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Abstract. This article is the first in a series devoted to studying generalised Gross-Kudla-

Schoen diagonal cycles in the product of three Kuga-Sato varieties and the Euler system
properties of the associated Selmer classes, with special emphasis on their application to
the Birch–Swinnerton-Dyer conjecture and the theory of Stark-Heegner points. The basis
for the entire study is a p-adic formula of Gross-Zagier type which relates the images of
these diagonal cycles under the p-adic Abel-Jacobi map to special values of certain p-adic L-
functions attached to the Garrett-Rankin triple convolution of three Hida families of modular
forms. The main goal of this article is to describe and prove this formula.

Cet article est le premier d’une série consacrée aux cycles de Gross-Kudla-Schoen généralisés
appartenant aux groupes de Chow de produits de trois variétés de Kuga-Sato, et aux systèmes
d’Euler qui leur sont associés. La série au complet repose sur une variante p-adique de la

formule de Gross-Zagier qui relie l’image des cycles de Gross-Kudla-Schoen par l’application

d’Abel-Jacobi p-adique aux valeurs spéciales de certaines fonctions L p-adiques attachées à

la convolution de Garrett-Rankin de trois familles de Hida de formes modulaires cuspidales.

L’objectif principal de cet article est de décrire et de démontrer cette variante.
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1. Introduction

This article is the first in a series devoted to studying generalised diagonal cycles in the
product of three Kuga-Sato varieties and the Euler system properties of the associated Selmer
classes, with special emphasis on their application to the Birch–Swinnerton-Dyer conjecture
and the theory of Stark-Heegner points. The basis for the entire study is a p-adic Gross-Zagier
formula relating

• the image under the p-adic Abel-Jacobi map of certain generalised Gross-Kudla-Schoen
cycles in the product of three Kuga-Sato varieties, to

• the special value of the p-adic L-function of [HaTi] attached to the Garrett-Rankin
triple convolution of three Hida families of modular forms, at a point lying outside its
region of interpolation.

In order to precisely state the main result, let

f =
∑

an(f)qn ∈ Sk(Nf , χf ),

g =
∑

an(g)qn ∈ S`(Ng, χg),

h =
∑

an(h)qn ∈ Sm(Nh, χh)

be three normalized primitive cuspidal eigenforms of weights k, `,m ≥ 2, levels Nf , Ng, Nh ≥ 1,
and Nebentypus characters χf , χg, and χh, respectively. Let N := lcm(Nf , Ng, Nh) and
assume that

χf · χg · χh = 1,

so that in particular k + `+m is even.
The triple (k, `,m) is said to be balanced if the largest weight is strictly smaller than the

sum of the other two. A triple of weights which is not balanced will be called unbalanced, and
the largest weight in an unbalanced triple will be referred to as the dominant weight.

Section 4.1 recalls the definition of the Garrett-Rankin L-function L(f, g, h; s) attached to
the triple tensor product

Vp(f, g, h) := Vp(f) ⊗ Vp(g) ⊗ Vp(h)

of the (compatible systems of) p-adic Galois representations Vp(f), Vp(g) and Vp(h) attached
to f , g and h respectively. This L-function satisfies a functional equation relating its values
at s and k+ `+m− 2− s. In particular, the parity of the order of vanishing of L(f, g, h; s) at
the central critical point c := k+`+m−2

2 is controlled by the sign ε ∈ {±1} in this functional
equation, a quantity that can be expressed as a product ε =

∏

v|N∞ εv , εv ∈ {±1}, of local

root numbers indexed by the places dividing N∞. The following hypothesis is assumed
throughout:

H: The local root numbers εv at all the finite primes v|N are equal to +1.

This assumption holds in a broad collection of settings of arithmetic interest. For instance, it
is satisfied in either of the following two cases:

• gcd(Nf , Ng, Nh) = 1, or,
• N = Nf = Ng = Nh is square-free and av(f)av(g)av(h) = −1 for all primes v | N .

Assumption H implies that ε = ε∞ depends only on the local sign at ∞, which in turn
depends only on whether the weights of (f, g, h) are balanced or not:

ε = ε∞ =

{

−1 if (k, `,m) is balanced;
1 if (k, `,m) is unbalanced.

In particular, the L-function L(f, g, h, s) necessarily vanishes (to odd order) at its central
point c when (k, `,m) is balanced.
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Let E denote the universal generalised elliptic curve fibered over X = X1(N). For any
n ≥ 0, let En be the n-th Kuga-Sato variety over X1(N). It is an n + 1-dimensional variety
obtained by desingularising the n-fold fiber product of E over X1(N). (Cf. [Sc] for a more
detailed account of its construction.) The p-adic Galois representation Vp(f, g, h) occurs in
the middle cohomology of the triple product

(1) W := Ek−2 × E`−2 × Em−2.

