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Abstract. This article gives a new proof of the Gross–Kohnen–Zagier theorem for Shimura

curves which exploits the p-adic uniformization of Cerednik–Drinfeld. The explicit description

of CM points via this uniformization leads to an expression relating the Gross–Kohnen–Zagier

generating series to the ordinary projection of the first derivative, with respect to a weight

variable, of a p-adic family of positive definite ternary theta series.
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1. Introduction

Let S be a finite set of places of Q of odd cardinality containing∞ and let N+ be a square-

free positive integer which is not divisible by any finite place in S. This datum gives rise to a

modular or Shimura curve X defined over Q, which is an instance of an orthogonal Shimura

variety. Its set X(C) of complex points can be described in terms of an Eichler Z-order R of

level N+ in a quaternion algebra B over Q ramified exactly at S−{∞}. Namely, the set V of

trace zero elements in B equipped with the quadratic form Q induced by the reduced norm

is a quadratic space of signature (1, 2), and is anisotropic at all the places v ∈ S − {∞}. The

action of B× on V via conjugation identifies B× with the group of spinor similitudes of V . It

naturally acts on the conic CV ⊆ P(V ) whose rational points over a field E of characteristic

0 are given by

CV (E) = {` ∈ P(VE) | Q(`) = {0}} . (1)
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Here and from now on, if M is an abelian group, and A is a ring, write MA := M ⊗Z A. The

group Γ of units of R acts discretely on the symmetric space

K = CV (C)− CV (R)

associated to the orthogonal group of V . The set X(C) of complex points of X is identified

with the quotient Γ\K .

Given a vector v ∈ V for which Q(v) > 0, let ∆(v) ⊂ K be the two points in K represented

by a vector orthogonal to v. Each positive integer D in

DS := {D ∈ Z>0 | ∃v ∈ V such that Q(v) = D}

gives rise to a zero-cycle on X by setting

∆(D) :=
∑

v∈Γ\R0,
Q(v)=D

1

#StabΓ/{±1}(v)
∆(v) ∈ Div(X(C))Q, (2)

where R0 ⊆ V is the Z-lattice R ∩ V . The divisor ∆(D), which is supported on a finite set

of CM points on X, is a simple instance of a Heegner divisor on this Shimura curve. The

Gross–Kohnen–Zagier theorem asserts that the classes of ∆(D) in the Jacobian of X can be

packaged into a modular generating series of weight 3/2. Namely, let L be the tautological

line bundle of isotropic vectors whose spans are points of K . This bundle is B×-equivariant

and, therefore, descends to a line bundle on X(C), which is identified with the cotangent

bundle of X. In particular, it has a model over Q. Denote by [∆] (resp. [L∨]) the class in

Pic(X)(Q) of a divisor ∆ (resp. of the dual L∨ of the line bundle L) on X. Then, the formal

generating series

G(q) := [L∨] +
∑
D∈DS

[∆(D)]qD ∈ Pic(X)(Q)Q[[q]], (3)

is a modular form of weight 3/2 and level Γ0(4N), where N is the product of N+ with all

finite places in S.

Remark 1.1. Let A be an abelian group and let f ∈ A[[q]] be a formal q-series with coefficients

in A. Then f is called a modular form of weight 3/2 and level Γ0(4N) if for every morphism

ϕ : A→ C the generating series ϕ(f) ∈ C[[q]], obtained by applying ϕ to each of the coefficients

of f , is the q-expansion of a modular form of weight 3/2 and level Γ0(4N).

The Gross–Kohnen–Zagier theorem was first proved in [12] in the case of modular curves

(i.e., where S = {∞}) by calculating the Arakelov intersection pairings of the divisors ∆(D)

with a fixed CM divisor. It was extended by Borcherds [5] to the setting of orthogonal groups

of real signature (n, 2), encompassing Shimura curves as a special case where the underlying

quadratic space is of signature (1, 2), as a consequence of his theory of singular theta lifts.

The work of Yuan, Zhang, and Zhang [26] proves Theorem 1.2 in much greater generality, for

certain orthogonal groups over totally real fields.

The goal of this article is to describe a new proof of the Gross–Kohnen–Zagier theorem in

the case where S 6= {∞}, i.e., when X is not a modular curve. To simplify the exposition we

will also assume that 2 - N .
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Theorem 1.2. The generating series G(q) ∈ Pic(X)(Q)Q[[q]] of (3) is a modular form of

weight 3/2 and level Γ0(4N).

Our approach to this theorem rests on the fact that, at a finite place p ∈ S, the curve

X(Cp) admits a p-adic analytic uniformization. More precisely, X(Cp) can be described as

the quotient of the p-adic upper half-plane by the discrete action of the norm one elements

of an Eichler Z[1/p]-order R of level N+ in the (definite) quaternion algebra ramified exactly

at S − {p}. Furthermore, the Heegner divisors ∆(D) can be described p-adically in terms of

this uniformization. This immediately gives an expression of the generating series of degrees

deg(G)(q) = deg(L∨) +
∑
D∈DS

deg(∆(D))qD

in terms of definite ternary theta series, recovering a well-known modularity result (see for

example [15, Chapter 2] and [18, Theorem I]). Thus, it is enough to prove modularity of the

generating series TG(q) for Hecke operators of degree 0, for which TG(q) takes values in the

Q-rational points of the Jacobian J of X. The existence of a basis of modular forms with

rational coefficients then reduces the problem to proving modularity of the generating series

logω(TG)(q) :=
∑
D∈DS

logω([T∆(D)])qD ∈ Qp[[q]]

for every cotangent vector ω of JQp with associated p-adic formal logarithm logω : J(Qp)→ Qp.

For appropriate Hecke operators T , the p-adic description of the divisors T∆(D) leads to an

expression of this series as the ordinary projection of an infinitesimal p-adic deformation of

a positive definite ternary theta series attached to the data (ω,R, T ). More precisely, these

data give rise to a p-adic family of weighted theta series Θk of weight k+ 3/2, k ∈ Z×p , whose

specialization at weight 3/2 vanishes (see Section 7.3 for its definition). It then follows that

its derivative with respect to k evaluated at k = 0, denoted Θ′0, is a p-adic cusp form of

weight 3/2. Let eord be p-ordinary projector acting on this space. By a classicality result,

eord(Θ′0) is a cusp form of weight 3/2 and level Γ0(4N). Let pr1 be the projector on the space

of cusp forms of weight 3/2 and level Γ0(4N) to the eigenspace of the Hecke operator Up2 of

eigenvalue 1. The main contribution of this article is the following formula.

Theorem 1.3. We have

logω(TG) = pr1(eord(Θ′0)).

To summarize, the fact that TG is a modular form is a consequence of the modularity of

definite theta series and classicality of ordinary p-adic modular forms of half-integral weight.

Remark 1.4. As the proof of Theorem 1.2 is a purely p-adic analytic one, it seems likely that

it carries over to more general settings, e.g., to Shimura curves over totally real fields which

admit a p-adic uniformization. The assumption that N+ is square-free stems from using p-

adic families of scalar-valued half-integral modular forms, which seem only well-behaved in

that case. Generalizing to arbitrary level likely requires a theory of families of vector-valued

modular forms, which so far has only been developed in a few instances (see [19]).
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The strategy sketched above bypasses the global height pairings studied by Gross, Kohnen,

and Zagier, or the singular theta lifts that arise in the approach of Borcherds. It can be

envisaged as fitting into the broader framework of a “p-adic Kudla program”, in which p-

adic families of modular forms play much the same role as analytic families of Eisenstein

series in the Archimedean setting. Insofar as the generating series G are among the sim-

plest instances of the modular generating series arising in the Kudla program, it is hoped

that the p-adic techniques described here will be more widely applicable, shedding light on

the connection between special cycles on orthogonal and unitary Shimura varieties, p-adic

Borcherds-type lifts, and p-adic families of theta series. A general framework is laid out in the

article [7], which introduces the notion of rigid meromorphic cocycles for orthogonal groups.

In loc.cit. modularity statements for generating series of special divisors on arithmetic quo-

tients on higher-dimensional p-adic symmetric spaces are formulated. A crucial input in their

proof is the injectivity of the first Chern class when the arithmetic quotient has dimension 3

and higher. Theorem 1.2 complements the main theorem of [7] by extending it to the case of

curves, where the kernel of the Chern class map needs to be considered.

The organization of the article is as follows. Section 2 explains the p-adic uniformization

of X and states the Gross–Kohnen–Zagier theorem in terms of this uniformization. Theorem

2.7 below describes the main result, which is somewhat more general than Theorem 1.2,

since the divisors ∆(D) are replaced by linear combinations of Heegner points weighted by

Schwartz–Bruhat functions. Section 3 gives a short proof of the modularity of deg(G). Section

4 introduces the p-adic Abel–Jacobi map, which gives an explicit description of the Jacobian

of a Mumford curve. This description is used in Section 5 to construct certain functionals on

the Jacobian, whose values at Heegner points are computed in Section 6. In Section 7, we

define the p-adic family Θk, prove a classicality result regarding ordinary p-adic cusp forms

of half-integral weight and prove the main Theorem 1.3, which implies the Gross–Kohnen–

Zagier theorem. Finally, Section 8 illustrates the construction of Θk by presenting a concrete

example where S = {7, 13,∞} and p = 7. In this case, the ordinary projection of Θ′0 is

computed numerically modulo p.
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2. The Cerednik–Drinfeld theorem

This section recalls the theorem of Cerednik–Drinfeld, which gives a rigid analytic uni-

formization of X at a finite prime p ∈ S that is fixed once and for all. Moreover, we describe

Heegner divisors in terms of this uniformization, which leads to a reformulation of the Gross–

Kohnen–Zagier theorem in this setting.

2.1. p-adic uniformization of X. The rigid analytic uniformization of X proceeds by re-

placing the place ∞ in the complex uniformization of the introduction by the prime p ∈ S.

To describe it, we need to introduce some notation. Let B be the quaternion algebra over Q
ramified exactly at the places in S − {p}. Let R be an Eichler Z[1/p]-order in B of level N+

and denote by Γ the group of reduced norm 1 elements in R. Let Q be the restriction of the

reduced norm to the space

V = {b ∈ B | Tr(b) = 0}
of elements of reduced trace zero in B. It endows V with the structure of a quadratic space

of rank 3 over Q, which is of real signature (3, 0). Denote by 〈·, ·〉 the symmetric bilinear form

attached to Q, that is, 〈v, w〉 := Q(v+w)−Q(v)−Q(w). As in the case of the quadratic space

V , the action of B× on V via conjugation identifies B× with the group of spinor similitudes

of V . The intersection R0 = R ∩ V is an even Z[1/p]-lattice in V .

A p-adic symmetric space is associated to the orthogonal group of VQp as follows. Similarly

to (1) denote by CV ⊆ P(V ) the conic over Q attached to V whose rational points over a field

E of characteristic 0 are given by

CV (E) = {` ∈ P(VE) | Q(`) = {0}} .

This conic has no rational points, but can be identified with the projective line P over Qp

as follows: choose an isomorphism of BQp with the matrix ring M2(Qp). The conic is then

identified with the space of non-zero nilpotent 2× 2-matrices up to scaling. Mapping such a

matrix to its kernel yields the desired isomorphism. The action of B×Qp is identified with the

action of GL2(Qp) on PQp via Möbius transformations.

Definition 2.1. The Drinfeld p-adic upper half plane is the Qp-rigid analytic space Hp, whose

E-rational points for any complete extension E/Qp is the set

Hp(E) := CV (E)− CV (Qp) ' P1(E)− P1(Qp).

We briefly explain the rigid analytic structure on Hp in terms of the reduction map to the

Bruhat–Tits tree. The Bruhat–Tits tree, denoted T , is the graph whose set of vertices is the

set of unimodular Zp-lattices in VQp . Two unimodular Zp-lattices L1 and L2 are joined by

an edge if they are p-neighbours, that is,

[L1 : L1 ∩ L2] = [L2 : L1 ∩ L2] = p.

A choice of a vertex L gives a smooth Z(p)-integral structure CL to the conic CV . If L′ is

adjacent to L, then the image of L ∩ L′ in L/pL is a 2-dimensional non-regular subspace,
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hence contains a unique isotropic subspace `L′ . Mapping the edge (L,L′) to `L′ yields a

bijection between the set of lattices adjacent to L and CL(Fp) ' P1(Fp). It follows that T is

homogeneous of degree p + 1. The set of vertices and edges of T are denoted by T0 and T1

respectively, and T shall be viewed as a disjoint union T = T0 tT1. Identifying the quadratic

space VQp with the set of trace zero endomorphisms of Q2
p endowed with the norm form gives

the more familiar description of the tree in terms of similarity classes of Zp-lattices in Q2
p.

Indeed, the assignment [Λ] 7→ Hom0(Λ,Λ) is a bijection between such similarity classes and

unimodular lattices in VQp . Moreover, two classes [Λ1], [Λ2] are joined by an edge if they

admit representatives Λ1 and Λ2 satisfying pΛ1 ⊂ Λ2 ⊂ Λ1. From this description one easily

deduces that T is indeed a tree. The identification of the two graphs is compatible with the

natural actions of B×Qp and GL2(Qp). We define a notion of parity on the vertices of T by

requiring that every edge connects an even vertex with an odd one. There are exactly two

possible choices for this and we choose one of them. The action of the elements of reduced

norm one in BQp on T is parity-preserving.

