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Abstract. The quotient Γ\(H×Hp) of the product of a Poincaré and a Drinfeld upper

half plane by a discrete p-arithmetic subgroup Γ of SL2(R)× SL2(Qp) is equipped with

an in�nite supply of closed geodesic cycles of real dimension one, which are indexed by

ideals in orders in real quadratic �elds in which the prime p is non-split. This article lays

the foundations for an arithmetic intersection theory of such cycles by de�ning a p-adic

Green’s function generalising the “di�erences of real quadratic singular moduli” explored

in [DV1]. When the second cohomology group of Γ is trivial, the values of this p-adic

Green’s function are conjectured to be p-adic logarithms of algebraic numbers belong-

ing to a suitable compositum of ring class �elds of real quadratic �elds. For general Γ,

they should encode the analytic contribution to the p-adic height pairing between Stark–
Heegner points which are conjecturally de�ned over the same ring class �elds.

Contents

Introduction 1

1. Preliminaries 4

2. Green’s functions on CM points in Hp 8

3. Green’s functions on RM cycles in H×Hp 15

References 27

Introduction

Let Γ be a p-arithmetic subgroup of an inde�nite quaternion algebra B over Q. After

�xing real and p-adic splittings of B, the group Γ acts on both the Poincaré upper half

plane H and the Drinfeld p-adic upper half-plane Hp by Möbius transformations, and its

action on the product H×Hp is discrete. The quotient topological space Γ\(H×Hp) is

endowed with a plentiful supply of closed cycles of real dimension one, which are indexed

by the set HRM
p of algebra embeddings intoB of real quadratic �elds in which the prime p

is non-split. These RM cycles are analogous to CM points on Shimura curves attached to

de�nite quaternion algebras, and seem to have similar arithmetic implications, notably,
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for the construction of singular moduli contained in class �elds of real quadratic �elds

[DV1] and of rational points on elliptic curves de�ned over these class �elds [Dar].

The present work lays the foundations for an arithmetic intersection theory of RM

cycles by de�ning a p-adic Green’s function

Gp : (Γ\HRM
p )× (Γ\HRM

p ) −→ Cp

on pairs of distinct elements of Γ\HRM
p . When the cycle α1 ∈ Γ\HRM

p is principal, i.e.

arises as the divisor of a rigid meromorphic cocycle Jα1 , the quantity Gp(α1, α2) is the

p-adic logarithm of the special value Jα1 [α2] in the sense of [DV1], whose algebraicity is

predicted by the conjectures of loc.cit. and partially established in [DV4]. In the general

case, Gp(α1, α2) is expected to encode information about p-adic height pairings between

the Stark–Heegner points attached to α1 and α2.

Although the quotient Γ\(H×Hp) is not an algebraic variety in any meaningful sense,

it is suggestive to view it as “mock Hilbert modular surface” over Q, and more speci�cally

as the generic �ber of an arithmetic threefoldX ?
�bered over Spec(Z). In this perspective,

RM cycles, which are of real dimension one, might be envisaged as “algebraic cycles of

dimension 1/2” on the generic �ber, extending to arithmetic cycles of middle dimension

3/2 onX ?
. Such analogies are pure metaphysics in the sense of Weil’s essay [We], but the

concrete arithmetic intersection theory for RM cycles that emerges from them suggests

that the seemingly dubious notion of middle dimensional cycles on mock Hilbert modular

arithmetic threefolds deserves to be further examined and better understood.

The notion of a p-adic Green’s function on RM geodesic cycles supplies the conceptual

framework for understanding the calculations in [DV4], where certain height pairings
between RM cycles are realised as the Fourier coe�cients of modular generating series,

leading to a p-adic Gross–Zagier formula for Stark–Heegner points and a proof of the

algebraicity of certain non-trivial expressions involving the RM values of rigid meromor-

phic cocycles. The importance of the Green’s function lies in the fact that it represents

the analytic contribution to the p-adic height pairing between RM geodesic cycles.

This article concludes in § 3.11 with an elementary formula for the trace to Qp of

Gp(α1, α2) under certain conditions on Γ, which include the case Γ = SL2(Z[1/p]). We

proceed to describe this formula in the latter scenario, when the RM cycles can also be

indexed by primitive integral binary quadratic forms whose discriminant D satis�es

(1) D > 0, and p is not split in K := Q(
√
D).

In this bijection, the form F (x, y) = ax2 + bxy + cy2
corresponds to the embedding

K ↪→M2(Q) ;
√
D 7→

(
b −2c

2a −b

)
.
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LetF1(x, y) := a1x
2+b1xy+c1y

2
andF2(x, y) := a2x

2+b2xy+c2y
2

be a pair of primitive

integral binary quadratic forms, whose discriminants D1 and D2 are coprime. The roots

(2) τ1 =
−b1 +

√
D1

2a1

, τ2 =
−b2 +

√
D2

2a2

,

are viewed as real numbers by choosing the positive square roots in the expression (2). The

oriented hyperbolic geodesic (αj) on H joining τj to its algebraic conjugate τ ′j is preserved

by the stabiliser Γj of τj in SL2(Z) acting naturally on H∪R by Möbius transformations.

The choice of an orientation on H determines a topological intersection number on H:

(3) (α1) _ (α2) ∈ {−1, 0, 1}.

After �xing embeddings of the �elds Kj = Q(
√
Dj) into Qp, the roots τj and τ ′j can

also be viewed as elements of Hp by condition (1) on their discriminants. Consider

(4) g(τ1, τ2) :=
(τ1 − τ2)(τ ′1 − τ ′2)

(τ1 − τ ′1)(τ2 − τ ′2)
∈ Q̄p

which is the cross-ratio of the roots τ1, τ2, τ
′
1 and τ ′2, a point pair invariant for the action

of SL2(Qp) on Hp, and belongs to the �eld

F := Q
(√

D1D2

)
⊂ L := K1K2 = Q

(√
D1,

√
D2

)
.

Note that p splits in F when p - D1D2, and rami�es otherwise. Write Fp and Lp for the

completions of F and L in Q̄p. Let Mn be the set of 2 × 2 matrices with integer entries

and determinant p2n
, a set that is preserved under both left and right multiplication by

SL2(Z). The expression

G(n)
p (τ1, τ2) = logp

 ∏
b∈Γ1\Mn/Γ2

g(τ1, bτ2)(α1)_b(α2)


involves only �nitely many non-trivial factors, and belongs to Fp, while the Green’s func-

tion value Gp(τ1, τ2) can be viewed as an element of Lp. The following is a special case

of the main result of § 3.11.

Theorem. The sequence G(n)
p (τ1, τ2) converges to a p-adic limit as n tends to∞, and

Gp(τ1, τ2) := lim
n−→∞

G(n)
p (τ1, τ2) = Trace

Lp
Fp
Gp(τ1, τ2).

Remark 1. It is natural to contemplate multiplicative re�nements of this theorem. The

calculations of § 3.11 show the existence of the limit

(5) Jp(τ1, τ2) := lim
n→∞

 ∏
b∈Γ1\Mn/Γ2

g(τ1, bτ2)(α1)_b(α2)

12

.
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It would be interesting to give a more direct proof of this convergence.

When p = 2, 3, 5, 7, or 13 is a prime for which the modular curveX0(p) has genus zero,

the expression (5) is the norm to Fp of the di�erences of real quadratic singular moduli

explored in [DV1], and is therefore expected to be algebraic, and to lie in the compositum

H1 H2 of the ring class �elds attached to the orders of discriminants D1 and D2.

The signi�cance of the �ner multiplicative invariant (5) for general p remains to be

explored. It is expected to be transcendental, and its logarithm is expected to relate to the

non-archimedean Green’s functions (in the sense of § 2) of the Stark–Heegner points on

quotients of J0(p) with multiplicative reduction, attached to α1 and α2. These points are

conjecturally de�ned over ring class �elds of K1 and K2.

Remark 2. In spite of ostensible similarities, there is a very important di�erence with the

in�nite products of cross ratios studied in [DV2], which instead had the shape∏
b∈Γ1\Mn/Γ2

(
(τ1 − bτ2)(τ ′1 − bτ ′2)

(τ1 − bτ ′2)(τ ′1 − bτ2)

)(α1)_b(α2)

=
∏

b∈Γ1\Mn/Γ2

(
g(τ1, bτ2)

g(τ1, bτ2)− 1

)(α1)_b(α2)

=
∏

b∈Γ1\Mn/Γ2

(
g(τ1, bτ2)

g(τ ′1, bτ2)

)(α1)_b(α2)

The p-adic convergence of this expression as n→∞, proved more elementarily in [DV2,

Section 3], follows immediately from the stronger results in the present paper.

