaviour in the extension
L · F ·Q( l

√
1, l
√
p, p ∈ S):







Frobq = 1 in L · F and Q( lN
√

1);

Frobq 6= 1 in Q( l
√

1, l
√
p1);

Frobq = 1 in Q( l
√

1, l

√

p1/p
νi

i ), i = 2, . . . , k.

By the Chebotarev density theorem and lemma 2.1.9, such a q exists. One can
then define the character χ so that χ(pi) = cpi

. This completes part (ii): the
homomorphism φ̃χ−1 defines a new G̃-extension L̃ with property (SN), and
with one additional ramified prime, namely q.

The proof allows us to generalize the theorem somewhat. Let us make the
following definition:

Definition 2.1.10 If G is a profinite group, the following are equivalent :
1. The topology of G is metrizable.
2. G can be written as a denumerable projective limit

G = lim←−(· · · → Gn → Gn−1 → · · ·),

where the Gn’s are finite (and the connecting homomorphisms are surjective).
3. The set of open subgroups of G is denumerable.

A group G which satisfies these equivalent properties is said to be separable.

If G = Gal(L/K), these properties are equivalent to [L : K] ≤ ℵ0; if G is a
pro-l-group, they are equivalent to dimH1(G,Z/lZ) ≤ ℵ0.

The proof that the four properties in the definition are equivalent is elemen-
tary.

Theorem 2.1.11 If G is a separable pro-l-group of finite exponent, then there
is a Galois extension of Q with Galois group G.

Proof: If lN is the exponent of G, write G as proj.lim(Gn) where each Gn is
a finite l-group, the connecting homomorphism being surjective, with kernel
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of order l. By th. 2.1.3, one can construct inductively an increasing family of
Galois extensions Ln/Q with Galois group Gn which have the (SN) property;
the union of the Ln’s has Galois group G.

Remark: The finiteness condition on the exponent cannot be dropped: for example,
Zl × Zl is not a Galois group over Q.

A more general result has been proved by Neukirch [Ne] for pro-solvable groups

of odd order and finite exponent.

2.2 The Frattini subgroup of a finite group

Let G be a finite group.

Definition 2.2.1 The Frattini subgroup Φ of G is the intersection of the
maximal subgroups of G.

The Frattini subgroup is normal. If G 6= 1, then Φ 6= G. If G1 ⊂ G satisfies
Φ · G1 = G, then G1 = G. (Otherwise, choose a maximal subgroup M such
that G1 ⊂ M ⊂ G. Since Φ ⊂ M , it follows that ΦG1 ⊂ M , which is a
contradiction.) In other words, a subset of G generates G if and only if it
generates G/Φ: elements of Φ are sometimes referred to as “non-generators”.

Examples:
1. If G is a simple group, then Φ = 1.
2. If G is a p-group, the maximal subgroups are the kernels of the surjective
homomorphisms G −→ Cp. Hence Φ is generated by (G,G) and Gp, where
(G,G) denotes the commutator subgroup of G; more precisely, we have

Φ = (G,G) ·Gp.

The group G/Φ is the maximal abelian quotient of G of type (p, p, . . . , p).

Proposition 2.2.2 ([Hu], p. 168) Let G be a finite group, Φ its Frattini
subgroup, N a normal subgroup of G with Φ ⊂ N ⊂ G. Assume N/Φ is
nilpotent. Then N is nilpotent.

Corollary 2.2.3 The group Φ is nilpotent.

This follows by applying prop. 2.2.2 to N = Φ.

Let us prove prop. 2.2.2. Recall that a finite group is nilpotent if and only
if it has only one Sylow p-subgroup for every p. Choose a Sylow p-subgroup
P of N , and let Q = ΦP . The image of Q by the quotient map N −→ N/Φ
is a Sylow p-subgroup of N/Φ which is unique by assumption. Hence this
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image is a characteristic subgroup of N/Φ; in particular it is preserved by
inner conjugation by elements of G, i.e., Q is normal in G. Let

NG(P ) = {g|g ∈ G, gPg−1 = P}

be the normalizer of P in G. If g ∈ G, then gPg−1 is a Sylow p-subgroup of
Q. Applying the Sylow theorems in Q, there is a q ∈ Q such that

qgPg−1q−1 = P.

Hence qg ∈ NG(P ). It follows that G = QNG(P ) = ΦNG(P ). Therefore
G = NG(P ), and P is normal in G, hence in N ; this implies that P is the only
Sylow p-subgroup of N .

Application to solvable groups

Proposition 2.2.4 Let G be a finite solvable group 6= 1. Then G is isomor-
phic to a quotient of a group H which is a semi-direct product U · S, where U
is a nilpotent normal subgroup of H, and S is solvable with |S| < |G|.

Proof: Let Φ be the Frattini subgroup of G; since G/Φ is solvable and 6= 1, it
contains a non-trivial abelian normal subgroup, e.g., the last non-trivial term
of the descending derived series of G/Φ. Denote by U its inverse image in G.
Since Φ ⊂ U ⊂ G, with U/Φ abelian, U is nilpotent by prop. 2.2.2. Choose
a maximal subgroup S of G which does not contain U : this is possible since
U 6= Φ. Since U ·S 6= S and S is maximal, G = U ·S. Hence, writing H = U ·S
(with S acting by conjugation on the normal subgroup U), there is a surjective
map H −→ G.

The relevance of prop. 2.2.4 to Galois theory lies in the following result
which asserts that the embedding problem for split extensions with nilpotent
kernel has always a solution.

Claim 2.2.5 ([Sha2], [Is]) Let L/K be an extension of number fields with
Galois group S, let U be a nilpotent group with S-action, and let G be the
semi-direct product U · S. Then the embedding problem for L/K and for

1→ U → G→ S → 1

has a solution.

Theorem 2.2.6 Claim 2.2.5 implies the existence of Galois extensions of Q
with given solvable Galois group.
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Proof: Let G be a solvable group. We proceed by induction on the order of G.
We may asume G 6= 1. By prop. 2.2.4, write G as a quotient of U · S with U
nilpotent and S solvable, |S| < |G|. The induction hypothesis gives a Galois
extension L/Q with Galois group S. By the claim above, U ·S can be realized
as a Galois group; hence, so can its quotient G.

Let us give a proof of claim 2.2.5 in the elementary case where U is abelian
of exponent n. Observe that:
1. If claim 2.2.5 is true for an extension L

′

of L, it is true for L: for, if
S

′

= Gal(L/K), there is a natural quotient map US
′ → US. Hence we may

assume µn ⊂ L, where µn denotes the nth roots of unity.
2. We may also assume

U ' direct sum of copies of Z/nZ[S],

because any abelian group of exponent n on which S acts is a quotient of such
an S-module.

Suppose that h is the number of copies in the decomposition of U as a di-
rect sum of S-modules Z/nZ[S]. Choose places v1, . . . , vh of K which split
completely in L, w1, . . . , wh places of L which extend them; any place of L ex-
tending one of the vi can be written uniquely as swi, for some s ∈ S. Choose
elements φj ∈ L∗ such that

(swi)(φj) =

{

1 if s = 1 and i = j.
0 otherwise.

Let M be the field generated over L by the n

√

sφj, for s ∈ S and j = 1, . . . , h.

This is a Galois extension of K, with Gal(M/L) ' U . Its Galois group over
K is an extension of S by U ; since U is a free Z/nZ[S]-module, it is known
that such an extension splits (see, e.g., [Se2, ch. IX]). Hence Gal(M/K) is
isomorphic to the semi-direct product of S by U .



Chapter 3

Hilbert’s irreducibility theorem

3.1 The Hilbert property

Fix a ground field K with CharK = 0, and let V be an irreducible algebraic
variety over K. (In what follows, algebraic varieties will be tacitly assumed
to be integral and quasi-projective.) Denote by V (K) the set of K-rational
points of V .

A subset A of V (K) is said to be of type (C1) if there is a closed subset
W ⊂ V , W 6= V , with A ⊂ W (K), i.e., if A is not Zariski-dense in V .

A subset A of V (K) is said to be of type (C2) if there is an irreducible variety
V

′

, with dimV = dimV
′

, and a generically surjective morphism π : V
′ −→ V

of degree ≥ 2, with A ⊂ π(V
′

(K)).

Definition 3.1.1 A subset A of V (K) is called thin (“mince” in French) if it
is contained in a finite union of sets of type (C1) or (C2).

Alternately, a set A is thin if there is a morphism

π : W → V with dimW ≤ dimV

having no rational cross-section, and such that A ⊂ π(W (K)).

Example: If V = P1, V (K) = K ∪{∞}. The set of squares (resp. cubes,. . .)
in K is thin.

Definition 3.1.2 (cf. [CTS1], p. 189) A variety V over K satisfies the Hilbert
property if V (K) is not thin.

This is a birational property of V .

Definition 3.1.3 A field K is Hilbertian if there exists an irreducible variety
V over K, with dim V ≥ 1, which has the Hilbert property.

19
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It is easy to show (cf. exerc. 1) that if K is Hilbertian, then the projective line
P1 over K has the Hilbert property (hence, our definition is equivalent to the
standard one, see e.g. [L]).

The fields R,Qp are not Hilbertian. A number field is Hilbertian (see §3.4).

Remark on irreducible varieties: The variety V is said to be absolutely ir-
reducible if the algebraic closure K

′

of K in the field K(V ) of rational functions
on V is equal to K. Equivalently, V must remain irreducible upon extension
of scalars to the algebraic closure K̄ of K. If V is not absolutely irreducible,
then V (K) ⊂ W (K), where W is a subvariety of V , W 6= V . Indeed, if V is
a normal variety, then V (K) = ∅. For, the residue field of the local ring at
P ∈ V contains K

′

, and hence no point of V is K-rational. The general case
follows from this by normalization. In particular, an irreducible variety which
has the Hilbert property is absolutely irreducible.

Therefore, in our definition of C2-type subsets, we could have asked that V
′

be absolutely irreducible.

Remark: Let π : V
′ −→ V be a finite morphism (we also say that π is a

“covering”, even though it can be ramified). Assume that V and V
′

are abso-
lutely irreducible, and let K(V

′

)/K(V ) be the corresponding field extension.
Let K(V

′

)gal be the Galois closure of K(V
′

) over K(V ), and let W be the
normalisation of V

′

in K(V
′

)gal. The variety W with its projection W −→ V
may be called the Galois closure of V

′ −→ V . Note that K is not always al-
gebraically closed in K(V

′

)gal, i.e., W need not be absolutely irreducible. For
example, take V = V

′

= P1, π(x) = x3; the Galois closure of V
′

is P1/K(µ3),
and hence is not absolutely irreducible over K if K does not contain µ3.

Exercises:

1. Let V be an affine irreducible variety over K, with dimV ≥ 1. Let W1, . . . ,Wr

be absolutely irreducible coverings of the projective line P1. Show that there exists
a morphism f : V −→ P1 such that the pullback coverings f ∗Wi of V are absolutely
irreducible. Use this to show that if V has the Hilbert property, then so has P1.
2. Let V and T be absolutely irreducible varieties, and A ⊂ V (K) a thin subset.
Show that A × T (K) is thin in V × T . More generally, let f : W −→ V be a
generically surjective morphism whose generic fiber is absolutely irreducible (i.e.
the function field extension K(W )/K(V ) is regular). If B is a subset of W (K) such
that f(B) is thin in V (K), show that B is thin in W (K).
3. Let K be a Hilbertian field, and let A be the set of elements of K which are sums
of two squares. Show that A is not thin. (Use exerc. 2.)
4. Let K be a number field and V an abelian variety over K with dimV ≥ 1.
Show that V (K) is thin (i.e., V does not have the Hilbert property). Hint: use the
Mordell-Weil theorem.

Problem: If V and V
′
are irreducible varieties with the Hilbert property, is it true
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that V × V
′
has the same property?

3.2 Properties of thin sets

3.2.1 Extension of scalars

Let L/K be a finite extension, V an absolutely irreducible variety over K.
Extension of scalars to L yields a variety over L, denoted V/L.

Proposition 3.2.1 If A ⊂ V (L) is thin with respect to L, then A ∩ V (K) is
thin with respect to K.

The proof uses the restriction of scalars functorRL/K : (VarL) −→ (VarK) from
L-varieties to K-varieties, cf. [We], [Oe]. Here are two equivalent definitions
of RL/K :

1. It is the right adjoint to the extension of scalars (VarK) −→ (VarL), i.e.,
for every K-variety T and L-variety W , one has:

Mor K(T,RL/KW ) = Mor L(T/L,W );

In particular, taking T to be a point which is a rational over K, the above
formula yields

(RL/KW )(K) = W (L).

2. Let ΣL be the set of embeddings of L in some fixed algebraic closure K̄;
for each σ ∈ ΣL, let W σ be the variety deduced from the given L-variety W
by extension of scalars via σ. Then the product X =

∏

σ W
σ is a K̄-variety.

Moreover, one has natural isomorphisms from X to Xs for every s ∈ GK . By
Weil’s descent theory, these isomorphisms give rise to a K-variety from which
X comes by extension of scalars; this variety is RL/KW .

If A is of type (C1), then A ∩ V (K) is clearly of type (C1). Hence we
may assume that A ⊂ π(W (L)), that W is absolutely irreducible over L with
dimW = dim V , and π is a covering W −→ V with deg π > 1. By restricting
suitably V , we may assume that π is finite étale. The functor RL/K then
gives an étale covering RL/KW −→ RL/KV/L. Using the diagonal embedding
∆ : V −→ RL/KVL, we obtain an étale covering π

′

: V
′ −→ V , and a Cartesian

diagram:
V

′ −→ RL/KW

↓π
′

↓
V

∆−→ RL/KV/L.

The set A∩V (K) is contained in π
′

(V
′

(K)), and it is easy to check that all the
components of V

′

have degree over V at least equal to deg π. Hence π
′

(V
′

(K))
is thin, and the same is true for A ∩ V (K).
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Corollary 3.2.2 If K is Hilbertian, then so is L.

Suppose L were not. Then A = P1(L) is thin in P1 with respect to L. This
implies that A∩P1(K) = P1(K) is thin in P1 with respect toK; contradiction.
Remark: The converse to cor. 3.2.2 is not true; see e.g. [Ku].

3.2.2 Intersections with linear subvarieties

Let V be the projective space Pn of dimension n, and let A ⊂ V (K) be a thin
set. We denote by Grassd

n the Grassmann variety of d-linear subspaces of Pn,
where 1 ≤ d ≤ n.

Proposition 3.2.3 There is a non-empty Zariski-open subset U ⊂ Grassd
n

such that if W belongs to U(K), then A ∩W is thin in W .

It is enough to prove this when A is either of type (C1) or of type (C2). The first
case is easy. In the second, there is a map π : V

′ −→ Pn, with V
′

absolutely
irreducible, deg π ≥ 2, and A ⊂ π(V

′

(K)). By Bertini’s theorem (see e.g.,
[Jou, ch. I, §6], [Ha, p. 179], [De2], [Z]), there exists a non-empty open set U
in Grassd

n such that π−1(W ) is absolutely irreducible for all W ∈ U . Hence,
if W ∈ U(K), then W ∩ A is of type (C2), and hence is thin.

An interesting case occurs when d = 1. Let π : V
′ −→ Pn be a generically

surjective map of degree > 1, and Φ the hypersurface of ramification of π.
Consider the set U of lines which intersect Φ transversally at smooth points.
Then for L ∈ U , the covering π−1(L) −→ L is irreducible: one proves this
over C by deforming the line into a generic one, and the general case follows.

Example: Consider the “double plane” V
′

F with equation t2 = F (x, y), where
F is the equation for a smooth quartic curve Φ in P2. The natural projection
of V

′

F onto P2 is quadratic and ramified along the curve Φ. A line in P2 which
intersects Φ transversally in 4 points lifts to an irreducible curve of genus 1 in
V

′

F ; a line which is tangent at one point and at no other lifts to an irreducible
curve of genus zero; finally, if the line is one of the 28 bitangents to Φ, then
its inverse image is two curves of genus zero. In that case, one can take for U
the complement of 28 points in P2 = Grass1

2.

Corollary 3.2.4 If Pn has the Hilbert property over K for some n ≥ 1, then
all projective spaces Pm over K have the Hilbert property.

Proof: P1 has the Hilbert property over K: if not, P1(K) = A is thin, and
A× P1(K)× . . .×P1(K) is thin in P1 × . . .×P1. This cannot be the case,
since Pn has the Hilbert property (and hence also P1 × · · · × P1 which is
birationally isomorphic to Pn). This implies the same for Pm, with m ≥ 1.
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For, if A = Pm(K) is thin in Pm, then by prop. 3.2.3, there is a line L such
that L ∩ A = L(K) is thin in L = P1. But this contradicts the fact that
P1(K) has the Hilbert property.

3.3 Irreducibility theorem and thin sets

Let π : W −→ V be a Galois covering with Galois group G, where V,W denote
K-irreducible varieties, V = W/G, and G acts faithfully on W . Let us say
that P ∈ V (K) has property Irr(P ) if P is “inert”, i.e., the inverse image of P
(in the scheme sense) is one point, i.e., the affine ring of the fiber is a field KP

(or, equivalently, GK acts freely and transitively on the K̄-points of W above
P ). In this case, π is étale above P and the field KP is a Galois extension of
K with Galois group G.

Proposition 3.3.1 There is a thin set A ⊂ V (K) such that for all P /∈ A,
the irreducibility property Irr(P ) is satisfied.

Proof: By removing the ramification locus, we may assume that W −→ V is
étale, i.e., G acts freely on each fiber. Let Σ be the set of proper subgroups
H of G. We denote by W/H the quotient of W by H, and by πH the natural
projection onto V . Let

A =
⋃

H∈Σ
πH(W/H)(K).

The set A is thin, since the degrees of the πH are equal to [G : H] > 1. If
P /∈ A, then Irr(P ) is satisfied: for, lift P to P̄ in W (K̄), and let H be the
subgroup of G consisting of elements g ∈ G such that gP̄ = γP̄ for some
γ ∈ GK = Gal(K̄/K). Then H = G. Otherwise, H would belong to Σ, and
since the image of P̄ in W/H is rational over K, the point P would be in A.

Corollary 3.3.2 If V has the Hilbert property over K, the existence of a G-
covering W −→ V as above implies that there is a Galois extension of K with
Galois group G.

Assume furthermore that W , and hence V , are absolutely irreducible, and that
V has the Hilbert property. Let us say that an extension L/K is of type W if
it comes from lifting a K-rational point on V to W .

Proposition 3.3.3 Under these assumptions, for every finite extension L of
K, there is a Galois extension E/K of type W with Galois group G which is
linearly disjoint from L.
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Corollary 3.3.4 There exist infinitely many linearly disjoint extensions with
Galois group G, of type W .

Proof of prop. 3.3.3: Extend scalars to L; applying prop. 3.3.1 there is a thin
set AL ⊂ V/L(L) such that for all P /∈ A, the property Irr(P ) is satisfied over
L. Set A = AL ∩ V (K). This is a thin set by prop. 3.2.1. Choose P ∈ V (K)
with P /∈ A. Then Irr(P ) is true over L, and hence a fortiori over K. This P
gives the desired extension E.

Exercise: Show that the set of rational points P satisfying property Irr(P ) and

giving a fixed Galois extension of K is thin (if G 6= 1).

Polynomial interpretation
Let V be as above, let K(V ) be its function field, and let

f(X) = Xn + a1X
n−1 + · · ·+ an, ai ∈ K(V )

be an irreducible polynomial over K(V ). Let G ⊂ Sn be the Galois group of
f viewed as a group of permutations on the roots of f . (This group can be
identified with a subgroup of Sn, up to conjugacy in Sn, i.e., one needs to fix
a labelling of the roots.) If t ∈ V (K) and t is not a pole of any of the ai, then
ai(t) ∈ K, and one can define the specialization of f at t:

ft(X) = Xn + a1(t)X
n−1 + · · ·+ an(t).

Proposition 3.3.5 There exists a thin set A ⊂ V (K) such that, if t /∈ A,
then :

1. t is not a pole of any of the ai,
2. ft(X) is irreducible over K,
3. the Galois group of ft is G.

By replacing V by a dense open subset, we may assume that the ai have no
poles, that V is smooth and that the discriminant ∆ of f is invertible. The
subvariety Vf of V ×A1 defined by

(t, x) ∈ Vf ⇐⇒ ft(x) = 0

is an étale covering of degree n. Its Galois closure W = V gal
f has Galois group

G. The proposition follows by applying prop. 3.3.1 to W .

Examples:

• G = S3. Let f(X) = X3 +a1X
2 +a2X+a3 be irreducible, with Galois group

S3 over K(V ). The specialization at t has Galois group S3 if the following
properties are satisfied:

1. t ∈ V (K) is not a pole for any of the ai.
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2. ∆(t) 6= 0 (where ∆ = a2
1a

2
2 + 18a1a2a3 − 4a3

1a3 − 4a3
2 − 27a2

3 is the
discriminant of f).

3. X3 + a1(t)X
2 + a2(t)X + a3(t) has no root in K.

4. ∆(t) is not a square in K.
Conditions 3 and 4 guarantee that G is not contained in either of the maximal
subgroups of S3, namely S2 and A3. It is clear that the set A of t ∈ V (K)
which fail to satisfy these conditions is thin.

• G = S4. The maximal subgroups of G are S3, A4, and D4, the dihedral group
of order 8. The case of G ⊂ S3 or A4 can be disposed of by imposing the same
conditions as in the case G = S3; to handle the case of D4, one requires the
cubic resolvent

(X − (x1x2 + x3x4)) (X − (x1x3 + x2x4)) (X − (x1x4 + x2x3))
= X3 − a2X

2 + (a1a3 − 4a4)X + (4a2a4 − a2
1a4 − a2

3)

to have no root in K, where x1, . . . , x4 are the roots of the polynomial

f = X4 + a1X
3 + . . .+ a4.

• G = S5. The maximal subgroups of G are S4, S2 × S3, and A5, which give
conditions similar to the above, and the Frobenius group F20 of order 20, which
is a semi-direct product C5C4 and can be viewed as the group of affine linear
transformations of the form x 7→ ax + b on Z/5Z. If the Galois group of the
specialized polynomial is contained in F20, then the sextic resolvent, which is
the minimal polynomial over K(V ) for

(x1x2 + x2x3 + x3x4 + x4x5 + x5x1)− (x1x3 + x2x4 + x3x5 + x4x1 + x5x2)
∏

i<j(xi − xj)
,

has a root in K when specialized.

3.4 Hilbert’s irreducibility theorem

Theorem 3.4.1 (Hilbert [Hi]) If K is a number field, then for every n, the
affine space An (or equivalently the projective space Pn) has the Hilbert prop-
erty over K. (In other words, K is Hilbertian.)