We proceed by describing the well-known reduction map

red: Hp(Cp) −→ T

in the language of quadratic forms. For that let OCp denote the ring of integers of Cp and

m ⊆ OCp its maximal ideal. Every unimodular Zp-lattice L ⊆ VQp induces a reduction map

CV (Cp) = CL(OCp) −� CL(Fp).

(1) Let L ⊆ VQp be a unimodular Zp-lattice. Then red−1(L) is the complement of the

p+ 1 residue discs around the points in CL(Fp).
(2) Let L,L′ ⊆ VQp be two unimodular Zp-lattices that are p-neighbours and `L′ ∈ CL(Fp)

the corresponding isotropic line. The preimage of the edge (L,L′) under the reduction

map consists of those elements z ∈ CL(OCp) that are congruent to `L′ modulo m but

not modulo p.

One readily checks that the reduction map is B×Qp-equivariant.

A finite closed subgraph of T is a finite set G ⊂ T satisfying

(v1, v2) ∈ G ∩ T1 ⇒ v1, v2 ∈ G ∩ T0.

A standard affinoid subset of Hp is a set of the form red−1(G), where G is a finite closed

subgraph of T .

Definition 2.2. A function on Hp is said to be rigid analytic if its restriction to any standard

affinoid subset A ⊂ Hp can be written as a uniform limit of rational functions having poles

outside of A. A function on Hp is said to be rigid meromorphic if it is the quotient of two

rigid analytic functions, where the denominator is non-zero.

The group Γ acts naturally on Hp by conjugation. This action is discrete because Γ is a p-

arithmetic subgroup of an algebraic group that is compact at∞. It follows from there that the

quotient space Γ\Hp has a natural structure of a rigid analytic variety over Qp. On the other

hand, the analytification of X gives a rigid analytic space over Qp. The Cerednik-Drinfeld

theorem states that these two spaces can be identified after base change to the unramified
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quadratic extension Qp2 of Qp. This identification depends on choices. To make this precise,

let us introduce the following notation: for a finite set Σ of places of Q write AΣ ⊂
∏
v/∈Σ Qv

for the ring of finite adéles away from Σ. Moreover, let Ẑ (resp. Ẑ(p)) be the maximal order

of A∞ (resp. of Ap,∞). Given a finitely generated Z[1/p]-module M , we put M̂ = M ⊗ Ẑ(p).

Fix an identification

VAp,∞ ' VAp,∞ (4)

sending the Ẑ(p)-lattice R̂0 to R̂0.

Theorem 2.3 (Cerednik–Drinfeld). The identification (4) induces an isomorphism

X
∼−−→ Γ\Hp. (5)

of rigid analytic spaces over Qp2.

Proof. See [25], [9] and [6]. �

2.2. p-adic analytic description of Heegner divisors. In analogy with the cycles defined

in the introduction, every non-zero element v ∈ V yields a cycle ∆(v) on Hp: ∆(v) is the

sum of those points in Hp that are orthogonal to v. This cycle has degree 0 or 2 depending

on whether the orthogonal complement of v in VQp represents 0 or not. In other words,

∆(v) 6= 0 if and only if
√
−Q(v) 6∈ Qp. By the Hasse–Minkowski theorem the set DS from

the introduction is characterized locally. In particular, one gets the description

DS = {D ∈ Z | ∃v ∈ V − {0} such that Q(v) = D and ∆(v) 6= 0} ,

where we used that B ramifies exactly at S − {p} while B ramifies exactly at S − {∞}.

Lemma 2.4. Let D be an element of DS and v ∈ V with Q(v) = D.

(1) If ordp(D) = 0, there exists a unique unimodular Zp-lattice L in VQp containing v.

The support of ∆(v) is contained in red−1(L).

(2) If ordp(D) = 1, there exist exactly two unimodular Zp-lattices L1, L2 in VQp containing

v, which are p-neighbours. The support of ∆(v) is contained in red−1((L1, L2)).

Proof. Let W be the orthogonal complement of v in VQp . As W is anisotropic, it contains a

unique maximal Zp-lattice LW , on which Q takes values in Zp (see for example [1, Lemma

11]). Moreover, it is characterized by the property that its discriminant module is an Fp-
vector space. Suppose there exists a unimodular lattice L containing v. By [7, Lemma 1.1]

the discriminant module of L∩W is an Fp-vector space and thus equal to LW . In particular,

L must contain Zpv ⊕ LW .

If ordp(D) = 0, one easily checks that LW is unimodular. Thus, Zpv ⊕ LW is the unique

unimodular Zp-lattice containing v. If ordp(D) = 1, then LW is of index p in its dual.

Thus, the discriminant module M of Zpv ⊕ LW is a 2-dimensional Fp-vector space. A quick

calculation shows that Q induces a hyperbolic form on M . There exist exactly two self-dual

lattices containing Zpv ⊕ LW corresponding to the two isotropic lines in M .

Let σv be the unique simplex of T corresponding to v and Q(v) the Q-subalgebra of B

generated by v. Since Q(v)× fixes v, it follows that it also fixes σv. The statements about the

support of ∆(v) follow from the B×Qp-invariance of the reduction map. �
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The space S (VAp,∞) of Z-valued Schwartz–Bruhat functions on VAp,∞ admits an action of

B×Ap,∞ induced by the conjugation action on VAp,∞ . Attached to an R̂×-invariant function

Φ ∈ S (VAp,∞) and a non-zero rational number D is the zero-cycle

∆Φ,Γ(D) =
∑

v∈Γ\V, Q(v)=D

1

#StabΓ/{±1}(v)
Φ(v)∆(v) ∈ Div(Γ\Hp)Q, (6)

on Γ\Hp. Note the formal similarities between (2) and (6) when Φ is the characteristic

function of R̂0, that will simply be denoted as 1R0 . We proceed to make them precise. By

the theory of complex multiplication, the Heegner points appearing in the divisors ∆(D) of

the introduction are defined over Q. Hence, after fixing an embedding Q ⊂ Cp, these divisors

can be viewed as elements in Div(X(Cp)).

Proposition 2.5. Let D ∈ DS. The cycle ∆1R0
,Γ(D) of (6) viewed as an element of

Div(X(Cp)) via the Cerednik–Drinfeld uniformization theorem is equal to the cycle ∆(D)

of (2).

Proof. Since R0 is a Z[1/p]-lattice,

∆1R0
,Γ(D) = ∆1R0

,Γ(Dp2n)

for every n ≥ 0. On the other hand, the fact that B is ramified at p implies that

ordp(Q(R0 − pR0)) ⊆ {0, 1}.

Therefore, multiplication by p gives a bijection between elements of length D and elements

of length Dp2 in R0 for every n ≥ 0, which yields the equality ∆(D) = ∆(Dp2n). It is then

enough to prove the identification when D ∈ DS is such that ordp(D) ∈ {0, 1}. The case when

ordp(D) = 0 is treated in Theorem 5.3 of [3] and the case when ordp(D) = 1 follows from [20,

Section 3.3] and [22, Proposition 5.12]. �

The Weil representation attached to V and the standard character ψ : Q\A→ C× induces

an action of the metaplectic group S̃L2(Ap,∞) on S (VAp,∞) that commutes with the B×Ap,∞-

action. For M ≥ 0, let K0(M)(p) be the subgroup of SL2(Ap,∞) consisting of matrices in

SL2(Ẑ(p)) with left lower entry divisible by 4M . Since K0(4M)(p) splits the exact sequence

1 −→ {±1} −→ S̃L2(Ap,∞) −→ SL2(Ap,∞) −→ 1

defining the metaplectic group, it can be regarded as a subgroup of S̃L2(Ap,∞). We similarly

define K0(4M) and view it as a subgroup of SL2(A∞) and of S̃L2(A∞).

Definition 2.6. A Schwartz–Bruhat function Φ ∈ S (VAp,∞) is called special if

(1) Φ is R̂×-invariant,

(2) Φ is K0(4N)(p)-invariant, and

(3) Φ(pv) = Φ(v) for all v ∈ V .

The characteristic function 1R0 is the prime example of a special Schwartz–Bruhat function.

Let Φ be a special Schwartz–Bruhat function. Property (2) implies that for D ∈ Z(p) − {0}
we have ∆Φ,Γ(D) = 0 unless D ∈ DS . Furthermore, the equality

∆Φ,Γ(p2D) = ∆Φ,Γ(D) (7)
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holds for all D ∈ DS by Property (3). The remainder of this work will solely be concerned

in proving the following p-adic analytic version of the Gross–Kohnen–Zagier theorem, which

implies Theorem 1.2 in view of the previous proposition and the fact that 1R0 is special.

Theorem 2.7. Let Φ be a special Schwartz–Bruhat function. The generating series

GΦ,Γ(q) := Φ(0)[L∨] +
∑
D∈DS

[∆Φ,Γ(D)]qD ∈ Pic(Γ\Hp)Q[[q]],

is a modular form of weight 3/2 and level Γ0(4N).

Remark 2.8. The divisors described above are compatible under pullback in the following

sense. Let Φ be a Schwartz–Bruhat function on VAp,∞ invariant under R̂×. Suppose that R′

is an Eichler Z[1/p]-order contained in R, denote by Γ′ the group of reduced norm 1 units in

R′ and consider π : Γ′\Hp → Γ\Hp. Then it can be seen in a similar way as in the proof of

[17, Proposition 5.10] that, for every D ∈ DS ,

π∗(∆Φ,Γ(D)) = ∆Φ,Γ′(D).

Using that π∗◦π∗ is equal to multiplication by the degree of π on Div(Γ\Hp) and the previous

identity, we deduce that R can be replaced by R′ in the proof of Theorem 2.7. In particular,

we will assume from now on that Γ̄ := Γ/{±1} is torsion-free by choosing an appropriate

level N+. This will simplify some calculations as the group Γ̄ will act freely on Hp and T .

In particular, it is a free group on finitely many generators. Moreover, under this assumption

the coefficients of the divisors ∆Φ,Γ(D) are integral.

2.3. Hecke action on divisors. Let TN be the integral Hecke algebra away from N , which

is generated by the standard generators {T`}`-N (see [16, Section 1.2] for its definition). We

conclude the section describing the action of TN on the divisors as well as on the space of

R̂×-invariant Schwartz–Bruhat functions. Let ` be a prime not dividing N and fix α ∈ B×∩R
an element of reduced norm `. Consider the maps

Γ\Hp
π1←− (α−1Γα ∩ Γ)\Hp

α−−→ (Γ ∩ αΓα−1)\Hp
π2−−→ Γ\Hp.

Then, define the action of the Hecke operator T` on divisors as

T`(∆) := (π2,∗ ◦ α ◦ π∗1)(∆) for ∆ ∈ Div(Γ\Hp).

On the other hand, the action of on R̂×-invariant Schwartz–Bruhat functions is determined

as follows. If Γ = tj(Γ ∩ αΓα−1)δj for {δj}j ⊂ Γ we define

T`(Φ) :=
∑
j

Φ · (α−1δj),

where if β ∈ B×, Φ·β(v) := Φ(βvβ−1). Note that, since ` - N , R∩αRα−1 is an Eichler Z[1/p]-

order. Hence, by strong approximation, the double coset space
(
R̂ ∩ αR̂α−1

)×
\B̂×/B× has

precisely one element. Using this, together with the fact that R ∩ αRα−1 has an element

of reduced norm p ([2, Lemma 1.5]), we deduce: for the same {δj}j ⊂ Γ as above R̂× =

tj(R̂ ∩ αR̂×α−1)δj . Hence, R̂×α−1R̂× = tjR̂×α−1δj and it follows from there that T`(Φ) is

R̂×-invariant. It follows from this description that the Hecke action preserves the subspace of

special Schwartz–Bruhat functions.



10 LEA BENEISH, HENRI DARMON, LENNART GEHRMANN, AND MARTÍ ROSET

Lemma 2.9. Let Φ be a Schwartz–Bruhat function on VAp,∞ invariant under R̂×. The fol-

lowing identity of divisors holds:

T`(∆Φ,Γ(D)) = ∆T`(Φ),Γ(D).

Proof. Using that Γ̄ is torsion-free, the proof can be completed by following the next steps,

which are proved in a similar way than [17, Proposition 5.9 and Proposition 5.10]:

T`(∆Φ,Γ(D)) = (π2,∗ ◦ α ◦ π∗1) (∆Φ,Γ(D))

= (π2,∗ ◦ α)
(
∆Φ,α−1Γα∩Γ(D)

)
= π2,∗ ◦ α∆Φ·α−1,Γ∩αΓα−1(D)

= ∆T`(Φ),Γ(D).

�

Remark 2.10. When it is clear from the context that we are viewing Φ as a Γ-invariant

Schwartz–Bruhat function, we will write ∆Φ(D) (resp. GΦ) to denote ∆Φ,Γ(D) (resp. GΦ,Γ).

3. Modularity of degrees of Heegner divisors

Fix a special Schwartz–Bruhat function Φ. In this section, we prove that

deg(GΦ)(q) = Φ(0) deg(L∨) +
∑
D∈DS

deg(∆Φ(D))qD

is a modular form by comparing deg(GΦ) to a genus theta series attached to V .