In de�ning the Green’s function on RM geodesic cycles, we strive to emphasise their

strong analogy with p-adic Green’s functions on Mumford curves, as described by Gross

[Gr86] and Werner [Wer]. This description is recalled in § 2, with a narrative that fore-

shadows the extension to the real quadratic case, contained in § 3.

1. Preliminaries

Let Hp denote the Drinfeld p-adic upper half-plane, a rigid analytic space whose un-

derlying set of Cp-valued points is identi�ed with P1(Cp) − P1(Qp). The projective line

P1(Cp) is endowed with a p-adic metric by setting

d((x1 : y1), (x2 : y2)) =

∣∣∣∣det

(
x1 x2

y1 y2

)∣∣∣∣
p

,

where the homogenous coordinates are always chosen to be primitive vectors inO2
Cp . The

space Hp can be expressed as an increasing union

Hp =
∞⋃
n=0

H(n)
p , H(0)

p ⊂ H(1)
p ⊂ H(2)

p ⊂ · · · ⊂ H(n)
p ⊂ · · · ⊂ Hp
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of the a�noid subsets

H(n)
p := {z ∈ P1(Cp) s.t. d(z, a) ≥ p−n for all a ∈ P1(Qp)}.

The region H(n)
p is somewhat analogous to a Siegel domain in the Poincaré upper half-

plane, but its cohomology is richer, since it is the complement in P1(Cp) of the (p+1)pn−1

disjoint mod pn residue discs with Qp-rational centers.

A formal divisor on Hp is a formal, possibly in�nite Z-linear combination

D =
∑
z∈Hp

mz · [z], mz ∈ Z

of elements of Hp. It is called a divisor if its support is �nite, and a locally �nite divisor if

its support intersects each a�noid H(n)
p in a �nite set. Given any subset X of Hp, write

D ∩X :=
∑
z∈X

mz · [z], D (n) := D ∩H(n)
p .

If D is locally �nite and X is an a�noid subset of Hp (or simply, is contained in H(n)
p for

some n) then D ∩X is a divisor with support on X . The groups of degree zero divisors

on Hp, (�nite) divisors, and locally �nite divisors, are respectively denoted by

Div0(Hp) ⊂ Div(Hp) ⊂ Div†(Hp).

Let T := V tE be (the combinatorial realisation of) the Bruhat-Tits tree of SL2(Qp),

consisting of a collection V of vertices indexed by homothety classes of Zp-lattices in Q2
p,

and a collection E of edges joining vertices that correspond to pairs of lattices that are,

after suitable rescaling, contained one in the other with index p. The homothety class of

the lattice Z2
p corresponds to a distinguished vertex v◦ ∈ V , and a vertex of T is said to be

even if its distance from this distinguished vertex is even, and is said to be odd otherwise.

The Drinfeld half plane is equipped with a natural reduction map

red : Hp −→ T .

The inverse images of a vertex v is called its standard a�noid, denotedWv. All standard

a�noids are identi�ed with complements in P1(Cp) of the Fp-rational mod p residue discs

relative to a suitable coordinate on P1/Qp . These a�noids are glued together along the

p-adic annuli which are the inverse image under the reduction map of the edges of T . Let

W+
v be the union of the a�noidWv with the (p+ 1) annuli attached to the edges having

v as an endpoint; it is a connected “wide open space" in the terminology of R. Coleman.

The p-adic upper half plane can be expressed as a disjoint union

Hp =
⋃
v∈V

Ωv, where Ωv =

{
W+

v if v is even;
Wv if v is odd.
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The group SL2(Qp) acts on Hp by Möbius transformations, and induces a unique action

on T for which the reduction map is equivariant. The subgroup SL2(Zp) �xes a vertex

v◦ ∈ V , and the a�noid H(n)
p is the preimage under the reduction map of the induced

subgraph of T on the vertices of distance≤ n from v◦. The subsets Ωv are permuted under

the action of SL2(Qp), which preserves the parity of vertices. (For more background on

T and its connection to the Drinfeld half plane, the reader is invited to consult [DT].)

Write ZV for the group of Z-valued functions on V . The degree map

(6) Deg : Div†(Hp)→ ZV

sending a locally �nite divisor D to the function

v 7→ deg(D ∩ Ωv)

plays the role of the usual degree in the setting of locally �nite divisors. A locally �nite

divisor which is in the kernel of the degree map is said to be of strong degree zero, and the

group of such divisors is denoted Div†0(Hp).

LetQnr
p be the maximal unrami�ed extension ofQp. It is worth noting that the reduction

map sends Hnr
p := P1(Qnr

p ) − P1(Qp) to V . A divisor that is supported on Hnr
p is said to

be unrami�ed, and the group of divisors and locally �nite divisors that are unrami�ed are

denoted Div(Hnr
p ) and Div†(Hnr

p ) respectively. Likewise, Div0(Hnr
p ) and Div†0(Hnr

p ) are the

relevant subgroups of divisors of degree zero and locally �nite divisors of strong degree

zero. These groups of divisors are related by two short exact sequences:

0 → Div0(Hp) −→ Div(Hp) −→ Z → 0,(7)

0 → Div†0(Hp) −→ Div†(Hp) −→ ZV → 0.(8)

The �eld M of rigid meromorphic functions on Hp is a suitable p-adic completion of the

�eldR of rational functions on P1
. More precisely, a subset of Hp is called a good a�noid

if it is the preimage under the reduction map of a �nite closed subgraph of T . A Cp-valued

function on Hp is rigid analytic if its restriction to each good a�noid subset X ⊂ Hp is

a uniform limit with respect to the sup norm of elements of R (having poles outside X ).

Note that for f to be rigid analytic, it is enough to require that its restriction to each H(n)
p

be expressible as such a limit. The set A of rigid analytic functions on Hp is a ring and its

fraction �eld, denoted M , is the �eld of rigid meromorphic functions on Hp.

Given a pair (D1,D2) of degree zero divisors on P1(Cp) with disjoint supports, the

Weil symbol [D1; D2] ∈ C×p is de�ned as the value at D1 of any rational function having

divisor D2. The following lemma extends the Weil symbol to a canonical pairing

Div0(Hp)×Div†0(Hp)−→C×p .
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Lemma 3. Let D1 be a degree 0 divisor on Hp and let D2 ∈ Div†0(Hp) be a locally �nite
divisor of strong degree zero. Then the sequence [D1; D (n)

2 ] converges to a well-de�ned limit

[D1; D2] := lim
n−→∞

[D1; D (n)
2 ].

This extended Weil symbol is equivariant, i.e.,

[γD1; γD2] = [D1; D2] for all γ ∈ SL2(Qp).

Proof. We need to show that the sequence [D1; D (n)
2 ] forms a multiplicative Cauchy

sequence in n. Of course, it is enough to show this for all large enough n, so assume

without loss of generality that the divisor D1 is supported in H(m)
p and that n > m.

Then we have

(9) D (n)
2 −D (n−1)

2 =
∑

d(v,v◦)=n

D2(v), D2(v) := D2 ∩red−1(v),

where the sum is taken over all the vertices of T whose distance from v◦ is equal to

n. Since D2 is of strong degree 0, the divisors D2(v) are of degree 0, and therefore

(10)

∣∣ [D1; D2(v)]− 1
∣∣
p
≤ pm−n, for all v with d(v, v◦) = n.

It follows from (9) and (10) that∣∣∣ [D1,D
(n)
2 −D (n−1)

2 ]− 1
∣∣∣
p
≤ pm−n, for all n > m,

and the convergence follows. In fact, upon replacing the a�noid cover {H(n)
p }n≥0 by

an arbitrary increasing union of good a�noid subsets

Hp =
∞⋃
n=1

X n, X 1 ⊂ X 2 ⊂ · · · X n ⊂ · · ·

the same argument shows that

(11) [D1; D2] = lim
n→∞

[D1; D2 ∩X n].

The Γ-invariance of the extended Weil symbol now follows from the Γ-invariance

properties of the original Weil symbol:

[γD1; γD2] = lim
n→∞

[γD1; (γD2) ∩ H(n)
p ]

= lim
n→∞

[D1; D2 ∩(γ−1 H(n)
p )]

= lim
n→∞

[D1; D (n)
2 ] by (11)

= [D1; D2]. �

The following corollary is the basis for our construction of p-adic Green functions, both

in the classical CM case discussed in § 2 and the RM case discussed in § 3.
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Corollary 4. Let D ∈ Div†0(Hp) be a locally �nite divisor of strong degree zero, and let
ξp ∈ Hp be a base point which is disjoint from D . The rational functions

f
(n)
D (z) := [(z)− (ξp); D

(n)]

converge uniformly to a rigid meromorphic function fD with divisor D . For all b ∈ Γ,

fbD(bz) = fD(z) (mod C×p ).