When (k, `,m) is balanced and assumption H is satisfied, the conjectures of Bloch-Kato and
Beilinson-Bloch predict (because of the vanishing of L(f, g, h, c)) that there should then exist
a non-trivial cycle in the Chow group Q ⊗ CHc(W )0 of rational equivalence classes of null-
homologous cycles of codimension c on the variety W of (1). Section 3.1 introduces cycles
∆f,g,h ∈ Q ⊗ CHc(W )0 which are natural candidates to fulfill these expectations, and whose
construction we now briefly summarize.

Set r = k+`+m−6
2 . As explained in §3.1, there exists an essentially unique, natural way of

embedding the Kuga-Sato variety E r in the variety W . Its image gives rise to an element in
the Chow group CHr+2(W ) which, suitably modified, becomes homologically trivial. In this
way, we obtain a cycle

∆k,`,m ∈ CHr+2(W )0 := ker(CHr+2(W )
cl−→ H2r+4

dR (W/C)).

In the special case where k = ` = m = 2, the cycle ∆2,2,2 is just the modified diagonal
considered by Gross–Kudla [GrKu] and Gross–Schoen [GrSc].

The cycles ∆f,g,h alluded to above are defined as the (f, g, h)-isotypical component of the
null-homologous cycle ∆k,`,m with respect to the action of the Hecke operators.

It is natural to conjecture that the heights of these cycles in the sense of Beilinson and
Bloch are well-defined (cf. [GrKu] and [GrSc] for more details on the necessary definitions),
and can be directly related to the first derivative of the triple product L-function L(f, g, h, s)
at the central point:

(2) h(∆f,g,h)
?
= (Explicit non-zero factor) × L′(f, g, h, r + 2).

When (k, `,m) = (2, 2, 2), this was predicted in [GrKu] and has recently been proved by X.
Yuan, S. Zhang and W. Zhang in [YZZ].

Remark 1.1. It would be natural to relax assumption H to the weaker condition

(3) Heven: The set of primes v|N for which εv = −1 is of even cardinality.

This is sufficient to guarantee that ε = ε∞, and can be dealt with at the cost of replacing
Kuga-Sato varieties with more general objects arising from the self-fold products of certain
families of abelian surfaces (or genus two curves) fibered over Shimura curves rather than
classical modular curves. Hypothesis H may thus be regarded as analogous to the classical
Heegner or Gross-Zagier hypothesis imposed in the study of the Rankin-Selberg L-function
L(f ⊗ θK , s) attached to a single eigenform f and the weight one theta series of an imaginary
quadratic field K. Both are meant to avoid having to deal with Shimura curves associated
with a quaternion division algebra, and make it possible to confine one’s attention to classical
modular curves. Much of our study extends to the setting of Heven by appealing to the work
of P. Kassaei [Kas99] and R. Brasca [Br]; in our exposition we have tried to present our results
in a way that suggests the modifications necessary to deal with arbitrary Shimura curves.

In this work we do not focus on (2), but rather on a p-adic analogue. Our main result
relates the image of ∆f,g,h under the p-adic Abel-Jacobi map

(4) AJp : CHr+2(W )0(Qp) −→ Filr+2H2r+3
dR (W/Qp)

∨

to the special value of a triple product p-adic L-function attached to three Hida families of
modular forms, which we now describe in more detail.
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Fix an odd prime number p - N at which f , g and h are ordinary. Let

f : Ωf −→ Cp[[q]], g : Ωg −→ Cp[[q]], h : Ωh −→ Cp[[q]]

denote the Hida families of overconvergent p-adic modular forms passing though f , g and h,
respectively, as constructed in [Hi86a] and [Hi86b], and briefly reviewed in §2.6 below. The
spaces Ωf , Ωg and Ωh are finite rigid analytic coverings of suitable subsets of the weight space

Ω := Homcts(Z
×
p ,C

×
p ),

which contains the integers Z as a dense subset via the natural inclusion k 7→ (x 7→ xk). A
point x ∈ Ωf is said to be classical if its image in Ω, denoted κ(x), belongs to Z≥2, and the
set of classical points in Ωf is denoted by Ωf,cl. Part of the requirement that f be a Hida

family is that the formal q-series f
(p)
x := f(x) should correspond to a normalised eigenform of

weight κ(x) on Γ1(N) ∩ Γ0(p), for almost all x ∈ Ωf,cl. For all but finitely many such x, the

form f
(p)
x is the ordinary p-stabilisation of a normalised eigenform on Γ1(N), denoted fx.

The natural domain of definition of the triple product p-adic L-functions is the p-adic
analytic space

Σ := Ωf × Ωg × Ωh.