By cor. 3.2.2 and cor. 3.2.4, it is enough to show that the projective line P1

over Q has the Hilbert property. There are several ways of proving this:

1. Hilbert’s original method ([Hi]): The proof uses Puiseux expansions (cf.
[L]). It shows that if A ⊂ A1(Q) is thin, then the number of integers n ∈ Z∩A
with n < N is O(N δ) for some δ < 1, when N → ∞. (But it does not give a
good estimate for δ.)
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2. Proof by counting points of height smaller than N on P1(Q): write ξ ∈
P1(Q) as (x, y) with x, y ∈ Z and x, y relatively prime. This can be done in a
unique way, up to a choice of sign. The height of ξ is defined to be

height(ξ) = sup(|x|, |y|).

The number of points in P1(Q) with height less than N is asymptotically
12
π2N

2. On the other hand:

Proposition 3.4.2 If A ⊂ P1(Q) is thin, then the number of points of A with
height ≤ N is � N , when N −→∞.

Sketch of proof: We may assume A is of type (C2), A ⊂ π(X(Q)), where X
is is an absolutely irreducible curve and π : X −→ P1 has degree ≥ 2. Let
RatX(N) be the number of points x in X(Q) with height(π(x)) ≤ N , and let
g be the genus of X.
Case 1: g ≥ 2. Then X(Q) is finite by Faltings’s theorem; hence RatX(N) is
O(1). One could also invoke an earlier result of Mumford (cf. [L],[Se9]) which
gives RatX(N) = O(log logN).
Case 2: g = 1: By the Mordell-Weil theorem, and the Néron-Tate theory of
normalized heights, (see [L]), one has RatX(N) = O((logN)γ/2), where γ is
the rank of X(Q).
Case 3: g = 0: let HX , H denote the heights on X and P1 respectively. It is
known that

HX
^
_ (H ◦ π)m,

where m = deg π. Hence, the number of points on X with H ◦ π ≤ N is at
most O(N1/m).

3. Proof by counting integral points: A variant of the second proof shows that
the number of integral points in A with height less than N is O(N

1
2 ), which

is an optimal bound.

4. Proof by counting S-units: let S = {p1, . . . , pk} be a finite non-empty set
of primes, ES = {±pm1

1 · · · pmk

k }, mi ∈ Z. Let α ∈ Q, and let α+ES be the set
of α + e, where e ∈ ES.

Proposition 3.4.3 If A is a thin set in P1(Q), then A ∩ (α + ES) is finite
for all but a finite number of α.

Recall that, if V is an affine variety over Q, a subset B of V (Q) is called
quasi-S-integral if for every regular function f on V , the set f(B) has bounded
denominators in the ring of S-integers, i.e., there is a non-zero integer θ (de-
pending on f and B) such that θf(b) is an S-integer for all b ∈ B.
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Let now πj : Xj −→ P1 be a finite number of coverings, and choose α
outside the finite sets ram(πj) of X at which πj is ramified. If Bj ⊂ Xj(Q) is
the set of elements of Xj(Q) with πj(b) ∈ α+ES, then Bj is a quasi-S-integral
set in the affine curve Xj − π−1

j (∞)− π−1
j (α). Over Q̄, π−1

j (∞) ∪ π−1
j (α) has

at least 3 elements, since π−1
j (α) /∈ ram(πj). A theorem of Siegel, Mahler and

Lang then shows that Bj is finite ([L], [Se9]). Prop. 3.4.3 follows.

Remark: The bound given in proof no. 3 can be extended to affine n-space
An. More precisely, let A be a thin set in An(Q), and let IntA(N) be the
number of integral points (x1, . . . , xn) ∈ A with |xi| ≤ N . Then:

Theorem 3.4.4 (S.D. Cohen) IntA(N) = O(Nn− 1
2 logN).

One can replace the logN term in this inequality by (logN)γ , where γ < 1 is
a constant depending on A. The proof is based on the large sieve inequality:
one combines th. 3.6.2 with cor. 10.1.2 of the appendix, cf. [Coh] and [Se9].

Problem: Let X ⊂ Pn be an absolutely irreducible variety of dimension r. As
above, denote by RatX(N) the number of points of X(Q) with height ≤ N . If X is
linear, deg X = 1, then

RatX(N)
^
_ N r+1.

If deg X ≥ 2, one can show, using th. 3.4.4 (cf. [Se9]), that

RatX(N) = O(N r+ 1
2 log N).

A better result follows from results of Schmidt [Schm], namely,

RatX(N) = O(N r+ 4
9 ).

Can this estimate be improved to:

RatX(N) = O(N r+ε), for every ε > 0?

3.5 Hilbert property and weak approximation

Let K be a number field, ΣK the set of places in K (including the archimedean
ones). For v ∈ ΣK , let Kv denote the completion of K at v, and let Nv be
the cardinality of the residue field of Kv in case v is non-archimedean. If V is
an absolutely irreducible integral variety over K, V (Kv) is naturally endowed
with a Kv-topology which gives it the structure of a Kv-analytic space (resp.
manifold, if V is smooth).



28 Chapter 3. Hilbert’s irreducibility theorem

Proposition 3.5.1 If W ⊂ V , W 6= V , then W (Kv) 6= V (Kv) for all but a
finite number of v ∈ ΣK .

Proposition 3.5.2 Let W be absolutely irreducible, of same dimension as V ,
and π : W −→ V be a generically surjective morphism, deg π > 1. Let Kπ be
the algebraic closure of K in the extension K(W )gal/K(V ). If v ∈ ΣK splits
completely in Kπ and Nv is large enough, then π(W (Kv)) 6= V (Kv).

The proofs of prop. 3.5.1 and 3.5.2 will be given in § 3.6.

Example: Take K = Q, V = P1, W the curve defined by

y3 = (x2 + 3)/(x2 + 12),

and define π : W −→ V by π(x, y) = x. Then Kπ = Q(
√
−3). A prime p

splits in Kπ when p ≡ 1 (mod 3). If p ≡ −1(mod 3), p ≥ 5, then one checks
that π : W (Qp) −→ V (Qp) is an isomorphism of analytic Qp-manifolds. This
shows that the condition “v splits completely in Kπ” cannot be omitted.

Theorem 3.5.3 Let A be a thin subset of V (K), and let S0 be a finite subset
of ΣK; then there is a finite set S of places of K satisfying :

a) S ∩ S0 = ∅.
b) The image of A in

∏

v∈S V (Kv) is not dense.

Observe first that if the theorem holds for A1 and A2, it holds also for A1∪A2:
for, choose S1 satisfying the conclusion of the theorem for A1; then choose
S2 satisfying the conclusion of the theorem for A2, but with S0 replaced by
S0 ∪ S1. Then, taking S = S1 ∪ S2, one has

A1 ∪ A2 ⊂
∏

v∈S

V (Kv)

is not dense: the point (x1, x2), where xi ∈
∏

v∈Si
V (Kv)− closure(Ai), is not

in the closure of A1 ∪ A2 in
∏

v∈S V (Kv).
Hence it is enough to prove th. 3.5.3 for sets of type (C1) and (C2).

1. If W ⊂ V , W 6= V , A ⊂ W (K), then choose S = {v} with v large enough,
so that v /∈ S0, W (Kv) 6= V (Kv) (prop. 3.5.1). Since Ā ⊂ W (Kv), A is not
dense in W (Kv).

2. Assume A ⊂ π(W (K)), where π : W → V is generically surjective,
dimW = dimV , W is absolutely irreducible, and deg π ≥ 2. We may also
assume that π is a finite morphism (replace V by a suitable open subvariety).
By prop. 3.5.2, there exists a v /∈ S0 such that π(W (Kv)) 6= V (Kv). Since
π is finite, it transforms closed subsets into closed subsets. This shows that
π(W (Kv)) is closed in V (Kv); hence A is not dense in V (Kv).
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Corollary 3.5.4 Assume V is a projective variety, and let Ā denote the clo-
sure of A in the compact space

∏

s/∈S0

V (Kv).

Then the interior of Ā is empty, i.e., A is nowhere dense in the product.

One says that V has the weak approximation property for a finite set S of
places if V (K) is dense in

∏

v∈S V (Kv).

Lemma 3.5.5 If V, V
′

are smooth, birationally equivalent, then V has the
weak approximation property for S if and only if V

′

has the weak approxima-
tion property for S. (In other words, the weak approximation property is a
birational property for smooth varieties).

It is enough to prove the lemma when V
′

= V −W , with W a closed subvariety,
W 6= V . Clearly, if V has the weak approximation property for S, so does
V −W . Conversely, if V −W has the weak approximation property for S, one
uses smoothness to prove that V (Kv)−W (Kv) is dense in V (Kv). Hence, any
point in W (Kv) can be approximated by points in V (K)−W (K).

As a special case, any smoothK-rational variety has the weak approximation
property for any finite set S of places.

Remark: The smoothness assumption is necessary: for example, consider the
Q-rational curve

y2 = (x2 − 5)2(2− x2).

Its rational points are not dense in the set of its real points (the points (−
√

5, 0)
and (

√
5, 0) are isolated).

Definition 3.5.6 A variety V is said to have property (WA) if it satisfies the
weak approximation property with respect to S for all finite S ⊂ ΣK . It is
said to have property (WWA) (“weak weak approximation property”) if there
exists a finite set S0 of places of K such that V has the weak approximation
property with respect to S ⊂ ΣK , for all S with S ∩ S0 = ∅.

Examples:
1. A K-rational variety has property (WA).
2. A K-torus has property (WWA), but not necessarily (WA). More precisely,
if it is split by a finite Galois extension L/K, one can take for exceptional
set S0 the places of K whose decomposition group in Gal(L/K) is not cyclic.
(See, e.g., [Vo1],[CTS1].)
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Theorem 3.5.7 ([Ek],[CT]) A variety which has the WWA property satisfies
the Hilbert property.

Proof: If not, A = V (K) would be thin. By th. 3.5.3 there would exist
S disjoint from S0 such that V (K) would not be dense in

∏

v∈S V (Kv); this
contradicts WWA.

The following conjecture is due to Colliot-Thélène [CT]; it is closely related
to the questions discussed in [CTS2]:

Conjecture 3.5.8 A K-unirational smooth variety has the WWA property.

Recall that a variety is K-unirational if there exists a generically surjective
map Pn −→ V defined over K, for some n - one may always take n equal to
dimV .

Theorem 3.5.9 Conjecture 3.5.8 implies that every finite group is a Galois
group over Q.

Proof: Make G act faithfully on W = An for some n, and let V = W/G.
Then V is K-unirational. By conjecture 3.5.8, V smooth has the WWA property,
and hence satisfies the Hilbert property. By cor. 3.3.2, G can be realized as a
Galois group over Q.

3.6 Proofs of prop. 3.5.1 and 3.5.2

Let O denote the ring of integers of K, and choose a scheme V of finite type
over O having V as its generic fiber; any two choices for V coincide outside
a finite set of primes, i.e., they become isomorphic as schemes over SpecO[ 1

d
]

for some non-zero d. If v is a non-archimedean place, Pv the corresponding
prime of O, denote by κ(v) = O/Pv the residue field at v, which is a finite
field with Nv elements. Let V (κ(v)) be the set of κ(v)-rational points of V
(or, equivalently, of the fiber of V at v). We shall use the following known
result:

Theorem 3.6.1 (Lang-Weil) If V is absolutely irreducible over K, then

|V (κ(v))| = NvdimV +O((Nv)dimV− 1
2 ).

The original proof of Lang-Weil is by reduction to the case of curves for which
one can use the bound proved by Weil. A different method, which gives a
more precise error term, is to use Deligne’s estimates for the eigenvalues of the
Frobenius endomorphism, together with Bombieri’s bounds for the number of
zeros and poles of the zeta function, see [Bo].
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Proof of prop. 3.5.1
We may assume that V is smooth and W = ∅ (by replacing V by V −W ).
If Nv is large enough, th. 3.6.1 implies that V (κ(v)) is not empty. Choose
x ∈ V (κ(v)). Since V is smooth at v (for Nv large enough), x lifts to a point
x̃ ∈ V (Ov), which is contained in V (Kv). Hence V (Kv) is not empty.

Proof of prop. 3.5.2
Recall that we are given a generically surjective map π : W −→ V , with
deg π > 1, dimW = dimV . By replacing W and V by open subsets if nec-
essary, we may assume that π is finite étale and V is smooth. We may also
choose a scheme of finite type W for W over some O[ 1

d
], such that π comes

from a map (also denoted π) W → V . By changing d, we may further assume
that π : W −→ V is étale and finite and V is smooth (see, e.g. EGA IV §8).
For v prime to d, we have a diagram

W (κ(v)) ←− W (Ov) ↪→ W (Kv)
↓ ↓ ↓
V (κ(v)) ←− V (Ov) ↪→ V (Kv).

The fact that π : W −→ V is finite implies that the right square is Cartesian,
i.e. a point z ∈ W (Kv) is an Ov-point if and only if π(z) ∈ V (Kv) has the
same property. Moreover, the reduction map V (Ov) −→ V ((v)) is surjective,
since V is smooth.

To show that W (Kv) 6= V (Kv) it is thus enough to prove that

W (κ(v)) 6= V (κ(v)).

This is a consequence of the following more precise result:

Theorem 3.6.2 Let m = deg π (m ≥ 2). Then, for v splitting completely in
Kπ, one has

|π(W (κ(v)))| ≤ c(Nv)dim V +O((Nv)dimV− 1
2 ),

where c = 1− 1
m!

. (This implies:

|π(W (κ(v)))| ≤ c
′

(Nv)dim V

with c
′

< 1, for Nv large enough, v splitting completely in Kπ.)

Let W gal be the Galois closure of W ; its Galois group G injects into Sm, and
hence |G| ≤ m!. Now, divide the points in W (κ(v)) into two sets:

W (κ(v)) = A ∪ B,



32 Chapter 3. Hilbert’s irreducibility theorem

where A is the set of points which can be lifted to W gal(κ(v)), and B is the
set of the remaining points. By th. 3.6.1 applied to W , we have:

|A|+ |B| = (Nv)dimV +O((Nv)dimV− 1
2 ).

If v splits completely in Kπ, then all the connected components of the fiber
at v are absolutely irreducible, and hence, letting e be the number of these
components, we have

|W gal(κ(v))| = e(Nv)dimV +O((Nv)dimV− 1
2 ).

We have A = W gal(κ(v))/H where H = Gal(W gal/W ). Since H acts freely,
this gives

|A| = e

|H|(Nv)
dim V +O((Nv)dimV− 1

2 ).

The same argument applied to the action of G on W gal(κ(v)) gives

|π(A)| =
e

|G|(Nv)
dimV +O((Nv)dimV− 1

2 )

=
1

m
|A|+O((Nv)dimV− 1

2 ).

Hence:

|π(A)|+ |π(B)| ≤ 1

m
|A|+ |B|+O((Nv)dimV− 1

2 )

≤ |A|+ |B| − (1− 1

m
)|A|+O((Nv)dimV− 1

2 )

≤ (Nv)dimV − (1− 1

m
)|A|+O((Nv)dimV− 1

2 ),

and therefore

π(W (κ(v))) ≤ (Nv)dim V − (1− 1

m
)
e

|H|(Nv)
dim V +O((Nv)dimV− 1

2 ).

Finally, since (1− 1
m

) e
|H| ≥ 1

m|H| ≥ 1
|G| ≥ 1

m!
, we get:

π(W (κ(v))) ≤ (1− 1

m!
)(Nv)dim V +O((Nv)dimV− 1

2 ),

and this completes the proof of th. 3.6.2, and hence of prop. 3.5.2.
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Application to the distribution of Frobenius elements
Let E be an elliptic curve over Q without complex multiplication over Q̄, and
let ap, for p prime, be the “trace of Frobenius”:

ap = 1 + p−Np

where Np is the number of points of E over Fp. The following is well-known:

Theorem 3.6.3 If f 6= 0 is any polynomial in two variables over Q, then the
set of primes p such that f(p, ap) = 0 has density 0.

(The proof uses the l-adic representation ρ : GQ −→ GL2(Zl) attached to E:
since det ρ(Frobp) = p, Tr ρ(Frobp) = ap, one is lead to consider the set of
x ∈ ρ(GQ) such that f(Tr x, det x) = 0. Since ρ(GQ) is known to be open
in GL2(Zl), this set has Haar measure zero; the theorem follows by applying
Chebotarev’s density theorem.)

More generally,

Theorem 3.6.4 Let A be a thin subset of Z × Z. The set of p’s such that
(p, ap) ∈ A has density 0.

The theorem is already proved for A of type (C1): so assume A is of type
(C2). Let Al be the image of A in Z/lZ × Z/lZ and let Sl be the set of
x ∈ GL2(Z/lZ) such that (Tr (x), det(x)) belongs to Al. One checks that

|Sl| ≤ |Al| · l2(1 + 1/l).

By th. 3.6.2, we have |Al| ≤ cl2 for c < 1 and l sufficiently large, splitting
completely in some fixed extension K of Q; hence

|Sl| ≤ cl4(1 + 1/l).

This shows that the density of Sl in GL2(Z/lZ) is

≤ c(1 + 1/l)(1− 1/l)−1(1− 1/l2)−1 = c(1− 1/l)−2

if l is large enough. Recall now that, if l1, · · · , lm are large enough distinct prime
numbers, the Galois group of the l1 · · · lm-division points of E is

∏
GL2(Z/liZ).

If each li splits completely in K the Chebotarev density theorem, applied to
the field of l1 · · · lm-division points of E, shows that the upper density of the
set of primes p with (p, ap) ∈ A is ≤ cm

∏m
i=1(1 − 1/li)

−2. Since this can be
made arbitrarily small by taking m large enough, the theorem follows.
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Remarks:
1. The above implies, for example, that the set of the primes p for which
|E(Fp)| − 3 is a square has density 0.
2. One can prove more than density zero in 3.6.4; in fact, one has

|{p|p < N, (p, ap) ∈ A}| = O

(

N

(logN)1+δ

)

, for some δ > 0.

This implies that
∑

(p,ap)∈A

1

p
<∞.

The proof (unpublished) uses the Selberg “Λ2” sieve.
3. There are similar results for the Ramanujan τ -function.
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Galois extensions of Q(T): first
examples

4.1 The property GalT

Let E be a finite Galois extension of Q(T ) with group G which is regular,
i.e., Q̄ ∩ E = Q. Geometrically, E can be viewed as the function field of a
smooth projective curve C which is absolutely irreducible over Q; the inclusion
Q(T ) ↪→ E corresponds to a (ramified) Galois covering C −→ P1 defined over
Q with group G.

Conjecture 4.1.1 Every finite group G occurs as the Galois group of such a
covering.

Let us say that G has property GalT if there is a regular G-covering C −→ P1

as above. In that case, there are infinitely many linearly disjoint extensions
of Q, with Galois group G (cf. th. 3.3.3).
Remark: If a regular G-covering exists over Pn, n ≥ 1, then such a covering
also exists over P1, by Bertini’s theorem (cf. e.g. [Jou]).

Examples: The property GalT is satisfied for:
1. Abelian groups.
2. An and Sn (Hilbert); Ãn (Vila, Mestre).
3. Some non-abelian simple groups, such as the sporadic ones (with the

possible exception of M23), most PSL2(Fp), p prime, and a few others.
4. If G has property GalT , then so does every quotient of G.

Proposition 4.1.2 If G1, G2 have property GalT , then so does their product
G1 ×G2.

Proof: Let C1, C2 be regular coverings of P1 with groups G1, G2, and let Σ1,
Σ2 be their ramification loci.

35
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1. If Σ1 ∩ Σ2 = ∅, then the extensions corresponding to C1, C2 are linearly
disjoint, because P1 is algebraically simply connected (see §4.4 below). One
can take for covering C the fibered product C1×P1C2, which has function field
Q(C1)⊗Q(T ) Q(C2), and hence has G1 ×G2 as Galois group.
2. If Σ1 ∩ Σ2 6= ∅, one modifies the covering C1 −→ P1 by composing it with
an automorphism of P1 so that the new ramification locus is disjoint from Σ2.
One is thus reduced to case 1.

Remark: If G1 and G2 have property GalT , one can show (cf. e.g. [Ma3],
p. 229, Zusatz 1) that the wreath product G1 Wr G2 also has property GalT .
This can be used to give an alternate proof of prop. 4.2.2 below.

Exercises:
1. Show that the profinite group Zp is not the Galois group of any regular extension
of Q(T ). (Hence conjecture 4.1.1 does not extend to profinite groups, not even when
they are p-adic Lie groups.)

2. Let G be a finite group having property GalT . Show that there exists a regular
Galois extension L of Q(T ), with Galois group G, such that:

(a) Every subextension of L distinct from Q(T ) has genus ≥ 2.

(b) Every Q-rational point P of P1 has property Irr(P ) with respect to L. (Use

a suitable base change P1 −→ P1, combined with Faltings’s theorem.)

4.2 Abelian groups

A torus defined over Q is said to be a “permutation torus” if its character group
has a Z-basis which is stable under the action of Gal(Q̄/Q), or equivalently,
if it can be expressed as a product of tori of the form RKi/QGm, where the Ki

are finite extensions of Q. A permutation torus is clearly rational over Q.
Now, let A be a finite abelian group. The following proposition implies that

A has property GalT :

Proposition 4.2.1 There exists a torus S over Q, and an embedding of A in
S(Q), such that the quotient S

′

= S/A is a permutation torus. (In particular,
S

′

is a Q-rational variety.)

The proof uses the functor Y which to a torus associates the Z-dual of its
character group. An exact sequence of the form 1 −→ A −→ S −→ S

′ −→ 1
gives rise to the exact sequence

1 −→ Y (S) −→ Y (S
′

) −→ Ã −→ 1,

where
Ã = Ext1(Â,Z) = Hom(µn, A) = Hom(Â,Q/Z),



4.2. Abelian groups 37

and Â denotes as usual the Cartier dual Hom(A,Gm). Choose K finite Galois
over Q such that the action of GQ on Ã factors through Gal(K/Q), e.g. K =
Q(µn), where n is the exponent of A. Now express Ã as a quotient of a free
Z[Gal(K/Q)]-module F , and let S

′

be a torus such that Y (S
′

) = F ; it follows
that S

′

is a permutation torus, and there is an A-isogeny S −→ S
′

.

Proposition 4.2.2 Let G be a finite group having property GalT , and let M be
a finite abelian group with G-action. Then the semi-direct product G̃ = M ·G
also has property GalT .