2. Green’s functions on CM points in Hp

This section describes p-adic Green’s functions on Shimura curves, inspired by the

treatments in [Gr86] and [Wer]. The aim of this largely expository discussion is to moti-

vate what follows, and to highlight the key aspects of the strong analogy with the Néron

symbols for RM geodesic cycles that will be de�ned in § 3.

2.1. Shimura curves. We place ourselves in the arithmetic setup of Shimura curves as-

sociated to maximal orders in quaternion algebras over Q. At primes p of bad reduction,

these curves have totally degenerate reduction, and admit an arithmetic uniformisation

by Hp described by Cerednik–Drinfeld [Cer, Dri].

Throughout this section 2, and this section only, it shall be assumed that R ⊂ B is a

maximal order in a de�nite quaternion algebra B of discriminant DB . Let p be a prime

that does not divide DB , and �x a p-adic splitting

(12) B ⊗Qp 'M2(Qp)

which identi�es R⊗Zp with the standard maximal order M2(Zp) ⊂M2(Qp). The group

(B ⊗ Qp)
×

acts on Hp by Möbius transformations, and on T , via the choice of splitting

(12). Let v◦ denote the unique vertex of T whose stabiliser in (B ⊗Qp)
×

is (R⊗ Zp)×.

The group Γ = R[1/p]×1 of norm one elements of R[1/p] can be expressed as an in-

creasing union of �nite sets. Indeed, let R[d] be the set of elements in R of norm d, and

de�ne Γn := p−nR[p2n], then we have

(13) Γ =
∞⋃
n=0

Γn, Γ0 ⊂ Γ1 ⊂ · · · ⊂ Γn ⊂ · · · ⊂ Γ.

The �nite subgroup Γ0 = R×1 acts naturally on Γn by left (or right) multiplication, and

the quotients Γn/Γ0 are in bijection with the set of vertices of T at distance ≤ n from v◦.

The group Γ acts discretely onHp by Möbius transformations. The theorem of Cerednik–

Drinfeld identi�es the quotient Γ\Hp with the Cp-points of a Shimura curve X , viewed

as a rigid analytic space. We denote the resulting quotient map by

π : Hp−→Γ\Hp = X(Cp).
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2.2. Summary of the construction. Before delving into the details, a brief summary

may be helpful. Given a CM divisor α on X(Cp), there are well-de�ned classes

Dα ∈ H0(Γ,Div(Hp)), D̂α ∈ H0(Γ,Div†(Hp)),

satisfying π∗(Dα) = α, and D̂α = π∗(α). The extended Weil symbol induces a pairing

[ , ] : H0(Γ,Div0(Hp))× H0(Γ,Div†0(Hp)) −→ C×p .

The Néron symbol described below re�nes the logarithm of this pairing by allowing

(1) H0(Γ,Div0(Hp)) to be replaced by its image in H0(Γ,Div(Hp)), denoted

H0(Γ,Div(Hp))0

and consisting of the divisors on Hp whose image on X has degree 0;

(2) H0(Γ,Div†0(Hp)) to be replaced by pullbacks of degree 0 divisors on X , denoted

H0(Γ,Div†(Hp))0

in what follows. It is the group of locally �nite divisors on Hp whose restriction to

any fundamental region for the action of Γ on Hp is of degree 0.

This leads to a bi-additive function

[ , ]Neron : H0(Γ,Div(Hp))0 × H0(Γ,Div†(Hp))0−→Cp

satisfying

[D1, D̂2]Neron = logp([D1, D̂2])

whenever both sides are de�ned. The Green’s function is then de�ned on CM divisors α
and β on Γ\Hp by the rule

Gp(α, β) = [Dα, D̂β]Neron.

2.3. The homology of divisors. Taking the Γ-homology of the short exact sequence in

(7) leads to the long exact homology sequence

(14) · · · −→H1(Γ,Z)
δ−→ H0(Γ,Div0(Hp))

j−→ H0(Γ,Div(Hp))
deg−→ Z−→ 0.

The kernel of the map deg in this sequence is the group H0(Γ,Div(Hp))0. The connecting

map δ sends b ∈ H1(Γ,Z) = Γab to the class of the degree zero divisor (bξp)− (ξp), where

ξp ∈ Hp is an arbitrarily chosen base point.

Let Snew
k (D) be the space of newforms of weight k and level D.

Lemma 5. The group H1(Γ,Z) = Γab is isomorphic modulo torsion to the character group
of the torus uniformising the Jacobian of X , and has rank g = genus(X). It is annihilated
by any Hecke operator that kills Snew

2 (pDB).
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Proof. The p-adic period pairing recalled in § 2.5 below (cf. Remark 8) canonically

identi�es the Cp-points of the Jacobian of X with the quotient of H1(Γ,C×p ) by a

lattice. The �rst assertion follows from this. The second is a consequence of the

Jacquet–Langlands correspondence between forms on B× and on GL2,Q. �

If the divisor α ∈ Div(Γ\Hp) is of degree zero, then Dα ∈ H0(Γ,Div(Hp)) can be

lifted to a class in H0(Γ,Div0(Hp)), but this lift is not unique: any two lifts di�er by a

class in δ(H1(Γ,Z)). An important ingredient in the de�nition of the Néron symbol is the

construction, after tensoring with Q, of a canonical right inverse of the surjective map

j : H0(Γ,Div0(Hp))−→H0(Γ,Div(Hp))0

from (14), leading to a direct sum decomposition

H0(Γ,Div0(Hp))⊗Q = δ(H1(Γ,Q)) ⊕ H0(Γ,Div(Hp))0 ⊗Q .

This map is constructed in § 2.6 using the non-degeneracy of the p-adic period pairing.

2.4. The cohomology of locally �nite divisors. The Γ-cohomology of the short exact

sequence in (8) gives rise to another long exact sequence,

(15) 0→ H0(Γ,Div†0(Hp))−→H0(Γ,Div†(Hp))
Deg−→ H0(Γ,ZV)−→· · ·

Lemma 6. The target of the degree map Deg is isomorphic to the space of unrami�ed auto-
morphic forms on B×. It is annihilated by any Hecke operator that kills Snew

2 (DB).

Proof. The set V is identi�ed with (B ⊗ Qp)
×/(R ⊗ Zp)×. The group Γ preserves

the subsets Veven
and Vodd

of vertices that are at even and odd distance from v◦, re-

spectively. The quotient Γ\ V is thus in natural bijection with two copies of

R[1/p]×\(B ⊗Qp)
×/(R⊗ Zp)× = B×\(B ⊗ AQ)×/(R⊗ Ẑ)×,

where the equality follows from strong approximation for R[1/p]×. The set of func-

tions on the rightmost double coset space is the space of automorphic forms on B×

of level 1, so the �rst assertion follows. The second is a consequence of the Jacquet–

Langlands correspondence between forms on B× and on GL2,Q. �

2.5. The p-adic period pairing. Consider the natural maps

ΠΓ : H0(Γ,Div0(Hp)) −→ H0(Γ,M×/C×p ),

ΣΓ : H0(Γ,Div(Hp)) −→ H0(Γ,Div†(Hp)),

de�ned by choosing a base point ξp ∈ Hp and setting

(16) ΠΓ(D)(z) =
∏
b∈Γ

[(z)− (ξp); bD ], ΣΓ(D) =
∑
b∈Γ

bD .
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They �t into a commutative diagram with exact rows

(17)

H1(Γ,Z)

H0(Γ,A ×/C×p )

H0(Γ,Div0(Hp))

H0(Γ,M×/C×p )

H0(Γ,Div(Hp))

H0(Γ,Div†(Hp))

Z 0

· · ·

· · ·

0

δ j deg

ΠΓ ΠΓ ΣΓ

where the top row is (14) and the bottom row is the long exact sequence in cohomology

associated to the short exact sequence of Γ-modules

1→ A ×/C×p −→M×/C×p −→Div†(Hp)→ 1.

Let

per : H0(Γ,A ×/C×p )−→H1(Γ,C×p )

be the connecting homomorphism in the cohomology of the short exact sequence

1→ C×p −→A ×−→A ×/C×p → 1.