Let Σcl := Ωf,cl×Ωg,cl×Ωh,cl ⊂ Σ denote its subset of “classical points”. This set is naturally
partitioned into four disjoint subsets:

Σf = {(x, y, z) ∈ Σcl, such that κ(x) ≥ κ(y) + κ(z)};
Σg = {(x, y, z) ∈ Σcl, such that κ(y) ≥ κ(x) + κ(z)};
Σh = {(x, y, z) ∈ Σcl, such that κ(z) ≥ κ(x) + κ(y)};

Σbal = {(x, y, z) ∈ Σcl, such that (κ(x), κ(y), κ(z)) is balanced.}.
Section 4 exploits the strategy pioneered by Hida [Hi88b] and subsequently extended by Harris
and Tilouine [HaTi] to construct three a priori distinct p-adic L-functions of three variables,
denoted

Lp
f (f ,g,h), Lp

g(f ,g,h), Lp
h(f ,g,h) : Σ −→ Cp,

which interpolate the square-roots of the central critical values of the classical L-function
L(fx, gy , hz, s), as (x, y, z) ranges over Σf , Σg, and Σh respectively. The precise interpolation
property defining the three p-adic L-functions is spelled out in Theorem 4.7 of Section 4.2.

Given (x, y, z) ∈ Σbal, the Heegner assumption H can be used to show that the classical
L-function L(fx, gy, hz , s) vanishes at its central point for reasons of sign. The central critical

derivative L′(fx, gy, hz ,
κ(x)+κ(y)+κ(z)−2

2 ) is then a natural object of arithmetic interest. In the

p-adic realm, the three distinct p-adic avatars of the classical L-function, namely, Lp
f (f ,g,h),

Lp
g(f ,g,h), and Lp

h(f ,g,h), need not vanish at the balanced point (x, y, z), since this point
lies outside the region of classical interpolation. The corresponding p-adic special values can
be viewed as different p-adic avatars of the complex leading term, and one might expect them
to encode similar information related to the motive of Vfx

⊗ Vgy ⊗ Vhz
.

Remark 1.2. One can also envisage a fourth p-adic L-function

Lbal
p (f ,g,h)(x, y, z, s) : Ωf × Ωg × Ωh × Ω −→ Cp

involving a further “cyclotomic” variable s and interpolating the classical special values of
L(fx, gy , hz, s)–but not their square roots–in the critical range

(x, y, z) ∈ Σbal, 1 ≤ s ≤ κ(x) + κ(y) + κ(z) − 3.

The construction of such an L-function is described in [BoPa] (see also the references therein).
Under hypothesisH, the function Lbal

p (f ,g,h) should vanish identically on the “central critical
hyperplane” 2s = κ(x) + κ(y) + κ(z) − 2, and the presence of the cyclotomic variable is



A p-ADIC GROSS-ZAGIER FORMULA FOR DIAGONAL CYCLES 5

therefore key to ensuring its non-triviality. This “balanced” p-adic L-function plays no role
in this article.

In stating our main result, it will be convenient to assume for simplicity that Nf = Ng = Nh,
i.e., that the three eigenforms f , g and h are new of the same level N . (This assumption,
which is too restrictive for most interesting arithmetic applications, will be relaxed in the
body of the text.) To any classical newform φ of weight r + 2 on Γ1(N) which is ordinary at
p, there corresponds a cohomology class

ωφ ∈ Filr+1Hr+1
dR (Er/Q̄) ⊂ Filr+1Hr+1

dR (Er/Cp),

where the inclusion is induced from our fixed embedding Q̄ ⊂ Cp. The φ-isotypic component

of Hr+1
dR (Er/Cp) is two-dimensional over Cp and (because φ is ordinary) it admits a one-

dimensional unit root subspace, denoted H r+1
dR (Er/Cp)

u-r, on which the Frobenius endomor-
phism acts as multiplication by a p-adic unit. This unit root subspace is complementary to the
middle step in the Hodge filtration, and hence, there is a unique element ηu-r

φ ∈ Hr+1
dR (Er/Cp)

u-r

satisfying

〈ωφ, η
u-r
φ 〉 = 1,

where 〈 , 〉 denotes the non-degenerate Poincaré pairing on H r+1
dR (Er/Cp). One thus obtains a

natural basis (ωφ, η
u-r
φ ) of the φ-isotypic component of Hr+1

dR (Er/Cp), for any ordinary classical

newform φ ∈ Sr+2(Γ1(N)).
If (f, g, h) is a triple of newforms of level N and balanced weights (k, `,m) = (r1 + 2, r2 +

2, r3 + 2), then

ηu-r
f ⊗ ωg ⊗ ωh ∈ Hr1+1

dR (Er1) ⊗ Filr2+1Hr2+1
dR (Er2) ⊗ Filr3+1Hr3+1

dR (Er3)(5)

⊂ Filr+2
(

Hr1+1
dR (Er1) ⊗Hr2+1

dR (Er2) ⊗Hr3+1
dR (Er3)

)

⊂ Filr+2H2r+3
dR (W/Q̄p),

where the last inclusion arises from the Künneth decomposition. In particular, the class
ηu-r

f ⊗ ωg ⊗ ωh lies in the domain of AJp(∆) when (k, `,m) is balanced.