We may assume without loss of generality that M is an induced G-module,
M =

⊕

g∈G
gA, so that

G̃ = (A× · · · × A)
︸ ︷︷ ︸

|G| times

·G

is the wreath product of A and G. By prop. 4.2.1, there is an isogeny S −→ S
′

defined over Q, with S
′

a permutation torus and with kernel A ⊂ S(Q). By
hypothesis, there is a regular étaleG-covering C −→ U where U is a Q-rational
variety (e.g. an open subvariety of P1). The actions of A on S, and of G on
C and on S × . . .× S give rise to a natural G̃-action on X = S × . . .× S ×C.
This action is free. Let Y = X/G̃. Prop. 4.2.2 then follows from the following
lemma:

Lemma 4.2.3 The variety Y = X/G̃ is Q-rational.

Define X
′

= X/(A × . . . × A) = S
′ × . . . × S

′ × C. We have Y = X
′

/G.
This shows that Y is the fiber space over U with fiber the torus S

′ × . . .× S ′

,
which is associated to the principal G-bundle C −→ U . We may thus view Y
as a torus over U . In particular, the generic fiber YU of Y −→ U is a torus
over the function field Q(U) (this torus is obtained from S

′ × . . .× S ′

by a G-
twisting, using the Galois extension Q(C)/Q(U)). Since S

′

is a permutation
torus over Q, YU is a permutation torus over Q(U). Hence the function field
Q(Y ) of YU is a pure transcendental extension of Q(U), which itself is a pure
transcendental extension of Q. The lemma follows. (One can also deduce
lemma 4.2.3 from lemma 4.3.1 below.)

Exercise: Let H be a finite group generated by an abelian normal subgroup M and

a subgroup G having property GalT . Show using prop. 4.2.2 that H has property

GalT .
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4.3 Example: the quaternion group Q8

We need first:

Lemma 4.3.1 Let Y −→ X be an étale Galois covering with Galois group
G, and G −→ GL(W ) be a linear representation of G, where W is a finite-
dimensional vector space. Let E be the associated fiber bundle with base X and
fiber W . Then E is birationally isomorphic to X ×W .

This follows from Hilbert’s theorem 90: H1(K(X),GLn) = 0, where n is
dimW , and K(X) is the function field of X over the ground field (which we
assume to be Q).

[Alternate proof: Use descent theory to show that E is a vector bundle over X,

hence is locally trivial.]

This lemma implies that Q(E) = Q(X)(T1, . . . , Tn), hence that Q(E) and
Q(X) are stably isomorphic. (Recall that two extensions k1 and k2 of a field k
are stably isomorphic if there exist integers n1, n2 ≥ 0 such that the extensions
k1(T1, . . . , Tn1) and k2(T1, . . . , Tn2) are k-isomorphic.)

Application: Let G act linearly on vector spaces W1 and W2, the action on
W2 being faithful. Letting n = dimW1, we have:

4.3.2
Q(W1 ×W2)/G ' Q(W2/G)(T1, . . . , Tn).

(In particular, Q(W1 ×W2)/G is stably isomorphic to Q(W2/G).) This is a
consequence of the lemma applied to E = W1 ×W2 and X = W2.

Corollary 4.3.3 If G acts faithfully on W1 and W2, then Q(W1/G) and
Q(W2/G) are stably isomorphic.

Let R = ⊕Wi be a decomposition of the regular representation of G as a sum
of Q-irreducible ones. By the corollary, if one of the Wi is a faithful G-module,
then Q(R/G) is stably isomorphic to Q(Wi/G). If Q(Wi/G) is a rational field,
then so is Q(R/G), by 4.3.2.

Application to the quaternion group Q8. Let Q8 be the quaternion
group of order 8. The group algebra Q[Q8] decomposes as

Q[Q8] = Q×Q×Q×Q×H,

where H denotes the standard field of quaternions (over Q), and Q8 acts on H
by left multiplication. By the previous remark, the Q-rationality of Q[Q8]/Q8

is equivalent to the Q-rationality of H∗/Q8, where H∗ is the multiplicative
group of H viewed as a 4-dimensional Q-algebraic group. The group Q8 has
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a center {±1} of order 2, and D = Q8/{±1} is a group of type (2, 2). On the
other hand,

H∗/{±1} ' Gm × SO3,

by the map
(N, φ) : H∗ −→ Gm × SO3,

where N is the reduced norm, and φ : H∗ −→ SO3 maps a quaternion x to
the rotation y 7→ xyx−1 (on the 3-dimensional vector space of quaternions of
trace 0). Therefore,

H∗/Q8 = Gm × SO3/D,

and it suffices to show that SO3/D is a rational variety over Q. But the
group D is the stabilizer in SO3 of a flag in A3. Hence SO3/D is isomorphic
to an open subvariety of the flag variety of A3, which is rational over Q.
Noether’s method therefore applies to Q8; in particular Q8 has property GalT .
For explicit formulae, see [JY].

Exercise (L. Schneps) Show that every p-group of order p3 has property GalT (use

the exercise at the end of §4.2).

4.4 Symmetric groups

The symmetric group Sn acts on the affine space An with quotient An (“sym-
metric functions theorem”). This shows that Sn has property GalT . Let us
give some explicit constructions of polynomials with Sn as Galois group. For
example, consider a polynomial

f(X) = Xn + a1X
n−1 + · · ·+ an, with ai ∈ Q,

and put
f(X, T ) = Xn + a1X

n−1 + · · ·+ an − T.

Theorem 4.4.1 (Hilbert [Hi]) If f is a Morse function, then the splitting field
of f(X, T ) over Q(T ) is a regular extension with Galois group Sn.

(The polynomial f is called a Morse function if:
1. The zeros β1, . . . , βn−1 of the derivative f

′

of f are simple.
2. f(βi) 6= f(βj) for i 6= j.)

We will need the following simple facts about the symmetric group Sn:

Lemma 4.4.2 Sn is generated by transpositions.



40 Chapter 4. Galois extensions of Q(T )

This is well-known: indeed Sn is generated by the transpositions

(12), (23), . . . , (n− 1, n).

Lemma 4.4.3 Let G be a transitive subgroup of Sn which contains a transpo-
sition. Then the following are equivalent :

1. G contains an (n− 1)–cycle.
2. G is doubly transitive.
3. G = Sn.

If G contains an (n − 1)–cycle, then the stabilizer of a point is transitive on
the complement of the point, hence G is doubly transitive. If G is doubly
transitive, then G contains all the transpositions in Sn, hence G = Sn by
lemma 4.4.2. That 3⇒ 1 is obvious.

Lemma 4.4.4 (cf. [Hu], p.171) Let G be a transitive subgroup of Sn which is
generated by cycles of prime orders. Then :

1. G is primitive.
2. If G contains a transposition, then G = Sn.
3. If G contains a 3-cycle, then G = An or Sn.

Let {Y1, . . . , Yk}, with k > 1, be a partition of {1, . . . , n} which is stable under
G. Our assumptions imply that there is a cycle s of G, of prime order p, such
that Y1 6= sY1. Since no element of Y1 ∪ sY1 ∪ . . . ∪ sp−1Y1 is fixed by s, we
have:

|Y1|+ |sY1|+ . . .+ |sp−1Y1| ≤ p,

and hence |Y1| = 1. This shows that {Y1, . . . , Yk} is the trivial partition
of {1, . . . , n}. Hence G is primitive. To show 2, let G

′

be the subgroup
of G generated by the transpositions belonging to G. Since G

′ 6= 1, it is
transitive (a non-trivial normal subgroup of a primitive group is transitive).
For Ω ⊂ {1, . . . , n}, let us denote by SΩ (resp. AΩ) the symmetric (resp,
alternating) group on Ω. Let Ω ⊂ {1, . . . , n} be maximal with the property
SΩ ⊂ G

′

, and suppose that Ω 6= {1, . . . , n}. By the transitivity of G
′

, there
exists (xy) ∈ G

′

with x ∈ Ω, y /∈ Ω. Hence SΩ∪{y} ⊂ G
′

, contradicting the
maximality of Ω. It follows that Ω = {1, . . . , n} and hence G = G

′

= Sn,
proving 2. The proof of 3 is similar, taking G

′

this time to be the subgroup of
G generated by the 3-cycles belonging to G. The hypothesis implies that G

′

is non-trivial, and hence is transitive. Choose Ω ⊂ {1, . . . , n} maximal with
the property AΩ ⊂ G

′

. As before, if Ω 6= {1, . . . , n}, there is a 3-cycle (xyz)
which does not stabilize Ω. There are two cases:
Case 1: {x, y, z}∩Ω has two elements, say y and z. Then clearly AΩ∪{x} ⊂ G

′

,
contradicting the maximality assumption for Ω.
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Case 2: {x, y, z} ∩ Ω has 1 element, say x. Choose two elements y
′

, z
′ ∈ Ω

distinct from x; it is easy to see that (xyz) and (xy
′

z
′

) generate the alternating
group A5 on {x, y, z, y′

, z
′}. In particular, the cycle (xy

′

z) is in G; since this
3-cycle meets Ω in two elements, we are reduced to case 1, QED.

More generally, Jordan has shown that a primitive subgroup of Sn which contains

a cycle of prime order ≤ n− 3 is equal to An or Sn (see [Wi], p.39).

Th. 4.4.1 will be proved in the following more general form:

Theorem 4.4.5 If K is any field of characteristic 0, or of characteristic p
not dividing n, and f(X) ∈ K[X] is Morse, then Gal(f(X) − T ) = Sn over
K(T ).

Proof: We may assume K to be algebraically closed. The polynomial f can
be viewed as a ramified covering of degree n

f : P1 −→ P1

x 7→ t = f(x).

The corresponding field extension is K(X) ⊃ K(T ); it is separable because
p6 |n. Let G ⊂ Sn be the Galois group of the Galois closure of K(X) over
K(T ), i.e., the Galois group of the equation f(X)− T = 0.

The ramification points of the covering f are

X =∞, f(β1), . . . , f(βn−1).

At X =∞, the ramification is tame, and the inertia group is generated by an
n-cycle. At the f(βi), the hypothesis on f implies that the inertia group is
tame for p 6= 2 and wild for p = 2, and that (in both cases) it is generated by
a transposition.

Hence the theorem is a consequence of the following proposition, combined
with lemma 4.4.4.

Proposition 4.4.6 Let C −→ P1 be a regular Galois covering with group G,
tamely ramified at ∞. Then G is generated by the inertia subgroups of points
outside ∞, and their conjugates.

Proof: Let H be the normal subgroup generated by the inertia subgroups
outside ∞. Then C/H is a G/H-covering of P1 which is tame at ∞, and
unramified outside. The Riemann-Hurwitz formula implies that the genus of
C/H is ≤ 1

2
(1− |G/H|); hence G = H.

Corollary 4.4.7
a) P1 is algebraically simply connected.
b) In characteristic 0, the affine line is algebraically simply connected.
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Remark: In characteristic p > 0, the affine line A1 is not simply connected
(as shown e.g. by the Artin-Schreier equation Xp−X = T ). If G is the Galois
group of an unramified covering of A1, then prop. 4.4.6 implies that G is
generated by its Sylow p-subgroups. There is a conjecture by Abhyankar [Ab1]
that, conversely, every group G having this property occurs. This is known
to be true when G is solvable, and in many other cases (Nori, Abhyankar,
Harbater, Raynaud, see e.g. [Ab2], [Se11]).

Example of an Sn-extension of ramification type (n, n− 1, 2)

The above method for constructing polynomials over Q(T ) with Galois group
Sn gives us polynomials with ramification type (n, 2, . . . , 2). For a different
example, consider the polynomial

f(X) = Xn −Xn−1,

so that
f(X, T ) = Xn −Xn−1 − T.

Then

f
′

= nXn−2(X − α), α = 1− 1

n
,

and hence the ramification is given (in char. 0) by






at ∞ : cycle of order n;
at 0 : cycle of order n− 1;
at α : a transposition.

Hence G = Sn by lemma 4.4.3. The polynomial f has ramification type
(n, n− 1, 2).

Remarks:
1. Consider f(X, T ) = Xp+1 − Xp − T . This polynomial has Sp+1 as Galois
group in characteristic different from p (the proof is similar to the one above).
In characteristic p, one can show that it has Galois group PGL2(Fp).
2. One might ask for an explicit polynomial fn over Q such that fn has Galois
group Sn. Here is an example: fn(X) = Xn −X − 1. Indeed, Selmer [Sel] has
shown that fn is irreducible over Q. Assuming this, let us prove that fn has
Galois group Sn. We look at the primes p dividing the discriminant of fn, i.e.,
those modulo which fn(X) has a multiple root. This happens if fn(X) and
f

′

n(X) = nXn−1 − 1 have a common root mod p. Substituting Xn−1 ≡ 1/n in
the equation f(X) ≡ 0, one gets X ≡ n/(1− n). Hence there can be at most
one double root mod p for each ramified prime p. This shows that the inertia
subgroup at p is either trivial, or is of order two, generated by a transposition.
But G = Gal(f) is generated by its inertia subgroups, because Q has no non-
trivial unramified extension. By Selmer’s result, G is transitive; we have just
shown that G is generated by transpositions; hence G = Sn by lemma 4.4.4.
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Many more examples can be found in the literature. For instance, the
“truncated exponential”

1 + x +
x2

2
+
x3

6
+ . . .+

xn

n!

has Galois group Sn when n 6≡ 0 (mod 4), and Galois group An otherwise
(I. Schur).

Exercises:

1. Let Yn be the subvariety of Pn−1 defined by the homogeneous equations

Xi
1 + · · · + X i

n = 0 for i = 1, 2, . . . , n− 2.

1.1. Yn is an absolutely irreducible smooth curve, whose genus gn is given by:

gn = 1 + (n− 2)!
n2 − 5n + 2

4
.

(e.g. g3 = g4 = 0, g5 = 4, g6 = 49, g7 = 481, . . .)

1.2. The quotient of Yn by Sn (acting by permutation of coordinates) is isomorphic
to P1.

1.3. The Galois covering Yn −→ P1 is the Galois closure of the degree n covering
given by the polynomial f(X) = Xn −Xn−1.

2. In characteristic 11, show that the equation

X11 + 2X9 + 3X8 − T 8 = 0

is an unramified extension of A1 whose Galois closure has for Galois group the

Mathieu group M11. (Hint: reduce mod 11 the equation of [Ma4], after dividing the

X-variable by 111/4.)

4.5 The alternating group An

One exhibits the alternating group An as a Galois group over Q(T ) by using
the following lemma (“double group trick”).

Lemma 4.5.1 Let G be the Galois group of a regular extension K/k(T ), ram-
ified at most at three places which are rational over k, and let H be a subgroup
of G of index 2. Then the fixed field K1 of H is rational. (In particular, if
k = Q, then H has property GalT .)

Because of the conditions on the ramification, the curve corresponding to K1

has genus zero, and has a k-rational point. The lemma follows.
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For example, the polynomials with ramification type (n, n− 1, 2) discussed
in the previous section can be used to construct An-extensions of Q(T ). More
precisely, let us change variables, and put

h(X, T ) = (n− 1)Xn − nXn−1 + T.

Then the discriminant of h (with respect to X) is

∆(h) = (−1)
n(n−1)

2 nn(n− 1)n−1T n−2(T − 1).

Up to square factors, we have

∆(h) ∼







(−1)
n
2 (n− 1)(T − 1) if n is even;

(−1)
n−1

2 nT (T − 1) if n is odd.

Hence the equation D2 = ∆ defines a rational curve. For example, if n is
even, by replacing T by 1 + (−1)

n
2 (n− 1)T 2, we get the equation

(n− 1)Xn − nXn−1 + 1 + (−1)
n
2 (n− 1)T 2 = 0,

which gives rise to a regular Galois extension of Q(T ) with Galois group An.
Hilbert’s original construction [Hi] was somewhat different. For the sake of

simplicity, we reproduce it here only in the case where n = 2m is even. Choose
a polynomial

g(X) = nX
m−1∏

i=1

(X − βi)
2,

with the βi distinct and non-zero. Then, take f(X) so that df/dX = g.
Assume that the f(βi) are all distinct, and distinct from f(0). Then f has
ramification type (n, 2, 3, 3, . . . , 3). Hence its Galois group is Sn by lemma
4.4.4. But then the quadratic subfield fixed by An is only ramified at the two
places ∞ and 0; hence it is a rational field.

Exercise: Show that the condition that the f(βi) are 6= f(0) can be suppressed.

4.6 Finding good specializations of T

Let f be a polynomial over Q(T ) with splitting field a regular G-extension of
Q(T ). Although Hilbert’s irreducibility theorem guarantees that for “most”
values of t, the specialized polynomial f(X, t) will have Galois group G over
Q, it does not give a constructive method for finding , say, an infinite number
of such t’s.
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For p /∈ S, where S denotes a suitable finite set of primes, the equation
f(X, T ) = 0 can be reduced mod p. If p is large enough (see exercise be-
low), then all conjugacy classes in G occur as Frobenius elements at t for
some t ∈ Fp. Letting C1, . . ., Ch be the conjugacy classes of G, one can thus
find distinct primes p1, . . . , ph and points t1, . . . , th, with ti ∈ Fpi

, such that
Frobpi

(f(X, ti)) = Ci. Specializing T to any t ∈ Q such that t ≡ ti (mod pi)
for all i gives a polynomial f(X) = f(X, t) whose Galois group over Q inter-
sects each of the conjugacy classes Ci, and hence is equal to G, by the following
elementary result:

Lemma 4.6.1 (Jordan, [J2]) Let G be a finite group, and H a subgroup of
G which meets every conjugacy class of G. Then H = G.

Indeed, if H is a subgroup of G, then the union of the conjugates of H in G
has at most

1 + (G : H)(|H| − 1) = |G| − ((G : H)− 1)

elements.

Exercises:

1. Use lemma 4.6.1 to show that every finite division algebra is commutative (cf.
Bourbaki, A.VIII, §11, no.1).

2. Show that lemma 4.6.1 can be reformulated as: “Every transitive subgroup of

Sn, n ≥ 2, contains a permutation without fixed point”. (This is how the lemma is

stated in Jordan, [J2].)

3. Let π : X −→ Y be a G-covering of absolutely irreducible projective smooth

curves over Fp. Let N be the number of geometric points of X where π is ramified,

and let g be the genus of X. Assume that 1 + p− 2g
√

p > N . Show that, for every

conjugacy class c in G, there is a point t ∈ Y (Fp) over which π is unramified, and

whose Frobenius class in G is c. (Apply Weil’s bound to the curve X, twisted by an

element of c.)
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Chapter 5

Galois extensions of Q(T) given
by torsion on elliptic curves

5.1 Statement of Shih’s theorem

Consider an elliptic curve E over Q(T ) with j-invariant equal to T , e.g. the
curve defined by the equation

y2 + xy = x3 − 36

T − 1728
x− 1

T − 1728
.

(Any other choice of E differs from this one by a quadratic twist only.) By
adjoining to Q(T ) the coordinates of the n-division points of E, one obtains
a Galois extension Kn of Q(T ) with Gal(Kn/Q(T )) = GL2(Z/nZ). More
precisely, the Galois group of C ·Kn over C(T ) is SL2(Z/nZ), and the homo-

morphism GQ(T ) −→ GL2(Z/nZ)
det−→ (Z/nZ)∗ is the cyclotomic character.

Hence the extension Kn is not regular when n > 2: the algebraic closure of Q
in Kn is Q(µn). So the method does not give regular extensions of Q(T ) with
Galois group PGL2(Fp), nor PSL2(Fp). Nevertheless, K-y. Shih was able to
obtain the following result [Shih1], [Shih2]:

Theorem 5.1.1 There exists a regular extension of Q(T ) with Galois group

PSL2(Fp) if
(

2
p

)

= −1,
(

3
p

)

= −1, or
(

7
p

)

= −1.

Shih’s theorem will be proved in §5.3.

Remark: It is also known that PSL2(Fp) has property GalT when
(

5
p

)

= −1;

this follows from [Ml2] combined with th. 5.1.1.

47
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5.2 An auxiliary construction

Let E be an elliptic curve defined over a field k of characteristic 0. The p-
torsion of E, denoted E[p], is a two-dimensional Fp-vector space; let us call
PE[p] the associated projective line PE[p] ' P1(Fp). The actions of the
Galois group Gk on E[p] and PE[p] give rise to representations

ρ : Gk −→ GL(E[p]) ' GL2(Fp)

and
ρ̄ : Gk −→ PGL(PE[p]) ' PGL2(Fp).

The determinant gives a well-defined homomorphism PGL2(Fp) −→ F∗p/F
∗2
p .

The group F∗p/F
∗2
p is of order 2 when p is odd (which we assume from now

on). Hence the homomorphism εp = det ◦ρ̄ is a quadratic Galois character,

εp : GK −→ {±1}.

The Weil pairing gives a canonical identification of ∧2(E[p]) with µp, so that
det ρ = χ, where χ is the pth cyclotomic character giving the action of Gk on
the pth roots of unity. Therefore εp is the quadratic character associated to

k(
√
p∗), where p∗ = (−1)

p−1
2 p.

LetK be a quadratic extension of k, and let σ be the involution in Gal(K/k).
Let N be an integer ≥ 1 and E an elliptic curve defined over K such that
E and Eσ are N -isogenous (i.e., there is a homomorphism φ : E −→ Eσ

with cyclic kernel of order N). Assume for simplicity that E has no complex
multiplication, so that there are only two N -isogenies, φ and −φ, from E to
Eσ.

If p6 |N , the maps φ, −φ induce isomorphisms (also denoted φ, −φ) from
E[p] to Eσ[p]. By passing to the projective lines, one gets an isomorphism
φ : PE[p] −→ PEσ[p] which is independent of the choice of the N -isogeny
E −→ Eσ, and commutes with the action of GK . We define a map ρE,N :
Gk −→ PGL(PE[p]) as follows:

1. If s belongs to the subgroup GK of Gk, then ρE,N(s) is defined via the
natural action of GK on PE[p].

2. If s ∈ Gk − GK , then the image of s in GK/k is σ. Hence s gives an
isomorphism PE[p] −→ PEσ[p], and ρ(s) : PE[p] −→ PE[p] is defined by
composing this isomorphism with φ−1 : PEσ[p] −→ PE[p].

(In other words, ρE,N describes the action of Gk on the pairs of points (x, y)
in PE[p]× PEσ[p] which correspond to each other under the isogeny φ.) One
checks easily that the map

ρE,N : Gk −→ PGL(PE[p])



5.3. Proof of Shih’s theorem 49

so defined is a homomorphism.
As before, the projective representation ρE,N of Gk gives a character

εE,N : Gk −→ ±1.

Let εK denote the character Gk −→ ±1 corresponding to the quadratic exten-
sion K/k. Recall that εp : Gk −→ ±1 corresponds to k(

√
p∗)/k.

Proposition 5.2.1 We have :

εE,N =







εp if
(

N
p

)

= 1

εpεK if
(

N
p

)

= −1

Corollary 5.2.2 If K = k(
√
p∗), and

(
N
p

)

= −1, then εE,N = 1, i.e., the

image of ρE,N is contained in PSL2(Fp).