Fix L0, . . . , Lr unimodular Zp-lattices in VQp that give a set of representatives of Γ\T0. For

every i consider the ternary theta series attached to the Schwartz–Bruhat function Φ ⊗ 1Li
on VA∞

Θi =
∑
v∈V

Φ(v)1Li(v)qQ(v).

Note that theta series Θi only depends on the class of Li in R×\T0. Since Φ is invariant under

K0(4N/p)(p) and Li is a unimodular Zp-lattice, Φ ⊗ 1Li is invariant under K0(4N/p). It is

well known that Θi is a modular form of weight 3/2 and level Γ0(4N/p) for every i (see for

example Theorem 4.1 of [4]). Define the modular form

EΦ :=
r∑
i=1

Θi.

The following lemma relates the degrees of those ∆Φ(D) with ordp(D) ∈ {0, 1} with the

corresponding Fourier coefficients of EΦ.

Lemma 3.1. Let D ∈ DS, then:

(1) if ordp(D) = 0, then 2aD(EΦ) = deg(∆Φ(D)), and

(2) if ordp(D) = 1 then, aD(EΦ) = deg(∆Φ(D)).
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Proof. Since Γ̄ is torsion-free, it does not stabilize any vertex of T0. Thus, Lemma 2.4 implies

that
r⊔
i=1

{v ∈ V ∩ Li | Q(v) = D} ∼−−→ {v ∈ Γ\V | Q(v) = D}

v 7−→ [v]

is bijective if ordp(D) = 0 and surjective and two-to-one if ordp(D) = 1, which implies the

assertion. �

Let M ∈ Z>0 and k such that 2k ∈ Z>0. When k is a half-integer, we will always assume

that the level M is divisible by 4. Denote by Mk(Γ0(M)) (resp. Sk(Γ0(M))) the space of

modular forms (resp. cusp forms) forms of weight k and level Γ0(M). Consider the subspaces

Mk(Γ0(M),Z) (resp. Sk(Γ0(M),Z)) of forms whose q-expansion has integral coefficients and

for any abelian group put

Mk(Γ0(M), A) := Mk(Γ0(M),Z)⊗Z A and Sk(Γ0(M), A) := Sk(Γ0(M),Z)⊗Z A.

We view these as subspaces of the group A[[q]] of formal q-series with coefficients in A. By

[23, Lemma 8] there exists a basis of Mk(Γ0(M)) consisting of forms with integral coefficients.

Hence, the natural homomorphisms

Mk(Γ0(M),C)
∼−−→Mk(Γ0(M)) and Sk(Γ0(M),C)

∼−−→ Sk(Γ0(M))

are bijective. We now introduce several operators acting on M3/2(Γ0(M), A). For that let

f =
∑
n≥0

anq
n ∈ A[[q]]

be a formal q-series with coefficients in A. Define

Tp2(f) :=
∑
n≥0

(
ap2n +

(
−n
p

)
an + pan/p2

)
qn,

Up2(f) :=
∑
n≥0

ap2nq
n,

and put Vp2f := Tp2f − Up2f . Now suppose that f ∈ M3/2(Γ0(M), R) is a modular form.

Then Tp2f ∈M3/2(Γ0(M), R) if p -M and, in case p |M , we have Up2f ∈M3/2(Γ0(M), R).

Proposition 3.2. The modular form EΦ is an Eisenstein series of level Γ0(4N/p). In par-

ticular, it satisfies Tp2(EΦ) = (p+ 1)EΦ.

Proof. Observe that, if we denote by R×+ the subgroup of R× consisting of units whose reduced

norm has even p-adic valuation, we have [R× : R×+] = 2. It follows from there that r is even and

that we can suppose that the representatives {Li}i of Γ\T0 are arranged so that {L1, . . . , Lr/2}
give a set of representatives of R×\T0. Then, since ΘLi only depends on the class of Li in

R×\T0, we have EΦ = 2
∑r/2

i=1 ΘLi . Since all Eichler Z[1/p]-orders of level N+ in B are

conjugate, the set {L1, . . . , Lr/2} forms a genus of integral quadratic forms. The Siegel–Weil

formula (see [18, Theorem 4.1 (ii)]) states that the sum of theta functions in a given genus -

and therefore EΦ - is an Eisenstein series. �
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Since Φ is special, (7) implies that

Up2(GΦ(q)) = GΦ(q).

We proceed to modify EΦ so that it becomes invariant under Up2 as well. For that, put

E1
Φ := E − Vp2(E) ∈M3/2(Γ0(4N)).

Corollary 3.3. We have Up2(E1
Φ) = E1

Φ.

Proof. Since (Up2 ◦ Vp2)(E) = pE (which can be verified directly from the description of Up2

and Vp2 given above), we have

Up2(E1
Φ) = Up2(E)− pE.

Using that Up2 = Tp2 − Vp2 and Proposition 3.2 yields the desired result. �

We can finally prove the main result of this section.

Proposition 3.4. The equality deg(GΦ)(q) = E1
Φ holds. In particular, deg(GΦ)(q) is an

Eisenstein series of weight 3/2 and level Γ0(4N).

Proof. By Lemma 3.3, the equality Up2(E1
Φ) = E1

Φ holds. On the other hand, since Φ is special

we have deg(∆Φ(Dp2)) = deg(∆Φ(D)) for all D. Hence, it is enough to verify that the Fourier

coefficients of E1
Φ and of deg(GΦ) are equal in the following cases:

• If ordp(D) = 1, the second point of Lemma 3.1 implies

aD(E1
Φ) = aD(EΦ) = deg(∆Φ(D)).

• If ordp(D) = 0 and
(
−D
p

)
= −1, the first point of Lemma 3.1 gives

aD(E1
Φ) = 2aD(EΦ) = deg(∆Φ(D)).

• If ordp(D) = 0 and
(
−D
p

)
= 1, one calculates

aD(E1
Φ) = aD(EΦ)− aD(EΦ) = 0.

On the other hand, we have that ∆Φ(D) = 0, as GΦ(q) is supported only on non-

negative integers that belong to DS .

• If D = 0, we have a0(E1
Φ) = Φ(0)(1 − p)r, where we recall that r = #(Γ\T0). Now,

since Γ̄ is torsion-free, it follows that Γ\T is a (p+ 1)-regular graph. Thus, we readily

compute its first Betti number

g(Γ\T ) = 1−#(Γ\T0) + #(Γ\T1) = 1− r +
p+ 1

2
r,

which by [10, Theorem 5.4.1] equals the genus g of X. The degree of the cotangent

bundle of X is equal to 2g − 2. This implies that

a0(E1
Φ) = Φ(0)(1− p)r = Φ(0)(2− 2g) = Φ(0)deg(L∨).

Therefore, we obtain the desired equality deg(GΦ) = E1
Φ. �
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4. The Abel–Jacobi map

Because the curve X is a Mumford curve over Qp2 , its Jacobian, denoted by J , has purely

toric reduction and admits a concrete description in terms of equivalence classes of automorphy

factors of rigid meromorphic functions in Hp. In this section, we explain how the class in J

of a degree zero divisor can be described explicitly in these terms. Then, we introduce the

notion of divisors of strong degree 0, for which there exists a preferred choice of automorphy

factor describing its class in J . Finally, we use this notion to reduce Theorem 2.7 to the case

where all divisors appearing as coefficients of the generating series GΦ have strong degree 0.

4.1. Definition and properties of the Abel–Jacobi map. A formal divisor on Hp is a

formal, possibly infinite Z-linear combination of points in Hp. A formal divisor

D̂ =
∑
x∈Hp

mx(x)

is said to be discrete if the formal divisor

D̂ ∩ A :=
∑
x∈A

mx(x)

is an actual divisor, i.e., involves a finite sum for all standard affinoid subsets A ⊂ Hp.

The set of all discrete formal divisors on Hp is denoted by Div†(Hp). Denote by Div(Hp)

(resp. Div0(Hp)) the subset of finite divisors (resp. finite divisors of degree 0). The quotient

map π : Hp → Γ\Hp induces pullback and pushforward maps

π∗ : Div(Hp) −→ Div(Γ\Hp), π∗ : Div(Γ\Hp) −→ Div†(Hp),

since Γ acts on Hp with discrete orbits. Given ∆ ∈ Div(X(Cp)), let D ∈ Div(Hp) and

D̂ ∈ Div†(Hp) be (formal) divisors satisfying

π∗(D) = ∆, D̂ = π∗(∆). (8)

The divisor D is not unique, while the formal divisor D̂ is completely determined by ∆.

Given any degree zero divisor D on CV (Cp) ' P1(Cp), there is a rational function fD on

CV (Cp) having D as a divisor, which is unique up to a multiplicative constant. A rational

function f is extended multiplicatively to any divisor D =
∑

x∈CV (Cp)mx · (x) by setting

f(D) :=
∏

x∈CV (Cp)

f(x)mx .

Definition 4.1. The Weil symbol attached to two degree zero divisors D0 and D1 on CV (Cp)
with disjoint supports is the quantity

[D0; D1] := fD0(D1) ∈ Cp.

The Weil symbol generalises the familiar cross-ratio which one recovers when D0 and D1

are both differences of two points, and satisfies the following familiar properties:

(1) It is bilinear: for all degree zero divisors D0, D1 and D2

[D0; D1 + D2] = [D0; D1]× [D0,D2], [D0 + D1; D2] = [D0; D2]× [D1; D2],
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(2) It is B×Cp-equivariant:

[γD0; γD1] = [D0; D1] for all γ ∈ B×Cp .

(3) It is symmetric (Weil reciprocity):

[D0; D1] = [D1; D0].

(4) Given any pair D0 and D1 of degree zero divisors on Hp for which the support of D0

is disjoint from the Γ-orbit of the support of D1, the infinite product

[D0; D1]Γ :=
∏
γ∈Γ

[D0; γD1]

converges absolutely in C×p (see page 47 of [11]).

The quantity [D0; D1]Γ is called the modular Weil symbol attached to the divisors D0 and D1

on Hp and to the discrete p-arithmetic group Γ. It can be used to describe the Jacobian of X

as follows: let L be a complete extension of Qp2 , D ∈ Div0(Hp(L)) a divisor of degree 0 and

choose η ∈Hp(L) such that (η) and αD have disjoint support for all α ∈ Γ. Then, define θD

via

θD(z) = [(z)− (η); D ]Γ ∀z ∈Hp(L).

Note that for γ ∈ Γ one gets

θD(γz)

θD(z)
= [(γz)− (z); D ]Γ = [(γη)− (η); D ]Γ ∈ L×,

where in the last equality we used that the modular Weil symbol is invariant under the action

of Γ on any of the two divisors, and therefore the second expression is independent of z. We

then denote

jD(γ) = [(γη)− (η); D ]Γ. (9)

The function jD defines an element in Hom(Γ, L×) = Hom(Γab, L
×), where Γab is the abelian-

ization of Γ. In fact, jD factors through the maximal torsion-free quotient of Γab, that will be

denoted by Γ̄ = Γab/(Γab)tors. We need to introduce one more ingredient, the so-called p-adic

period pairing. Define

〈 , 〉 : Γ× Γ→ C×p ,

by choosing arbitrary base points τ1, τ2 ∈Hp that are not Γ-equivalent and setting

〈γ1, γ2〉 := [(γ1τ1)− (τ1); (γ2τ2)− (τ2)]Γ.

In a similar way as above, it can be seen that this expression does not depend on the choice

of τ1 and τ2, and is a homomorphism on each argument. Moreover, it descends to a pairing

〈 , 〉 : Γ̄ × Γ̄ → Q×p . The group Γ̄ is finitely generated of rank equal to the genus g of the

Shimura curve X and the pairing 〈 , 〉 gives an embedding

j : Γ̄ ↪−→ Hom(Γ̄,Q×p ) ' (Q×p )g.

Now, for a given ∆ ∈ Div0(Γ\Hp(L)), choose D ∈ Div0(Hp(L)) such that π∗D = ∆ and

define

AJ: Div0(Γ\Hp(L)) −→ Hom(Γ̄, L×)/j(Γ̄), ∆ 7−→ [jD ].
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It is a calculation to verify that the equivalence class of jD is independent of the choice of lift

of ∆, showing that the map AJ is well-defined. Remember that J denotes the Jacobian of

the curve X.

Proposition 4.2. The map AJ defined above is trivial on the group of principal divisors and,

for every complete extension L of Qp2, it induces an identification

J(L) ' Hom(Γ̄, L×)/j(Γ̄).

Moreover, if L/Qp2 is a Galois extension, the identification is Gal (L/Qp2)-equivariant.

Proof. See VI.2. and VIII.4 of [11]. �

In view of the previous proposition, AJ can be interpreted as a p-adic Abel–Jacobi map. We

also note that, by the positive definiteness of the pairing ordp◦〈·, ·〉, the natural homomorphism

from Hom(Γ̄,Z×
p2) to Hom(Γ̄,Q×

p2)/j(Γ) is an injection, whose image has finite index. This

gives the explicit description

J(Qp2)Q ' H1(Γ̄,Z×
p2)Q.

4.2. Divisors of strong degree 0. For any vertex L ∈ T0, consider the affinoid AL :=

red−1(L) ⊂ Hp and the wide open WL ⊂ Hp given as the preimage by red of the union of

the vertex L and all the (open) edges of T that have L as one of its endpoints.

Definition 4.3. Let D be a finite divisor on Hp.