For any f ∈ Sk(N,χ), we shall always write

(x2 − ap(f)x+ χf (p)pk−1) = (x− αf )(x− βf ), with ordp(αf ) ≤ ordp(βf ),

so that in particular αf is a p-adic unit when f is ordinary.
The main result of this article is

Theorem 1.3. Given (x, y, z) ∈ Σbal, let

(f, g, h) := (fx, gy, hz), (k, `,m) := (κ(x), κ(y), κ(z)),

c := (k + `+m− 2)/2, k = `+m− 2 − 2t (with t ≥ 0),

and let ∆ := ∆k,`,m be the generalised diagonal cycle in Ek−2 × E`−2 × Em−2. Then

Lp
f (f ,g,h)(x, y, z) = (−1)t E(f, g, h)

t! · E0(f)E1(f)
× AJp(∆)(ηu-r

f ⊗ ωg ⊗ ωh),

where

E(f, g, h) :=
(

1 − βfαgαhp
−c
)

×
(

1 − βfαgβhp
−c
)

(6)

×
(

1 − βfβgαhp
−c
)

×
(

1 − βfβgβhp
−c
)

,

E0(f) := (1 − β2
fχ

−1
f (p)p1−k),(7)

E1(f) := (1 − β2
fχ

−1
f (p)p−k).(8)
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See Theorem 5.1 for a more general statement involving newforms of possibly different
levels. Theorem 1.3 can be viewed as a p-adic analogue of the archimedean formula suggested
in (2), and in fact the Euler factor E(f, g, h) that arises in the formula fits within the general
conjectural description of the p-adic L-function of an arbitrary motive given by Panciskin in
[Pan, p. 285].

One could also envisage a more direct p-adic analogue, relating the cyclotomic p-adic
height of ∆fx,gy,hz

to the derivative in the cyclotomic direction of the p-adic L-function

Lbal
p (f ,g,h)(x, y, z, s) alluded to in Remark 1.2. Such a formula, which is currently unavailable

in the literature, would be closer in spirit to the archimedean formulae conjectured in [GrKu]
and proved in [YZZ], and to the p-adic analogues of the Gross-Zager formula proved in [PR]
and [Ne1], while Theorem 1.3 is better adapted to the arithmetic applications that the authors
wish to pursue by exploiting the Euler system properties of p-adic families of diagonal cycles
and associated explicit reciprocity laws in the spirit of Coates–Wiles and Kato–Perrin-Riou.
Let us close this introduction by describing some of these applications.

I. The Euler system of diagonal cycles. Theorem 1.3 is available when f is replaced by g
or h if the latter two forms are also assumed to be ordinary. The Abel-Jacobi image AJp(∆)

therefore encodes the values of the three distinct p-adic L-functions Lp
f (f ,g,h), Lp

g(f ,g,h)

and Lp
h(f ,g,h) at (x, y, z) ∈ Σbal. This suggests that these L-functions should be viewed

as the different projections of a common Euler system obtained by p-adically interpolating
the diagonal cycles themselves as (x, y, z) ranges over Σbal. (More precisely: their images
κ(fx, gy, hz) ∈ H1(Q, Vfx,gy,hz

) under the p-adic étale Abel-Jacobi map, where Vfx,gy,hz
de-

notes the self-dual Tate twist of the triple tensor product Vfx
⊗ Vgy ⊗ Vhz

of the Deligne
representations attached to the eigenforms fx, gy and hz.) The sequel [DR] to this paper
pieces these global classes together into an element

κ(f ,g,h) ∈ H1(Q,Vf ,g,h),

where Vf ,g,h is a twist of the tensor product Vf ⊗Vg ⊗Vh of Hida’s Λ-adic representations
attached to f , g, and h respectively, interpolating the representations Vfx,gy,hz

. The three
Garrett-Rankin p-adic L-functions are then obtained from the image of κ(f ,g,h) under a
homomorphism interpolating the Bloch-Kato logarithms attached to the specialisations Vfx