Proof of 5.2.1: If s ∈ GK, then ρE,N(s) acts on ∧2E[p] ' µp by χ(s). Hence

εE,N(s) =
(

χ(s)
p

)

= εp(s). If s /∈ GK , then using the fact that the homomor-

phism φ−1 : Eσ[p] −→ E[p] induces multiplication by N−1 on

µp ' ∧2(Eσ[p]) ' ∧2(E[p])

(where the group operation on µp is written additively), one finds that

det ρE,N(s) = N−1χ(s).

Hence εE,N(s) =
(

N
p

)

εp(s). This completes the proof.

5.3 Proof of Shih’s theorem

Let KN denote the function field of the modular curve X0(N) of level N over
Q,

KN = Q[j1, j2]/FN(j1, j2),

where FN is the (normalized) polynomial relating the j-invariants of N -iso-
genous elliptic curves (cf. [F]). The Fricke involution WN acts on KN by
interchanging j1 and j2. Let X0(N)p be the twist of X0(N) by the quadratic
character εp, using the involution WN . The function field of X0(N)p can be de-
scribed as follows: let kN be the field of invariants of WN in KN , i.e., the func-
tion field of X0(N)+. Then KN and kN(

√
p∗) are disjoint quadratic extensions
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of kN . The third quadratic extension, k, of kN contained in K = KN(
√
p∗) is

the function field of X0(N)p

K

↗ ↑ ↖
kN(
√
p∗) k KN .

↖ ↑ ↗
kN

Now, let E denote an elliptic curve over K with j-invariant j1. Then Eσ has
j-invariant j2, and hence E and Eσ are N -isogenous. Assuming

(
N
p

)

= −1,

cor. 5.2.2 gives a projective representation Gk −→ PSL2(Fp). It is not hard
to see that this representation is surjective, and gives a regular extension of k.

Remark: Instead of taking E over K one can take it over KN . One thus gets
a projective representation GkN

−→ PGL2(Fp) and prop. 5.2.1 shows that it is
surjective, and gives a regular extension if ( N

p ) = −1. Since kN is known to be
isomorphic to Q(T ) if N belongs to the set

S = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71},

this shows that PGL2(Fp) has property GalT provided there exists N ∈ S with

(N
p ) = −1 (a computer search shows that this is true for all p < 5329271).

We are interested in values of N for which k is isomorphic to Q(T ), i.e.,
such that:

1. X0(N) has genus 0.
2. X0(N)p has a Q-rational point.

Assuming that N is not a square, condition 1 implies that N = 2, 3, 5, 6,
7, 8, 10, 12, 13, 18. Condition 2 is satisfied when N = 2, 3, 7 (and also for

N = 6,
(

2
p

)

= 1 and N = 10,
(

5
p

)

= 1, cf. [Shih1]). More precisely:

Proposition 5.3.1 For N = 2, 3, or 7, the two fixed points of WN in X0(N)
are rational over Q.

(Hence, these points stay rational on X0(N)p, which is thus isomorphic to P1

over Q; this concludes the proof of th. 5.1.1.)

Let us give two proofs of prop. 5.3.1.

First proof: Let O be an order of class number 1 in a quadratic imaginary
field, and EO an elliptic curve with endomorphism ring O. Assume that the
unique prime ramified in the field is N , and that O contains an element π with
ππ̄ = N . This is indeed possible for N = 2, 3, 7:
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N O π

2 Z[i] 1 + i

Z[
√
−2]

√
−2

3 Z
[

1+
√
−3

2

] √
−3

Z[
√
−3]

√
−3

7 Z
[

1+
√
−7

2

] √
−7

Z[
√
−7]

√
−7

By the theory of complex multiplication, the pair (EO, π) then defines a ratio-
nal point of X0(N) which is fixed under WN .

Second proof: Let ∆ be the discriminant modular form

∆(q) = q
∏

(1− qn)24, q = e2πiz,

and let f be the power series defined by

f = (∆(z)/∆(Nz))
1

N−1

= q−1
∏

n6≡0(N)
n≥1

(1− qn)2m, where m =
12

N − 1
.

One can prove that f generates KN over Q, and that fWN = Nm/f . For
N = 2, 3, and 7 we have m = 12, 6, 2, and Nm is a square. This shows that
the fixed points of WN are rational.

One can also show that the quaternion algebra corresponding to X0(N)p is
given by (Nm, p∗). More generally:

Exercise: Let F be a field, and let X be the variety obtained by twisting P1

by the quadratic character attached to the extension F (
√

b) and the involution of

P1 x 7→ a/x. Then the quaternion invariant of this curve is the element (a, b) of

Br2(F ).

The ramification in the Shih covering constructed above is as follows:

N=2: The ramification is of type (2, p, p). One ramification point is rational

over Q, with inertia group of order 2 generated by the element
(

0 1
−1 0

)

. The

two others are defined over Q(
√
p∗) and are conjugate to each other. Their

inertia groups, of order p, correspond to the two different conjugacy classes of

unipotent elements in PSL2(Z),
(
1 1
0 1

)

and
(
1 α
0 1

)

, where α is a non-quadratic

residue mod p.
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N=3: The situation is similar; we have ramification of type (3, p, p), the

inertia group of order 3 being generated by the element
(
1 −1
1 0

)

.

N=7: The ramification is of type (3, 3, p, p); with a suitable choice of coordi-
nates, the ramification points are located at ±√−27p∗ and ±√p∗.
Exercise: Show that the statement of th. 5.1.1 remains true when PSL2(Fp) is

replaced by PSL2(Z/pnZ).

5.4 A complement

Assume as before that
(

N
p

)

= −1. Then there is a regular Galois covering

C −→ X0(N)p with Galois group G = PSL2(Fp) by the above. In Shih’s
theorem, one takes N such that X0(N) has genus 0. One might try to exploit
the case where X0(N) is of genus 1; for if the twisted curve X0(N)p has a Q-
rational point, and is of rank > 0 (where X0(N)p is viewed as an elliptic curve
over Q by fixing this rational point as origin) then the following variant of
Hilbert’s irreducibility theorem allows us to deduce the existence of infinitely
many extensions of Q with Galois group G:

Proposition 5.4.1 Let C −→ E be a regular Galois covering with group G,
where E is an elliptic curve over a number field K. Assume that for ev-
ery proper subgroup H of G containing the commutator subgroup (G,G), the
corresponding G/H-covering of E is ramified at least at one point. Then all
P ∈ E(K) except a finite number have property Irr(P ) of §3.3.

The hypothesis in the proposition implies that for all subgroups H 6= G,
the covering C/H −→ E is ramified somewhere, since the only unramified
coverings of E are abelian. Hence the genus of CH = C/H is at least 2; by
Faltings’ theorem, CH has finitely many rational points. Let SK ⊂ E(K) be
the union of the ramification points and the images of the CH(K). This is a
finite set, and if P /∈ SK, then property Irr(P ) is satisfied. This proves the
proposition.

The above result was first obtained by Néron (Proc. Int. Cong. 1954) in a
weaker form, since Mordell’s conjecture was still unproved at that time.

Corollary 5.4.2 Assume E(K) is infinite. Then, there are infinitely many
linearly disjoint Galois extensions of K with Galois group G.

Proof: If L is any finite extension of K, we can find P ∈ E(K), P /∈ SL (where
SL is defined as above).The property Irr(P ) is then satisfied both over K and
over L. The corresponding G-extension KP is then linearly disjoint from L.
The corollary follows.
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Example: For N = 11, p = 47, the twisted elliptic curve X0(N)p has rank
2 over Q. Hence there are infinitely many extensions of Q with Galois group
PSL2(F47). (An explicit example has been written down by N. Elkies.)

Problem: Is it possible to generalize prop. 5.4.1 to abelian varieties? More pre-

cisely, let π : C −→ A be a finite covering of an abelian variety A. Assume that a)

A(K) is Zariski dense in A; b) π is ramified (i.e., C is not an abelian variety). Is it

true that π(C(K)) is “much smaller” than A(K), i.e., that the number of points of

logarithmic height ≤ N in π(C(K)) is o(N ρ/2), where ρ = rank A(K)? There is a

partial result in this direction in the paper of A. Néron referred to above.

5.5 Further results on PSL2(Fq) and SL2(Fq) as

Galois groups

Concerning the groups PSL2 and SL2 over finite fields, there are the following
results:

1. PSL2(Fq), for q not a prime, is known to have property GalT when:

(a) q = 4 and q = 9, because PSL2(Fq) is isomorphic to A5 and A6

respectively in these cases.

(b) q = 8, by a result of Matzat ([Ma3]).

(c) q = 25, by a result of Pryzwara ([Pr]).

(d) q = p2, for p prime, p ≡ ±2 (mod 5), cf. [Me1].

2. SL2(Fq) is known to have property GalT for:

(a) q = 2, 4, 8, for then SL2(Fq) ≈ PSL2(Fq).

(b) q = 3, 5 or 9, for then SL2(Fq) is isomorphic to Ã4, Ã5, or Ã6, which
are known to have property GalT , cf. [Me2], or §9.3.

(c) q = 7, Mestre (unpublished).

It seems that the other values of q have not been treated (not even the
case q = 11).

There are a few examples of Galois extensions of Q with Galois group
SL2(F2m) for m = 1, 2, . . . , 16. Their construction is due to Mestre (unpub-
lished), who uses the representations of GQ given by modular forms mod 2 of
prime level ≤ 600.
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Chapter 6

Galois extensions of C(T)

6.1 The GAGA principle

Our goal in this chapter is to construct Galois extensions of C(T ), using the
tools of topology and analytic geometry. To carry out this program, we need
a bridge between analysis and algebra.

Theorem 6.1.1 (GAGA principle) Let X, Y be projective algebraic varieties
over C, and let Xan, Y an be the corresponding complex analytic spaces. Then
1. Every analytic map Xan −→ Y an is algebraic.
2. Every coherent analytic sheaf over Xan is algebraic, and its algebraic coho-
mology coincides with its analytic one.

For a proof, see [Se4] or [SGA1], exposé XII. In what follows, we will allow
ourselves to write X instead of Xan.

Remarks:
1. The functor X 7→ Xan is the “forgetful” functor which embeds the category
of complex projective varieties into the category of complex analytic spaces.
Th. 6.1.1 implies that it is fully faithful.
2. By the above, there is at most one algebraic structure on a compact analytic
space which is compatible with it.
3. Th. 6.1.1 implies Chow’s theorem: every closed analytic subspace of a
projective algebraic variety is algebraic.
4. The analytic map exp : Ga −→ Gm, where

Ga = P1 − {∞}, and Gm = P1 − {0,∞},

is not algebraic; hence the hypothesis that X is projective is essential.

Exercise: If X and Y are reduced varieties of dimension 1, prove that any analytic

isomorphism of X on Y is algebraic; disprove this for non-reduced varieties.

55
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Theorem 6.1.2 (Riemann) Any compact complex analytic manifold of di-
mension 1 is algebraic.

The proof is easy, once one knows the finiteness of the (analytic) cohomology
groups of coherent sheaves, see e.g. [Fo], chap. 2. A generalization for a
broader class of varieties is given by a theorem of Kodaira:

Theorem 6.1.3 (see e.g. [GH], ch. I, §4) Every compact Kähler manifold
X whose Kähler class is integral (as an element of H2(X,R)) is a projective
algebraic variety.

In the above theorems, the compactness assumption is essential. For coverings,
no such assumption is necessary:

Theorem 6.1.4 Let X be an algebraic variety over C, and let π : Y −→ X
be a finite unramified analytic covering of X. Then there is a unique algebraic
structure on Y compatible with its analytic structure and with π.

The proof is given in [SGA1], exposé XII. Let us explain the idea in the case
X = X̄ − Z, where X̄ is an irreducible projective normal variety, and Z a
closed subspace. One first uses a theorem of Grauert and Remmert [GR] to
extend Y −→ X to a ramified analytic covering Ȳ −→ X̄. Such a covering
corresponds to a coherent analytic sheaf of algebras over X̄. Since X̄ is pro-
jective, one can apply th. 6.1.1, and one then finds that this sheaf is algebraic,
hence so are Ȳ and Y .

(The extension theorem of Grauert and Remmert used in the proof is a
rather delicate one - however, it is quite easy to prove when dimX = 1, which
is the only case we shall need.)

The GAGA principle applies to real projective algebraic varieties, in the
following way: we may associate to any such variety X the pair (X an, s),
where Xan = X(C) is the complex analytic space underlying X, and

s : Xan −→ Xan

is the anti-holomorphic involution given by complex conjugation on X. The
real variety X can be recovered from the data (Xan, s) up to a unique iso-
morphism. Furthermore, any complex projective variety X together with an
anti-holomorphic involution s determines a projective variety over R: for by
GAGA, s is an algebraic isomorphism from X to X̄, the conjugate variety
of X, and hence gives descent data which determines X as a variety over R.
Similar remarks apply to coherent sheaves, and coverings: for example, giving
a finite covering of X over R is equivalent to giving a finite covering of the
complex analytic space X(C), together with an anti-holomorphic involution
which is compatible with the complex conjugation on X(C).
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6.2 Coverings of Riemann surfaces

Recall that for all g ≥ 0, there exists, up to homeomorphism, a unique com-
pact, connected, oriented surface Xg of genus g (i.e., with first Betti number
2g). This can be proved either by “cutting and pasting” or by Morse theory
(in the differentiable category). The surface Xg has a standard description as
a polygon with 4g edges labelled a1, b1, a

−1
1 , b−1

1 , . . ., ag, bg, a
−1
g , b−1

g , and
identified in the appropriate manner. From this description one can see that
the fundamental group π1(Xg) relative to any base point has a presentation
given by 2g generators a1, b1, . . ., ag, bg, and a single relation

a1b1a
−1
1 b−1

1 · · ·agbga
−1
g b−1

g = 1.

(To show this, one may express Xg as the union of two open sets U and V ,
where U is the polygon punctured at one point, which is homotopic to a wedge
of 2g circles and has fundamental group the free group F on 2g generators, and
V is a disk in the center of the polygon. Applying the van Kampen theorem,
one finds that

π1(Xg) = 1 ∗R F = F/〈R〉,
where R is a1b1a

−1
1 b−1

1 . . . agbga
−1
g b−1

g . )
Let now P1, . . . , Pk be distinct points of Xg, and let π1 be the fundamental

group of Xg − {P1, . . . , Pk}, relative to a base point x. Each Pi defines in
π1 a conjugacy class Ci corresponding to “turning around Pi in the positive
direction” (choose a disk Di containing Pi and no other Pj, and use the fact
that π1(Di−Pi) can be identified with Z). A similar argument as above proves
that the group π1 has a presentation given by 2g+ k generators a1, b1, . . ., ag,
bg, c1, . . ., ck and the single relation:

a1b1a
−1
1 b−1

1 · · ·agbga
−1
g b−1

g c1 · · · ck = 1,

where the ci belong to Ci for all i.
We denote this group by π1(g, k). Observe that, if k ≥ 1, then π1(g, k) is

the free group on 2g+k−1 generators. In the applications, we shall be mainly
interested in the case g = 0, k ≥ 3.

6.3 From C to Q̄

Let K be an algebraically closed field of characteristic 0, X a projective smooth
curve of genus g over K, and let P1, . . ., Pk be distinct points in X(K). The
algebraic fundamental group of X − {P1, . . . , Pk} may be defined as follows.
Let K(X) be an algebraic closure of the function field K(X) of X over K,
and let Ω ⊂ K(X) be the maximal extension of K(X) unramified outside the
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points P1, . . . , Pk. The algebraic fundamental group is the Galois group of Ω
over K(X), namely,

πalg
1 (X − {P1, . . . , Pk}) = Gal(Ω/K(X)).

It is a profinite group. Let us denote it by π.

Theorem 6.3.1 The algebraic fundamental group π is isomorphic to the profi-
nite completion of the topological fundamental group :

π ' π̂1(g, k).

(Recall that the profinite completion Γ̂ of a discrete group Γ is the inverse
limit of the finite quotients of Γ.)

Proof: Let first E be a finite extension of K(X) with Galois group G, let Qi

be a place of E above Pi, and let I(Qi) denote the inertia subgroup of G at
Qi. Since the ramification is tame, we have a canonical isomorphism:

I(Qi) ' µei
,

where ei is the ramification index at Qi; this isomorphism sends an element s
of I(Qi) to sπ/π (mod π), where π is any uniformizing element at Qi.

From now on, let Qi be a place of Ω above Pi. The isomorphism above can
be generalized to such infinite extensions, by passing to the limit: write Ω as
a union of finite extensions Ej with ramification indices ej at Qi. Then one
has:

I(Qi) ' lim
←−

µej
.

Choose a coherent system of roots of unity in K, i.e., a fixed generator
zn for each µn, such that zm

nm = zn for all n,m. This provides I(Qi) with
a canonical generator c(Qi). Changing Qi above Pi merely affects c(Qi) by
inner conjugation. Hence, the conjugacy class Ci of c(Qi) depends only on
Pi. (Changing the coherent system {zn} – i.e., replacing it by {zα

n}, where
α ∈ Ẑ∗ = Aut Ẑ– replaces c(Qi) by c(Qi)

α.)
Th. 6.3.1 is a consequence of the following more precise statement:

Theorem 6.3.2 There exists a choice of elements xj, yj, ci in π, with ci ∈ Ci

for all i, such that:

1. x1y1x
−1
1 y−1

1 · · ·xgygx
−1
g y−1

g c1 · · · ck = 1.
2. The map π1(g, k) −→ π mapping the generators xj, yj, ci of π1(g, k) to the
elements xj, yi, ci extends to an isomorphism

π̂1(g, k)
∼−→ π.



6.3. From C to Q̄ 59

In other words, π is presented as a profinite group by the generators xj, yj,
ci with the relations above. The proof will be done in two stages: first, for
K = C, then, for arbitrary algebraically closed fields K of characteristic 0.

Step 1: Proof when K = C, with the standard choice of roots of unity,
{zn} = {e2πi/n}. In this case, the result follows from the GAGA dictionary
between algebraic and topological coverings (see th. 6.1.3 and [SGA1]).

Step 2: K arbitrary. One has the following general result

Theorem 6.3.3 Let V be an algebraic variety over an algebraically closed
field K of characteristic 0, and let K

′

be an algebraically closed extension of
K. Then any covering of V over K

′

comes uniquely from a covering defined
over K.

(Note that this is not true in characteristic p, unless the coverings are tame.
For example, the Artin-Schreier covering Y p − Y = αT of the affine line with
α ∈ K ′

, α /∈ K, does not come from a covering defined over K.)
Two coverings of V defined over K and K

′

-isomorphic are K-isomorphic;
this is clear, e.g. by using a specialization argument. Next, one has to show
that any covering which is defined over K

′

can be defined over K. If K
′

is of
finite transcendence degree over K, then by using induction on tr.deg(K

′

/K),
it is enough to show this for tr.deg(K

′

/K) = 1. In this case, a covering
W −→ V over K

′

corresponds to a covering W ×C −→ V ×C over K, where
C is the curve over K corresponding to the extension K

′

/K. This can be
viewed as a family of coverings W −→ V over K parameterized by C. But it
is a general fact that in characteristic 0, such families of coverings are constant.
(One can deduce this from the similar geometrical statement over C, where
it follows from the fact that π1(X × Y ) = π1(X) × π1(Y ).) By choosing a
K-rational point c of C, on then gets a covering Wc −→ V defined over K
which is K

′

-isomorphic to W .

Step 3: Using th. 6.3.3, we may replace (K, {zn}) by (K1, {zn}), where
tr.degK1/Q < ∞. One can then find an embedding K1 −→ C which trans-
forms the {zn} into the {e2πi/n)} (irreducibility of the cyclotomic polynomials).
Another application of th. 6.3.3 concludes the proof.

Remark: Let Γ be a discrete group, Γ̂ its profinite completion

Γ̂ = lim
←−

Γ/N

where N runs over the normal subgroups of Γ of finite index. The canonical
homomorphism Γ −→ Γ̂ is universal for maps of Γ into profinite groups. It is
not always true that this map is injective. There are examples of finitely pre-
sented Γ with Γ infinite but Γ̂ = {1}, e.g. the group defined by four generators
xi (i ∈ Z/4Z) with the four relations xixi+1x

−1
i = x2

i+1 (G. Higman).
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Problem: Can such a Γ be the fundamental group of an algebraic variety over C?

In the case of curves, which is the case we are mostly interested in, the map
π1(g, k) −→ π̂1(g, k) is injective. This follows from the fact that π1(g, k)
is isomorphic to a subgroup of a linear group (e.g., SL3(R) or even better,
SL2(R)); one then uses a well-known result of Minkowski and Selberg (see
e.g. [Bor], p. 119).

6.4 Appendix: universal ramified coverings of

Riemann surfaces with signature

Let X be a Riemann surface, S ⊂ X a finite set of points in X. Let us assign
to each point P ∈ S an integer nP , with 2 ≤ nP < ∞. Such a set S along
with a set of integers nP is called a signature on X.

One defines a ramified covering subordinate to the signature (S;nP ) to be
a holomorphic map f : Y −→ X, with the following properties:

1. If SY = f−1(S), the map f : Y −SY −→ X−S is a topological covering.

2. Let P ∈ S and choose a disk D in X with D ∩ S = {P}. Then f−1(D)
splits into connected components Dα, and the restriction fα of f to Dα

is isomorphic to the map z 7→ znα , for some nα dividing nP .

(When Y −→ X is a finite map, condition 2 just means that the ramification
above P divides nP .)

For every P ∈ S, let CP be the conjugacy class “turning around P” in the
fundamental group π1(X−S). If Y −→ X is as above, Y −f−1(S) −→ X−S
is a covering, and the action of CnP

P is trivial. Conversely, given a covering
of X − S with that property, one shows (by an easy local argument) that it
extends uniquely to a map Y −→ X of the type above.

Theorem 6.4.1 Let X, S, and nP be given. Then there is a universal cover-
ing Y subordinate to the signature (S;nP ) with faithful action of

Γ = π1(X − S)/N,

where N is the normal subgroup generated by the snP , s ∈ CP , P ∈ S. This
Y is simply connected, and one has Y/Γ = X.

Sketch of proof: Let YN be the covering of X − S associated to N . This is a
Galois covering, with Galois group π1(X −S)/N . As above, one can complete
it to a covering Y −→ X. One checks that Y is universal, simply connected,
and that Γ acts properly on Y , with X = Y/Γ.
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We apply this to the case X = X̄ − T , where X̄ is a compact Riemann
surface of genus g, and T is a finite subset of X̄. Letting S = {P1, . . . , Ps}
and T = {Ps+1, . . . , Ps+t}, one associates to X a “generalized signature” on
X̄, where the indices are allowed to take to value ∞, by setting

{

ni = nPi
if i ≤ s,

ni =∞ otherwise.