(1) D is of strong degree 0 in an even sense if for every L ∈ T0 even vertex (resp. odd

vertex), we have that D ∩WL (resp. D ∩ AL) is of degree 0.

(2) D is of strong degree 0 in an odd sense if for every L ∈ T0 odd vertex (resp. even

vertex), we have that D ∩WL (resp. D ∩ AL) is of degree 0.

A divisor ∆ ∈ Div(Γ\Hp) is of of strong degree zero if the following equivalent conditions

hold:

(1) There exists divisors De,Do ∈ Div(Hp) of strong degree 0 in an even and odd sense

respectively such that π∗(De) = π∗(Do) = ∆.

(2) The formal divisor D̂ = π∗∆ satisfies that, for every L ∈ T0, the divisors D̂ ∩
WL and D̂ ∩ AL have degree 0.

We denote by Div0
s(Γ\Hp) the group of divisors of strong degree 0 on Γ\Hp. We also

denote Div0
s,e(Hp) (resp. Div0

s,o(Hp)) the group of divisors of strong degree 0 on Hp in an

even (resp. odd) sense. The motivation for these notions is explained in the next lemma.

Lemma 4.4. Let ∆ be an element of Div0
s(Γ\Hp). The homomorphism jDe ∈ Hom(Γ̄,C×p )

does not depend on a choice of De ∈ Div0
s,e(Hp) with π∗(De) = ∆. In particular, the morphism

Div0
s(Γ\Hp) −→ Hom(Γ̄,C×p ), ∆ 7−→ jDe ,

is a well-defined lift of the restriction of AJ to Div0
s(Γ\Hp). The same is true if one replaces

e by o everywhere.
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Proof. Let D , D ′ ∈ Div0
s,e(Hp) be such that π∗D = π∗D ′ = ∆. By the strong degree 0

assumption there exist vertices L1, . . . , Lr ∈ T0 and a decomposition

D = D1 + · · ·+ Dr

such that for 1 ≤ i ≤ r the divisor Di is of degree 0 and supported on

(1) WLi if Li is an even vertex, or

(2) ALi if Li is an odd vertex.

Since jDj = jγDj , for every γ ∈ Γ, we can suppose that the vertices L1, . . . , Lr are not Γ-

equivalent. Proceeding similarly for D ′, there exist lattices L′1, . . . , L
′
r′ ∈ T0 and degree 0

divisors D ′1, . . . ,D
′
r′ ∈ Div0(Hp) satisfying the same conditions as above. We have

D̂ =
r∑
i=1

∑
α∈Γ

αDi =
r′∑
i=1

∑
α∈Γ

αD ′i .

For α ∈ Γ, the divisor αDi has support in WαLi if Li is even and has support in AαLi if Li

is odd. Note that these supports are disjoint when i varies from 1 to r and α varies over Γ,

as Γ does not stabilize any vertex because Γ̄ is torsion-free. Moreover, the same holds for the

divisors αD ′i . Thus, we conclude that r = r′ and there exist α1, . . . , αr ∈ Γ such that

Di = αiD
′
i

for every i (after rearranging terms, if needed). We therefore have that jDi = jD ′i for all i and

the equality jD = jD ′ follows. �

Remark 4.5. If ∆ ∈ Div0
s(Γ\Hp) is a divisor supported on preimages of vertices by the

reduction map, both lifts De and Do are divisors of strong degree 0 in an even sense and in

an odd sense simultaneously. We will sometimes drop the subindices e and o in this case.

4.3. Reduction of the main theorem to convenient Schwartz–Bruhat functions.

Recall the action of TN on R̂×-invariant Schwartz–Bruhat functions introduced in Section 2.

We can similarly define an action of TN on the space Funct(Γ\T0,Z) of Γ-invariant integral

functions on T0.

Definition 4.6. A Schwartz–Bruhat function Φ on VAp,∞ is convenient if it is special, Φ(0) =

0, and for every D ∈ DS the divisor ∆Φ(D) is of strong degree 0.

Lemma 4.7. Let Φ be a special Schwartz–Bruhat function and let T ∈ TN be a Hecke oper-

ator that annihilates the space Funct(Γ\T0,Z). Then, the Schwartz–Bruhat function T (Φ) is

convenient.

Proof. For L ∈ T0, denote by δL the characteristic function of L. Define the homomorphism

degT0 : Div(Hp)→ Funct(T0,Z) by

degT0((P )) =

δL, if red(P ) = L ∈ T0,

δL + δL′ if red(P ) = (L,L′) ∈ T1.

This morphism is B×-equivariant, hence induces a TN -equivariant morphism

degT0 : Div(Γ\Hp) −→ Funct(Γ\T0,Z).
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We proceed to verify that ∆T (Φ)(D) is of strong degree 0 for a fixed D ∈ DS . From the Hecke

equivariance of degT0 , we have

degT0(∆T (Φ)(D)) = degT0(T (∆Φ(D))) = T (degT0(∆Φ(D))) = 0,

where we used Lemma 2.9 in the first equality. Since ∆T (Φ)(D) is supported on preimages

of vertices (resp. edges) if ordp(D) is even (resp. odd), the fact that degT0(∆T (Φ)(D)) = 0

implies that ∆T (Φ)(D) is of strong degree 0. Finally, from the fact that T sends the constant

functions on Funct(Γ\T0,Z) to 0, it follows that (T (Φ))(0) = 0. �

Let GΦ(q) ∈ Pic(Γ\Hp)[[q]] be the generating series introduced in Theorem 2.7. We now

use the Jacquet–Langlands correspondence to justify that to prove Theorem 2.7 it is enough

to prove it for the particular case where Φ is convenient.

Proposition 4.8. The following statements are equivalent:

(1) The generating series GΦ(q) is a modular form of weight 3/2 and level Γ0(4N) for

every special Schwartz–Bruhat function Φ.

(2) The generating series GΦ(q) is a cusp form of weight 3/2 and level Γ0(4N) for every

convenient Schwartz–Bruhat function Φ.

Proof. Clearly (1) implies (2). We justify the reverse implication. By Jacquet–Langlands, we

have:

• The action of TN on Funt(Γ\T0,Z) factors through the action of the Hecke algebra

(away from N) on M2(Γ0(N/p),Q).

• The action of TN on J(Cp)Q factors through the action of the Hecke algebra (away

from S) on the space of forms in S2(Γ0(N),Q) that are new at p.

Let ` be a prime such that ` 6∈ S and denote by T` ∈ TS the corresponding Hecke operator.

From the second point, we deduce that we have an isomorphism

Pic(X)(Cp)Q
∼−−→ J(Cp)Q ⊕Q, [∆] 7−→ ((T` − `− 1)∆,deg(∆)) .

Let Φ be a special Schwartz–Bruhat function. Since we proved that deg(GΦ) is a modular

form in Proposition 3.4, after replacing Φ by (T` − ` − 1)(Φ) (and by Lemma 2.9) we may

suppose that GΦ(q) ∈ J(Cp)Q[[q]]. Now, choose T ∈ TN satisfying

• T annihilates Funct(Γ\T0,Z) and

• T : J(Cp)Q → J(Cp)Q is a bijection.

By the first property and Lemma 4.7, T (Φ) is convenient and therefore GT (Φ)(q) = T (GΦ(q)) is

a modular form by hypothesis. Here T (GΦ(q)) denotes the q-expansion obtained by applying

T to each of the coefficients of GΦ(q). The fact that GΦ(q) ∈ J(Cp)Q[[q]] is a modular form

follows from the bijectivity of T on the Jacobian. �

Let Φ be a convenient Schwartz–Bruhat function. For every D ∈ DS , fix DΦ(D)e ∈
Div0

s,e(Hp) and DΦ(D)o ∈ Div0
s,o(Hp) such that π∗DΦ(D)e = π∗DΦ(D)o = ∆Φ(D). Note

that such lifts can be chosen such that they are invariant under the action of Aut(Cp/Qp). It
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follows from there that the homomorphisms jDΦ(D)e and jDΦ(D)o take values in Q×p . Consider

the generating series

G+
Φ(q) =

∑
D∈DS

jDΦ(D)e · jDΦ(D)oq
D ∈ Hom(Γ̄,Q×p )[[q]].

Since Φ is special, we have that aD(G+
Φ(q)) = aDp2n(G+

Φ(q)) for all n ≥ 0. Modularity of

G+
Φ(q) clearly implies the modularity of GΦ(q). Thus, we will only consider the former in the

remainder of this article.

5. Values of p-adic theta functions

The goal of this section is to give an explicit expression for the quantity jD(γ) when γ ∈ Γ

is hyperbolic at p and D is a divisor on Γ\Hp of strong degree 0. The formulas we will present

have a similar flavor to the ones for toric values of lifting obstructions of rigid meromorphic

cocycles given in [8, Section 5.3]. There, the orthogonal group of signature (3, 0) is replaced

by an orthogonal group of signature (1, 2).

Fix an element γ ∈ Γ that is hyperbolic at p. It has two distinct fixed points

ξ+, ξ− ∈ CV (Qp)

on the boundary of Hp. We order them in such a way that ξ+ and ξ− are the attractive and

repulsive fixed points of γ, i.e.,

lim
M→+∞

γMτ = ξ+, lim
M→−∞

γMτ = ξ−,

for all τ ∈Hp.

Lemma 5.1. For every D ∈ Div0(Hp) the following equality holds:

jD(γ) =
∏

α∈γZ\Γ

[
(ξ+)− (ξ−);αD

]
.

Proof. Recall first from (9) that

jD(γ) =
∏
α∈Γ

[(αγτ)− (ατ); D ] ,

where τ is an arbitrary base point in Hp. Since this infinite product converges absolutely, it

can be rearranged by grouping together the factors that belong to the same coset for γZ in Γ

jD(γ) =
∏

α∈Γ/γZ

( ∞∏
i=−∞

[
(αγi+1τ)− (αγiτ); D

])
.

The innermost product on the right hand side is equal to

lim
M→∞

M∏
i=−M

[
(αγi+1τ)− (αγiτ); D

]
= lim

M→∞

[
(αγM+1τ)− (αγ−Mτ); D

]
=
[
(αξ+)− (αξ−); D

]
.

It follows that

jD(γ) =
∏

α∈Γ/γZ

[
(αξ+)− (αξ−); D

]
=

∏
α∈γZ\Γ

[
(ξ+)− (ξ−);αD

]
,
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where the last equation was obtained by substituting α for α−1 and exploiting the fact that

the Weil Symbol is B×Qp-equivariant. �

5.1. The quotient γZ\T . We will rewrite the infinite product of Lemma 5.1 by making an

explicit choice of coset representatives for γZ in Γ, well adapted to the calculation at hand.

To make this choice, we will exploit the action of γZ on the Bruhat-Tits tree T . We explain

some of the properties of such action.

The element γ ∈ Γ is hyperbolic at p, and acts on VQp with three distinct eigenvalues $, 1,

and $−1, where $ is a global p-unit of norm 1 in the quadratic imaginary field that splits the

characteristic polynomial of γ (relative to an embedding of this quadratic imaginary field into

Qp). The valuation ordp($) = 2t > 0 is an even integer. Letting V [λ] denote the eigenspace

in V on which γ acts as multiplication by λ, one obtains the decomposition

VQp = V [$]⊕ V [$−1]⊕ V [1]. (10)

The first two eigenspaces are isotropic and together generate a hyperbolic plane in VQp whose

orthogonal complement is V [1]. The fixed points ξ+ and ξ− of γ in CV (Qp) correspond to

the isotropic lines V [$] and V [$−1] respectively. Given a Zp-lattice L ⊂ VQp , the eigenspace

decomposition (10) induces a containment

L ⊃ L[$]⊕ L[$−1]⊕ L[1],

where

L[$] := L ∩ V [$], L[$−1] = L ∩ V [$−1], L[1] = L ∩ V [1].

Definition 5.2. The depth of L with respect to γ is the integer n such that

p2n = [L : L[$]⊕ L[$−1]⊕ L[1]].

The depth measures how far L is from admitting an eigenspace decomposition under γ as

modules over Zp. Lattices that are of depth 0 are precisely those that decompose into a direct

sum of eigen-submodules for γ. If L = L[$]⊕ L[1]⊕ L[$−1] is of depth zero, then the same

is true of the lattices

Lj = pjL[$]⊕ L[1]⊕ p−jL[$−1], j ∈ Z.

The unimodular lattices Lj and Lj+1 are p-neighbours, and the element γ sends Lj to Lj+2t.

After fixing the base lattice L0, the sequence of successive p-neighbours

gγ =
{
. . . , L−2, L−1, L0, L1, L2, L3, . . .

}
determines an infinite geodesic on T which is globally preserved by γ. We suppose that the

enumeration is done so that L0 is an even vertex of T .

Definition 5.3. Let L ⊆ VQp be a unimodular Zp-lattice in VQp . The lattice Li ∈ gγ that is

closest to L is called the parent of L.

The distance from L to its parent is equal to the depth of L. A fundamental region for

γZ\T0 can therefore be defined by setting

T0,γ :=
{
L ∈ T0 with Parent(L) ∈ {L0, L1, L2, . . . L2t−1}

}
.
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The subset T0,γ ⊂ T can be written as an increasing union of finite subsets

T0,γ =
⋃
n≥0

T ≤n0,γ , T ≤n0,γ := {L ∈ T0,γ with depth(L) ≤ n}.