⊗
Vgy ⊗Vhz

in the range (x, y, z) ∈ Σbal. The resulting construction of the Garrett-Rankin p-adic
L-functions in terms of diagonal cycles is directly analogous to the construction of the Kubota-
Leopoldt (resp. Katz) p-adic L-function from the p-adic logarithms of circular (resp. elliptic)
units. An application of this point of view to the Birch-Swinnerton-Dyer conjecture, obtained
by considering weight one specialisations of g and h, is the implication

L(E, ρ1 ⊗ ρ2, 1) 6= 0 =⇒ HomGQ
(ρ1 ⊗ ρ2, E(Q̄) ⊗ C) = 0,

where E is an elliptic curve over Q and ρ1 and ρ2 are odd irreducible two-dimensional Artin
representations for which ρ1 ⊗ ρ2 has determinant one.

II. Beilinson-Flach elements. The methods of the present article, transposed to the setting
where h is a Hida family of Eisenstein series, lead to a proof [BDR] of a p-adic Beilinson
formula relating the p-adic regulators of certain Flach elements in the Higher Chow group
CH2(X0(N) ×X0(N), 1) to values of Hida’s three-variable p-adic L-function attached to the
Rankin convolution of two Hida families f and g of cusp forms. A notable application of this
result (when made to vary in p-adic families, as in the previous paragraph) is the implication

(9) L(E, ρ, 1) 6= 0 =⇒ HomGQ
(ρ,E(Q̄) ⊗ C) = 0,

where ρ is an odd, irreducible two-dimensional Artin representation.
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III. Beilinson elements and Kato’s Euler system. The point of view sketched in the
two previous Remarks is also consistent with the Kato-Perrin-Riou approach to the Mazur-
Swinnerton-Dyer p-adic L-function attached to a cusp form of weight 2, which one recovers
when both g and h are taken to be Hida families of Eisenstein series, the role of the diagonal
cycles being played by Beilinson elements in the K2 of modular curves, or in the higher Chow
group CH2(X0(N), 2). Guided by this analogy and relying crucially on the techniques of
the present work, the article [BD] gives a new proof of the p-adic Beilinson formula relating
the p-adic regulators of the Beilinson elements to the special values at s = 2 of the Mazur-
Swinnerton-Dyer p-adic L-functions. The authors’ study of diagonal cycles and Flach elements
is thus a direct generalisation of the approach of Kato which underlies the proof of (9) when
ρ is replaced by a Dirichlet character.

IV. The Euler system of Heegner points, revisited. In part, the authors were led to
Theorem 1.3 by the analogy with the main result of [BDP], in which the images of Heegner
points (or more general Heegner cycles) under p-adic Abel-Jacobi maps are related to the
values of certain anticyclotomic p-adic L-functions at classical points lying outside the range
of p-adic interpolation defining them. In his forthcoming PhD thesis, F. Castella uses this
to construct these anticyclotomic p-adic L-functions in terms of p-adic logarithms of Heegner
points, leading to a treatment of the Heegner point Euler system entirely parallel to the other
examples alluded to above (namely, circular units, elliptic units, Beilinson-Kato elements,
Flach elements, and diagonal cycles.)

V. p-adic calculations of Chow-Heegner points. The article [La2] and the forthcom-
ing Ph.D thesis of M. Daub [Da] combine Theorem 1.3 with Alan Lauder’s fast algorithm
[La1] for calculating ordinary projections to calculate the “Chow-Heegner points” attached to
Gross-Schoen diagonal cycles (as described in [YZZ] and studied in [DRS]) by p-adic analytic
methods, thus supplying the p-adic counterpart of the complex calculations carried out in
[DDLR].

Notations: Throughout the article, given a power q = pd of a prime p, the symbols Fq, Zq,
and Qq are reserved for the finite field with q elements, its ring of Witt vectors, and the
finite unramified extension of Qp of degree d respectively. For any field extension F/Q, we
will write GF = Gal (F̄ /F ) for the absolute Galois group of an algebraic closure of F , and
if X is any variety over F , we let X̄ := X ×Spec(F ) Spec(F̄ ) denote the base change of X
to the algebraic closure. We adopt the usual conventions regarding motives and their Tate
twists: for any integer j we write Z(j) = H2(P1)

⊗−j, so that a geometric frobenius element
at ` 6= p (resp. at ` = p) acts on its p-adic étale (resp. cristalline) realisation as multiplication
by `−j. If M is a motive over Q, we let M(j) := M ⊗Z(j) denote its j-th Tate twist, so that
L(M(j), s) = L(M, s+ j), where L(M, s) is the L-function attached to M .