The corresponding group Γ is then defined by generators a1, b1, . . ., ag, bg,
c1, . . . cs+t and relations:

{

a1b1a
−1
1 b−1

1 · · ·agbga
−1
g b−1

g c1 · · · cs+t = 1
cn1
1 = 1, . . . , cns

s = 1.

Example: In the case g = 0 and s+ t = 3, the group Γ and the corresponding
universal covering X̄ −→ P1(C) can be constructed geometrically as follows.
Set λ = 1/n1 + 1/n2 + 1/n3 (with the convention that 1/∞ = 0). If λ > 1,
let X̄ be the Riemann sphere S2 equipped with its metric of curvature 1; if
λ = 1, let X̄ be C with the euclidean metric; and if λ < 1, let X̄ be the
Poincaré upper half plane, equipped with the metric of curvature −1. In each
case, by the Gauss-Bonnet theorem there is a geodesic triangle on X̄ with
angles π/n1, π/n2, and π/n3. (The case ni = ∞ gives an angle equal to
0, and the corresponding vertex is a “cusp” at infinity.) Denoting by si the
reflection about the ith side (i = 1, 2, 3), the elements C1 = s2s3, C2 = s3s1,
and C3 = s1s2 satisfy the relation

C1C2C3 = 1

and the Ci are of order ni. Hence the group Γ
′

generated by the Ci is a quotient
of Γ, by the map sending ci to Ci (i = 1, 2, 3). In fact, one can show that the
projection Γ −→ Γ

′

is an isomorphism, and that X̄ with this action of Γ is
the universal covering of th. 6.4.1. A fundamental domain for the action of Γ
is given by the union of the geodesic triangle with one of its reflections about
a side.

Theorem 6.4.2 The element ci of Γ has order ni, except in the following two
cases :

1. g = 0, s+ t = 1;
2. g = 0, s+ t = 2, n1 6= n2.

Consider first the case g = 0. This case can itself be divided into three
subcases:
1. s + t = 2, and n1 = n2. In this case Γ is isomorphic to a cyclic group of
order n1 (if n1 =∞, then Γ = Z), and the statement follows.
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2. s + t = 3. The explicit construction of Γ above shows that the ci are of
order ni.
3. s + t ≥ 4. One reduces this to case 2 by adding the relations ci = 1 for a
set I of indices with |I| = s+ t− 3. One thus gets a surjective homomorphism
onto a group of the type treated in case 2, and the ci with i /∈ I are therefore
of order ni. By varying I, one obtains the result.

To treat the case g ≥ 1, it suffices to exhibit a group containing elements
A1, . . . , Ag, B1, . . . , Bg, C1, . . . , Cs+t satisfying the given relation for Γ, with
the Ci of order ni, (i = 1, . . . s + t). For this, one may choose elements Ci of
order ni in the special orthogonal group SO2. Every element x of SO2 can
be written as a commutator (y, z) in the orthogonal group O2; for, choosing
y ∈ SO2 such that y2 = x, and z ∈ O2 − SO2, one has yzy−1z−1 = y · y = x.
Hence, it suffices to take Aj, Bj = 1 if j > 1, and A1, B1 ∈ O2 such that

(A1, B1) = (C1C2 · · ·Cs+t)
−1.

Assume that the signature (n1, . . . , ns+t) is not one of the exceptional cases
in the theorem above. We then have a “universal” ramified covering Y which
is simply connected. By the uniformization theorem (cf. [Fo]), such a Y is
isomorphic to either P1(C), C, or the upper half plane H. To tell which of
these three cases occur, let us introduce the “Euler-Poincaré characteristic” E
of the signature:

E = 2− 2g −
s+t∑

i=1

(1− 1

ni

),

with the convention that 1
∞ = 0.

Theorem 6.4.3
1. If E > 0, then Y is isomorphic to P1(C).
2. If E = 0, then Y is isomorphic to C.
3. If E < 0, then Y is isomorphic to the upper half plane H.

This can be proved using the Gauss-Bonnet formula.

1. Case 1 occurs only if g = 0 and the signature is:

• empty, corresponding to the identity covering P1(C) −→ P1(C).

• (n, n), n <∞, corresponding to the cyclic covering z 7→ zn.

• (2, 2, n), corresponding to Γ = Dn, the dihedral group of order 2n.

• (2, 3, 3), corresponding to Γ = A4 (tetrahedral group).

• (2, 3, 4), corresponding to Γ = S4 (octahedral group).
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• (2, 3, 5), corresponding to Γ = A5 (icosahedral group).

2. Case 2 occurs for

• g = 1 and empty signature, corresponding to the covering of a complex
torus by the complex plane, Γ = a lattice.

• g = 0 and signature (∞,∞), corresponding to the map

exp : C −→ C, Γ = Z.

• signature (2, 4, 4), corresponding to Γ = group of affine motions preserv-
ing the lattice Z + Zi.

• signature (2, 3, 6), corresponding to Γ = group of affine motions preserv-

ing the lattice Z + ( 1+
√
−3

2
)Z.

• signature (3, 3, 3), corresponding to a subgroup of index 2 of the previous
one.

• signature (2, 2, 2, 2), corresponding to coverings

C −→ T −→ P1,

where T is an elliptic curve and C −→ T is the universal unramified
covering map.

3. Case 3 corresponds to the case where Γ is a discrete subgroup of PSL2(R)
which is a “Fuchsian group of the first kind”, cf. e.g. Shimura [Shim], Chap. 1;
one then has X = H/Γ and X̄ is obtained by adding to X the set of cusps
(mod Γ). (By a theorem of Siegel [Sie], such groups Γ can be characterized as
the discrete subgroups of PSL2(R) with finite covolume.) The generators ci

with ni <∞ are elliptic elements of the Fuchsian group Γ, the ci with ni =∞
correspond to parabolic elements, and the aj and bj to hyperbolic elements.
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Chapter 7

Rigidity and rationality on
finite groups

7.1 Rationality

Let G be a finite group, Cl(G) the set of its conjugacy classes. Choose N such
that every element of G has order dividing N ; the group ΓN = (Z/NZ)∗ acts
on G by sending s to sα, for α ∈ (Z/NZ)∗, and acts similarly on Cl(G).

Let X(G) be the set of irreducible characters of G. They take values in
Q(µN), and hence there is a natural action of Gal(Q(µN)) ' ΓN on X(G).
The actions of ΓN on Cl(G) and on X(G) are related by the formula

σα(χ)(s) = χ(sα),

where σα ∈ Gal(Q(µN)/Q) is the element sending the Nth roots of unity to
their αth powers.

Definition 7.1.1 A class c in Cl(G) is called Q-rational if the following
equivalent properties hold :

1. c is fixed under ΓN .
2. Every χ ∈ X(G) takes values in Q (and hence in Z) on c.

(The equivalence of these two conditions follows from the formula above.)

The rationality condition means that, if s ∈ c, then all of the generators of
the cyclic group < s > generated by s are in c, i.e., are conjugate to s.

For instance, in the symmetric group Sn, every conjugacy class is rational.
More generally, let K be any field of characteristic zero. The class c of

an element s ∈ G is called K-rational if χ(s) ∈ K for all χ ∈ X(G), or
equivalently, if cα = c for all α such that σα ∈ Gal(K(µN)/K).

For example, the alternating group A5 has five conjugacy classes of order 1,
2, 3, 5, and 5 respectively. Let us call 5A and 5B the two conjugacy classes

65
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of exponent 5. (They can be distinguished as follows: given a five-cycle s, let
α(s) be the permutation of {1, 2, 3, 4, 5} sending i to si(1). Then s is in the
conjugacy class 5A if and only if α(s) is even.) If s ∈ 5A, then s−1 ∈ 5A and
s2, s3 ∈ 5B, so the classes 5A and 5B are not rational over Q. However, they
are rational over the quadratic field Q(

√
5).

Remark: The formula σα(χ)(s) = χ(sα) has an analogue for supercuspidal admis-

sible representations of semi-simple p-adic groups. This can be deduced from the

fact, proved by Deligne (cf. [De1]), that the character of such a representation is

supported by the elliptic elements (note that these are the only elements s for which

the notation sα makes sense).

Rationality of inertia
Let K be a local field with residue field k of characteristic zero, and let M be
a Galois extension of K with group G. There is a unique maximal unramified
extension L of K in M ; it is Galois over K. Let I be the inertia subgroup
of G, i.e., I = Gal(M/L). Since the ramification is tame, I is cyclic. In fact,
there is a canonical isomorphism

I
∼−→ µe(l),

where e denotes the ramification index of L/K, and l is the residue field of L.
(This isomorphism sends σ ∈ I to σπ/π (mod π), where π is a uniformizing
element of M .)

Proposition 7.1.2 The class in G of an element of I is rational over k.

Indeed, the group H = Gal(L/K) = Gal(l/k) acts on µe(l) in a natural way,
and on I by conjugation. These actions are compatible with the isomorphism
above. If now σα is an element of Gal(k(µe)/k), there exists t ∈ H such that
t acts on µe(l) by z 7→ zα. If s ∈ I, then sα and tst−1 have the same image in
µe(l). Hence sα = tst−1. This shows that the class c of s is such that cα = c,
q.e.d.

Corollary 7.1.3 If k = Q, then the classes in I are rational in G.

Remark on the action of ΓN on Cl(G) and X(G)
The ΓN -sets Cl(G) and X(G) are the character sets of the étale Q-algebras

Q ⊗ R(G) and ZQ[G], where R(G) is the representation ring of G (over Q̄),
and ZQ[G] is the center of the group algebra Q[G]. These ΓN -sets are easily
proved to be “weakly isomorphic” in the sense of exercise 1 below. However,
they are not always isomorphic (see [Th1]).

Exercises:
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1. Let X and Y be finite sets on which acts a finite group Γ.
(a) Show the equivalence of the following properties:
i. |XC | = |Y C | for every cyclic subgroup C of Γ;
ii. |X/C| = |Y/C| for every cyclic subgroup C of Γ;
iii. |X/H| = |Y/H| for every subgroup H of Γ;
iv. The Q-linear representations of Γ defined by X and Y are isomorphic.

If those properties are true, the Γ-sets X and Y are said to be weakly isomorphic.
(b) Show that weak isomorphism is equivalent to isomorphism when Γ is cyclic

(“Brauer’s Lemma”). Give an example where Γ is a non-cyclic group of order 4,
|X| = |Y | = 6, and X and Y are weakly isomorphic but not isomorphic.

2. Use exerc. 1.(b) to prove that, if G is a p-group, p 6= 2, then Q ⊗ R(G) is
isomorphic to ZQ[G].

3. Extend prop. 7.1.2 to the case where k has characteristic p > 0, assuming that

M/K is tame.

7.2 Counting solutions of equations in finite

groups

LetG be a compact group, equipped with its Haar measure of total mass 1. Let
χ be an irreducible character of G, with ρ : G −→ GL(E) the corresponding
linear representation. By Schur’s lemma,

∫

G ρ(txt
−1) dt is a scalar multiple

λ · 1E of the identity in GL(E). Taking traces gives χ(x) = λχ(1), hence

∫

G
ρ(txt−1)dt =

χ(x)

χ(1)
1E.

Multiplying on the right by ρ(y), we get:

∫

G
ρ(txt−1y)dt =

χ(x)

χ(1)
ρ(y).

Taking traces gives:
∫

G
χ(txt−1y)dt =

χ(x)χ(y)

χ(1)
.

This formula extends by induction to k elements x1, . . ., xk:

∫

G
· · ·

∫

G
χ(t1x1t

−1
1 · · · tkxkt

−1
k y) dt1 dt2 · · ·dtk =

χ(x1) · · ·χ(xk)χ(y)

χ(1)k
(7.1)

More generally, let φ be a class function on G,

φ =
∑

χ

cχχ,
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where cχ is the inner product of φ with the irreducible character χ,

cχ =
∫

G
φ(x)χ̄(x) dx,

and assume that
∑ |cχ|χ(1) <∞ so that the sum is normally convergent. By

summing over all characters in formula 7.1, we see that the integral

I(φ) =
∫

G
· · ·

∫

G
φ(t1x1t

−1
1 · · · tkxkt

−1
k y)dt1 dt2 · · ·dtk

is equal to
∑

χ

cχ
χ(x1) · · ·χ(xk)χ(y)

χ(1)k
.

Let us compute I(φ) in the case where G is a finite group and φ is the Dirac
function which is 1 at the identity element, and 0 elsewhere. One has

φ =
1

|G|
∑

χ

χ(1)χ,

and hence cχ = χ(1)/|G|. Given elements x1, . . ., xk, and y in G, the value of
I(φ) is N/|G|k, where N is the number of solutions (t1, . . . , tk) of the equation

t1x1t
−1
1 · · · tkxkt

−1
k y = 1.

Hence

N = |G|k
∑

χ

χ(1)

|G|
χ(x1) · · ·χ(xk)χ(y)

χ(1)k

= |G|k−1
∑

χ

χ(x1) · · ·χ(xk)χ(y)

χ(1)k−1
. (7.2)

Let C1, . . . , Ck denote the conjugacy classes of the elements x1, . . . , xk, and
define n(C1, . . . , Ck) to be the number of solutions (g1, . . . , gk) of the equation

g1g2 · · · gk = 1, gi ∈ Ci.

Letting Zi be the order of the centralizer of an element of Ci, one has

n(C1, . . . , Ck) =
N

Z1 · · ·Zk
.

By applying formula 7.2 and observing that Zi = |G|/|Ci|, one therefore gets:

Theorem 7.2.1 The number n = n(C1, . . . , Ck) of solutions of the equation
g1 · · · gk = 1, gi ∈ Ci, is given by

n =
1

|G| |C1| · · · |Ck|
∑

χ

χ(x1) · · ·χ(xk)

χ(1)k−2
,

where xi is a representative of the conjugacy class Ci, and χ runs through all
the irreducible characters of G.
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Exercises:

1. Let G be a compact group and let ρ be an irreducible representation of G with
character χ. Show that

∫ ∫

ρ(txt−1x−1)dx dt = 1/χ(1)2.

(Hint: Show that the left hand side is an intertwining operator for ρ, and hence is
a scalar by Schur’s lemma. Then compute its trace.) Conclude that

∫ ∫

ρ(txt−1x−1 · y)dx dt = ρ(y)/χ(1)2, for all y ∈ G,

and that ∫ ∫

χ(txt−1x−1 · y)dx dt = χ(y)/χ(1)2.

Hence show by induction that:
∫

· · ·
∫

χ(t1x1t
−1
1 x−1

1 · · · tgxgt
−1
g x−1

g · y)dx1 dt1 · · · dxg dtg = χ(y)/χ(1)2g .

2. Suppose now that G is finite. We denote the commutator uvu−1v−1 of u and v
by (u, v). Let g ≥ 0, and let zj be fixed elements of G, for j = 1, . . . , k. For y ∈ G,
let N = N(g, zj , y) denote the number of tuples of elements of G,

(u1, v1, . . . , ug, vg, t1, . . . , tk),

such that
(u1, v1) · · · (ug, vg)t1z1t

−1
1 · · · tkzkt

−1
k = y−1.

Using exerc. 1, show that:

N = |G|2g+k−1
∑

χ

χ(z1) · · ·χ(zk)χ(y)/χ(1)2g+k−1.

3. Show that an element y of G is a product of g commutators if and only if the
sum

∑

χ

χ(y)/χ(1)2g−1

is non-zero. In particular, y is a commutator if and only if
∑

χ(y)/χ(1) 6= 0. It

is a well-known conjecture of Ore that every element in a finite non-abelian simple

group is a commutator. The reader may wish to verify this (for one of the sporadic

groups, say) by using the formula above and the character tables in [ATLAS].

Remark: Th. 7.2.1 can be used to compute the number of subgroups in a
finite group which are isomorphic to the alternating group A5. Indeed, A5 has
a presentation given by three generators x, y, z, and relations

x2 = y3 = z5 = xyz = 1.

The problem therefore amounts to finding the number of solutions of the equa-
tion xyz = 1, where x, y z belong to conjugacy classes of exponent 2, 3, and
5 respectively. The same remark applies to S4, A4, and the dihedral groups,
which have similar presentations, cf. th. 6.4.3, case 1.
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7.3 Rigidity of a family of conjugacy classes

Let G be a finite group, and fix conjugacy classes C1, . . ., Ck in G. Let
Σ̄ = Σ̄(C1, . . . , Ck) be the set of all (g1, . . . , gk), with gi ∈ Ci, such that
g1 · · · gk = 1. (Hence, by the previous section, n(C1, . . . , Ck) = |Σ̄|.) Let
Σ = Σ(C1, . . . , Ck) be the set of (g1, . . . , gk) in Σ̄ such that g1, . . ., gk generate
the group G. The group G acts by conjugation on Σ and Σ̄.

Assume that the center of G is trivial (as is the case, for example, when
G = Sn, n ≥ 3, or when G is a non-abelian simple group). Then the action of
G on Σ is free: for, if g ∈ G fixes (g1, . . . , gk), it commutes with the gi’s, and
hence with all of G, since the gi’s generate G; but then g = 1, because G is
assumed to have trivial center.

One says that a k-tuple of conjugacy classes (C1, . . . , Ck) is rigid if Σ 6= ∅
and G acts transitively on Σ, i.e.,

|Σ| = |G|.

One says that (C1, . . . , Ck) is strictly rigid if it is rigid, and Σ = Σ̄.
The order of Σ̄ can be computed using the formula of the previous section:

|Σ̄| = 1

|G| |C1| · · · |Ck|
∑

χ

χ(c1)χ(c2) · · ·χ(ck)/χ(1)k−2,

where ci ∈ Ci for i = 1, . . . , k, and χ runs through the irreducible characters
of G. If zi is the order of the centralizer Z(ci), this can also be written as:

|Σ̄| = |G|k−1

z1 . . . zk

∑

χ

χ(c1)χ(c2) · · ·χ(ck)/χ(1)k−2. (7.3)

Rigidity is often proved in two steps:
1. Compute the order of Σ̄, by using formula 7.3 and the character table of G.
2. Compute the order of Σ̄ − Σ, by finding k-tuples in Σ̄ which do not gen-
erate all of G: for this, one uses a knowledge of the maximal subgroups of G
(whenever possible).

Remarks:
1. Let σ be an outer automorphism of G. Suppose (C1, . . . , Ck) is a rigid
k-tuple of conjugacy classes. Then σ(Ci) 6= Ci for some i. Indeed, suppose
that σ preserves each Ci. Then, letting (g1, . . . , gk) be an element of Σ, it
follows that (σg1, . . . , σgk) belongs to Σ. Since G acts transitively on Σ by
inner conjugation, there exists g ∈ G such that

σgi = ggig
−1 for all i.
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But the gi generateG and hence σ is an inner automorphism, which contradicts
the assumption.

2. In many cases, the term
∑

χ χ(C1) · · ·χ(Ck)/χ(1)k−2 in formula 7.3 is not
very large, the main contribution to the sum being given by the unit character
χ = 1. For a rigid family of conjugacy classes, one might therefore expect that
the order of magnitude of |C1| · · · |Ck| is close to |G|.

As in §7.1, let α ∈ (Z/NZ)∗, where N is a multiple of the exponent of G,
so that (Z/NZ)∗ acts on Cl(G). Then one has:

Proposition 7.3.1
1. |Σ̄(Cα

1 , . . . , C
α
k )| = |Σ̄(C1, . . . , Ck)|;

2. |Σ(Cα
1 , . . . , C

α
k )| = |Σ(C1, . . . , Ck)|.

The first identity follows from formula 7.3 above, combined with the formula
χ(cα) = σα(χ)(c) of §7.1. The second is proved by induction on the order of
G, as follows: if H is a subgroup of G, let Σ(H)(C1 ∩ H, . . . , Ck ∩ H) denote
the set of (g1, . . . , gk), with gi ∈ Ci ∩ H for all i, such that g1 · · ·gk = 1 and
the gi generate H. (In general, the Ci∩H are not conjugacy classes in H, but
unions of conjugacy classes.) The formula

Σ̄− Σ(C1, . . . , Ck) =
⋃

H⊂G, H 6=G

Σ(H)(C1 ∩H, . . . , Ck ∩H)

supplies the induction step.

Corollary 7.3.2 If (C1, . . . , Ck) is rigid (resp. strictly rigid), so is the family
(Cα

1 , . . . , C
α
k ).

Remark: Here is another way to prove prop. 7.3.1. Let F be the group with
presentation given by generators x1, . . ., xk and relation x1 · · ·xk = 1, and let
F̂ be its profinite completion. Then one has:

Proposition 7.3.3 For each α ∈ Ẑ∗, there is an automorphism θ of F̂ such
that θ(xi) belongs to the conjugacy class of xα

i . (Equivalently, there exist
elements y1, . . . , yk with yi conjugate to xα

i , satisfying y1 · · · yk = 1, and gen-
erating F̂ .)

Let us use the interpretation of F̂ as the algebraic fundamental group π of the
projective line P1 with k points removed. By choosing a coherent system {zn}
of roots of unity in Q̄, one has an identification (cf. §6.3)

F̂
∼−→ π.
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Replacing the system {zn} by {zα
n} gives a different isomorphism, and com-

posing the two yields the desired automorphism θ of F̂ .

Prop. 7.3.3 implies that |Σ(Cα
1 , . . . , C

α
k )| = |Σ(C1, . . . , Ck)|. For, the el-

ements of Σ(C1, . . . , Ck) are in one-one correspondence with the surjective
homomorphisms F̂ −→ G sending each xi to an element of Ci, while the ele-
ments of Σ(Cα

1 , . . . , C
α
k ) correspond to the surjective homomorphisms sending

each xi to an element in Cα
i . The automorphism θ : F̂ −→ F̂ induces a

map Hom(F̂ , G) −→ Hom(F̂ , G) which gives a bijection between the two sets
Σ(C1, . . . , Ck) and Σ(Cα

1 , . . . , C
α
k ).

Exercise: Show that, if (C1, . . . , Ck) is rigid (resp. strictly rigid), then so is the

family (Cσ(1), . . . , Cσ(k)) for any permutation σ of {1, . . . , k}.

7.4 Examples of rigidity

We give only a few such examples. For more, the reader should consult [Ma3]
and the papers quoted there.

7.4.1 The symmetric group Sn

The symmetric group Sn (n ≥ 3) has conjugacy classes nA, 2A, and C (1)

corresponding to cycles of order n, 2, and n − 1 respectively. The triple
(nA, 2A,C(1)) is strictly rigid. For, giving an n-cycle x ∈ nA determines
a cyclic arrangement of {1, . . . , n} (i.e., an oriented n-gon). Composing this
permutation of order n with a transposition gives an (n− 1)-cycle if and only
if the two vertices which are permuted are consecutive. Hence, the solutions
x, y, z of the equation xyz = 1, with x, y, z cycles of order n, 2 and n − 1
respectively, are in one to one correspondence with the oriented n-gons with a
distinguished edge. Any two such configurations can be tranformed into one
another by a unique permutation in Sn; hence |Σ̄| = |G|. But Σ̄ = Σ, since
(12) and (12 . . . n) are known to generate Sn; this shows that (nA, 2A,C(1)) is
strictly rigid.