Let Aγ respectively A≤nγ be the subsets of Hp given as the preimages of T0,γ respectively T ≤n0,γ

under the reduction map. The set Aγ can thus be expressed as an increasing union of affinoid

subsets,

Aγ =
⋃
n≥0

A≤nγ . (11)

Using T0,γ , we proceed to give several fundamental regions for γZ\T1. Define T1,γ,e to be

the set of edges in T1 such that its even vertex is in T0,γ . For a given vertex L ∈ T0, let

WL ⊂ T1 be the set of open edges that have L as one of its endpoints. We then have,

T1,γ,e =
⋃
n≥0

T ≤n1,γ,e, T ≤n1,γ,e :=
⋃

L even
L∈T ≤n0,γ

WL.

Let Wγ,e and W≤nγ,e be the preimage by red of T1,γ,e and T ≤n1,γ,e, respectively. We then have

Wγ,e =
⋃
n≥0

W≤nγ,e . (12)

Observe that for every n the set W≤nγ,e can be written as the disjoint union of sets of the form

WL − AL, where L runs over even vertices in T ≤n0,γ . Similarly, define T1,γ,o, T ≤n1,γ,o, Wγ,o and

W≤nγ,o by replacing even by odd everywhere.

5.2. Computation of jD(γ) for divisors of strong degree 0. With the notations given

in the previous section in place, we can prove the following formulas.

Proposition 5.4. Let D be a divisor on Hp of strong degree zero supported on preimages of

vertices of T under the reduction map. Let D̂ =
∑

α∈Γ αD ∈ Div†(Hp). Then,

jD(γ) = lim
n→∞

[
(ξ+)− (ξ−); D̂ ∩ A≤nγ

]
.

Proof. Since D is of strong degree 0 we can write D =
∑r

i=1 DLi , where DLi is a degree 0

divisor supported on ALi and the Li are vertices in T0. By Lemma 5.1, we have

jD(γ) =
∏

α∈γZ\Γ

[
(ξ+)− (ξ−);αD

]
=

r∏
i=1

∏
α∈γZ\Γ

[
(ξ+)− (ξ−);αDLi

]
. (13)

Now, it follows from the definition of T0,γ , that for every i ∈ {1, . . . , r} and for every class

[α] ∈ γZ\Γ, there is precisely one representative γki,αα such that γki,ααDLi is supported on

Aγ . This implies that if we write

D̂ =
∑
α∈Γ

αD =
r∑
i=1

∑
α∈γZ\Γ

+∞∑
k=−∞

γkαDLi ,

we have

D̂ ∩ Aγ =

r∑
i=1

∑
α∈γZ\Γ

γki,ααDLi .
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On the other hand, using (13) and that ξ+ and ξ− are fixed by γ we can write

jD(γ) =

r∏
i=1

∏
α∈γZ\Γ

[
(ξ+)− (ξ−); γki,ααDLi

]
.

Combining the last two equalities, and specifying the order of multiplication on the last

expression for jD(γ) given by the increasing union of (11), we obtain the desired result. �

We can obtain similar expressions for jD(γ) when D is a divisor of strong degree 0 supported

on preimages of edges by the reduction map.

Proposition 5.5. Let D be a divisor on Hp supported on preimages of edges of T by the

reduction map. Let D̂ =
∑

α∈Γ αD ∈ Div†(Hp). We have:

(1) If D = De is of strong degree 0 in an even sense, then

jDe(γ) = lim
n→+∞

[
(ξ+)− (ξ−); D̂ ∩W≤nγ,e

]
.

(2) If D = Do is of strong degree 0 in an odd sense, then

jDo(γ) = lim
n→+∞

[
(ξ+)− (ξ−); D̂ ∩W≤nγ,o

]
.

Proof. We only give the proof for the first case, the second being similar. Write D =
∑r

i=1 DLi ,

where DLi is a degree 0 divisor supported on WLi −ALi and the set {L1, . . . , Lr} consists on

even vertices of T0. Hence, we have

jD(γ) =
∏

α∈γZ\Γ

[
(ξ+)− (ξ−);αD

]
=

r∏
i=1

∏
α∈γZ\Γ

[
(ξ+)− (ξ−);αDLi

]
.

Now, for every class [α] ∈ γZ\Γ and Li even vertex as above, there exists precisely one

representative γki,αα such that γki,ααLi ∈ T0,γ . It follows from there that the divisor γki,ααDLi

is supported on γki,ααWLi − γki,ααALi =W
γki,ααLi

−A
γki,ααLi

⊂ Wγ,e. This implies that if

D̂ =

r∑
i=1

∑
α∈γZ\Γ

+∞∑
k=−∞

γkαDLi ,

we have

D̂ ∩Wγ,e =
r∑
i=1

∑
α∈γZ\Γ

γki,ααDLi .

On the other hand,

jD(γ) =
∏

α∈γZ\Γ

[
(ξ+)− (ξ−); γki,ααDLi

]
. (14)

Note that W≤nγ,e can be written as a union of sets of the form WLi − ALi , where the union

is over even vertices in T ≤n0,γ . Hence, D̂ ∩W≤nγ,e is a degree 0 divisor (because D is of strong

degree 0). Moreover, the increasing union over n of the sets W≤nγ,e covers Wγ,e, as we deduced

in (12). This implies that we can use these sets to specify an order of multiplication on (14)

to obtain the desired expression. �
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6. Abel–Jacobi images of Heegner divisors

We use the results of Section 5 to compute Abel–Jacobi images of the Heegner divisors

introduced in Section 2. More precisely, let Φ be a convenient Schwartz–Bruhat function and

fix D ∈ DS . Choose DΦ(D)e,DΦ(D)o divisors on Hp of strong degree 0 in an even and odd

sense respectively that lift ∆Φ(D) and let D̂Φ(D) = π∗∆Φ(D). If ∆Φ(D) is supported on

preimages of vertices under the reduction map, we suppose that DΦ(D)e = DΦ(D)o and we

will drop the subindices e and o. At last, let γ ∈ Γ be an element hyperbolic at p. We will

compute jDΦ(D)e · jDΦ(D)o(γ).

6.1. Values of theta functions associated to Heegner divisors. Since Φ is invariant

under multiplication by p, we have ∆Φ(D) = ∆Φ(Dp2n) for every n ≥ 0. Therefore, we will

assume here and for the rest of the section that D is an element of DS with ordp(D) ∈ {0, 1}.
In view of the notion of depth of a lattice with respect to γ, which was introduced in Definition

5.2 and Remark 5.3, the following definition will be relevant.

Definition 6.1. Let v ∈ V be a vector such that Q(v) = D. The depth of v with respect to

γ is

depth(v) := min
L3v
{depth(L)},

where the minimum is taken over all unimodular Zp-lattices in VQp such that v ∈ L.

Note that by Lemma 2.4 there are exist at most two unimodular Zp-lattices containing v.

We now present the computation of jDΦ(D)e · jDΦ(D)o(γ), which is slightly different according

to the p-adic valuation of D. Let n ≥ 1. If ordp(D) = 0, consider

D̂Φ(D) ∩ A≤nγ =
∑

Q(v)=D,

Lv∈T ≤n0,γ

Φ(v)∆(v),

where the sum is over the vectors v ∈ V . Since this divisor is of degree zero, as Φ is convenient,

the function on CV given by

ξ 7−→
∏

Q(v)=D,

Lv∈T ≤n0,γ

〈ξ̃, v〉Φ(v),

where ξ̃ is any vector in the isotropic line generated by ξ in VCp , is well-defined and has divisor

equal to D̂Φ(D)∩A≤nγ . Therefore, if ξ̃+ and ξ̃− are vectors in VCp generating the Cp-lines ξ+

and ξ− introduced in Section 5, Proposition 5.4 implies

jDΦ(D)(γ) = lim
n→∞

∏
Q(v)=D,

Lv∈T ≤n0,γ

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)Φ(v)

= lim
n→∞

∏
v∈γZ\V
Q(v)=D,

depth(v)≤n

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)Φ(v)

. (15)

Here, the second equality follows from the fact that the terms appearing in the expression of

the middle do not change if we replace v by γv. If ordp(D) = 1, we can proceed similarly. In
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that case, the function on CV (Cp) given by

ξ 7−→
∏

Q(v)=D

ev∈T ≤n1,γ,e

〈ξ, v〉Φ(v)
∏

Q(v)=D

ev∈T ≤n1,γ,o

〈ξ, v〉Φ(v)

has divisor equal to

D̂Φ(D) ∩W≤nγ,e + D̂Φ(D) ∩W≤nγ,o .

It then follows from Proposition 5.5 that

jDΦ(D)e · jDΦ(D)o(γ) = lim
n→+∞

∏
Q(v)=D

ev∈T ≤n1,γ,e

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)Φ(v) ∏
Q(v)=D

ev∈T ≤n1,γ,o

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)Φ(v)

= lim
n→+∞

∏
v∈γZ\V
Q(v)=D

depth(v)≤n−1

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)Φ(v) ∏
v∈γZ\V
Q(v)=D

depth(v)≤n

(
〈ξ̃+, v〉
〈ξ̃−, v〉

)Φ(v)

,

(16)

where, in the second equality, we used that for every vector v ∈ γZ\V with Q(v) = D, the term

〈ξ̃+, v〉Φ(v)
/〈ξ̃−, v〉Φ(v)

appears two times if the distance from ev to the geodesic gγ preserved

by γ is lower or equal than n− 1, and one time if it is equal to n.

6.2. Vectors of length D in γZ\V . Recall that D ∈ DS is such that ordp(D) ∈ {0, 1}. We

give a concrete choice of representatives of the quotient{
v ∈ γZ\V

∣∣∣ Q(v) = D, depth(v) ≤ n
}
. (17)

This will lead to a relation between jDΦ(D)(γ) and Fourier coefficients of theta series in the

next section.

Recall the Zp-lattices L0, L1, . . . , L2t−1 introduced in Section 5, which form a set of repre-

sentatives modulo γZ of the vertices in the geodesic of T stabilized by γ. Let {w+, e, w−} be

generators of L0[$], L0[1] and L0[$−1] respectively. Then,

w+
j = pjw+, e, w−j = p−jw−

are generators of Lj [$], Lj [1] and Lj [$
−] for every j. Define

L+
j [n] :=

{
v ∈ Lj ∩ V

∣∣∣ Q(v) = Dp2n and 〈v, w+
j 〉 ∈ Z×p

}
and define L−j [n] in a similar way as above but replacing the symbol + by the symbol −
everywhere. The motivation for the definition of L+

j [n] and L−j [n] is the following. Let T +
j [n]

be the subset of T = T0 ∪ T1 of elements x ∈ T that are at distance equal to n from Lj and

satisfy that:

(1) If x = L is a vertex and Parent(L) = Lk, then k ≥ j.
(2) If x is an edge, for any of its endpoints L we have that if Parent(L) = Lk, then k ≥ j.
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Define T −j [n] in a similar way but replacing the symbol ≥ by the symbol ≤ everywhere. It

then follows from the description of the action of γZ in T that the disjoint union

2t−1⋃
j=0

{
v ∈ V

∣∣∣ Q(v) = D, red(∆(v)) ⊂ T +
j [n]

}
gives a set of representatives of (17). Similarly, the same holds if we replace the symbol + by

the symbol −.

Lemma 6.2. The map

L+
j [n]

∼−−→
{
v ∈ V

∣∣∣ Q(v) = D, red(∆(v)) ⊂ T +
j [n]

}
, u 7−→ u/pn

is bijective. The same result holds if we replace the symbol + by the symbol − everywhere.

Proof. We start proving that the map is well-defined. Let u ∈ L+
j [n] and let v = u/pn. Since

u is primitive, Lv (resp. ev) is at distance n from Lj if ordp(D) = 0 (resp. ordp(D) = 1).

Moreover, the condition 〈u,w+
j 〉 ∈ Z×p implies that if for any unimodular lattice L containing

v we denote Parent(L) = Lk, we have k ≥ j. Hence, red(∆(v)) ⊂ T +
j [n].

The injectivity of the map is clear, so we are left to prove surjectivity. For that, let v ∈ V
be such that Q(v) = D and red(∆(v)) ⊂ T +

j [n]. Since there is a unimodular Zp-lattice in VQp
containing v at distance n from Lj , we have that pnv ∈ Lj . Note that 〈pnv, w+

j 〉 6= 0. Indeed,

for the sake of contradiction suppose that 〈pnv, w+
j 〉 = 0. This implies that

pnv = aw+
j + be,

for a, b ∈ Zp. Then,

γ · (pnv) = a$w+
j + be.

Subtracting these two equations, we get that γv − v ∈ V is either 0 or it is an eigenvector

for the Q-linear action of γ on V of eigenvalue $. Since γv − v ∈ V and $ 6∈ Q, the only

possibility is that γv − v = 0. This implies that v ∈ 〈e〉, giving a contradiction with the fact

that
√
−D 6∈ Qp. We can therefore choose i ≤ j such that pnv ∈ L+

i [n]. Now, the fact that

the map is well-defined applied to the index i, together with the observation that the sets

T +
i [n] and T +

j [n] are disjoint if i 6= j proves that i = j and we are done. �

We can combine the information of Lemma 6.2 for j = 0, . . . , 2t− 1 to obtain the following

result.