Composing the leftmost map ΠΓ in (17) with this injective period homomorphism yields

a map

ηΓ := per ◦ ΠΓ : H1(Γ,Z)−→H1(Γ,C×p )

which induces pairings

(18) 〈 , 〉Γ : H1(Γ,Z)× H1(Γ,Z)−→C×p .

This is the p-adic period pairing that arises in the Mumford–Schottky theory of p-adic

uniformisation of X(Cp). The following theorem is well-known.

Proposition 7. TheZ-valued pairing ordp(〈 , 〉Γ) is positive de�nite and hence non-degenerate.

Proof. See [MD, §4] for example. �

Remark 8. It follows that ηΓ(Γab) is a lattice in H1(Γ,C×p ). The p-adic torus

JacX(Cp) := H1(Γ,C×p )/ηΓ(Γab)

is identi�ed with (the Cp-points of) the Jacobian of X , and the map

H0(Γ,Div(Hp))0−→H1(Γ,C×p )/ηΓ(Γab)

sending a divisor D to the periods of the rigid analytic function ΠΓ(D̃) on Hp (where D̃
is any lift of D to H0(Γ,Div0(Hp))) realises the p-adic Abel–Jacobi map.
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2.6. Unitary divisors. A natural Q-vector space complement of

δ(H1(Γ,Z))Q := δ(H1(Γ,Z))⊗Q

in H0(Γ,Div0(Hp)) can be de�ned by exploiting the map

ordp ◦ per ◦ ΠΓ : H0(Γ,Div0(Hp))−→H1(Γ,Z).

Proposition 7 implies that the kernel

(19) H0(Γ,Div0(Hp))
]
Q := ker

(
ordp ◦ per ◦ ΠΓ : H0(Γ,Div0(Hp))Q−→H1(Γ,Q)

)
is complementary to δ(Γab) ⊗ Q. Following the terminology in [Gr86, §10], a class in

H0(Γ,Div0(Hp))
]
Q is said to be unitary. Given D ∈ H0(Γ,Div(Hp))0 ⊗ Q, its unique

unitary lift shall be denoted

D ] ∈ H0(Γ,Div0(Hp))
]
Q.

While explicit unitary lifts are not usually apparent, Lemma 9 below provides a useful

exception. Let

Div00(Hnr
p ) := Div(Hnr

p ) ∩Div†0(Hp) ⊂ Div0(Hnr
p ).

The 0-cycles in Div00(Hnr
p ) admit a natural geometric interpretation: their pushforwards

to the Shimura curveX are unrami�ed divisors whose restriction to each irreducible com-

ponent of the special �ber of X at p is of degree zero.

Lemma 9. The image of the natural map

H0(Γ,Div00(Hnr
p ))Q−→H0(Γ,Div0(Hp))Q

is contained in H0(Γ,Div0(Hp))
]
Q.

Proof. This follows from the fact that if D is represented by a divisor in Div00(Hnr
p ),

the quantities

[D ; (bγξp)− (bξp)], b ∈ Γ

are p-adic units, as can be seen by reducing to the case where D is supported on

red−1(v) for a single vertex v of T , and choosing the base point ξp to reduce to a

vertex that is not Γ-equivalent to v. (The latter is always possible since there are

always at least two distinct Γ-orbits for the action of Γ on V .) �

2.7. Rigid meromorphic functions and principal divisors. Let M×
denote the mul-

tiplicative group of rigid meromorphic functions on Hp. A locally �nite divisor in the

image of the natural divisor map

(20) H0(Γ,M×)−→H0(Γ,Div†(Hp))

is called a principal divisor, and the group of such divisors is denoted P 0(Γ,Div†(Hp)).

Any principal divisor on Hp is the pullback under π of an element in the group P (X) of
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principal divisors on X(Cp) = Γ\Hp. Let P 0(Γ,Div†(Hnr
p )) denote the group of unrami-

�ed principal divisors on Γ\Hp.

Note H0(Γ,Div†0(Hp)) and P 0(Γ,Div†(Hnr
p )) are both contained in H0(Γ,Div†(Hp))0.

The following lemma plays an important role in the de�nition of the Néron symbol.

Lemma 10. The groups H0(Γ,Div†0(Hp)) and P 0(Γ,Div†(Hnr
p )) together generate a �nite

index subgroup of H0(Γ,Div†(Hp))0.

Proof. Let Ξ denote the natural image of the group P 0(Γ,Div†(Hnr
p )) in ZΓ\V

under

the map Deg of (15). By Cerednik–Drinfeld § 2.1, the quotient group

H0(Γ,Div†(Hnr
p ))

P 0(Γ,Div†(Hnr
p ))

=
Div0(X(Qnr

p ))

P (X(Qnr
p ))

is annihilated by any Hecke operator that kills Snew
2 (pDB), whereas the target ZΓ\V

of the degree map is annihilated by any Hecke operator that kills Snew
2 (DB). Since the

spectra of these two spaces of newforms are disjoint, one can choose a Hecke operator

T that annihilates Div0(X)/P (X) while acting invertibly on QΓ\V
. The quotient

ZΓ\V/Ξ is then annihilated by T , since it is a homomorphic image of Div0(X)/P (X),

and therefore it must be �nite. The lemma follows. �

Remark 11. The proof of Lemma 10 may strike the reader as being somewhat overwrought,

invoking the theory of Cerednik-Drinfeld and of automorphic forms on de�nite quater-

nion algebras to prove what is in �ne a general fact about rigid meromorphic functions

on Mumford curves. It is presented here to motivate the almost identical proof of the

analogous Lemma 23 in the setting of inde�nite quaternion algebras, where the geometry

of Mumford curves is ostensibly inapplicable.

Given an unrami�ed principal divisor that also lies in H0(Γ,Div†0(Hp)), the following

lemma recovers a function with that divisor in terms of the multiplicative Weil symbol.

Lemma 12. Suppose that

D ∈ H0(Γ,Div†0(Hnr
p )) ∩ P 0(Γ,Div†(Hnr

p ))

is an unrami�ed principal divisor of strong degree zero. Then the rigid meromorphic function

fD(z) := [(z)− (ξp); D ]

is a Γ-invariant rigid meromorphic function having D as its divisor. Its natural image in
H0(Γ,M×)/C×p does not depend on the choice of ξp ∈ Hp.

Proof. The rigid meromorphic function fD on Hp is Γ-invariant up to multiplicative

constants, by Corollary 4. To compute its periods, let D0 ∈ H0(Γ,Div00(Hnr
p )) be any

divisor satisfying

D = π∗π∗(D0).



14 HENRI DARMON AND JAN VONK

Lemma 9 implies that the periods

fD(γz)/fD(z) = [(ξp)− (γξp); D ] =
∏
b∈Γ

[(ξp)− (γξp); bD0]

=
∏
b∈Γ

[D0; (bξp)− (bγξp)]

are p-adic units, for all γ ∈ Γ. LetFD be a Γ-invariant function having D as its divisor.

Then the ratioFD/fD is a rigid analytic function onHp whose periods are p-adic units.

They must therefore be trivial, since the image of the connecting homomorphism

H0(Γ,A × /C×p )−→H1(Γ,C×p )

is a lattice in H1(Γ,C×p ). The ratio FD /fD is therefore Γ-invariant and hence constant

by Liouville’s theorem. �

2.8. p-adic Néron symbols and Green’s functions. The Néron symbol can now be

de�ned. Denote the set of pairs of divisors with disjoint supports by

H0(Γ,Div(Hp))0 ×̂ H0(Γ,Div†(Hp))0 ⊂ H0(Γ,Div(Hp))0 × H0(Γ,Div†(Hp))0.

Theorem 13. There is a unique bi-additive function

[ , ]Neron : H0(Γ,Div(Hp))0 ×̂ H0(Γ,Div†(Hp))0−→Cp

satisfying, for all (D1, D̂2) in its domain, that

(1) if D̂2 is of strong degree zero,

[D1, D̂2]Neron = logp[D
]
1; D̂2];

(2) if D̂2 = (f) is urami�ed and principal,

[D1, D̂2]Neron = logp f(D1).