More generally, consider the conjugacy classes nA, 2A, and C (k), where C(k)

is the class of the permutation

(1 . . . k)(k + 1 . . . n).

As before, an element (x, y, z) ∈ Σ̄ corresponds to an oriented n-gon with
two distinguished vertices separated by k edges. If k 6= n/2, any two such
configurations can be transformed into one another by a unique permutation
in Sn, and hence |Σ̄| = |G|. However, (nA, 2A,C(k)) is not rigid in general; to
get rigidity, one must assume that (k, n) = 1. In that case, any triple (x, y, z)
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in Σ̄ generates Sn: by relabelling if necessary, we may write x = (1 . . . n),
and y = (1, k + 1). Since (k, n) = 1, the permutation xk is still an n-cycle.
By relabelling again, the group generated by xk and y is isomorphic to the
group generated by the permutations (1 . . . n) and (12). This in turn contains
the group generated by (12), (23), . . ., (n − 1, n), which is equal to Sn by a
well-known result (cf. §4.4).

Exercise: Check that |Σ̄| = n! for the conjugacy classes (2A,nA,C (1)) by applying

formula 7.3 of §7.3 (prove that the only non-zero terms come from the two characters

of degree 1 of Sn).

7.4.2 The alternating group A5

The alternating group A5 has unique conjugacy classes of order 2 and 3, de-
noted by 2A and 3A respectively. It has two conjugacy classes of order 5 which
are rational over Q(

√
5) and conjugate to each other, denoted by 5A and 5B.

Proposition 7.4.1 The following triples of conjugacy classes are strictly ri-
gid : (2A, 3A, 5A), (2A, 5A, 5B), and (3A, 5A, 5B).

To prove this, one can compute the order of Σ̄ in each case from the character
table of A5. In ATLAS style, it is:

characters 60 4 3 5 5 ←
orders of

centralizers
↓ 1A 2A 3A 5A 5B ← classes
χ1 1 1 1 1 1

χ2 3 −1 0 z
′

z z = 1+
√

5
2

χ3 3 −1 0 z z
′

z
′

= 1−
√

5
2

χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

One then gets:

|Σ̄(2A, 3A, 5A)| = 602

4 · 3 · 5(1 + 0 + 0 + 0 + 0) = 60

|Σ̄(2A, 5A, 5B)| = 602

4 · 5 · 5(1 +
1

3
+

1

3
+ 0 + 0) = 60

|Σ̄(3A, 5A, 5B)| = 602

3 · 5 · 5(1 + 0 + 0 +
1

4
+ 0) = 60.

One checks easily that any triple in any of these Σ̄ generates A5, and prop.
7.4.1 follows.
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Exercises:

1. Show that the triples (3A, 3A, 5A), (3A, 5A, 5A), and (5A, 5A, 5A) are strictly
rigid.

2. Show that (2A, 2A, 5A) is not rigid, even though |Σ̄| = 60 in that case (the triples

in Σ̄ generate dihedral subgroups of order 10).

7.4.3 The groups PSL2(Fp)

The group PSL2(Fp), with p > 2, contains unique conjugacy classes of ele-
ments of order 2 and 3, denoted by 2A and 3A respectively. There are two
classes pA and pB of elements of order p, which are represented by unipotent

matrices,
(
1 1
0 1

)

, and
(
1 α
0 1

)

, where
(

α
p

)

= −1.

Proposition 7.4.2 The triple (2A, 3A, pA) is strictly rigid.

One checks that (x0, y0, z0) ∈ Σ, where x0, y0, and z0 are represented by the
matrices:

x0 =
(

0 1
−1 0

)

, y0 =
(
0 −1
1 −1

)

, z0 =
(
1 1
0 1

)

Conversely, let (x, y, z) be in Σ̄. We lift x, y, z to x̃, ỹ, z̃ in SL2(Fp), with
x̃ of order 4, ỹ of order 3 and z̃ of order p, so that we have x̃ỹz̃ = ±1. We
view these elements as automorphisms of the vector space V = Fp ⊕ Fp. Let
D be the line of V fixed by z̃ and let D

′

= x̃D be its transform by x̃. One has
D

′ 6= D (otherwise, ±x̃z̃ would not be of order 3). After conjugating by an
element of SL2(Fp), we may assume that D (resp. D

′

) is the first (resp. the
second) axis of coordinates in V . This means that we have

x̃ =
(

0 −λ
λ−1 0

)

, and z̃ =
(
1 µ
0 1

)

,

for some λ, µ in F∗p. By assumption, z belongs to the class pA of
(
1 1
0 1

)

; this

implies that µ is a square. If we write µ = ν2, and conjugate by
(

ν 0
0 ν−1

)

, we

see that we can further assume that µ = 1, i.e., that z̃ = z0. Moreover, since
z̃x̃ is of order 3 or 6, we have Tr (z̃x̃) = ±1. This gives λ = ±1, hence x = x0,
y = y0, and z = z0, which proves the result.

Proposition 7.4.3 The triple (2A, pA, pB) is strictly rigid if
(

2
p

)

= −1.

One checks that (x0, y0, z0) is in Σ, where

x0 =
(
1−1
2−1

)

, y0 =
(
1 1
0 1

)

, z0 =
(

1 0
−2 1

)

.
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The element z0 is conjugate to
(
1 2
0 1

)

; since (2
p
) = −1, it belongs to the class

pB. Conversely, let (x, y, z) ∈ Σ̄. We lift (x, y, z) as above to (x̃, ỹ, z̃) with x̃
of order 4 and ỹ, z̃ of order p. Let D be the line fixed by ỹ and D

′

be the line
fixed by z̃. We may again assume that these lines are the standard coordinate
lines, and that

ỹ =
(
1 1
0 1

)

, z̃ =
(

1 0
λ 1

)

.

Writing that ỹz̃ has order 4, one gets Tr (ỹz̃) = 0, i.e. λ = −2, q.e.d.

Proposition 7.4.4 The triple (3A, pA, pB) is strictly rigid if
(

3
p

)

= −1.

One checks that (x0, y0, z0) is in Σ, where

x0 =
(
1−1
3−2

)

, y0 =
(
1 1
0 1

)

, z0 =
(

1 0
−3 1

)

.

The assumption that 3 is not a quadratic residue mod p ensures that z0 is in
the class pB.

Conversely, let (x, y, z) be in Σ̄. Using liftings (x̃, ỹ, z̃) as above, one may
assume that

ỹ =
(
1 1
0 1

)

, z̃ =
(

1 0
λ 1

)

.

Writing that ỹz̃ has order 3 or 6, one gets Tr (ỹz̃) = ±1, i.e., λ = −1 or
λ = −3. However, λ = −1 is impossible (it would imply that z̃ belongs to the
class pA); hence λ = −3, q.e.d.

7.4.4 The group SL2(F8)

The simple group G = SL2(F8), of order 504, has three distinct conjugacy
classes of order 9, denoted 9A, 9B, and 9C which are rational over the cubic
field Q(cos 2π

9
) and conjugate to each other (cf. [ATLAS], p.6).

Proposition 7.4.5 The triple (9A, 9B, 9C) is strictly rigid.

The character table for G is ([ATLAS], loc. cit.):
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504 8 9 7 7 7 9 9 9 ←
orders of

centralizers
1A 2A 3A 7A 7B 7C 9A 9B 9C ← classes

χ1 1 1 1 1 1 1 1 1 1
χ2 7 −1 −2 0 0 0 1 1 1
χ3 7 −1 1 0 0 0 x x

′

x
′′

χ4 7 −1 1 0 0 0 x
′′

x x
′

χ5 7 −1 1 0 0 0 x
′

x
′′

x
χ6 8 0 −1 1 1 1 −1 −1 −1
χ7 9 1 0 y y

′

y
′′

0 0 0
χ8 9 1 0 y

′′

y y
′

0 0 0
χ9 9 1 0 y

′

y
′′

y 0 0 0

x = −2 cos 2π
9
, x

′

= −2 cos 4π
9
, x

′′

= −2 cos 8π
9
, xx

′

x
′′

= 1;
y = 2 cos 2π

7
, y

′

= 2 cos 4π
7
, y

′′

= 2 cos 8π
7
, yy

′

y
′′

= 1.

Using formula (7.3) of §7.3, one gets:

|Σ̄(9A, 9B, 9C)| = 5042

93
(1 +

1

7
+

1

7
+

1

7
+

1

7
− 1

8
+ 0 + 0 + 0) = 504 = |G|.

Hence it suffices to show that any (x, y, z) ∈ Σ̄ generates G to prove rigidity.
The only maximal subgroups of G containing an element of order 9 are

the normalizers of the non-split Cartan subgroups, which are isomorphic to a
semi-direct product C2(F

∗
64)1, where (F∗64)1 denotes the multiplicative group

of elements of F64 of norm 1 over F8, and the non-trivial element of C2 acts
on (F∗64)1 by x 7→ x−1; they are dihedral groups of order 18.

If (x, y, z) ∈ Σ̄ does not generate G, then x, y, z are contained in such a
normalizer. It follows that (by interchanging y and z if necessary):

y = x±2, z = x±4.

But then xyz = x1±2±4 is not equal to 1. This contradiction completes the
proof.

Exercises:

1. Show that the triples (7A, 7A, 7A), (2A, 3A, 7A), (2A, 3A, 9A) are strictly rigid,
and that (7A, 7B, 7C) is not rigid.

2. Let G · 3 be the automorphism group of SL2(F8), cf. [ATLAS], p. 6. Show that

the triple (9A, 3B, 3C) is strictly rigid; the class 9A is rational (as a class of G · 3);
the classes 3B and 3C are rational over Q(

√
−3), and conjugate to each other.
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7.4.5 The Janko group J1

The sporadic simple group J1 discovered by Janko is of order

175560 = 23 · 3 · 5 · 7 · 11 · 19.

It contains conjugacy classes 2A, 5A, and 5B of orders 2, 5, and 5; the classes
5A and 5B are rational over Q(

√
5) and conjugate to each other. If x ∈ 5A,

then x−1 ∈ 5A, but x2, x3 ∈ 5B; these conjugacy classes behave like the ones
of the same order in A5.

Proposition 7.4.6 (cf. [Ho]) The triple (2A, 5A, 5B) is rigid but not strictly
rigid.

The relevant part of the character table of G = J1 is (cf. [ATLAS], p.36):

175560 120 30 30 ←
orders of

centralizers
1A 2A 5A 5B ← classes

χ1 1 1 1 1
χ4 76 4 1 1
χ5 76 −4 1 1

χ6 77 5 2 2 z = (1 +
√

5)/2

χ7 77 −3 −z′ −z z
′

= (1−
√

5)/2
χ8 77 −3 −z −z′

χ12 133 5 −2 −2
χ13 133 −3 z

′

z
χ14 133 −3 z z

′

χ15 209 1 −1 −1

Using formula (7.3) of §7.3, one obtains:

|Σ̄| = 1755602

120·302 (1 + 4
76
− 4

76
+ 20

77
+ 3

77
+ 3

77
+ 20

133
+ 3

133
+ 3

133
+ 1

209
)

= 438900 = 5
2
|G|.

Hence (2A, 5A, 5B) is not strictly rigid. One can check that the triples in
Σ̄−Σ generate subroups of J1 isomorphic to A5. It is known that J1 contains
2 conjugacy classes of such subgroups:

1. There are |J1|/(2|A5|) conjugate subgroups isomorphic to A5 which are
contained in the centralizer of an involution in J1. (Indeed, J1 was first
defined abstractly by Janko as a simple group having the property that
it contains an involution whose centralizer is isomorphic to {±1}×A5.)

2. There is a conjugacy class of A5-subgroups which are self-normalizing:
there are |J1|/|A5| such subgroups.
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In all, one has 3
2
|J1|/|A5| subgroups of J1 which are isomorphic to A5. Since

the conjugacy classes (2A, 5A, 5B) are rigid in A5, each subgroup gives |A5|
solutions in Σ̄. This shows that

|Σ̄− Σ| = 3

2
|J1|,

and hence |Σ| = |J1|, i.e., (2A, 5A, 5B) is rigid.

7.4.6 The Hall-Janko group J2

This sporadic simple group has order 604800 = 2733527. It has a rational class
7A of order 7, and two conjugate classes 5A and 5B of order 5, rational over
Q(
√

5), see e.g. [ATLAS], pp.42-43.

Proposition 7.4.7 (cf. [Ho]) The triple (5A, 5B, 7A) is strictly rigid.

No proper subgroup of J2 has order divisible by 35, hence |Σ̄| = |Σ|. On
the other hand, formula (7.3) of §7.3 and the character table of J2 ([ATLAS],
loc.cit.) give:

|Σ̄| = |J2|2
3002 · 7(1 +

16

36
− 25

90
− 25

160
+

9

288
) = |J2|.

Hence the result.

7.4.7 The Fischer-Griess Monster M

The Fischer-Griess group M , known as the “Monster”, is the largest of the
sporadic simple groups. Its order is

246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71,

yet it has only 194 conjugacy classes. Its character table is therefore of man-
ageable size (in fact, it was computed before M had been shown to exist). The
group M contains rational conjugacy classes 2A, 3B, and 29A of exponent 2,
3, and 29 (ATLAS notation).

Proposition 7.4.8 (Thompson, cf. [Hunt], [Ma3], [Th2])
The triple (2A, 3B, 29A) is strictly rigid.

It can be verified by computer that |Σ̄| = |M |. To prove rigidity, one must
show that Σ = Σ̄, i.e., no (x, y, z) ∈ Σ̄ generate a proper subgroup of M .
Unfortunately, the maximal subgroups of M are not completely known at
present. Hence, one must take the following indirect approach: suppose there
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is a proper subgroup G in M which is generated by (x, y, z) ∈ Σ̄. Let S be a
simple quotient of G. Clearly the elements x, y, z have non-trivial image in S,
and hence the order of S is divisible by 2 · 3 · 29. Hence, it suffices to check
that there are no simple groups S with 2 · 3 · 29 dividing |S| and |S| dividing
|M |, such that S is generated by elements x, y, z coming from the conjugacy
classes 2A, 3B, and 29A in the Monster. This is done by checking that no
group in the list of finite simple groups satisfies these properties. One is thus
forced to invoke the classification theorem for the finite simple groups to prove
rigidity in this case.

[Although the proof of the classification theorem has been announced, described,

and advertized since 1980, it is not yet clear whether it is complete or not: the part

on “quasi-thin” groups has never been published.]
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Chapter 8

Construction of Galois
extensions of Q(T)
by the rigidity method

8.1 The main theorem

Let K be a field of characteristic zero, let P1, . . . , Pk be distinct K-rational
points of P1, and let C1, . . . , Ck be a family of conjugacy classes of a finite group
G with trivial center. The following result is due to Belyi, Fried, Matzat, Shih,
and Thompson (see [Ma3] and [Se8] for references).

Theorem 8.1.1 Assume that the family (C1, . . . , Ck) is rigid and that each
Ci is rational. Then there is a regular G-covering C −→ P1 defined over K
which is unramified outside {P1, . . . , Pk} and such that the inertia group over
each Pi is generated by an element of Ci. Furthermore, such a covering is
unique, up to a unique G-isomorphism.

By taking K = Q, one has:

Corollary 8.1.2 G has property GalT (and hence is a Galois group over Q).

Proof of th. 8.1.1
Let L be the maximal extension of K̄(T ) unramified outside {P1, . . . , Pk},
and let π denote the Galois group of L over K̄(T ). This is the algebraic
fundamental group of P1−{P1, . . . , Pk} over K̄. (It is also called the geometric
fundamental group because the ground field is algebraically closed.) Since L
is a Galois extension of K(T ), one has an exact sequence:

1 −→ π −→ πK −→ Γ −→ 1, (8.1)

81
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where πK is the Galois group of L over K(T ), and Γ = Gal(K̄/K).
Let Ii be the inertia group of π at Pi. As a profinite group, π has a presen-

tation given by k generators x1, . . ., xk and a single relation x1 · · ·xk = 1, cf.
th. 6.3.1. More precisely, choose a coherent system {zα} of roots of unity in
Q̄. This choice determines an element xi in each Ii up to conjugacy in π. One
can then choose the xi so that they satisfy the relation x1 · · ·xk = 1 (cf. §6.3).

The set Hom(π,G) of continuous homomorphisms π −→ G is equipped with
natural G- and πK-actions. The G-action is defined (on the left) by

(g ∗ f)(x) = gf(x)g−1, g ∈ G, f ∈ Hom(π,G),

and the πK-action is defined (on the right) by

(f ∗ α)(x) = f(αxα−1), α ∈ πK , f ∈ Hom(π,G).

The two actions commute, i.e.,

(g ∗ f) ∗ α = g ∗ (f ∗ α).

Consider the set H ⊂ Hom(π,G) defined by:

H = {φ|φ is surjective and φ(xi) ∈ Ci for all i}.
This set is stable under both the G and πK-actions:

• The action of G on itself by inner automorphisms stabilizes the Ci, and
hence G preserves H, which is isomorphic to Σ(C1, . . . , Ck) as a G-set
(cf. §7.3). By the rigidity assumption, G acts freely and transitively on
H.

• Conjugation by an element σ ∈ πK sends an inertia group Ii at Pi to an
inertia group at P σ

i . Since the Pi are K-rational, πK permutes the inertia
groups above Pi. Hence, σ sends each of the xi ∈ Ii to a conjugate of
xα

i , for some α ∈ Ẑ (namely, α = χ(σ), where χ is the cyclotomic
character). By the rationality of the Ci, it follows that f ∗ σ maps each
xi to an element of Ci, and hence f ∗ σ ∈ H.

Any φ ∈ H defines a Galois extension E of K̄(T ) with Galois group G. To
descend from K̄(T ) to K(T ), it suffices to show that φ can be extended to πK .
This is an immediate consequence of the following:

Lemma 8.1.3 Let 1 −→ A −→ B −→ C −→ 1 be an exact sequence of
groups, let G be a finite group, and let G and B act on Hom(A,G) as above
(i.e., (g ∗ f)(x) = gf(x)g−1 if g ∈ G, x ∈ A, and (f ∗ b)(x) = f(bxb−1) if
b ∈ B, x ∈ A). If H is a non-empty subset of Hom(A,G) on which G acts
freely and transitively, then the following are equivalent :

1. Any φ ∈ H extends uniquely to a homomorphism B −→ G.
2. H is stable under the action of B.
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Proof : Suppose 1 holds, i.e., any φ ∈ H extends uniquely to a homomorphism
ψ : B −→ G. If b ∈ B, then (φ ∗ b)(x) = φ(bxb−1) = ψ(bxb−1) = (ψ(b) ∗ φ)(x).
Hence φ ∗ b ∈ H, since by hypothesis H is preserved by the action of G.
Conversely, if property 2 is satisfied, then given φ : A −→ G, one may define
ψ : B −→ G by:

φ ∗ b = ψ(b) ∗ φ.
Such a ψ exists (G acts transitively on H) and is unique (G acts freely on H).
One verifies that ψ defines a homomorphism B −→ G which extends φ; this
follows from the compatibility of the G- and B-actions.

This completes the proof of the lemma, and hence of th. 8.1.1.

Alternate method of proof for th. 8.1.1:
(a) Prove that the required G-covering C −→ P1 exists over K̄ and is unique
up to a unique isomorphism.
(b) Use Weil’s descent criterion ([Se3], chap. V, no. 20) to prove that C,
together with the action of G, can be defined over K. (General principle: every
“problem” over K which has a unique solution - up to a unique isomorphism
- over K̄ has a solution over K.)

Remark: When k = 3, one can suppose without loss of generality that
(P1, P2, P3) = (0, 1,∞). In this way, a rigid triple (C1, C2, C3) of rational
conjugacy classes of G determines a canonical extension of K(T ). Several
natural questions arise in this context:

1. Can one describe what happens when K is a local field? We will do this
(in a special case) for K = R in §8.4.

2. Can one describe the decomposition group above Pi? For example, if G
is the Monster, and (C1, C2, C3) = (2A, 3B, 29A) as in §7.4.7, then the
decomposition group D1 above P1 must be contained in the normalizer
of an element of the class 2A. This normalizer is 2× B, where B is the
“Baby Monster” sporadic group. Aside from this, nothing seems to be
known about D1.

Exercise: Show that the alternating group An (n = 4, 5, 6, 7, 8) does not contain

any rigid family (C1, . . . , Ck) of rational conjugacy classes (use remark 1 of §7.3).

8.2 Two variants

8.2.1 First variant

Th. 8.1.1 can be generalized to the case where the classes are only K-rational.
More precisely, let us fix a choice of primitive Nth roots of unity over K, i.e.,



84 Chapter 8. The rigidity method

an orbit under Gal(K̄/K) of primitive Nth roots of unity. This amounts to
choosing a K-irreducible factor of the nth cyclotomic polynomial φn. (For
example, if K = Q(

√
5), N = 5, the cyclotomic polynomial φ5 factors as

φ5(X) = X4 +X3 +X2 +X + 1 = (X2 +
1 +
√

5

2
X + 1)(X2 +

1−
√

5

2
X + 1).

A choice of 5th roots of unity is just the same as choosing a square root of 5
in Q(

√
5).) Such a choice determines a generator xi for each inertia group Ii

at Pi (which is well-defined up to conjugation in πK). After such a choice has
been made, one has:

Theorem 8.2.1 If C1, . . . , Ck is a rigid family of K-rational classes of G,
and P1, . . ., Pk are K-rational points of P1, then there is a regular G-covering
C −→ P1 defined over K which is unramified outside {P1, . . . , Pk} and such
that the xi-generator of the inertia group above Pi belongs to the class Ci. This
covering is uniquely defined up to a unique G-isomorphism.

The proof is essentially the same as that of th. 8.1.1.

Since conjugacy classes are always rational over the maximal cyclotomic
extension Qcycl of Q, one only needs the rigidity condition to ensure that a
group can be realized as a Galois group over Qcycl(T ). This property is known
for:

• Most of the classical Chevalley groups over finite fields (Belyi [Be2]);

• All the sporadic groups;

• Most of the exceptional groups G2, F4, E6, E7 and E8 (and also the
twisted forms 2G2,

3D4, and 2E6) over finite fields (Malle [Ml1]).