Proposition 6.3. Let n ≥ 0, we have a bijection

L+
0 [n] ∪ · · · ∪ L+

2t−1[n]
∼−−→
{
v ∈ γZ\V

∣∣∣ Q(v) = D, depth(v) ≤ n
}

given by v 7→ [p−nv], where [p−nv] denotes the class of p−nv ∈ V modulo γZ. Moreover, the

same result is true if we replace the symbol + by the symbol −.

Proof. By Lemma 6.2 we have that the map

L+
0 [n] ∪ · · · ∪ L+

2t−1[n]
∼−−→

2t−1⋃
j=0

{
v ∈ V

∣∣∣ Q(v) = D, red(∆(v)) ⊂ T +
j [n]

}
, u 7−→ u/pn
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is bijective. We conclude the proof by recalling that the right hand side gives a set of repre-

sentatives of {
v ∈ γZ\V

∣∣∣ Q(v) = D, depth(v) ≤ n
}
.

�

As a consequence, we obtain the following expression for jDΦ(D)e · jDΦ(D)o(γ).

Theorem 6.4. Consider the same notation as above.

(1) If ordp(D) = 0, we have

jDΦ(D)(γ) = lim
n→+∞

2t−1∏
j=0

∏
v∈L+

j [n]〈w
+
0 , v〉Φ(v)∏

v∈L−j [n]〈w
−
0 , v〉Φ(v)

.

(2) If ordp(D) = 1, we have

jDΦ(D)e · jDΦ(D)o(γ) = lim
n→+∞

2t−1∏
j=0

∏
v∈L+

j [n]∪L+
j [n+1]〈w

+
0 , v〉Φ(v)∏

v∈L−j [n]∪L−j [n+1]〈w
−
0 , v〉Φ(v)

.

Proof. Suppose that ordp(D) = 0. By (15) and Proposition 6.3, we have

jDΦ(D)(γ) = lim
n→+∞

2t−1∏
j=0

∏
v∈L+

j [n]〈w
+
0 , vp

−n〉Φ(v)∏
v∈L−j [n]〈w

−
0 , vp

−n〉Φ(v)
.

Here we used that w+
0 (resp. w−0 ) generates the line ξ+ (resp. ξ−) and that Φ(pv) = Φ(v)

for every v ∈ V . Since the divisor DΦ(D) is of degree 0, the product of the factors p−nΦ(v)

is equal to 1, leading to the desired expression. The case when ordp(D) = 1 is proven in an

analogous way, but using (16), instead of (15). �

6.3. Computation of p-adic valuations. We end the section by using the previous calcu-

lations to compute the p-adic valuation of jDΦ(D)e · jDΦ(D)o(γ).

Proposition 6.5. Let Φ be a convenient Schwartz–Bruhat function. Then

ordp(jDΦ(D)e · jDΦ(D)o(γ)) = 0

for all γ ∈ Γ. In particular, we have

G+
Φ(q) ∈ Hom(Γ,Z×p )[[q]].

Proof. Using Theorem 6.4, together with the fact that ordp(〈w+
0 , v〉) = −j if v ∈ L+

j [n],

and ordp(〈w−0 , v〉) = j if v ∈ L−j [n], we deduce that it is enough to show that, for every

j ∈ {0, . . . , 2t− 1} and for every n ≥ 0, we have∑
v∈L+

j [n]

Φ(v) +
∑

v∈L+
j [n+1]

Φ(v) = 0

and that the same statement replacing the symbol + with − everywhere holds (which is

proven analogously). Note that the quantity on the left hand side can be interpreted as
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follows. Denote by A+
j [n] the preimage of T +

j [n] under the reduction map. Then,

D̂Φ(D) ∩
(
A+
j [n] ∪ A+

j [n+ 1]
)

=
∑
v∈V

Q(v)=D

red(∆(v))⊂T +
j [n]

Φ(v)∆(v) +
∑
v∈V

Q(v)=D

red(∆(v))⊂T +
j [n+1]

Φ(v)∆(v),

and

deg
(
D̂Φ(D) ∩

(
A+
j [n] ∪ A+

j [n+ 1]
))

=
∑
v∈V

Q(v)=D

red(∆(v))⊂T +
j [n]

2Φ(v) +
∑
v∈V

Q(v)=D

red(∆(v))⊂T +
j [n+1]

2Φ(v)

=
∑

v∈L+
j [n]

2Φ(v) +
∑

v∈L+
j [n+1]

2Φ(v),

where in the last equality we used Lemma 6.2 together with the fact that Φ is invariant under

multiplication by p. Recall that for a given lattice L we defined the wide open WL ⊂ Hp in

Section 4.2. Since we have the disjoint union

A+
j [n] ∪ A+

j [n+ 1] =
⋃

L∈T +
j [n+1]∩T0

WL ∪
⋃

L∈T +
j [n]∩T0

AL

and ∆Φ(D) is of strong degree 0, the result follows. �

7. First order p-adic deformations of ternary theta series

Fix a convenient Schwartz–Bruhat function Φ. By Proposition 6.5 above we know that

G+
Φ(q) belongs to Hom(Γ,Z×p )[[q]]. In order to prove modularity of G+

Φ(q) ∈ Hom(Γ,Z×p )Q[[q]]

it is therefore enough to prove that

logγ(G+
Φ)(q) :=

∑
D∈DS

logp(jDΦ(D)e · jDΦ(D)o(γ))qD ∈ Qp[[q]]

is a modular form for every γ ∈ Γ hyperbolic at p, which we fix from now on. Here logp
denotes the branch of the p-adic logarithm such that logp(p) = 0. In this section, we use γ

and Φ to construct a p-adic family of theta series Θk, of weight k + 3/2 and level Γ0(4N),

satisfying the following two properties. First, Θ0 = 0. Second, if we denote by Θ′0 the

derivative with respect to the p-adic variable k evaluated at k = 0, and eord the so-called

p-ordinary projector, then eord(Θ′0) ∈ S3/2(Γ0(4N),Qp). Furthermore, the generating series

logγ(G+
Φ)(q) is the projection to the Up2 = 1 eigenspace of 2eordΘ′0. In particular, it is a cusp

form of weight 3/2 and level Γ0(4N), which proves Theorem 2.7.

7.1. Shimura correspondence and ordinary subspaces. Let k be a non-negative integer.

For ` - N denote by T`2 (resp. T`) the associated Hecke operator acting on Sk+3/2(Γ0(4N),Z)

(resp. S2k+2(Γ0(4N),Z) and if ` | N denote by U`2 (resp. U`) the associated Hecke operator

acting on Sk+3/2(Γ0(4N),Z) (resp. S2k+2(Γ0(4N),Z). Let D be a square-free integer such

that (−1)k+1D > 0. Denote by

Sk,D : Sk+3/2(Γ0(4N),Q) −→ S2k+2(Γ0(2N),Q)
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the Shimura lifting map associated to D and N . It is given by the following formula

∑
n≥1

anq
n 7−→

∑
n≥1

 ∑
d|n

(d,N)=1

(
D

d

)
dka|D|n2/d2

 qn.

This map is equivariant with respect to the Hecke operators introduced above. We will need

the following key theorem.

Theorem 7.1. Let k ≥ 0. There exists a finite collection {Dj}j such that Dj ≡ 0 modulo

8N and {cj}j ∈ Q such that

Sk =
∑
j

cjSk,Dj : Sk+3/2(Γ0(4N),Q)
∼−−→ S2k+2(Γ0(2N),Q)

is a Hecke-equivariant isomorphism.

Proof. The result follows from Remark 1 on Page 221 of [21] and the fact that the C-span of

Sk+3/2(Γ0(4N),Q) is equal to the space of cusp forms of weight 3/2 and level Γ0(4N) by the

theorem of Serre and Stark. �

Consider the space Zp[[q]]⊗Zp Qp equipped with the norm∣∣∣∑
n≥0

anq
n
∣∣∣ = maxn{|an|}.

Since the eigenvalues of Up2 acting on Sk+3/2(Γ0(4N),Q) are algebraic integers, the operator

eord : Sk+3/2(Γ0(4N),Zp) −→ Sk+3/2(Γ0(4N),Zp), f 7−→ lim
m→+∞

Um!
p2 (f)

is well-defined. Denote by Sord
k+3/2(Γ0(4N),Zp) the image of this map, and similarly define

Sord
k+3/2(Γ0(4N),Qp). We also consider the analogous definition for integral weight cusp forms

and use similar notation.

Proposition 7.2. The rank of the finitely generated modules Sord
k+3/2(Γ0(4N),Zp) is constant

as long as k varies over non-negative integers such that k ≡ 0 mod (p− 1)/2.

Proof. It is enough to prove that dimQpS
ord
k+3/2(Γ0(4N),Qp) is constant as long as k ∈ Z≥0

and k ≡ 0 mod (p − 1)/2. Viewing Sk+3/2(Γ0(4N),Qp) and S2k+2(Γ0(2N),Qp) as subsets of

Zp[[q]]⊗Qp, we see that the extension of scalars to Qp of the Shimura isomorphism given in

Theorem 7.1 is Hecke-equivariant and continuous. It follows that eordSk = Skeord. From

there, we deduce that the restriction of Sk

Sord
k+3/2(Γ0(4N),Qp)

∼−−→ Sord
2k+2(Γ0(4N),Qp).

is an isomorphism. Since the dimensions of the right hand side are constant as long as

k ≡ 0 mod (p− 1) (see proof of Theorem 3 in Section 7.2 of [13]), the result follows. �
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7.2. Λ-adic forms of half-integral weight. We study the space of Λ-adic modular forms

of half-integral weight and prove a classicality result in this setting. We follow [13] and [14].

Let Λ = Zp[[T ]] denote the Iwasawa algebra over Zp and put u = 1 +p ∈ 1 +pZp. A Λ-adic

cusp form of half-integral weight is a formal power series

F =
∑
n≥1

Anq
n ∈ Λ[[q]]

such that there exists k0 (dependent on F ) satisfying that for all k ≥ k0 and k ≡ 0 mod (p−1),

the so-called weight k specialization

Fk := F (uk − 1) :=
∑
n≥1

An(uk − 1)qn ∈ Zp[[q]],

belongs to Sk+3/2(Γ0(4N),Zp). We denote the space of such forms by P. We define or-

dinary Λ-adic cusp forms of half-integral weight in the same way as above but replacing

Sk+3/2(Γ0(4N),Zp) by Sord
k+3/2(Γ0(4N),Zp), and we denote this space by Pord.

A key input to study the space Pord is the fact that rord = rankZpS
ord
k+3/2(Γ0(4N),Zp) is

constant as long as k ≥ 0 and k ≡ 0 mod (p− 1), proven in Proposition 7.2.

Theorem 7.3. Pord is free of finite rank over Λ. In particular, rankΛ(Pord) ≤ rord.

Proof. A proof of this statement can be found in Proposition 4 of [14]. There, Hida considers

different level structures than the ones considered here, but the same reasoning works in this

case. �

For every k ≥ 0, we can define a map

ϕk : Pord/PkPord −→ Zp[[q]], F 7−→ Fk,

where Pk = T − (uk − 1) ∈ Zp[[T ]], which is injective. The image of this map is a submodule

of Zp[[q]]. We can also view Sord
k+3/2(Γ0(4N),Zp) as a submodule of Zp[[q]]. The relation

between these two submodules is the so-called control theorem, which is again a consequence

of Proposition 7.2.

Theorem 7.4. Let k ≥ 0 such that k ≡ 0 mod (p − 1). Then, the map ϕk induces an

isomorphism

ϕk : Pord/PkPord ∼−−→ Sord
k+3/2(Γ0(4N),Zp).

Proof. The analogous statement for ordinary cuspidal Λ-adic forms of integral weight is known.

A proof can be found in Theorem 3, Section 7.3 of [13]. The same proof given there works for

the case of half-integral weight forms once we have Proposition 7.2.

Indeed, it can be proven that every element f ∈ Sord
k+3/2(Γ0(4N),Zp) is in the image ϕk as

in the case of integral weight forms. For example, this is done in Proposition 5 of [14]. Since

Pord is free of finite rank, this already implies the result for k large enough. To obtain the

result for general all k note that

Sord
k+3/2(Γ0(4N),Zp) ⊂ Im(ϕk) ⊂ Zp[[q]]. (18)

This implies

rord ≤ rankZp(Im(ϕk)).
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Since rankZp(Im(ϕk)) ≤ rankΛ(Pord), the previous inequality and Proposition 7.3 imply rord =

rankZp(Im(ϕk)). Hence, it follows from (18) that Im(ϕk) = Sord
k+3/2(Γ0(4N),Zp) and we are

done. �

Fix a Λ-basis {B1, . . . , Br} of Pord and write

Bi =
∑
n≥1

Ai,nq
n ∈ Λ[[q]].

By Theorem 7.4, the set {B1(0), . . . , Br(0)} forms a Zp-basis of Sord
3/2(Γ0(4N),Zp). Thus, there

exist n1, . . . , nr such that

det
(
(Ai,nj (0))1≤i,j≤r

)
6= 0.

Since det((Ai,nj (T ))1≤i,j≤r) ∈ Λ, it follows by continuity that there exists k0 such that if

k ≥ k0 and k ≡ 0 mod (p− 1), then

det
(

(Ai,nj (u
k − 1))1≤i,j≤r

)
6= 0. (19)

Now define

bi =
∑
n≥1

ai,nq
n,

where ai,n : Zp → Zp is the analytic function determined by ai,n(k) = Ai,n(uk − 1) for every

k ≥ 0 such that k ≡ 0 mod (p− 1).