Proof. The uniqueness of a symbol with these two properties follows from Lemma

10 since Cp is uniquely divisible. To check existence, note that if D̂2 is a Γ-invariant

locally �nite divisor, then any pair (P, D̂
0

2) satisfying

P ∈ P 0(Γ,Div†(Hnr
p )), D̂

0

2 ∈ H0(Γ,Div†0(Hp)), D̂2 = P +D̂
0

2

is well de�ned up to replacing (P, D̂
0

2) with (P +δ, D̂
0

2 − δ), where

δ ∈ H0(Γ,Div†0(Hp)) ∩ P 0(Γ,Div†(Hnr
p ))

is the divisor of a Γ-invariant rigid meromorphic function f . The resulting Néron

symbol [D1, D̂2]Neron is then changed by

logp f(D1)− logp[D
]
1; δ] = logp f(D1)− logp fδ(D

]
1)

= logp f(D1)− logp fδ(D1) = 0,
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where

(1) fδ(D) is the rigid meromorphic function constructed in Lemma 12;

(2) the second equality follows from the fact that fδ(D) depends only on the image

of D in H0(Γ,Div(Hp))0;

(3) the penultimate expression vanishes because f and fδ have the same divisor and

hence di�er by an element of H0(Γ,A ×) = C×p , and therefore these functions

coincide on degree zero divisors.

�

With the Néron symbol in hand, the Green’s function Gp can now be de�ned:

De�nition 14. The Green’s function

Gp : Div0(Γ\Hp) ×̂ Div0(Γ\Hp)−→ Cp

is de�ned by setting
Gp(α1, α2) = [Dα1 , D̂α2 ]Neron.

3. Green’s functions on RM cycles in H×Hp

3.1. The set-up. It will be assumed throughout § 3 that R is the (unique, up to conjuga-

tion) maximal order in an inde�nite quaternion algebra B of discriminant DB , and that

Γ = R[1/p]×1 . Because (B ⊗ R)×1 ' SL2(R) is non compact, the group Γ no longer acts

discretely on Hp. It can be expressed as an increasing union of sets just as in (13), but

the subgroup Γ0 = R×1 is now an in�nite arithmetic subgroup of Γ, acting discretely on

H by Möbius transformations. The quotient Γ0\H (suitably compacti�ed when B is the

split quaternion algebraM2(Q)) is identi�ed with the complex points of a Shimura curve,

whose space of regular di�erentials is isomorphic to Snew
2 (DB) as a Hecke module.

On the other hand, the quotients Γ0\Hp or Γ\Hp ostensibly lack a clear connection to

geometric objects like Shimura curves, and H0(Γ0,Div†(Hp)) is trivial. The group Γ does

act discretely on H×Hp, and it is suggestive to view the quotient Γ\(H×Hp) as a “mock

Hilbert modular surface" endowed with a supply of closed cycles of real dimension one

which will now be described.

LetK be a real quadratic �eld in which all the primes dividing pDB are non-split, letO
be a (not necessarily maximal) order in K , and let α : K −→B be an algebra embedding,

satisfying α(K)∩R = α(O). Let τα ∈ Hp denote the �xed point of α(K×) acting on Hp,

normalised by requiring thatK× act on the tangent space of τα via the chosen embedding

ofK into Cp. The stabiliser of α in Γ or Γ0 is a group of rank one, generated up to torsion

by the automorph
γα ∈ Γα := StabΓ(α).

Choose a base point ξ∞ ∈ H and let Zα denote the image of the one-chain

(21) D̃α := [ξ∞, γαξ∞]× {τα} ⊂ H×Hp
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in the quotient space Γ\(H×Hp), where [z1, z2] represents the hyperbolic geodesic seg-

ment on H joining z1 to z2. The RM point τα ∈ Γ\HRM
p thus corresponds to the closed

cycle Zα of real dimension one in the quotient space Γ\(H×Hp). Let Z1(Γ\(H×Hp))
denote the free abelian group generated by these cycles, as α varies over all embeddings

into R of real quadratic orders in which all primes dividing pDB are non-split.

Theorem 13 will be generalised to the inde�nite setting by passing to higher coho-

mology, in order to de�ne a Green’s function on Z1(Γ\(H×Hp)) that mixes topological

intersections at the archimedean place with rigid analytic function theory at p.

3.2. Cohomological preliminaries. Recall that, if M is any Γ-module, then

H1(Γ,M) := Z1(Γ,M)/B1(Γ,M), H1(Γ,M) := Z1(Γ,M)/B1(Γ,M),

where the groups appearing in the de�nition of H1(Γ,M) are

Z1(Γ,M) =
{∑

σi ⊗mi ∈ Z[Γ]⊗M :
∑
mi − σ−1

i mi = 0
}
,

∪
B1(Γ,M) =

〈
στ ⊗m− σ ⊗m− τ ⊗ σ−1m

〉
,

and those appearing in the de�nition of H1(Γ,M) are

Z1(Γ,M) = {f : Γ→M : f(στ) = f(σ) + σf(τ) for all σ, τ ∈ Γ} ,
∪

B1(Γ,M) = {f : Γ→M : f(σ) = σm−m, for some m ∈M}.

If D and D′ are two left Γ-modules equipped with a Γ-equivariant pairing

[ , ] : D× D′−→C×p ,

then there is an induced pairing

[ , ] : H1(Γ,D)× H1(Γ,D′)−→C×p ;
[∑

σi ⊗ δi, f
]

=
∑

[δi, f(σi)].

Applying this general fact to the extended Weil symbol [ , ] on the modules D = Div0(Hp)

and D′ = Div†0(Hp), one obtains from the extended Weil symbol an induced pairing

[ , ] : H1(Γ,Div0(Hp))× H1(Γ,Div†0(Hp))−→C×p
denoted in the same way by a slight abuse of notation. The idea will be to upgrade the

p-adic logarithm of this pairing to a Néron symbol

[ , ]Neron : H1(Γ,Div(Hp)) ×̂ H1(Γ,Div†(Hp))−→Cp,

and, analogous to De�nition 14, to parlay this symbol into a Green’s function

Gp : Z1(Γ\(H×Hp)) ×̂ Z1(Γ\(H×Hp)) −→ Cp .
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3.3. RM cycles and divisor-valued homology classes. This section and the next ex-

plain how an RM cycle Zα ∈ Z1(Γ\(H×Hp)) attached to an embedding α of a real qua-

dratic order into R gives rise to natural classes

Dα ∈ H1(Γ,Div(Hp)), D̂α ∈ H1(Γ,Div†(Hp)).

De�nition 15. The class in H1(Γ,Div(Hp)) associated to α is de�ned by

Dα = γα ⊗ [τα].

The assignment α 7→ Dα extends by linearity to a map

Z1(Γ\(H×Hp))−→H1(Γ,Div(Hp)).

It will sometimes be useful to attach to Dα a �nite linear combination D̃α of (non-closed)

geodesic segments in H×Hp satisfying π∗(D̃α) = Zα. This is done by choosing a base

point ξ∞ ∈ H, and de�ning D̃α as in (21).

3.4. RMcycles and divisor-valued cohomology classes. The construction of the class

D̂α ∈ H1(Γ,Div†(Hp))

attached to α ∈ Γ\HRM
p , which we now describe, is slightly more involved. Recall that

(α) ⊂ H denotes the oriented open geodesic on H attached to α. For each b ∈ Γ/Γα, we

obtain a well-de�ned point and open geodesic

bτα ∈ Hp, b(α) ⊂ H .

Choose a base point ξ∞ ∈ H in the complement of the Γ-translates of all the geodesics

in Γ · (α). The choice of ξ∞ ensures that the open geodesics b(α) in H intersect properly

with the closed geodesic segment [ξ∞, γξ∞]. After choosing an orientation on H, which

is �xed henceforth, we obtain a well-de�ned intersection number

[ξ∞, γξ∞] _ b(α) ∈ {−1, 0, 1}.

For any γ ∈ Γ, consider the formal divisor de�ned by

(22) D̂α(γ) :=
∑

b∈Γ/Γα

([ξ∞, γξ∞] _ b(α)) · [bτα].

Lemma 16. The formal divisor D̂α(γ) is locally �nite. The assignment γ 7→ D̂α(γ) de�nes
a one-cocycle on Γwith values inDiv†(Hp)whose image inH1(Γ,Div†(Hp)) does not depend
on the choice of base point ξ∞ that was made to de�ne it.

Proof. To prove the �rst assertion it su�ces to show that for each n ≥ 0, the divisor

D̂
(n)

α (γ) := D̂α(γ) ∩ H(n)
p =

∑
b∈Γn/Γα

([ξ∞, γξ∞] _ b(α)) · [bτα]
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has �nite support. But the union of geodesic cycles∑
b∈Γn/Γα

b(α)

on H is invariant under Γ0, and is the pull-back to H of a �nite union, indexed by ele-

ments of the �nite set Γ0\Γn/Γα, of geodesics on Γ0\H under the natural projection

π : H→ Γ0\H. Let ξ denote this closed geodesic on Γ0\H, satisfying

(23) π∗(ξ) =
∑

b∈Γn/Γα

b(α).