Acknowledgements: The authors thank Ignacio Sols and Dipendra Prasad for many stimulat-
ing exchanges about the geometric aspects of diagonal cycles and the analytic properties of
triple product L-functions, respectively. The work on this article began during the summer
of 2010 at the special number theory semester organised by the CRM in Barcelona, and the
authors also gratefully acknowledge the role of this institute in facilitating their collaboration.
The first author was funded by an NSERC Discovery grant, and the second author received
financial support from DGICYT Grant MTM2009-13060-C02-01 and from 2009 SGR 1220.

2. Cohomology and modular forms

2.1. The de Rham cohomology of curves over p-adic rings. Let X be an arbitrary
smooth proper curve over Spec(Zp) and write X̃ and X for its special and generic fiber,

respectively. Let {P1, . . . , Ps} ⊂ X̃(F̄p) be a non-empty GFp-stable collection of closed points

in its special fiber. Since X̃ is smooth, these points admit lifts P̃1, . . . , P̃s ∈ X (OCp) to



8 HENRI DARMON AND VICTOR ROTGER

characteristic zero. It will be convenient (albeit not indispensable) to fix a choice of such lifts
which is stable under the natural action of GQp . This determines the affine scheme

X ′ = X − {P̃1, . . . , P̃s}
over Spec(Zp), whose special and generic fiber are denoted X̃ ′ and X ′ respectively. Because
X is proper over Spec(Zp), there is a natural identification X(Cp) = X (OCp) and a resulting
reduction map

red : X(Cp) −→ X̃(F̄p).

The standard affinoid in X(Cp) attached to X ′ is defined to be

A := red−1(X̃ ′(F̄p)).

It is a connected affinoid region obtained by deleting from X(Cp) a collection of s disjoint
residue discs.

For each j = 1, . . . , s, choose a local coordinate λj at P̃j , i.e., a rigid analytic isomorphism

from the residue disc of P̃j in X(Cp) to the open unit disc in Cp, sending P̃j to the origin.
These local parameters give rise to a family of wide open neighborhoods of A, indexed by a
real parameter ε > 0 and defined by

Wε := A∪
s
⋃

j=1

{x ∈ red−1(Pj) with ordpλj(x) < ε}.

The region Wε is obtained by adjoining open annuli V1, . . . ,Vs of “width ε” to A around the
boundaries of each of the deleted residue discs. Note the obvious inclusions

A ⊂ Wε ⊂ X ′(Cp), Wε1 ⊂ Wε2 if ε1 < ε2.

One of the main reasons for working with the wide open neighborhoods Wε rather than
with the affinoid A itself is that their cohomology is better behaved and a more faithful
reflection of algebraic de Rham cohomology over Cp. More precisely, let O and Ω1 denote
the structure sheaf and the sheaf of differentials on X. The restrictions of these sheaves to
A and to Wε, viewed as rigid analytic sheaves, are denoted by the same symbols by a slight
abuse of notation. If K is any complete subfield of Cp we will denote by Ω1(Wε/K) the rigid
differentials on Wε that are defined over K. Set

H1
rig(Wε/K) :=

Ω1(Wε/K)

dOWε/K
.

Note that, because X ′ is affine, we have H1
dR(X ′/K) = Ω1(X′/K)

dOX′
. The natural restriction map

Ω1(X ′/K) −→ Ω1(Wε/K) sends exact forms to exact forms and therefore induces a map

compε : H1
dR(X ′/K) −→ H1

rig(Wε/K).

For each annulus V1, . . . ,Vs appearing in the definition of Wε, let

resVj
: Ω1(Wε/K) −→ K(−1)

denote the p-adic annular residue, as it is described in [Cole94, Ch. 7] for example.
The annular residue vanishes on dOWε , and is therefore well-defined on cohomology. It is

related to the usual residue of algebraic differential forms through the following commutative
diagram:

(10) H1
dR(X ′/K)

⊕jresP̃j
//

compε

��

K(−1)s Σ // K(−1) // 0

H1
rig(Wε/K)

⊕jresVj
// K(−1)s Σ // K(−1) // 0.
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Proposition 2.1. For any ε > 0, the map compε is an isomorphism of K-vector spaces.

Proof. This follows as in [Cole94] from the long exact Mayer-Vietoris sequence (cf. A.2. of
loc.cit. for instance) associated to the admissible covering ofX by wide open subsets consisting
of Wε together with the p-adic residue discs in the complement of A. �

Thanks to this proposition, the de Rham cohomology H 1
dR(XK) of the base change of

X to K can be identified with the space of classes of rigid analytic forms on Wε over K
with vanishing annular residues (cf. e.g. [BDP, Prop. 4.11]). This description of H 1

dR(XK)
is the basis for a concrete description of the action of the Frobenius operator on de Rham
cohomology. Let σ ∈ Gal (K̄/Qp) be a Frobenius automorphism and let

Φ : A −→ A
be any characteristic zero lift of the Frobenius morphism on the special fiber X̃ ′. This rigid
analytic morphism extends to a morphism Φ : Wε −→ Wε′ , for suitable 0 < ε < ε′, and
induces linear maps

Φ : O(Wε′/K) −→ O(Wε/K), Φ : Ω1(Wε′/K) −→ Ω1(Wε/K).