We will now prove that certain first order derivatives of Λ-adic modular forms of half-integral

weight are modular forms themselves. Let F be a Λ-adic modular form of half-integral weight

such that F0 = 0. Let

F ′ :=
d

dk
Fk|k=0 = lim

k→0

Fk
k
∈ Zp[[q]]

be the first derivative of F with respect to k evaluated at k = 0. It is a weight 3/2 analogue

of a p-adic modular form in the sense of Serre. Here the limit is taken in Zp[[q]] ⊗ Qp with

respect to the norm introduced above. Recall that Up2 has the following expression at the

level of q-expansions: ∑
n≥0

anq
n 7−→

∑
n≥1

anp2qn.

Since |U2
p f | ≤ |f | for any f ∈ Zp[[q]]⊗Qp and Up2 is linear, it follows that we can define the

p-adic modular form of weight 3/2

eord(F ′) := lim
k→0

eord

(
Fk
k

)
.

Moreover, it is a calculation to verify that the limit

lim
m→+∞

Um!
p2 (F ′)

exists in Zp[[q]]⊗Qp and is equal to eord(F ′).

Corollary 7.5. For every F ∈ P with F0 = 0 the p-adic modular form eord(F ′0) is classical.

More precisely, it belongs to Sord
3/2(Γ0(4N),Qp).
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Proof. By definition,

eord(F ′) = lim
k→0

eord

(
Fk
k

)
.

Now, Theorem 7.4 implies that, for every k > 0 and k ≡ 0 mod (p− 1), we can write

eord

(
Fk
k

)
=

r∑
i=1

xi(k)bi(k),

where xi(k) ∈ Qp for every i. Let n1, . . . , nr be as above, and note that (xi(k))i is the solution

of the linear system of equations(
ai,nj (k)

)
j,i

(xi(k))i =

(
anj

(
Fk
k

))
j

.

Moreover, since the determinant of the matrix defining this system is an analytic function,

which is non-zero if k ≥ k0 and k ≡ 0 mod (p − 1) by (19) and the discussion above it, we

deduce that for every i the limit limk→0 xi(k) exists in Qp. Denote it by xi(0). Then,

eord(F ′) = lim
k→+∞

eord

(
F

k

)
=

r∑
i=1

xi(0)bi(0)

and it follows from Theorem 7.4 in the particular case that k = 0 that the right hand side

belongs to Sord
k+3/2(Γ0(4N),Qp), which concludes the proof. �

7.3. p-adic families of theta series. Recall that the element γ ∈ Γ determines a collection

of Zp-lattices Lj of depth zero, and let w+
j and w−j be generators of the Zp-modules Lj [$]

and Lj [$
−1] respectively. Note that w+

j , w
−
j can be viewed both as elements of VQ(γ) and

VQp , using the embedding Q(γ) ↪→ Qp satisfying that ordp($) = 2t > 0. These data, together

with Φ, can be used to define the following Schwartz–Bruhat functions

Φ+
j = Φ⊗ 1{v∈Lj | 〈v,w+

j 〉∈Z
×
p }, and Φ−j = Φ⊗ 1{v∈Lj | 〈v,w−j 〉∈Z×p }

on VA∞ for every j ∈ {0, . . . , 2t − 1}. We have that Φ is invariant under K0(4N/p)(p) by

assumption. Moreover,

1{v∈Lj | 〈v,w+
j 〉∈Z

×
p } = 1Lj − 1Lj∩Lj−1 , 1{v∈Lj | 〈v,w−j 〉∈Z×p } = 1Lj − 1Lj∩Lj+1 (20)

and Lj is unimodular, while Lj ∩ Lj−1 has level p for every j. It follows that Φ±j is invariant

under K0(4N) for every j. Since w+
j and w−j are isotropic, the functions v 7→ 〈w±j , v〉k are

harmonic polynomials on VQ(γ) for all integers k ≥ 0. Hence, the q-series

Θk :=

2t−1∑
j=0

∑
v∈V

Φ+
j (v)〈w+

j , v〉
kqQ(v) −

2t−1∑
j=0

∑
v∈V

Φ−j (v)〈w−j , v〉
kqQ(v) (21)

is a linear combination of classical theta-series with coefficients in the quadratic imaginary

field Q(γ) of weight k + 3/2 and level Γ0(4N) by [4, Theorem 4.1]. Via the embedding

Q(γ) ↪→ Qp, we can also view the Fourier coefficients of Θk as elements in Zp. Moreover,

since the non-zero terms in the infinite sum defining Θk solely involve elements of V for which

〈w+
j , v〉 (resp. 〈w−j , v〉) are p-adic units, it follows that the Fourier coefficients of Θk vary

analytically as functions of the variable k ∈ (Z/(p−1)Z)×Zp. We can therefore define Θk for



THE GROSS–KOHNEN–ZAGIER THEOREM VIA p-ADIC UNIFORMIZATION 31

k ∈ (Z/(p−1)Z)×Zp. It gives a prototypical instance of a Λ-adic modular form of half-integral

weight, in the sense that there exists a F ∈ P such that Fk = Θk for every k ≡ 0 mod (p− 1).

Lemma 7.6. The weight 3/2 specialization Θ0 is identically zero.

Proof. By (20), we have

Θ0 =

2t−1∑
j=0

∑
v∈V

Φ(v)
(
1Lj − 1Lj∩Lj−1

)
(v)qQ(v) −

2t−1∑
j=0

∑
v∈V

Φ(v)
(
1Lj − 1Lj∩Lj+1

)
(v)qQ(v)

= −
∑
v∈V

Φ(v)1L0∩L−1(v)qQ(v) +
∑
v∈V

Φ(v)1L2t−1∩L2t(v)qQ(v) = 0,

where in the last equality we used that γ(L0 ∩ L−1) = L2t ∩ L2t−1 and that the functions Φ

and v 7→ Q(v) are invariant under the action of γZ. �

Lemma 7.6 together with Corollary 7.5 immediately imply the following:

Corollary 7.7. The p-adic modular form eord(Θ′0) is classical. More precisely, it belongs to

Sord
3/2(Γ0(4N),Qp).

We now relate eord(Θ′0) with the generating series logγ(G+
Φ)(q).

Lemma 7.8. For every D ∈ DS and every n ≥ 0 the following equality holds:

aDp2n

(
logγ(G+

Φ)(q))
)

= aDp2n

(
eord

(
(1 + Up2)Θ′0

))
.

In particular, the right hand side does not depend on n.

Proof. It is enough to prove the formula when ordp(D) ∈ {0, 1}. Using (21), we can compute

aDp2m(Θ′0) =

2t−1∑
j=0

∑
v∈L+

j [m]

Φ(v) logp(〈w+
j , v〉)−

2t−1∑
j=0

∑
v∈L−j [m]

Φ(v) logp(〈w−j , v〉).

Hence, it follows from Theorem 6.4 that

aD
(
logγ(G+

Φ)(q))
)

= lim
m→+∞

aDp2m(Θ′0) + aDp2(m+1)(Θ′0). (22)

Note that it is also a consequence of Theorem 6.4, that the limit on the right hand side exists.

On the other hand, from the expression of the ordinary projection given above, we have

that for every n ≥ 0

aDp2n(eord(Θ′0 + Up2(Θ′0))) = lim
m→∞

aDp2(n+m!)(Θ′0) + aDp2(n+m!+1)(Θ′0).

Since the right hand side of the previous equation is a subsequence of the right hand side of

(22), we deduce that

aD
(
logγ(G+

Φ)(q))
)

= aDp2n(eord(Θ′0 + Up2(Θ′0))).

�
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The action of Up2 on Sord
3/2(Γ0(4N),Qp) diagonalizes. This can be justified, for example,

using Theorem 7.1 and the fact that the analogous statement for weight 2 forms of level

Γ0(2N) is well-known. In particular, we can consider

pr1 : Sord
3/2(Γ0(4N),Qp) −→ Sord

3/2(Γ0(4N),Qp)

to be the projection to the Up2 = 1 eigenspace. We prove the main identity of this work,

which implies Theorem 2.7.

Theorem 7.9. The following identity of formal power series holds:

logγ(G+
Φ)(q) = 2pr1(eord(Θ′0)).

In particular, logγ(G+
Φ)(q) is an element of Sord

3/2(Γ0(4N),Qp).

Proof. Since Up2 and eord commute, it is enough to prove that if

f = eord(Θ′0 + Up2Θ′0) =
∑
n≥1

an(f)qn,

we have logγ(G+
Φ)(q) = pr1(f). Note that by Theorem 7.8, we have that if D ∈ DS ,

aDp2n(logγ(G+
Φ)(q)) = aDp2n(f).

for every n ≥ 0. Therefore, the equality of the theorem follows from proving that, if D ∈ Z≥0

is such that ordp(D) ∈ {0, 1} and N ≥ 0:

(1) If
(
−D
p

)
= 1, aDp2n(pr1(f)) = 0.

(2) If
(
−D
p

)
∈ {0,−1}, aDp2n(pr1(f)) = aDp2n(f).

We begin proving the first point.The Atkin–Lehner involution at p, denoted wp, acts by

multiplication with −1 on pr1(f). Then, (1) follows from the description of the −1 eigenspace

for wp given in Remark 2 of [21]. We proceed to prove the second point. Write f as a sum of

eigenvectors for Up2 , namely

f =
r∑
i=1

fi,

where fi ∈ Sord
3/2(Γ0(4N), L) and there exists αi such that Up2fi = αifi for every i. Here L

is a finite extension of Qp containing all the elements αi. We can suppose without loss of

generality that αi 6= αj if i 6= j and that α1 = 1. In particular, f1 = pr1(f) (which is possibly

zero). Let D be such that it satisfies the conditions of (2). For every n ≥ 0, we can consider

the Dp2n-th Fourier coefficient of each side of the previous equality to obtain

aD(f) = aD(f1) +
r∑
i=2

αni aD(fi),

where we used that aD(f) = aDp2n(f) for every n ≥ 0, which holds by Theorem 7.8. Con-

sidering this equality for n = 0, . . . , r − 1 and using that the Vandermonde matrix asso-

ciated to {1, α2, . . . , αr} is non-singular we deduce that we must have aD(f) = aD(f1),

implying the desired equality. Once we have logγ(G+
Φ)(q) = 2pr1(eord(Θ′0)), the fact that

logγ(G+
Φ)(q) ∈ S3/2(Γ0(4N),Qp) follows from Corollary 7.7. �
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8. Numerical example

We conclude by presenting a concrete example where we numerically compute the p-adic

family Θk and the reduction modulo p of eord(Θ′0/p).

Let S = {7, 13,∞}, let p = 7 and consider B be the quaternion algebra over Q ramified

exactly at {13,∞}. It can be viewed as the algebra over Q generated by i, j, k where

i2 = −2, j2 = −13, ij = −ji = k.

Let R̃ be the maximal Z[1/p]-order of B given by 〈1/2 + j/2 + k/2, i/4 + j/2 + k/4, j, k〉, let

α = 1 + i ∈ B×, which has reduced norm ` = 3 6∈ S, and consider the Eichler Z[1/p]-order

R = R̃ ∩ αR̃α−1 of level 3. Denote by Γ the group of norm one units in R. The quotient

Γ\Hp is isomorphic to the Cp-points of the Shimura curve X.

8.1. Construction of the p-adic family Θk. Recall the definition of the p-adic family Θk

given in (21). This family depends on a choice of a Schwartz–Bruhat function Φ, an element

γ ∈ Γ hyperbolic at p and the eigenvectors of the action of γ on VQp . We proceed to fix

these data. Let R̃0 be the subgroup of elements of R̃ of reduced norm zero. As before, write

1R̃0
for the characteristic function of R̃0 ⊗ Ẑ(p). Consider the R̂× × K0(4 · 13)(p)-invariant

Schwartz–Bruhat function

Φ = 1R̃0
− 1R̃0

· α−1.

Since we have the factorization of ideals (7) = (7, x + 3)(7, x + 4) in the ring of integers of

Q[x]/(x2 + 5), the element (x + 3)/(−x + 3) = 3x/7 + 2/7 is a p-unit in Q[x]/(x2 + 5). Its

image in B with respect to the embedding

Q[x]/(x2 + 5) ↪−→ B, x 7−→ i

4
+
j

2
+
k

4
,

is equal to

γ =
2

7
+

3i

28
+

3j

14
+

3k

28
,

and it can be verified that γ ∈ Γ. Let p be the prime ideal spanned by 7 and x + 4 and fix

the embedding

Q[x]/(x2 + 5) ↪−→ Qp (23)

such that ordp((p)) = 1. Using that γ is hyperbolic at p, we deduce that its action on

V ⊗Q[x]/(x2 + 5) (and therefore on VQp) diagonalizes. The eigenvectors of γ are

w+ = i+

(
4x

39
− 2

39

)
j +

(
−4x

39
− 1

39

)
k

e = i+ 2j + k

w− = i+

(
−4x

39
− 2

39

)
j +

(
4x

39
− 1

39

)
k

with eigenvalues $ = −12x/49 − 41/49, 1 and $−1 respectively. Since vp($) = 2, we have

that t = 1. Note that 〈w+, w−〉 ∈ Z×p , which implies that {w+, w−} generate a hyperbolic

plane. Finally, consider the unimodular Zp-lattices

L0 = 〈w+, e, w−〉 = 〈i, j, k〉
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L1 = 〈pw+, e, w−/p〉 =

〈
i+ 2j + k, 14i− 28j

39
− 14k

39
,
i

7
+ j +

8k

7

〉
.