The support of D̂
(n)

α (γ) is contained in the intersection of π∗(ξ) with the closed geo-

desic segment [ξ∞, γξ∞]. But π induces a bijection between this set and the intersec-

tion of the closed geodesic ξ and π∗([ξ∞, γξ∞]) in Γ0\H. Since the latter intersection

is �nite, the �rst assertion follows. The second assertion is the result of a standard cal-

culation verifying that D̂α satis�es the cocycle relation, and is left to the reader. �

The assignment α 7→ D̂α in (22) extends by linearity to a homomorphism

Z1(Γ\(H×Hp))−→H1(Γ,Div†(Hp)).

3.5. The homology of divisors. The Γ-homology of the short exact sequence in (7)

leads to the long exact sequence

(24) · · · −→H2(Γ,Z)
δ−→ H1(Γ,Div0(Hp))

j−→ H1(Γ,Div(Hp))−→H1(Γ,Z)−→· · ·
Since H1(Γ,Z) is �nite, one has, after tensoring with Q,

(25) · · · −→H2(Γ,Q)
δ−→ H1(Γ,Div0(Hp))Q

j−→H1(Γ,Div(Hp))Q → 0,

which is formally similar to (14), with the notable di�erence that the cohomological de-

grees have increased by 1.

Just like the group H1(Γ,Z) arising in (14), the group H2(Γ,Z) is intimately connected

to Snew
2 (pDB). More precisely, let R0(p) be an Eichler order of level p in the quaternionic

order R and let Γ
(p)
0 := R0(p)×1 . The following lemma is analogous to Lemma 5.

Lemma 17. The group H2(Γ,Q) is isomorphic to the p-new part of H1(Γ
(p)
0 \H,Q). In

particular, it is annihilated by any Hecke operator that kills Snew
2 (pDB).

Proof. Let

→
E be the set of ordered edges of T , and let Z[

→
E ] and Z[V ] be the set of

�nite linear combinations of elements of

→
E and V respectively. The Z-linear map

d : Z[
→
E ]−→Z[V ] satisfying d([v1, v2]) = [v2]− [v1] �ts into a short exact sequence

0→ Z[
→
E ]

d−→ Z[V ]
deg−→ Z→ 0
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of Γ-modules. Taking its homology and invoking Shapiro’s lemma shows that H2(Γ,Z)

maps to the p-new part of H1(Γ
(p)
0 ,Z) with �nite kernel and co-kernel. Since the group

Γ
(p)
0 gives the (complex!) uniformisation of the Shimura curve Xp,DB attached to DB

and auxiliary Eichler level structure at p, the result follows. �

In conclusion, any class Dα ∈ H1(Γ,Div(Hp))Q attached to an RM cycle Zα can be

lifted to a class in H1(Γ,Div0(Hp))Q, but this lift is not unique: any two lifts di�er by a

class in δ(H2(Γ,Z)). An important ingredient in the de�nition of the Néron symbol on

RM cycles is the construction of a canonical right inverse of the surjective map j in (25),

leading to a direct sum decomposition

H1(Γ,Div0(Hp))Q = δ(H2(Γ,Q)) ⊕ H1(Γ,Div(Hp))Q.

This shall be carried out in § 3.8.

3.6. The cohomology of locally �nite divisors. The Γ-cohomology of the short exact

sequence (8) leads to the long exact sequence, analogous to (15):

(26) 0→ H1(Γ,Div†0(Hp))−→H1(Γ,Div†(Hp))
Deg−→ H1(Γ,ZV)−→· · ·

The following is the counterpart of Lemma 6 for inde�nite quaternion algebras:

Lemma 18. The target of the degree map Deg is equal to

H1(Γ0,Z)2 ' H1(XDB(C),Z),

where XDB is the Shimura curve that is uniformised by Γ0 over C. In particular, this target
is annihilated by any Hecke operator that kills Snew

2 (DB).

Proof. The identi�cation of H1(Γ,ZV) with H1(Γ0,Z)2
follows from Shapiro’s lemma,

since there are precisely two Γ-orbits in V and the vertex stabilisers are isomorphic to

Γ0. The last assertion is a consequence of the Jacquet–Langlands correspondence. �

3.7. The p-adic period pairing. The goal of this section is to de�ne a period pairing

(27) 〈 , 〉Γ : H2(Γ,Z)× H2(Γ,Z)−→C×p
playing the role of (18) in the setting of inde�nite quaternion algebras.

Two base points η∞ and ξ∞ ∈ H are said to be in generic position (relative to the group

Γ) if η∞ does not lie on any geodesic segments of the form [γ1ξ∞, γ2ξ∞] with γ1, γ2 ∈ Γ,

and likewise ξ∞ lies on no geodesic segment of the form [γ1η∞, γ2η∞]. This implies that,

for any r, s ∈ Γη∞ and any t, u ∈ Γξ∞, the geodesic segments [r, s] and [t, u] must always

intersect transversally (if at all).

Lemma 19. A pair (ξ∞, η∞) of base points in H in generic position relative to Γ exists.
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Proof. Let QB be the quadric over Q whose points over a �eld E are given by

QB(E) := {x ∈ B ⊗ E such that Trace(x) = Nrd(x) = 0}/E×.

Identifying H with QB(C)−QB(R), the action of B× on H becomes independent of

the choice of a real splitting ofB, and we can write H(E) := QB(E)−QB(R) for any

sub�eld E of C. Let E1, E2 ⊂ C be two linearly disjoint abelian CM extensions of Q.

Choose ξ∞ ∈ H(E1) in such a way that its Galois conjugates in H do not all lie on a

common geodesic. Such a property is readily achieved once the degree of E1 is large

enough. Make a similar choice for η∞, with E1 replaced by E2. Given any γ1, γ2 ∈ Γ,

the de�ning equation for the geodesic through γ1η∞ and γ2η∞ involves only addition,

multiplication, and complex conjugation, which commutes with the automorphisms

of E1E2. It follows that

ξ∞ ∈ [γ1η∞, γ2η∞] ⇒ ξσ∞ ∈ [γ1η
σ
∞, γ2η

σ
∞], for all σ ∈ Gal(E1E2/Q).

In particular, if ξ∞ lies on a geodesic segment of the form [γ1η∞, γ2η∞], then the same

has to be true of all of its conjugates by Gal(E1E2/E2) = Gal(E1/Q), contradicting

the choice of ξ∞. The same argument applied to η∞, with E1 replaced by E2, leads to

the conclusion that (ξ∞, η∞) are in general position. �

Recall that A ×
and M×

denote the multiplicative group of rigid analytic and meromor-

phic functions on Hp. Fix a pair (η∞, ξ∞) of base points in H in generic position relative

to Γ, and choose a base point ξp ∈ Hp. These choices will be used to de�ne natural maps,

in analogy with (16),

(28)

ΠΓ : H1(Γ,Div0(Hp)) −→ H1(Γ,M× /C×p ),

ΣΓ : H1(Γ,Div(Hp)) −→ H1(Γ,Div†(Hp)).

The map ΠΓ sends the element D =
∑

i γi ⊗D i ∈ H1(Γ,Div0(Hp)) to the cocycle

(29) ΠΓ(D)(γ)(z) =
∏
i

∏
b∈Γ

[(z)− (ξp); bD i]
[η∞,γη∞]_[bξ∞,bγiξ∞].

The in�nite product de�ning ΠΓ(D)(γ) as a function of z converges uniformly on a�noid

subsets to a rigid meromorphic function and is independent of the choice of base point

ξp ∈ Hp, up to multiplication by C×p . Furthermore, the assignment γ 7→ ΠΓ(D)(γ) de�nes

a one-cocycle on Γ with values in M× /C×p whose image in H1(Γ,M× /C×p ) does not

depend on the choices of complex base points η∞ and ξ∞ that were made to de�ne the

cocycle ΠΓ(D).

The map ΣΓ sends the element D (where the D i are no longer assumed to be necessarily

of degree zero) to the cocycle

ΣΓ(D)(γ) =
∑
i

∑
b∈Γ

([η∞, γη∞] _ [bξ∞, bγiξ∞]) · bD i .
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These maps �t into the commutative diagram with exact rows, analogous to (17),

(30)

H2(Γ,Z)

H1(Γ,A ×/C×p )

H1(Γ,Div0(Hp))

H1(Γ,M×/C×p )

H1(Γ,Div(Hp))

H1(Γ,Div†(Hp))

· · ·

· · ·

· · ·

0

δ j

ΠΓ ΠΓ ΣΓ

where the top row is (24) and the second row arises from the cohomology of the short

exact sequence

1→ A × /C×p −→M× /C×p −→Div†(Hp)→ 1.