Although the operator Φ need not preserve any of the spaces Ω1(Wε/K) for a given fixed ε,
it does give rise to an endomorphism on H1

dR(X ′/K), which shall also be denoted Φ by abuse
of notation. This Frobenius morphism is thus the unique endomorphism of H 1

dR(X ′/K) that
completes the top row in the following commutative diagram:

(11) H1
dR(X ′/K)

Φ //

compε′

H1
dR(X ′/K)

compε

H1
rig(Wε′/K) Φ // H1

rig(Wε/K).

The endomorphism Φ, which is compatible with the annular residue in the obvious sense,
preserves the subspace H1

dR(XK).
The K-vector subspace of H1

dR(XK) (resp. of H1
dR(X ′/K)) spanned by the vectors on which

Φ acts via multiplication by a p-adic unit is called the unit root subspace and is denoted by
H1

dR(XK)u-r (resp. by H1
dR(X ′/K)u-r). More generally, the subspaces spanned by vectors on

which Φ acts with slope t ∈ Q (i.e., as multiplication by a scalar λ ∈ C×
p with ordpλ = t) is

called the slope t subspace of H1
dR(XK) and is denoted H1

dR(XK)Φ,t.
The de Rham cohomology H1

dR(XK) is equipped with the usual alternating Poincaré duality

〈 , 〉 : H1
dR(XK) ×H1

dR(XK) −→ H2
dR(XK) = K(−1),

which in terms of representatives ω1, ω2 ∈ Ω1
rig(Wε) for cohomology classes ξ1 and ξ2 is de-

scribed by the formula

〈ξ1, ξ2〉 =
s
∑

j=1

resVj
(F (j)

ω1
· ω2),

where resVj
is the p-adic annular residue and F

(j)
ω1 denotes a local analytic primitive of ω1 on

the annulus Vj.
Poincaré duality is compatible with the Frobenius endomorphism in the sense that

〈Φξ1,Φξ2〉 = Φ〈ξ1, ξ2〉 = p〈ξ1, ξ2〉.
In particular, Poincaré duality descends to a well-defined non-degenerate pairing

(12) 〈 , 〉 : H1
dR(XK)u-r ×H1

dR(XK)Φ,1 −→ K(−1).
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2.2. p-adic modular forms. Denote by S
(p)
k (N) the space of p-adic modular forms of weight

k and tame level N (as defined in [Se] or [Kat73] for example) and let Soc
k (N) denote its sub-

space of overconvergent forms. These spaces are equipped with two non-commuting operators
U and V , defined on q-expansions by the rule

(13) (Uf)(q) =
∞
∑

n=1

apnq
n, (V f)(q) =

∞
∑

n=1

anq
pn.

These operators satisfy

UV f = f, V Uf(q) =
∞
∑

n=1

anpq
np,

so that

(14) f [p] := (1 − V U)f(q) =
∑

p-n

anq
n

has fourier coefficients supported on the integers prime to p. Note that the operators U and V
do not commute–although, as we will explain later, the operators induced on the cohomology
of modular curves (with coefficients in the relevant local systems) do commute, and are inverse
to each other.

The operator U on the p-adic Banach space of overconvergent modular forms is completely
continuous and gives rise to a slope decomposition on this infinite-dimensional vector space.
A p-adic modular form which belongs to the slope 0 subspace for U is said to be ordinary,
and the space of all such p-adic modular forms is denoted by Sord

k (N). The ordinary subspace
(like all the finite slope subspaces) is finite-dimensional over Cp. More precisely, Coleman’s
classicality theorem (cf. [Cole95]) asserts that any ordinary overconvergent modular form of
weight k ≥ 2 is (the p-stabilisation of) a classical modular form of weight k on Γ1(N). In
particular, Sord

k (N) is naturally contained in the space Sk(Γ1(N)∩Γ0(p)) of classical modular
forms (with fourier coefficients in Cp). Hida’s ordinary projector

(15) eord := lim
n
Un!

gives a Hecke-equivariant projection from Soc
k (N) to Sord

k (N).
Let X1(N) denote the modular curve over Spec(Z[1/N ]) classifying generalised elliptic

curves equipped with an embedding of the finite flat group scheme µN of N -th roots of
unity. (See [Kas99] for a more general scenario.)