We can therefore consider the p-adic family Θk given in (21) attached to the data Φ, γ and

{w+, e, w−}.

8.2. Calculation of Θ0 and eord(Θ′0). Consider the same notation as above. For every

M ≤ 421 · p2 we can run over the following sets:{
v ∈ V

∣∣∣ 〈v, v〉 = M, 1R̃0
(v) · 1L0(v) = 1, 〈v, w+〉 or 〈v, w−〉 ∈ Z×p

}
,{

v ∈ V
∣∣∣ 〈v, v〉 = M, 1R̃0

(v) · 1L1(v) = 1, 〈v, pw+〉 or 〈v, p−1w−〉 ∈ Z×p
}
,{

v ∈ V
∣∣∣ 〈v, v〉 = M, 1α·R̃0

(v) · 1L0(v) = 1, 〈v, w+〉 or 〈v, w−〉 ∈ Z×p
}
,{

v ∈ V
∣∣∣ 〈v, v〉 = M, 1α·R̃0

(v) · 1L1(v) = 1, 〈v, pw+〉 or 〈v, p−1w−〉 ∈ Z×p
}
.

From there, it is possible to compute the first 421 · p2 Fourier coefficients of Θk, for k ∈ Z, as

well as of Θ′0. In particular, define

Θ+
R̃0,j

:=
∑
v∈V

〈v,p+jw+〉∈Z×p

1R̃0
(v) · 1Lj (v)qQ(v)

and define Θ−
R̃0,j

with the same expression but replacing the symbol + by the symbol −
everywhere. Define also Θ+

α·R̃0,j
and Θ−

α·R̃0,j
analogously. Then,

Θ0 =
(

Θ+
R̃0,L0

+ Θ+
R̃0,L1

−Θ−
R̃0,L0

−Θ−
R̃0,L1

)
−
(

Θ+
α·R̃0,L0

+ Θ+
α·R̃0,L1

−Θ−
α·R̃0,L0

−Θ−
α·R̃0,L1

)
and we verify that the first 421 · p2 Fourier coefficients are 0. For example, the first 4 terms

that appear in the previous expression are given below.

Theta series q-expansion
2 5 6 7 8 11 13 15 18 19 20 21 24 26 28 31 32

Θ+
R̃0,L0

2 2 4 4 6 8 2 8 6 6 8 8 8 6 6 10 14

Θ−
R̃0,L0

2 0 4 2 6 8 0 8 6 4 8 8 12 6 6 8 14

Θ+
R̃0,L1

2 0 4 2 6 8 0 8 6 4 8 8 12 6 6 8 14

Θ−
R̃0,L1

2 2 4 4 6 8 2 8 6 6 8 8 8 6 6 10 14

Table 1. First Fourier coefficients of the theta series Θ±
R̃0,Lj

.

The coefficients of qn for n < 32 that do not appear in the table are 0, as theta series

attached to lattices in V have non-zero Fourier coefficients only if −D is not a square modulo

13. We will follow a similar convention from now on. The forms on the previous table belong

to M3/2(Γ0(4 · 91),Q), a space of dimension 32, and these coefficients fully determine them.

From (21), we see that the derivative of Θk with respect to k evaluated at k = 0 is equal to

Θ′0 =

2t−1∑
j=0

∑
v∈V

Φ+
j (v) logp〈pjw+, v〉qQ(v) −

2t−1∑
j=0

∑
v∈V

Φ−j (v) logp〈p−jw−, v〉qQ(v). (24)
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Note that the dot products 〈v, w±〉 belong to Q[x]/(x2 +5) and have p-adic valuation 0. Using

the embedding (23), we can view them as elements in Z×p . Therefore, the p-adic logarithm of

these numbers lies in pZp. We can then consider Θ′0/p as an element in Zp[[q]] and study its

reduction modulo p.

Similarly as above, we can calculate the first 421 · p2 Fourier coefficients of Θ′0/p modulo p.

The first ones are

Θ′0
p

= 2q2 + 3q5 + 2q6 + 4q7 + 5q8 + 4q11 + 3q13 + 3q15 + 2q18 + 3q20 + 6q21 + · · · .

Since it is possible to calculate the first 421 · p2 Fourier coefficients of Θ′0/p mod p, we obtain

the first 421 Fourier coefficients of Up2(Θ′0/p) modulo p. The first ones are

Up2(Θ′0/p) = 3q2 + 3q5 + 5q6 + 2q7 + 3q11 + 6q13 + 3q15 + 5q18 + q19 + 2q20 + 2q21

+ 2q24 + 3q26 + q28 + 6q31 + q32 + q33 + 4q34 + q37 + 3q39 + q44 + · · · .

The following proposition, which is verified experimentally using the calculations mentioned

above and Magma, is key for the next calculations.

Proposition 8.1. There exists a cusp form in S3/2(Γ0(4 · 91),Z) whose reduction modulo p

is equal to Up2(Θ′0/p) mod p.

Proof. Since Θ0 = 0, we deduce from the expressions of Θ′0 in (24) and of Θk in (21) that

Θ′0
p
≡ Θp−1

p(p− 1)
mod p = 7.

In particular, Up2(Θ′0/p) is the reduction mod p of an element g1 ∈ S3/2+6(Γ0(4 · 91),Z). We

can then verify experimentally using Magma that the first 421 Fourier coefficients of g1 are

congruent modulo p to the first 421 Fourier coefficients of a modular form g2 ∈ S3/2(Γ0(4 ·
91),Z).

We claim that this implies g1 ≡ g2 mod p. Indeed, let g̃2 ∈ S3/2+6(Γ0(4 · 91),Z) be such

that g2 ≡ g̃2 mod p. Then, the modular form g1 − g̃2 ∈ S3/2+6(Γ0(4 · 91),Z) has the first 421

Fourier coefficients equal to 0 modulo p. This implies that the first 4 · 421 Fourier coefficients

of (g1 − g̃2)4 ∈ S30(Γ0(4 · 91),Z) are congruent to 0 modulo p. Since

421 · 4 > 30 · [SL2(Z) : Γ0(4 · 91)]

12
= 1680,

it follows from the Sturm bound (see [24, Theorem 1]) that g1 − g̃2 ≡ 0 mod p, implying the

desired result. �

Using a basis of S3/2(Γ0(4 ·91),Z) given by Magma, and using Proposition 8.1, we can then

compute U2
p2(Θ′0/p) and verify the following:

(1) 1
2(Up2 + U2

p2)(Θ′0/p) mod p is an eigenvector for Up2 of eigenvalue 1.

(2) 1
2(Up2 − U2

p2)(Θ′0/p) mod p is an eigenvector for Up2 of eigenvalue −1.
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It follows from there that, modulo p,

eord

(
Θ′0
p

)
= lim

n→+∞
Un!
p2

Θ′0
p

= lim
n→+∞

Un!−1
p2 Up2

(
Θ′0
p

)
= lim

n→+∞
Un!−1
p2

(
1

2
(Up2 + U2

p2)(Θ′0/p) +
1

2
(Up2 − U2

p2)(Θ′0/p)

)
=

1

2
(Up2 + U2

p2)(Θ′0/p)−
1

2
(Up2 − U2

p2)(Θ′0/p) = U2
p2

(
Θ′0/p

)
.

Based on this decomposition of eord (Θ′0/p), we will write

pr1(eord(Θ′0/p)) = (Up2(Θ′0/p) + U2
p2(Θ′0/p))/2,

pr−1(eord(Θ′0/p)) = −(Up2(Θ′0/p)− U2
p2(Θ′0/p))/2.

The results of the calculation are summarized in the following table.

Modular form q-expansion

mod p = 7 2 5 6 7 8 11 13 15 18 19 20 21 24 26 28

Θ′0/p 2 3 2 4 5 4 3 3 2 0 3 6 0 3 4

Up2(Θ′0/p) 3 3 5 2 0 3 6 3 5 1 2 2 2 3 1

U2
p2(Θ′0/p) 3 4 2 4 0 3 1 3 5 6 5 6 5 4 4

(Up2(Θ′0/p) + U2
p2(Θ′0/p))/2 3 0 0 3 0 3 0 3 5 0 0 4 0 0 6

(Up2(Θ′0/p)− U2
p2(Θ′0/p))/2 0 3 5 6 0 0 1 0 0 1 2 5 2 3 2

eordΘ′0/p 3 4 2 4 0 3 1 3 5 6 5 6 5 4 4

Table 2. Dth Fourier coefficients of linear combinations of Unp2(Θ′0/p) for D

such that
(−D

13

)
6= 1. For every D, we consider the color code blue:

(
−D
p

)
=

−1, grey:
(
−D
p

)
= 1, red:

(
−D
p

)
= 0.

Remark 8.2. In the decomposition eord(Θ′0/p) = pr1(eord(Θ′0/p)) + pr−1(eord(Θ′0/p)) both

summands are non-zero. The first summand is related to the Gross–Kohnen–Zagier generating

series, as we proved in Theorem 7.9. It would be interesting to find an arithmetic interpretation

of the second summand, namely pr−1(eord(Θ′0/p)).

8.3. Shimura lift and Hecke equivariance. The space Snew
2 (Γ0(7 · 13)) has dimension 7,

and there is a unique (up to scalars) cuspidal form such that U7 acts by 1 and has odd analytic

rank (so in particular, the Hecke operator U13 acts also by 1). Its Fourier expansion is given

by

f = q − 2q3 − 2q4 − 3q5 + q7 + q9 + 4q12 + q13 + 6q15 + 4q16 − 6q17 − 7q19 + . . .

≡ q + 5q3 + 5q4 + 4q5 + q7 + q9 + 4q12 + q13 + 6q15 + 4q16 + q17 . . . mod p = 7.

Recall the Shimura lift

SD := SD,0,91 : S3/2(Γ0(4 · 91),Q) −→ S2(Γ0(2 · 91),Q)
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defined in Section 7.1, where D is a square-free integer such that −D > 0. We computed

the Shimura lift of eord(Θ′0/p) for different values of D and obtained the following identities

modulo p

S−2

(
pr1(eord(Θ′0/p))

)
≡ 6f mod p,

S−11

(
pr1(eord(Θ′0/p))

)
≡ 3f + U2f mod p,

S−15

(
pr1(eord(Θ′0/p))

)
≡ 3f + 6(U2f) mod p.

(25)

In particular, we see that pr1eord(Θ′0/p) is a Hecke eigenvector (mod p) with Hecke eigenvalues

congruent to those of f .

The Schwartz–Bruhat function Φ is convenient. Indeed, since Φ is the difference of charac-

teristic functions of the trace zero elements of two maximal orders, we deduce that ∆Φ(D) is

of degree 0 for every D. Moreover, degT0(Φ) lands in the subspace of Funct(Γ\T0,Z) corre-

sponding to weight two cusp forms of level Γ0(13·3) that are old at 3. Since S2(Γ0(13),Q) = 0,

we deduce degT0(Φ) = 0 implying the desired claim by the proof of Lemma 4.7. Applying

Theorem 7.9 to the Schwartz–Bruhat function Φ one obtains the equality

logγ(G+
Φ)(q) = 2pr1(eord(Θ′0)).

In particular, (1/p) logp(G
+
Φ(γ)) mod p is a Hecke cuspidal eigenform of weight 3/2 with the

same Hecke eigenvalues as the cusp form f of weight 2 and level Γ0(91).

On the other hand, consider GΦ(q) ∈ J(Qp2)Q[[q]] and observe:

• The classes [∆Φ(D)] are invariant under the action of R× for every D ∈ DS .

• The projection of the class [∆Φ(D)] to a Hecke eigenspace is non-zero only if the

eigenspace corresponds to an eigenform of rank 1 by the Gross–Zagier formula.

• Via Jacquet–Langlands the Hecke action of TN on J(Qp2) factors through the action

on S91−new
2 (Γ0(91 · 3),Qp2).

• Since the divisors ∆Φ(D) on X are obtained via pullback from divisors of a Shimura

curve X̃ that is p-adically uniformized by Γ̃\Hp, with Γ̃ the norm 1 units of R̃, it

follows that the classes [∆Φ(D)] belong to the subspace corresponding to forms that

are old at 3.

Hence, the functionals ϕ : J(Qp2) −→ Qp2 such that ϕ(GΦ(q)) is non-zero are generated by

projections to eigenspaces where TN acts with the same eigenvalues as it acts on eigenforms

on Snew
2 (Γ0(91)) which have rank 1 and U7 = 1. As we discussed above, there is a unique

(up to scaling) such eigenform in Snew
2 (Γ0(91)), which is f . Uniqueness implies that GΦ(q) ∈

J(Qp2)Q[[q]] is a non-zero multiple of logγ(G+
Φ)(q), which has the same Hecke eigenvalues

of f modulo p. Hence, the calculation we presented gives an example (modulo p) of the

Hecke equivariance property of the geometric theta lift provided by the Gross–Kohnen–Zagier

generating series.
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