Composing the leftmost map ΠΓ in (30) with the period homomorphism

(31) per : H1(Γ,A × /C×p )−→H2(Γ,C×p )

arising from cohomology of the short exact sequence 1→ C×p −→A ×−→A × /C×p → 1
yields a homomorphism

ηΓ := per ◦ ΠΓ : H2(Γ,Z)−→H2(Γ,C×p )

which induces the period pairing in (27) . This pairing is entirely analogous to the p-adic

period pairing (18) arising in the Mumford-Schottky theory of p-adic uniformisation of

Shimura curves when B is a de�nite quaternion algebras. The following extends Propo-

sition 7 to the setting of inde�nite quaternion algebras.

Proposition 20. The Z-valued pairing ordp(〈 , 〉Γ) is non-degenerate.

Proof. The appendix of [DV3] explains that the natural image of H1(Γ,A × /C×p ) in

H2(Γ,C×p ) is a lattice in this p-adic torus, and the proposition follows from this. �

Remark 21. The quotient

H2(Γ,C×p )/ηΓ(H2(Γ,Z))

appears to uniformise an abelian variety which is isogenous to (two copies of) new part of

J0(pDB). This striking assertion is a reformulation of the “exceptional zero conjecture" of

Mazur, Tate, and Teitelbaum. The lattice per(H1(Γ,A × /C×p )) is studied in greater depth

in [Das].

3.8. Unitary classes. As in § 2.6, a natural Q-vector space complement of j(H2(Γ,Q))
in H1(Γ,Div0(Hp))Q can now be produced, by exploiting the map

ηΓ := ordp ◦ per ◦ ΠΓ : H1(Γ,Div0(Hp))−→H2(Γ,Z),

and setting

(32) H1(Γ,Div0(Hp))
]
Q := ker(ηΓ) ⊂ H1(Γ,Div0(Hp))Q.
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Proposition 20 implies that H1(Γ,Div0(Hp))
]
Q is complementary to δ(H2(Γ,Q)). Any class

D ∈ H1(Γ,Div(Hp))Q therefore admits a unique unitary lift, denoted

D ] ∈ H1(Γ,Div0(Hp))
]
Q.

The following analogue of Lemma 9 provides an explicit construction of unitary classes

in some cases:

Lemma 22. Let Div00(Hnr
p ) be de�ned as in Lemma 9. The natural image of the map

H1(Γ,Div00(Hnr
p ))Q−→H1(Γ,Div0(Hp))Q

is contained in H1(Γ,Div0(Hp))
]
Q.

Proof. This follows from the same reasoning as in the proof of Lemma 9. Namely, if

D belongs to Div00(Hnr
p ) then the Weil symbol [D ; (bγξp)− (bξp)] is always a p-adic

unit for any b ∈ Γ, as can be seen by reducing to the case where D is supported on

red−1(v) for a single vertex v of the tree, and choosing the base point ξp to reduce to

a vertex that is not Γ-equivalent to v. Hence the same holds for

(per ◦ ΠΓ(D))(γ) =
∏
b∈Γ

[D ; (bγξp)− (bξp)],

and the lemma follows. �

3.9. Rigidmeromorphic cocycles and principal classes. A rigid meromorphic cocycle
for Γ is a one-cocycle on Γ with values in M×

. They play the same role in the inde�nite

setting as rigid meromorphic functions on the Shimura curve X in the de�nite setting.

A rigid meromorphic or analytic theta-cocycle for Γ is a one-cocycle on Γ with values in

M× /C×p or A × /C×p respectively. Recall the homomorphism

(33) per : H1(Γ,M×/C×p )−→H2(Γ,C×p )

whose restriction to H1(Γ,A × /C×p ) is the period map of (31).

A class in the image of the natural map

(34) Div : H1(Γ,M×)−→H1(Γ,Div†(Hp)).

is called a principal divisor, and the group of such objects is denoted P 1(Γ,Div†(Hp)). The

following lemma is the analogue in the inde�nite setup of Lemma 10.

Lemma 23. The groups H1(Γ,Div†0(Hp)) and P 1(Γ,Div†(Hnr
p )) together generate a �nite

index subgroup of H1(Γ,Div†(Hp)).

Proof. Let Ξ denote the image of the group P 1(Γ,Div†(Hnr
p )) in H1(Γ,ZV) under the

map induced by the degree Deg : Div†(Hp)−→ZV . Any prime-to-p Hecke operator
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that annihilates Snew
2 (pDB) sends H1(Γ,Div†(Hnr

p )) to P 1(Γ,Div†(Hnr
p )), and there-

fore kills the quotient H1(Γ,ZV)/Ξ. On the other hand, the target H1(Γ,Z∨) of the

degree map is annihilated by any Hecke operator that kills Snew
2 (DB), by Lemma 18.

Since the spectra of the Hecke operators on the spaces of newforms of levels DB and

pDB are disjoint, one can choose a Hecke operator T that annihilates H1(Γ,ZV)/Ξ

while acting invertibly on H1(Γ,QΓ\V
). The quotient H1(Γ,ZV))/Ξ is annihilated by

such a T , and is therefore �nite. �

Given a principal class in P 1(Γ,Div†(Hnr
p )) that also lies in H1(Γ,Div†0(Hp)), the fol-

lowing lemma recovers a rigid meromorphic cocycle with that divisor in terms of the

multiplicative Weil symbol.

Lemma 24. Consider an unrami�ed class

D ∈ H1(Γ,Div†0(Hp)) ∩ P 1(Γ,Div†(Hnr
p ))

which is principal and of strong degree zero. Then the rigid meromorphic functions

JD(γ)(z) := [(z)− (ξp); D(γ)]

indexed by γ ∈ Γ, de�ne a rigid meromorphic cocycle on Γ having D as its divisor. The
natural image of this cocycle in H1(Γ,M×) does not depend on the choice of ξp ∈ Hp.

Proof. The rigid meromorphic functions JD(γ) on Hp satisfy the cocycle relation for

Γ up to multiplicative constants, by Corollary 4. The same reasoning as in the proof

of Lemma 9 shows that the image of JD in H2(Γ,C×p ) under the period map per of

(33) is contained in H2(Γ,O×Cp). Let J ∈ H1(Γ,M×) be a rigid meromorphic cocycle

having D as its divisor. Then the ratio JD/J gives rise to a class in H1(Γ,A × /C×p )

whose image in H2(Γ,C×p ) is contained in H2(Γ,O×Cp). Because

per(H1(Γ,A × /C×p )) ⊂ H2(Γ,C×p )

is a lattice, it follows that JD/J lifts to a class in H1(Γ,A ×), and therefore that JD

belongs to H1(Γ,M×), as was to be shown. �

3.10. p-adic Néron symbols and Green’s functions for RM cycles. Note that the ex-

tended Weil symbol gives a natural pairing

[ , ] : H1(Γ,Div0(Hp))× H1(Γ,Div†0(Hp))−→C×p .

The following theorem is the inde�nite counterpart of Theorem 13.

Theorem 25. There is a unique bi-additive function

[ , ]Neron : H1(Γ,Div(Hp))× H1(Γ,Div†(Hp))−→Cp

satisfying, for all D1 ∈ H1(Γ,Div(Hp)) and D̂2 ∈ H1(Γ,Div†(Hp)),
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(1) if D̂2 ∈ H1(Γ,Div†0(Hp)) is of strong degree zero,

[D1, D̂2]Neron = logp([D
]
1; D̂2]);

(2) if D̂2 is the divisor of the rigid meromorphic cocycle J2 and is unrami�ed, then

[D1, D̂2]Neron = logp(J2[D1]).

Proof. The proof proceeds along the same lines as the proof of Theorem 13. The

uniqueness follows from Lemma 23 since Cp is uniquely divisible. To check existence,

let us de�ne [D1, D̂2]Neron by writing D̂2 = P +D̂
0

2 with

P := Div(JP) ∈ P 1(Γ,Div†(Hnr
p ))Q, D̂

0

2 ∈ H1(Γ,Div†0(Hp))Q,

and setting

(35) [D1, D̂2]Neron := logp JP [D1] + logp[D
]
1; D̂

0

2].