8.2.2 Second variant

The assumption that the conjugacy classes are rational is often too restrictive
for applications. The following variant of th. 8.1.1 is useful in practice:

Theorem 8.2.2 Let (C1, C2, C3) be a rigid triple of conjugacy classes of G,
with C1 rational and C2 and C3 conjugate to each other over a quadratic field
Q(
√
D). Let P1 ∈ P1(Q), P2, P3 ∈ P1(Q(

√
D)), with P2 and P3 conjugate to

each other. Then there is a regular G-extension of Q(T ) which is ramified only
at P1, P2 and P3, and such that the canonical generator of the inertia group
at Pi (which is well-defined after a choice of roots of unity over Q(

√
D)) is in

Ci.



8.3. Examples 85

Corollary 8.2.3 The group G has property GalT .

The proof of th. 8.2.2 is similar to that of th. 8.1.1. The set H ⊂ Hom(π,G)
is defined in the same way. The key point is to prove that H is still preserved
under the action of πQ.

• If σ ∈ πQ is trivial on Q(
√
D), then σ fixes P1, P2 and P3, and also

fixes the choice of roots of unity over Q(
√
D). Hence σ preserves H, as

before.

• If σ is not trivial on Q(
√
D), then σ interchanges P2 and P3, and hence

I2 and I3. But σ also changes the choice of roots of unity, and these
effects compensate each other.

Remarks:
1. The assumptions on the number of classes and the field of rationality are
only put to simplify the proof, and because this is the principal case which
occurs in practice. In fact, the same conclusion holds in greater generality,
e.g., if {C1, . . . , Ck} is stable under the action of Gal(Q̄/Q), and the map
{P1, . . . , Pk} −→ {C1, . . . , Ck} defined by Pi 7→ Ci is an anti-isomorphism of
Gal(Q̄/Q)-sets.
2. For other variants of th. 8.1.1 using the braid group, see [Fr1] and [Ma3].

8.3 Examples

Here also, we only give a few examples. For more, see [Ma3].

8.3.1 The symmetric group Sn

Recall from §7.4.1 that the symmetric group Sn has a rigid triple of conjugacy
classes (nA, 2A,C(k)), when (k, n) = 1. The covering P1 −→ P1 given by
X 7→ Xk(X − 1)n−k has ramification of this type, namely:







t =∞ nA
t = 0 C(k)

t = kk(k − n)n−kn−n 2A

Hence, by th. 8.1.1, the polynomial

Xk(X − 1)n−k − T = 0

has Galois group Sn over Q(T ) when (k, n) = 1. Note that when (k, n) = l 6= 1,
the splitting field of the equation

Xk(X − 1)n−k − T = 0

contains Q(T 1/l, µl). Its Galois group is strictly smaller than Sn (and the
extension is not regular when l > 2).
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8.3.2 The alternating group A5

Recall from §7.4.2 that the triple (2A, 3A, 5A) of conjugacy classes in A5 is
rigid. The conjugacy class 5A is rational over Q(

√
5) (but not over Q). By

th. 8.2.1, there is a regular extension of Q(
√

5)(T ) with Galois group A5, and
ramification of type (2A, 3A, 5A). The corresponding curve C has genus 0 (but
is not isomorphic to P1 over Q(

√
5), cf. [Se5]).

The action of A5 on C can be realized geometrically as follows (loc. cit.).
Consider the variety in P4 defined by the equations:

{

X1 + · · ·+X5 = 0
X2

1 + · · ·+X2
5 = 0.

Since the first equation is linear, this variety can be viewed as a quadric hy-
persurface in P3. The variety of lines on this quadric is a curve over Q which
becomes isomorphic over Q(

√
5) to the disjoint union of two curves of genus 0

which are conjugate over Q(
√

5). The obvious action of S5 on V (permuting
coordinates) induces an action of S5 on this curve. The extension of Q(T )
corresponding to this curve is a non-regular extension with Galois group S5,
which contains Q(

√
5); it can also be viewed as a regular A5-extension of

Q(
√

5)(T ).

An A5-covering of P1 with ramification (2A, 5A, 5B) can be realized by
taking an S5-covering with ramification of type (2, 4, 5) (e.g., the covering
X 7→ X5 − X4) and using the double group trick (cf. §4.5). This defines a
regular A5-covering of P1 over Q, with two ramification points conjugate over
Q(
√

5); this is the situation of th. 8.2.2. This covering can be shown to be
isomorphic to the Bring curve, defined in P4 by the homogeneous equations







X1 + · · ·+X5 = 0,
X2

1 + · · ·+X2
5 = 0,

X3
1 + · · ·+X3

5 = 0,

cf. §4.4, exercise.

Exercise: Let C be the Bring curve in P4 (see above).
a) Let E be the quotient of C by the group of order 2 generated by the transposition
(12) in S5. Show that E is isomorphic to the elliptic curve defined in P2 by the
homogeneous equation:

(x3 + y3 + z3) + (x2y + x2z + y2z + y2x + z2x + z2y) + xyz = 0,

(put x = x3, y = x4 = z = x5). Show that this curve is Q-isomorphic to the curve
50E of [ANVERS], p.86, with minimal equation

Y 2 + XY + Y = X3 −X − 2
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and j-invariant −52/2.
b) Use the action of S5 on C to show that the Jacobian of C is Q-isogenous to the
product of 4 copies of E.
c) Show that the quotient of C by A4 is Q-isomorphic to the elliptic curve 50H of
[ANVERS], loc.cit., with j-invariant 2−15 · 5 · 2113; this curve is 15-isogenous to E.
d) Show that C has good reduction (mod p) for p 6= 2, 5. If Np(C) (resp Np(E))
denotes the number of points on C (resp. E) modulo p, deduce from b) that

Np(C) = 4Np(E)− 3− 3p.

Use [ANVERS], p.117, to construct a table giving Np(C) for p < 100:

p 7 11 13 . . . 83 89 97
Np(C) 0 24 30 . . . 120 30 90

Check these values by determining the polynomials X 5 + aX + b over Fp, with
(a, b) 6= (0, 0), which have all their roots rational over Fp. For instance, if p = 83,
there is only one such polynomial (up to replacing a by at4 and b by bt5, with
t ∈ F∗p), namely:

X5 + 11X + 11 ≡ (X + 33)(X + 13)(X − 4)(X − 20)(X − 22).

This fits with Np(C) = 120.

e) Show that C has semi-stable reduction at 2, the reduced curve being isomorphic

(over F4) with the union of two copies of P1 intersecting each other at the five

points of P1(F4); describe the action of S5 on this curve, using the fact that A5 is

isomorphic to SL2(F4).

8.3.3 The group PSL2(Fp)

Th. 8.2.2 applied to the rigid triples of conjugacy classes (2A, pA, pB) (when
(2

p
) = −1) and (3A, pA, pB) (when ( 3

p
) = −1) shows that there are regular

PSL2(Fp)-extensions of Q(T ) with ramification of this shape. These corre-
spond to the Shih coverings with N = 2 and N = 3 (cf. §5.1). The rigidity
method does not predict the existence of the Shih coverings related to N = 7,
which are ramified at four points.

A covering of P1 having ramification type (2A, 3A, pA) is given by the cov-
ering of modular curves defined over Q(

√
p∗), X(p) −→ X(1). This covering

has Galois group PSL2(Fp) over Q(
√
p∗); the rigidity property shows that

it is the only PSL2(Fp)-covering with this ramification type. This was first
pointed out by Hecke [He].

In particular, the rigid triple (2A, 3A, 7A) in PSL2(F7) gives rise to the Klein
covering of P1 defined over Q(

√
−7) and having Galois group PSL2(F7). Its

function field E is a Galois extension of Q(T ) with Galois group PGL2(F7),
which is not regular.
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8.3.4 The GalT property for the smallest simple groups

The following table lists the smallest ten non-abelian simple groups. All of
them, except the last one SL2(F16), are known to have the GalT property.
The last column of the table indicates why.

group order GalT property
A5 = SL2(F4) 60 = 22 · 3 · 5 Hilbert (§§4.5, 8.3.2)

= PSL2(F5) Shih with N = 2, 3
(§§5.1, 8.3.3);

SL3(F2) 168 = 23 · 3 · 7 Shih with N = 3
= PSL2(F7) (§§5.1, 8.3.3);

A6 = PSL2(F9) 360 = 23 · 32 · 5 Hilbert (§4.5);
SL2(F8) 504 = 23 · 32 · 7 Th. 8.2.2 and §7.4.4;
PSL2(F11) 660 = 22 · 3 · 5 · 11 Shih with N = 2

(§§5.1, 8.3.3);
PSL2(F13) 1092 = 22 · 3 · 7 · 13 Shih with N = 2

(§§5.1, 8.3.3);
PSL2(F17) 2448 = 24 · 32 · 17 Shih with N = 3

(§5.1, 8.3.3);
A7 2520 = 23 · 32 · 5 · 7 Hilbert (§4.5);
PSL2(F19) 3420 = 22 · 32 · 5 · 19 Shih with N = 2, 3

(§§5.1, 8.3.3);
SL2(F16) 4080 = 24 · 3 · 5 · 17 ?

In addition, it has been shown that all the sporadic simple groups satisfy
the GalT property, with the possible exception of the Mathieu group M23, cf.
[Hunt], [Ma3], [Pa].

8.4 Local properties

8.4.1 Preliminaries

Let π : C −→ P1 be a G-covering defined over a field K which is complete
with respect to a real valuation. Let x be a point of P1(K) − S, where S is
the ramification locus of the covering. The fiber Λx at x is an étale K-algebra
with action of G; its structure is defined by a continuous homomorphism

φx : Gal(K̄/K) −→ G,

which is well-defined up to inner conjugation in G. Let us denote by H the
quotient of the set of such homomorphisms by the action of G by conjugation;
we endow H with the discrete topology.
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Proposition 8.4.1 The map from P1(K) to H defined by x 7→ φx is contin-
uous with respect to the topology of P1(K) induced by the valuation on K. (In
other words, for every x ∈ P1(K), there is a neigbourhood U of x such that
the Galois algebras Λx and Λy are isomorphic, for all y ∈ U .)

This can be deduced (with some care) from Krasner’s lemma: if

P (X) =
∏

(X − αi) and Q(X) =
∏

(X − αi)

are irreducible polynomials over K, with αi and βi sufficiently close for each
i, then K(α1) = K(β1). See [Sa1].

Another way to prove prop. 8.4.1 is as follows: the map C −→ P1 gives an
extension Ox ⊂ Õx, where Ox is the local ring at x, and Õx is the semi-local
ring above x. Let Mx be the maximal ideal of Ox. The quotient Õx/MxÕx

is Λx. One has a natural inclusion Ox ⊂ Ohol
x , where Ohol

x denotes the ring of
power series with coefficients in K which converge in a neighbourhood of x.
Since Ohol

x is Henselian (cf. [Ra], p. 79), and the extension is étale, one has:

Õhol
x ' Λx ⊗K Ohol

x .

This means that, for its analytic structure, the covering C −→ P1 is locally a
product. The proposition follows.

By the discussion above, we may write P1(K)− S as a finite disjoint union
of open sets:

P1(K)− S =
⋃

φ∈H

Uφ,

where Uφ = {t ∈ P1(K) − S|φt = φ}. For example, if K = Qp, p 6= 2,
the universal Z/2Z-covering defined by x 7→ x2 gives a decomposition of
P1(Qp) − {0,∞} into four open and closed pieces, corresponding to the four
non-isomorphic Galois algebras of rank 2 over Qp.

Remark: A propos of the Uφ, let us mention an unpublished result of Ray-
naud: if the order of G is prime to the residue characteristic, every unramified
G-covering of a rigid polydisk becomes trivial after a finite extension of the
local field K.

8.4.2 A problem on good reduction

Assume that π : C −→ P1 is a G-covering obtained by the rigidity method
(th. 8.1.1) from rational points P1, . . . , Pk and conjugacy class C1, . . . , Ck.

Let p be a prime number. Assume the reductions of the Pi are distinct in
P1(Fp).
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Problem: Assume that p does not divide the orders of the elements of Ci for
i = 1, . . . , k. Is it true that the curve C has good reduction at p?

This is true at least when p does not divide the order of G, cf. [Bc].

Exercise: Check that the above problem has a positive answer for the examples

given in 8.3.1, 8.3.2, 8.3.3.

8.4.3 The real case

We now restrict our attention to the case when π : Y −→ P1 comes from
a rigid triple of conjugacy classes (C1, C2, C3), and where K = R. By prop.
8.4.1, to each connected component of P1(R)− S there is attached a unique
conjugacy class of involutions in G, corresponding to complex conjugation.
There are two cases, depending on the number of such connected components:

Case 1: We suppose that the three conjugacy classes are rational over R.
The corresponding covering is ramified at exactly three real points P1, P2, P3,
which divide the circle P1(R) into three connected components.

Let us choose xi ∈ Ci, with x1x2x3 = 1 and G = 〈x1, x2, x3〉. We assume
G 6= {1}, hence xi 6= 1 for i = 1, 2, 3. Since the Ci are rational over R, we
have

x−1
1 ∈ C1, x−1

2 ∈ C2.

Put x
′

3 = x2x1 = x2x3x
−1
2 . Then (x−1

1 , x−1
2 , x

′

3) is in Σ. By rigidity, there exists
a unique s3 ∈ G such that:

{

s3x1s
−1
3 = x−1

1

s3x2s
−1
3 = x−1

2

The element s3 thus defined is such that s2
3 = 1.

Theorem 8.4.2 The complex conjugation attached to a point x in the con-
nected component (P1, P2) of P1(R) between P1 and P2 is in the conjugacy
class of s3.

Remark: An analogous statement holds for the involutions s1 and s2, which
are defined in the same way as s3, and correspond to the complex conjugations
attached to the components (P2, P3) and (P1, P3) respectively. This gives the
relations: 





s1 = s3x2,
s2 = s1x3,
s3 = s2x1.

Hence, if s1 and s3 are non-trivial, the group generated by s1, s3 and x2 is
a dihedral group of order 2n, where n is the order of x2. There is a single
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conjugacy class of involutions in a dihedral group of order 2n with n odd.
Hence, one has:

Corollary 8.4.3 If the order of x2 is odd, then s1 and s3 are conjugate in G.

Corollary 8.4.4 If two of the three classes C1, C2 and C3 have odd exponent,
then the si’s are conjugate.

Example: The rigid triple of conjugacy classes (2A, 3B, 29A) in the Mon-
ster M satisfies the hypotheses of cor. 8.4.4. Hence, complex conjugation
corresponds to a unique class of involutions in M (the class 2B, in ATLAS
notation).

Remark: The case where s3 = 1 occurs only in the case G = Dn and
(C1, C2, C3) = (2, 2, n), n odd. For, if s3 = 1, then x1, x2 are of order 2,
equal to s2 and s1 respectively. The group generated by x1, x2, x3 is thus a
dihedral group of order 2n, where n is odd (since the group has no center).
The only dihedral group of this type satisfying the rationality condition over
Q is G = S3. This means that the rigidity method of th. 8.1.1, when applied
with three classes to a group G 6= S3, never gives totally real extensions of Q.

Case 2: C1 is rational over R, and C2 and C3 are complex conjugate to each
other.

Then, P1(R)−{P1, P2, P3} is connected, since P2 and P3 do not lie on P1(R).
Hence there is a single conjugacy class of involutions in G corresponding to
complex conjugation.

Let (x1, x2, x3) ∈ Σ(C1, C2, C3). By rigidity, there is a unique involution s
in G such that:

sx1s
−1 = x−1

2 , sx2s
−1 = x−1

1 , sx3s
−1 = x−1

3 .

Theorem 8.4.5 Complex conjugation belongs to the conjugacy class of s.

Observe that in this case s 6= 1. (Otherwise G would be cyclic.)

Proof of th. 8.4.2 and th. 8.4.5 Choose a base point x on P1(R), (lying
on the connected component (P1, P2) in case 1) and let π denote as before the
geometric fundamental group of X = P1−{P1, P2, P3}, with base point x. Let
α1, α2, α3 denote the generators of π corresponding to paths around P1, P2,
and P3 respectively. The complex conjugation σX on X acts as a symmetry
around the equator on the Riemann sphere. Hence σX acts on the generators
α1, α2, α3 of π by:
Case 1: α1 7→ α−1

1 , α2 7→ α−1
2

Case 2: α2 7→ α−1
3 , α3 7→ α−1

2
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Let σY denote the complex conjugation acting on Y . Since the G-covering
π : Y −→ X is defined over R, the following diagram commutes:

Y
σY−→ Y

π ↓ ↓ π
X

σX−→ X

Since σXx = x, the fiber Yx of Y over x is preserved by σY . The action of σY

on Yx commutes with the action of G.
The group G acts freely and transitively on Yx, so a choice of y ∈ Yx deter-

mines a surjective map φy : π1(X; x) −→ G. Because the action of σ commutes
with that of G, the following diagram is commutative:

π1(X; x)
φy−→ G

σX ↓ ||
π1(X; x)

φσy−→ G

On the other hand, we also have:

φσy = σY φyσ
−1
Y .

Hence the diagram below commutes:

π1(X; x)
φy−→ G

σX ↓ ↓ Inn(σY,t)

π1(X; x)
φσy−→ G.

This proves the theorem.

Exercise: Let G be a finite group, generated by elements g1, . . . , gk. Choose points
z1, . . . , zk with (say) Re(zi) = 0 for i = 1, . . . k, and

Im(z1) > Im(z2) > . . . > Im(zk) > 0.

Let z
′

1, . . ., z
′

k be the complex conjugates of z1, . . ., zk and choose a real base

point x < 0; let π denote the fundamental group π1(P1(C) − S;x), where S =

{z1, . . . , zk, z
′

1, . . . , z
′

k}. It is generated by elements x1, . . . , xk, x
′

1, . . . , x
′

k, where xi

(resp. x
′

i) denotes the homotopy class of paths going in a straight line from x to zi

(resp. z
′

i) and going around this point in the positive direction. These generators,

together with the relation x1 · · · xkx
′

k · · · x
′

1 = 1, give a presentation for π. Let φ be

the homomorphism π −→ G sending xi to gi and x
′

i to g−1
i . Show that φ defines

a regular G-extension of R(T ). (Hence every finite group is the Galois group of

a regular extension of R(T ). This result can also be deduced from [KN]. The

analogous statement for Qp(T ) is also true; see next section.)
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8.4.4 The p-adic case: a theorem of Harbater

Let p be a prime number.

Theorem 8.4.6 ([Harb]) Every finite group is the Galois group of a regular
extension of Qp(T ).

The proof shows more, namely that for every finite group G, there exists an
absolutely irreducible G-covering X −→ P1 over Qp having a “base point”,
i.e., an unramified point P ∈ P1(Qp) which is the image of a Qp-point of X.
Call Rp this property of G. The theorem clearly follows from the following
two assertions:

(i) Every cyclic group has property Rp.
(ii) If G is generated by two subgroups G1 and G2 having property Rp, then

G has property Rp.
Assertion (i) is easy (and true over Q, as the construction of §4.2 shows).

Assertion (ii) is proved by a gluing process which uses rigid analytic geometry.
Namely, let Xi −→ P1 (i = 1, 2) be a Gi-covering as above with a base point
Pi. By removing a small neighborhood of Pi one gets a rigid analytic Gi-
covering Vi −→ Ui where Ui is a p-adic disk; this covering has the further
property that it is trivial on Ui−U ′

i where U
′

i is a smaller disk contained in Ui.
Let Wi −→ Ui be the (non-connected) G-covering of Ui defined by induction
from Gi to G. (It is a disjoint union of |G/Gi| copies of Vi.) One then embeds
U1 and U2 as disjoint disks in P1, and defines a rigid analytic G-covering of
P1 by gluing together W1 on U1, W2 on U2, and the trivial G-covering on
P1−U ′

1−U
′

2. If this is done properly, the resulting G-covering W is absolutely
irreducible. By the “GAGA” theorem in the rigid analytic setting (cf. [Ki],
[Kö]), this covering is algebraic, and (ii) follows.

Remark: Harbater’s original proof uses “formal GAGA” instead of “rigid
GAGA”; the idea is the same.
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Chapter 9

The form Tr(x2) and its
applications

9.1 Preliminaries

9.1.1 Galois cohomology (mod 2)

Let K be a field of characteristic 6= 2, and let GK be Gal(Ks/K), where Ks

is a separable closure of K. We will be interested in the Galois cohomology of
K modulo 2; for brevity, let us denote the cohomology groups H i(GK,Z/2Z)
by H i(GK). In the case where i = 1, 2, Kummer theory provides the following
interpretation of H i(GK):

H1(GK) = K∗/K∗2,

H2(GK) = Br2(K),

where Br2(K) is the 2-torsion in the Brauer group of K. If a ∈ K∗, we denote
by (a) the corresponding element of H1(GK). The cup-product

(a)(b) ∈ H2(GK)

corresponds to the class of the quaternion algebra (a, b) in Br2(K) defined by

i2 = a, j2 = b, ij = −ji.

9.1.2 Quadratic forms

Let f be a non-degenerate quadratic form over K of rank n ≥ 1. By choosing
an appropriate basis, we may write

f =
n∑

i=1

aiX
2
i , with ai ∈ K∗.

95
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The element (1+ (a1))(1+ (a2)) · · · (1+ (an)) in the cohomology ring H∗(GK)
depends only on f . One defines the i-th Stiefel-Whitney class wi of f by:

(1 + (a1)) · · · (1 + (an)) = 1 + w1 + w2 + · · ·+ wn, wi ∈ H i(GK).

In particular, we have:

w1 =
∑

(ai) = (
∏

ai) = (Disc(f))

w2 =
∑

i<j

(ai)(aj).

The cohomology class w2 is known as the Hasse (or Witt) invariant of the
quadratic form f . If K is a number field, then f is completely characterized
by its rank, signature, and the invariants w1 and w2. (The same is true for
arbitrary K, when n ≤ 3.) The following results can be found in [Sch], pp.
211-216.

Theorem 9.1.1 (Springer) If two quadratic forms over K become equivalent
over an odd-degree extension K

′

of K, then they are already equivalent over
K.

(For a generalization to hermitian forms, see [BL].)

Let us now consider K(T ), where T is an indeterminate. If v is a place of
K(T ) which is trivial on K and 6=∞, there is a unique uniformizing parameter
πv at v which is monic and irreducible in K[T ]. Let K(v) = K[T ]/(πv) denote
the residue field at v, and let a 7→ a be the reduction map K[T ] −→ K(v). If
f =

∑n
i=1 aiX

2
i is a quadratic form over K(T ), we may assume (since the ai

can be modified by squares) that v(ai) = 0 or 1. The K(v)-quadratic forms:

∂1(f) =
∑

v(ai)=0

aiX
2
i , ∂2(f) =

∑

v(ai)=1

(ai/πv)X
2
i

are called the first and second residues of f . One shows (cf. e.g. [Sch], p. 209)
that their images in the Witt group W (K(v)) do not depend on the chosen
representation of f as

∑
aiX

2
i . (Recall that the Witt group W (L) of a field

L is the Grothendieck group of the set of quadratic forms over L, with the
hyperbolic forms identified to 0.)