The pair (P, D̂
0

2) is well-de�ned up to replacing it with (P +δ, D̂
0

2 − δ), where

δ ∈ H1(Γ,Div†0(Hp)) ∩ P 1(Γ,Div†(Hnr
p ))

is the divisor of a Γ-invariant rigid meromorphic cocycle J . The resulting expression

(35) for the Néron symbol [D1, D̂2]Neron is then changed by

logp J [D1]− logp[D
]
1; δ] = logp J [D1]− logp Jδ[D

]
1]

= logp J [D1]− logp Jδ[D1] = 0,

where

(1) Jδ is the rigid meromorphic cocycle constructed in Lemma 24;

(2) the second equality follows from the fact that Jδ[D ] depends only on the image

of D in H1(Γ,Div(Hp));

(3) the vanishing follows since the rigid meromorphic cocycles J and Jδ have the

same divisor and hence di�er by an element of the �nite group H1(Γ,A ×), and

therefore the logarithms of the values J [D1] and Jδ[D1] are equal.

�

Let α1 and α2 be non Γ-conjugate embeddings of real quadratic Z[1/p]-orders into

R[1/p]. After possibly interchanging α1 and α2, it can be assumed that p - D2. The

following de�nes the p-adic Green’s function on the pair (α1, α2) of RM divisors on Hp:

De�nition 26. The p-adic Green’s function Gp(α1, α2) is equal to

Gp(α1, α2) = [Dα1 , D̂α2 ]Neron.
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3.11. The local trace of Gp(α1, α2). In this section, let us assume further that

α1 : O1−→R, α2 : O2−→R

are embeddings of real quadratic orders of relatively prime discriminants D1 and D2 re-

spectively, and that the prime p does not divide D1D2, and therefore is inert in both

K1 = Q(
√
D1) and K2 = Q(

√
D2). Recall that

F = Q(
√
D1D2), L = Q(

√
D1,

√
D2),

viewed as sub�elds of Q̄p, and that Fp = Qp andLp denote their respective completions in

this p-adic �eld. As an application of the general theory of the p-adic Green’s function, we

will give an explicit formula for the trace to Fp of the Green’s function Gp(α1, α2), in the

special case where the group Γ0 of (13) has �nite abelianisation, and hence uniformises a

curve over C of genus zero. This assumption is satis�ed in the following two cases:

(1) The algebra B is the split quaternion algebra M2(Q), and hence R = M2(Z) and

Γ0 = SL2(Z). In that case,

H1(Γ0,Z) = Z /12Z, H1(Γ0,Z) = 0

and

H1(Γ,Z) =

 Z /3Z if p = 2;
Z /4Z if p = 3;
Z /12Z otherwise,

H1(Γ,Z) = 0,

cf. Serre [Se1]. This corresponds to the setting considered in [DV1].

(2) The algebraB is a non-split inde�nite quaternion algebra of discriminantDB , and

there are no weight two cuspidal newforms of weight two and level DB . This

happens precisely when DB = 6, 10, or 22.

Let τ1 and τ2 be the �xed points of α1(K×1 ) and α2(K×2 ) on Hp, let Γ1 and Γ2 be the

associated stabiliser groups, and let γ1 and γ2 be the associated automorphs.

The class D1 := γ1⊗[τ1] ∈ H1(Γ,Div(Hp)) is the image of a class in H1(Γ0,Div0(H(0)
p ))

under the natural map from the latter to the former. Let D ]
1 be the unique lift of D1 to

the group H1(Γ,Div0(Hp))
]

of unitary one-cycles. The following lemma describes this

element in terms of the cohomology of the subgroup Γ0:

Lemma 27. The class D ]
1 can be represented by an element in the image of the natural map

H1(Γ0,Div0(H(0)
p ))−→H1(Γ,Div0(Hp)).

Proof. That the class D1 admits a representative in H1(Γ0,Div0(H(0)
p )) follows from

the fact that Γ0 has �nite abelianisation and hence the natural map

H1(Γ0,Div0(H(0)
p ))−→H1(Γ0,Div(H(0)

p ))
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has �nite cokernel.This representative agrees with D ]
1, since all classes in the group

H1(Γ0,Div0(H(0)
p ))Q belong to H1(Γ0,Div0(Hp))

]
Q, by Lemma 22. �

Now let D (n)
2 ∈ H1(Γ0,Div(H(n)

p )) be the image of the one-cocycle D̂2 under the map

H1(Γ,Div(Hp))−→H1(Γ0,Div(H(n)
p ))

obtained by restricting to Γ0 and applying the Γ0-equivariant map D 7→ D (n)
to the

coe�cients. Explicitly, having choosen a generic base point ξ∞ ∈ H, one has

(36) D (n)
2 (γ) =

∑
b∈R[p2n]/Γ2

([ξ∞, γξ∞] _ b(α2) · [bτ2].

It is apparent that D (n)
2 satis�es a one-cocycle relation for Γ0. Furthermore, the triviality

of H1(Γ0,Z) shows that the cocycle D (n)
2 takes values in Div0(H(n)

p ), and therefore gives

rise to a class in H1(Γ0,Div0(H(n)
p )). Let R×n denote the Γ0-module of rational functions

on P1(Cp) whose divisor is supported in H(n)
p . Taking the cohomology of the short exact

sequence of Γ0-modules

1→ C×p −→R×n −→Div0(H(n)
p )→ 1,

and observing that H2(Γ0,C×p ) is essentially trivial, one expects the classes D (n)
2 to admit

lifts to H1(Γ0,R×n ).

The key lemma 28 below produces a partial lift toR×n /εZ2 , where ε2 is the fundamental

unit of norm 1 of the real quadratic �eld K2. To formulate it, we remark that for any

b ∈ R, the function

det

((
z
1

)
, b

(
τ2

1

))
is a linear polynomial in z with a zero at bτ2, and that its image in R×n /εZ2 depends only

on the class of b in R[p2n]/γZ2 , since replacing b by bγt2 has the e�ect of multiplying this

function by εt2.

Lemma 28. TheR×n /εZ2 -valued function J
(n)
2 on Γ0 de�ned by

(37) J
(n)
2 (γ)(z) =

∏
b∈R[p2n]/γZ2

det
(
( z1 ) , b ( τ21 )

)[η∞,γη∞]_b(α2)
(mod εZ2 )

represents a lift of D (n)
2 to H1(Γ0,R×n /εZ2 ).

Proof. The rational function on the right hand side of (37) has divisor equal to D (n)
2 (γ)

in (36). It therefore su�ces to show that J
(n)
2 satis�es the relations of a one-cocycle

on Γ0 with values inR×n /εZ2 . This is readily checked by a direct calculation. �
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We are now ready to state the main result. Recall that, for any two quadratic elements

τ1 and τ2 of Hp, having τ ′1 and τ ′2 as their conjugates, we have set

g(τ1, τ2) =
(τ1 − τ2)(τ ′1 − τ ′2)

(τ1 − τ ′1)(τ2 − τ ′2)
,

and Gp(α1, α2) = Trace
Lp
Fp
Gp(α1, α2).

Theorem 29. Assume that Γ0 has genus zero. Then

Gp(α1, α2) = lim
n→∞

logp

( ∏
b∈Γ1\R[p2n]/Γ2

g(τ1, bτ2)(α1)_b(α2)
)
.

Proof. By de�nition,

(38) Gp(α1, α2) = [D ]
1, D̂2]Neron = lim

n→∞
logp[D

]
1; D (n)

2 ].

Because the class D ]
1 is not readily described explicitly, we shall content ourselves

with the evaluation of [D ]
1; D (n)

2 ] modulo εZ2 , invoking Lemma 28 to rewrite

(39) [D ]
1; D (n)

2 ] = J
(n)
2 [D ]

1] = J
(n)
2 [D1] (mod εZ2 ).

But the quantity J
(n)
2 [D1] equals

J
(n)
2 (γ1)(τ1) =

∏
b∈R[p2n]/Γ2

det
(
( τ11 ) , b ( τ21 )

)[η∞,γ1η∞]_b(α2)
(mod εZ2 )

=
∏

b∈Γ1\R[p2n]/Γ2

∞∏
j=−∞

det
((

τ1
1

)
, γj1b ( τ21 )

)[η∞,γ1η∞]_γj1b(α2)
(mod εZ2 )

=
∏

b∈Γ1\R[p2n]/Γ2

det
(
( τ11 ) , b ( τ21 )

)(α1)_b(α2)
(mod εZ1 ε

Z
2 ).

Taking the norm of this identity to F×p has the pleasant feature that it eliminates the

ambiguity by the units of K1 and K2. One �nds

(40) Norm
Lp
Fp

(J
(n)
2 [D1]) =

∏
b∈γZ1 \R[p2n]/γZ2

g(τ1, bτ2)(α1)_b(α2).

The theorem now follows from combining (38), (39), and (40). �
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