Theorem 9.1.2 (Milnor) If a quadratic form f over K(T ) has second residue
0 at all places of K(T ) except ∞, then f is equivalent to a quadratic form over
K.
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(More precisely, one has an exact sequence:

0 −→W (K) −→ W (K(T )) −→
∐

v 6=∞
W (K(v)) −→ 0.)

A quadratic form over a ring R is said to be strictly non-degenerate if its
discriminant is invertible in R.

Theorem 9.1.3 (Harder) A strictly non-degenerate quadratic form over the
ring K[T ] comes from K.

This theorem can be formulated more suggestively: a quadratic vector bundle
over A1 is constant. (For a generalization to other types of bundles, see [RR].)

9.1.3 Cohomology of Sn

We need only H i(Sn) for i = 1, 2. These groups are well-known:

H1(Sn) = Z/2Z, n ≥ 2,
H2(Sn) = Z/2⊕ Z/2Z, n ≥ 4 (Schur).

The non-trivial element in H1(Sn) is the signature homomorphism

εn : Sn −→ {±1}.

The cohomology group H2(Sn), n ≥ 4, has a Z/2Z-basis given by εn · εn
(cup-product) and an element sn corresponding to the central extension

1 −→ C2 −→ S̃n −→ Sn −→ 1

which is characterized by the properties:
1. A transposition in Sn lifts to an element of order 2 in S̃n.
2. A product of two disjoint transpositions lifts to an element of order 4 in S̃n.

(The element εn ·εn corresponds to the extension S
′

n of Sn obtained by taking
the pullback:

S
′

n −→ C4

↓ ↓
Sn −→ {±1}.

This extension is characterized by the property that a transposition lifts to an
element of order 4, while a product of two disjoint transpositions lifts to an
element of order 2.)

The image of εn by the restriction map H1(Sn) −→ H1(An) is zero. The
cohomology group H2(An) is isomorphic to Z/2Z for n ≥ 4 and is generated
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by an = Res(sn). The corresponding central extension of An is denoted by Ãn

(or by 2 ·An in ATLAS’ style); it is a subgroup of index 2 of S̃n.
The cohomology classes εn and sn can be given the following topological

interpretations: the map Sn −→ On(R) gives a map of classifying spaces

BSn −→ BOn(R),

and corresponding maps on the cohomology rings. But

H∗(BOn(R)) = F2[w1, . . . , wn],

where wi is the ith Stiefel-Whitney class. The class w1 corresponds to the
element εn in H1(BSn) = H1(Sn), and w2 gives sn.

Exercises:

1. Show that Ã4 ' SL2(F3), Ã5 ' SL2(F5), and Ã6 ' SL2(F9).
2. Let Ŝn be the central extension of Sn by {±1} corresponding to the element
sn + εn · εn of H2(Sn).

(a) Show that Ŝ4 ' GL2(F3).
(b) Show that any outer automorphism of S6 lifts to an isomorphism of Ŝ6 onto

S̃6.

(c) Show that the groups Ŝn and S̃n are not isomorphic if n ≥ 4, n 6= 6.

9.2 The quadratic form Tr (x2)

Let E be an étale K-algebra of finite rank n over K; it is a product of sepa-
rable field extensions of K. There is a dictionary between such algebras and
conjugacy classes of homomorphisms e : GK −→ Sn, which works as follows:
given E, let φ(E) be the set of K-algebra homomorphisms E −→ Ks. The
set φ(E) is of cardinality n, and the natural action of GK on φ(E) gives the
desired homomorphism e : GK −→ Sn, after identifying φ(E) with {1, . . . , n}.
Conversely, E can be constructed as the twist of the split algebra K×· · ·×K
by the 1-cocycle e : GK −→ Sn = Aut (Kn). The image of e is the Galois
group of the smallest extension of K over which the algebra E splits; if E is a
field, it is Gal(Egal/K).

The function x 7→ Tr (x2) defines a non-degenerate quadratic form QE of
rank n over K. This invariant was studied extensively by 19th century math-
ematicians such as Jacobi and Hermite.

Theorem 9.2.1 Let E/K(T ) be a finite separable extension of degree n. Let
G ⊂ Sn be the corresponding Galois group. Assume that, for all places v of
K(T ) not equal to ∞, the order of the inertia group at v is odd. Then QE is
constant, i.e., comes from a form over K.
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Let Λ be the integral closure of K[T ] in E, and denote by D the different.
Using the fact that the inertia groups are of odd order, one can show that D−1

is the square of a fractional ideal,

D−1 = A2.

One checks that QE induces a strictly non-degenerate quadratic form over
K[T ] on the K[T ]-module A. By th. 9.1.3 the result follows. (One may also
show that the second residues of QE are 0, and apply Milnor’s theorem 9.1.2.)

Example: Let E be a regular Galois extension of Q(T ) with Galois group the
Monster, obtained from the rigid family (2A, 3B, 29A), cf. §7.4.7. Since two
of the conjugacy classes in this family have odd exponent, the form QE comes
from Q, and does not depend on T . One can prove that it is hyperbolic.

The following theorem is proved in [Se6].

Theorem 9.2.2 Let E be an étale K-algebra of rank n and discriminant d
associated to a homomorphism e : GK −→ Sn, and let QE denote the trace
form of E. Then :

1. w1(QE) = e∗εn,
2. w2(QE) = e∗sn + (2)(d)

Suppose that G = e(GK) is contained in An, i.e., that d is a square. By
th. 9.2.2, we have w1(QE) = 0 and w2(QE) = e∗an. The element e∗an is
the obstruction to lifting the homomorphism GK −→ An to a homomorphism
GK −→ Ãn. Hence, we have

Corollary 9.2.3 The homomorphism e : GK −→ An lifts to a homomorphism
GK −→ Ãn if and only if the Witt invariant w2(QE) is 0.

9.3 Application to extensions with Galois

group Ãn

The previous corollary applies when e is surjective: an extension E of K of
degree n with Galois group An can be embedded in an Ãn-extension if and
only if w2(QE) = 0.

This will be used to show the following result:

Theorem 9.3.1 (Mestre, [Me2]) The group Ãn has the GalT -property for
all n.
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(This was already shown for n ≡ 0, 1 (mod 8), and for some other n, by Vila
[Vi].)

The proof constructs a covering C −→ P1 of degree n whose Galois closure
has Galois group An, and which has the following additional properties:

1. There is a point of P1 whose inverse image is a set {a1, . . . , an}, where
the ai are rational and distinct.

2. The non-trivial inertia groups are all generated by cycles of order 3.

Let E/K(T ) be the degree n extension corresponding to this covering. Con-
dition 2 implies that the quadratic form QE comes from Q, by th. 9.2.1. But
by condition 1, there is one rational point where this quadratic form is equiv-
alent to the standard one,

∑
X2

i . It is easy to see that this implies that QE is
equivalent to

∑
X2

i over Q(T ), and hence has trivial Witt invariant; by cor.
9.2.3, we can thus solve the embedding problem for this extension.

Let us say that a property Σ of a polynomial

P = Xn + s1X
n−1 + · · ·+ sn

is generally true if there exists a Zariski open dense subset U of An such that
P has the property Σ for all (s1, . . . , sn) in U . Mestre’s construction (for n
odd) relies on the following:

Proposition 9.3.2 It is generally true that there exist polynomials Q and R
in Q[T ] of degree n− 1 with the following properties :

a) Q
′

P − P ′

Q = R2 (i.e., (Q/P )
′

= (R/P )2).
b) P,Q,R are pairwise relatively prime.
c) The zeros b1, . . . , bn−1 of R in Q̄ are distinct.
d) The values ti of Q/P at the bi are distinct.

Sketch of proof: The matrix M with ij-entry 1/(ai − aj) for i 6= j and 0
for i = j is a skew symmetric matrix of odd dimension. Hence it has zero
determinant and there exists a non-zero (c1, . . . , cn) in the kernel of M . We
have:

n∑

j=1

j 6=i

cj
ai − aj

= 0 for all i.

Now, let Q, R be the polynomials such that:

Q/P =
n∑

i=1

−c2i
X − ai

.

R/P =
n∑

i=1

ci
X − ai

.
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One has:

(R/P )2 =
n∑

i,j=1

cicj
(X − ai)(X − aj)

=
n∑

i=1

c2i
(X − ai)2

+
∑

i6=j

cicj
ai − aj

(
1

X − ai
− 1

X − aj
)

= (Q/P )
′

Moreover, one can check (by looking at a well-chosen example) that it is gen-
erally true that M has rank n− 1 (so that the ci are essentially unique) and
that b), c), d) hold.

If (P,Q,R) are chosen as in prop. 9.3.2, with P =
∏

(X−ai) with ai ∈ Q, the
ai being distinct, then the map P1 −→ P1 given by X 7→ T = P (X)/Q(X)
has degree n, and is ramified at the zeros bi of R, the ramification groups
being generated by 3-cycles. Let G ⊂ Sn (resp. Ḡ ⊂ Sn) be the Galois group
of the corresponding Galois extension of Q(T ) (resp. of Q̄(T )). The group Ḡ
is transitive and generated by 3-cycles (cf. prop. 4.4.6). By lemma 4.4.4, it
is equal to An. Hence G is equal to An or Sn. However, we have seen that
the Tr (x2) form attached to the extension is the standard form

∑
X2

i . In
particular, its discriminant is a square. This shows that G is contained in An,
hence G = Ḡ = An, QED.

There is a similar, but more complicated, construction when n is even.
Exercise 2 below proves that Ãn has the GalT property for n even by reducing
to the case of odd n.

Remarks:
1. One may also prove Mestre’s theorem by showing that the Witt invariant
w2 ∈ Br2(Q(T )) of the trace form has “no poles” (because all the ramification
is odd), and hence is constant, i.e., belongs to Br2(Q). Since it is 0 at the base
point, it is zero. Another possibility is to prove by a direct construction that
the trace form of E/K(T ) is constant, cf. exerc. 1.
2. For explicit formulas related to the above constructions, see [Cr], [Schn].
3. For n = 6, 7, the Schur multiplier of An is cyclic of order 6. The correspond-
ing groups 6 ·A6 and 6 ·A7 also have property GalT . This has been proved by
J-F. Mestre (unpublished).

Exercises:

1. Assume P,Q,R are as in prop. 9.3.2 (n odd). Put

E = K(X) and T = P (X)/Q(X),

so that [E : K(T )] = n.
a) Let Λ be the integral closure of K[T ] in E. Show that Λ = K[X, 1/Q(X)] and

that the different of Λ over K[T ] is the principal ideal generated by R(X)2.
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b) Let
Tr : E −→ K(T )

be the trace map. If f ∈ K[X], show that Tr (f(X)/R(X)2) belongs to K[T ] and
that:

degT Tr (f(X)/R(X)2) ≤ sup(0,deg(f)− 2n + 2).

In particular, Tr (f(X)/R(X)2) belongs to K if deg(f) ≤ 2n− 2.
c) Let V be the n-dimensional K-subspace of E spanned by

1/R(X), X/R(X), . . . , Xn−1/R(X).

One has E = V ⊗K K(X). Show, using b), that if v1, v2 ∈ V , then Tr (v1v2) ∈ K.
Conclude that the trace form of E/K(T ) comes from K.

2. Let n be even, let f : P1 −→ P1 be an n + 1-covering given by Mestre’s
construction above, and let Cf be it Galois closure. One has maps

Cf
g−→ P1

f−→ P1,

and g : Cf −→ P1 is a regular An-covering. Show that this covering lifts to a regular

Ãn-covering of P1 (hence Ãn also has property GalT ).
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Appendix: the large sieve
inequality

10.1 Statement of the theorem

Let N be an integer ≥ 1, and, for each prime p, let νp be a real number with
0 < νp ≤ 1. Let A be a subset of Λ = Zn, such that for all primes p,

|Ap| ≤ νpp
n,

where Ap ⊂ Λ/pΛ denotes the reduction of A mod p. Given a vector x =
(x1, . . . , xn) ∈ Rn, and N ∈ R, we denote by A(x,N) the set of points in A
which are contained in the cube of side length N centered at x, i.e.,

A(x,N) = {(a1, . . . , an) ∈ A | |xi − ai| ≤ N/2}.

Then:

Theorem 10.1.1 (Large sieve inequality) For every D ≥ 1, we have

|A(x,N)| ≤ 2n sup(N,D2)n/L(D),

where

L(D) =
∑

1≤d≤D

d square−free

∏

p|d

(

1− νp

νp

)

.

Taking D = N
1
2 :

Corollary 10.1.2 |A(x,N)| ≤ (2N)n/L(N
1
2 ).
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Examples:
1. If νp = 1

2
for every p, then

L(D) = (
∑

1≤d≤D

d square−free

1) ∼ 6

π2
D.

Hence |A(x,N)| << Nn− 1
2 . This is a typical “large sieve” situation.

2. Assume there is a set S of primes of density > 0, such that νp = C for
p ∈ S, with 0 < C < 1. One may estimate L(D) from below by summing over
primes ≤ D:

L(D) ≥ 1 +
∑

p≤D

p prime

1− νp

νp

� D

logD
.

Hence |A(x,N)| � Nn− 1
2 logN. A more careful estimate of L(D) by summing

over all square-free d ≤ D allows one to replace the factor logN by (logN)γ ,
with γ < 1, under a mild extra condition on S, cf. [Se9], chap. 13.

3. Suppose n = 1, and νp = 1− 1
p
. Then one can show that L(D)

^
_ logD, and

hence |A(x,N)| � N
log N

, a weak form of the prime number theorem: however,
the method also allows one to conclude that in any interval of length N , there
are at most O( N

log N
) primes. (More precisely, their number is ≤ 2N/ logN , cf.

[MoV].)

Historically, a weaker form of the sieve inequality was discovered first, where
the sum giving L(D) was taken over the primes ≤ D; this only gave interesting
results in large sieve situations (hence the name “large sieve inequality”). The
possibility of using square-free d’s was pointed out by Montgomery, [Mo1].

Exercise: Use th. 10.1.1 to show that the number of “twin primes” (primes p such
that p + 2 is also prime) ≤ N is asymptotically � N

(log N)2 . Conclude that

∑

p

twin prime

1

p
<∞.

Proof of th. 10.1.1: preliminaries
Let us assume without loss of generality that A = A(x,N). Given vectors
a = (a1, . . . , an), t = (t1, . . . , tn) belonging to Rn, put

χa(t) = exp



2πi
n∑

j=1

ajtj



 .

We identify Λ = ZN with the character group of the torus T = Rn/Zn by
a 7→ χa, and associate to A = A(x,N) the function φ whose Fourier expansion
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is:
φ =

∑

a∈A

χa.

The condition on the reduction of A mod p and the fact that A is contained
in a cube of side length N give rise to inequalities satisfied by φ; combining
these will give the sieve inequality.

10.2 A lemma on finite groups

Let Ci for 1 ≤ i ≤ h be finite abelian groups (written additively), Ĉi their
character groups, φ a function on C =

∏
Ci. Suppose there are subsets Ωi

of Ĉi with |Ωi| ≤ νi|Ci|, such that the Fourier coefficient of φ relative to the
character χ = (χi) ∈ Ĉ =

∏
Ĉi is 0 outside

∏
Ωi. Let us call x ∈ C primitive

if its image in each Ci is 6= 0. Then:

Lemma 10.2.1 We have :

∑

x∈C

x primitive

|φ(x)|2 ≥ |φ(0)|2
∏

i

(
1− νi

νi

)

.

We give the proof in the case of a single group C: the general case follows by
induction on the number of factors. Write φ =

∑
cχχ, the sum being taken

over all characters χ ∈ Ω. Then:

∑

|cχ|2 =
1

|C|
∑

x∈C

|φ(x)|2.

Applying the Cauchy-Schwarz inequality, we get

|φ(0)|2 = |
∑

cχ · 1|2 ≤
∑

|cχ|2
∑

χ∈Ω
1,

and hence
|φ(0)|2 ≤ ν1(

∑

x6=0

|φ(x)|2 + |φ(0)|2).

The lemma follows by rearranging terms in this inequality.

10.3 The Davenport-Halberstam theorem

Define a distance on Rn by |x| = sup |xi|; this defines a distance on the torus
T = Rn/Zn, which we also denote by | |. Let δ > 0; a set of points {ti} in T
is called δ-spaced if |ti − tj| ≥ δ for all i 6= j.
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Theorem 10.3.1 (Davenport-Halberstam) Let φ =
∑
cλχλ be a continuous

function on T whose Fourier coefficients cλ vanish when λ is outside some
cube Σ of size N . Let ti ∈ T be δ-spaced points for some δ > 0. Then

∑

i

|φ(ti)|2 ≤ 2n sup(N,
1

δ
)n||φ||22,

where ||φ||2 is the L2-norm of φ.

If δ > 1/2, there is at most one ti and the inequality follows from the Cauchy-
Schwarz inequality applied to the Fourier expansion of φ. Let us now suppose
that δ ≤ 1

2
. One constructs an auxiliary function θ on Rn, such that

1. θ is continuous and vanishes outside the cube |x| < 1
2
δ. This allows us

to view θ as a function on T .

2. The Fourier transform of θ has absolute value ≥ 1 on the cube Σ.

3. ||θ||22 ≤ 2nMn, where M = sup(N, 1
δ
).

Let λ ∈ Rn be the center of the cube Σ. Then one checks, by an elementary
computation, that the function θ defined by

θ(x) =







χλ(x)M
n∏ 2 cos πMxi if |x| ≤ 1

2M

0 elsewhere.

has the required properties. For each λ ∈ Λ, let cλ(φ) be the λ-th Fourier
coefficient of φ; define similarly cλ(θ). We have:

cλ(φ) = 0 if λ /∈ Σ and |cλ(θ)| ≥ 1 if λ ∈ Σ.

We may thus define a continuous function g on T whose Fourier coefficients
are:

cλ(g) =







cλ(φ)/cλ(θ) if λ ∈ Σ

0 if λ /∈ Σ

Since cλ(φ) = cλ(θ)cλ(g) for every λ ∈ Λ, φ is equal to the convolution product
θ ∗ g of θ and g. Therefore:

φ(ti) =
∫

T
θ(ti − t)g(t)dt =

∫

Bi

θ(ti − t)g(t)dt,

where Bi is the set of t such that |t−ti| < δ
2
. By the Cauchy-Schwarz inequality:

|φ(ti)|2 ≤ ||θ||22
∫

Bi

|g(t)|2dt ≤ 2nMn
∫

Bi

|g(t)|2dt.
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Since the ti are δ-spaced, the Bi are disjoint. Summing over i then gives

∑

i

|φ(ti)|2 ≤ 2nMn||g||22 ≤ 2nMn||φ||22,

because

||g||22 =
∑

∣
∣
∣
∣
∣

cλ(φ)

cλ(θ)

∣
∣
∣
∣
∣

2

≤ ||φ||22.

This completes the proof.

Remark: In the case n = 1, the factor 2 sup(N, 1
δ
) can be improved to N + 1

δ

(Selberg, see e.g. [Mo2]); it is likely that a similar improvement holds for any
n.

10.4 Combining the information

Let D be given; the set {ti} of all d-division points of T , where d ranges
over positive square-free integers ≤ D, is δ-spaced, for δ = 1/D2. Applying
th. 10.3.1 to φ =

∑

a∈A χa, we have

∑

i

|φ(ti)|2 ≤ 2n sup(N,D2)n|A|. (10.1)

On the other hand, for each d ≤ D square-free, the kernel T [d] of d : T −→ T
splits as

T [d] =
∏

p|d
T [p]

and its character group is Λ/dΛ =
∏

p|d Λ/pΛ. Hypothesis (2) on A allows us
to apply lemma 10.2.1 to the restriction of φ to T [d]. We thus obtain

∑

t∈T [d]

t of order d

|φ(t)|2 ≥ |A|2
∏

p|d

1− νp

νp
.

Hence, by summing over all square-free d ≤ D, we obtain:

∑

i

|φ(ti)|2 ≥ |A|2L(D). (10.2)

Combining equations 10.1 and 10.2 and cancelling a factor of |A| on both sides
gives the large sieve inequality. (The case |A| = 0 does not pose any problem.)
QED.

Remark: A similar statement holds for a number field K; Λ is replaced by
OK×· · ·×OK , where OK denotes the ring of integers of K; the corresponding
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torus T is then equipped with a natural action of OK. The technique of the
proof is essentially the same as in the case K = Q, see [Se9], ch. 12.

Exercises:

1. Let pi (i ∈ I) be integers ≥ 1 such that (pi, pj) = 1 if i 6= j. Let A be a subset
of Zn contained in a cube of side length N . Let νi be such that the reduction of
A mod pi has at most νip

n
i elements. Show (by the same method as for th. 10.1.1)

that
|A| ≤ 2nsup(N,D2)n/L(D),

with
L(D) =

∑

J

∏

i∈J

(1− νi)/νi,

where the sum runs through all subsets J of I such that
∏

i∈J pi ≤ D. (This applies
for instance when the pi’s are the squares or the cubes of the prime numbers.)
2. Let H be the set of pairs (x, y) of integers 6= 0 such that the Hilbert symbol
(x, y) is trivial (i.e., the conic Z2 − xX2 − yY 2 = 0 has a rational point). Show
(by using exerc. 1.) that the number of points of H in a cube of side length N is
<< N2/ log N . (Whether or not this bound is sharp is not known.)

For generalizations, see [Se10].
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1983.



112 Bibliography

[JY] C.U. Jensen and N. Yui. Quaternion extensions, Algebraic Geom-
etry and Commutative Algebra, in honor of M. Nagata (1987),
155-182.

[Ki] R. Kiehl. Der Endlichkeitsatz für eigentliche Abbildungen in der
nichtarchimedischen Funktionentheorie, Inv. Math. 2 (1967), 191-
214.
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C.R.Acad.Sci.Paris 307 (1988), 721-724.

[Me2] J-F. Mestre. Extensions régulières de Q(T ) de groupe de Galois
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group Ãn for n odd, J. of Algebra, 146 (1992), 117-123.

[Se1] J-P. Serre. Cohomologie Galoisienne, Lect. Notes in Math. 5,
Springer-Verlag, 1973 (4th edition).

[Se2] J-P. Serre. Local Fields, GTM 67, Springer-Verlag, 1979.

[Se3] J-P. Serre. Algebraic Groups and Class Fields, GTM 117, Spring-
er-Verlag, 1988.
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1977, 193-268. (=C.P. no. 110).

[Se8] J-P. Serre. Groupes de Galois sur Q, Sém. Bourbaki 1987-1988,
no. 689.

[Se9] J-P. Serre. Lectures on the Mordell-Weil theorem, translated and
edited by M. Brown from notes by M. Waldschmidt, Vieweg-
Verlag, 1989.
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