Recalling that the prime p does not divide N , set

X := X1(N) ×Spec Z[1/N ] Zp, X = X × Spec(Qp)

for the smooth curve over Zp (resp. over Qp) obtained by change of base.

Let P1, . . . , Ps ∈ X̃(Fp2) denote the supersingular points of the special fiber of X . These
points are the zeroes of a distinguished mod p modular form of weight (p− 1)—the so-called

Hasse invariant. As in the previous section, we may choose lifts P̃1, . . . , P̃s ∈ X (Zp2) of
the supersingular points to characteristic zero. For example, when p ≥ 5, one may do this
by taking the zeroes of the Eisenstein series Ep−1, which is the customary lift of the Hasse
invariant to characteristic 0. We continue to write

X ′ = X − {P̃1, . . . , P̃s}
for the resulting affine scheme over Spec(Zp), whose special and generic fiber are denoted X̃ ′

and X ′ respectively. The connected affinoid region obtained by deleting from X(Cp) the s
disjoint supersingular residue discs:

A = Aord := red−1(X̃ ′(F̄p))
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is called the ordinary locus, or Hasse domain, in X(Cp). Note that

(16) A = {x ∈ X(Cp) with ordpEp−1(x) = 0},
where

ordpEp−1(x) := ordpEp−1(Ax, ωx),

and

(1) Ax is the generalised elliptic curve with Γ1(N)-structure attached to x by the moduli
interpretation of X;

(2) ωx ∈ Ω1(Ax/Cp) is a regular differential on Ax, chosen so that it extends to a regular
differential over OCp if Ax has good reduction at p, or corresponds to the canonical
differential on the Tate curve if x lies in the residue disc of a cusp.

(3) The notation Ep−1(Ax, ωx) follows Katz’s geometric definition of modular forms as
functions on such pairs, as described in [Kat73, Ch. 1], for example.

While Ep−1(Ax, ωx) genuinely depends on the choice of ωx, its p-adic valuation is independent
of it since any two such choices differ by multiplication by an element of O×

Cp
.

Define a system of wide open neighborhoods of A by choosing a real parameter ε > 0 and
setting

Wε := {x ∈ X(Cp) with ordpEp−1(x) < ε}.
When 0 < ε < 1, the region Wε does not depend on the choice of lift of the Hasse invariant
to characteristic zero. As suggested by (16), the quantity ordpEp−1(x) is (at least, when it is
not too large) a sensible measure of the “degree of supersingularity” of the elliptic curve Ax

associated to x. If ordpEp−(x) < p
p+1 , Katz has shown that the elliptic curve Ax, although

supersingular at p, continues to admit a canonical subgroup Zx, a connected subgroup scheme
of Ax of order p generalising the canonical subgroup on an ordinary elliptic curve. This makes
it possible to choose a canonical lift to characteristic zero of the Frobenius morphism, by
setting, for all x ∈ Wε with ε < p

p+1 ,

(17) Φ(x) = Point corresponding to Ax/Zx.

The affinoid A and the wide opens Wε play a key role in Katz’s geometric description of p-adic
and overconvergent modular forms, which we will now briefly recall.

Modular forms of weight two. We begin with the somewhat simpler case of forms of
weight k = 2, which can be treated by specialising the discussion of Section 2.1 to the case
where X = X1(N) with p - N , so that X has good reduction at p. For any complete subfield
K of Cp we have

(18) S
(p)
2 (N ;K) = Ω1

rig(A/K), Soc
2 (N ;K) =

⋃

ε>0

Ω1
rig(Wε/K),

that is to say, the space of rigid sections of Ω1(Wε/K) is identified with the p-adic Banach
space of overconvergent modular forms of weight two with “annuli of convergence of width
ε”, and fourier coefficients in K. Under this identification, a weight two modular form f with
q-expansion f(q) =

∑

n an(f)qn corresponds to the differential

ωf = f(q)
dq

q
=

(

∞
∑

n=1

an(f)qn

)

dq

q
.

By definition of the operators U and V ,

(19) f [p](q) = (1 − V U)f(q) = q
d

dq
F, where F (q) =

∑

p-n

an(f)

n
qn.
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The modular form F (q) is an overconvergent modular form of weight 0 and level N , i.e., an
element of OWε for a suitable ε > 0. It corresponds to the rigid analytic primitive of ωf [p]

which vanishes at the cusp ∞, i.e., it is determined by the properties

dF = f [p](q)
dq

q
, F (∞) = 0.

Define Soc
2 (N ;K)0 to be the subspace of Soc

2 (N ;K) consisting of overconvergent modular
forms with coefficients in K and vanishing residues at the supersingular annuli. Set also
Sord

2 (N ;K)0 = Soc
2 (N ;K)0 ∩ Sord

2 (N ;K) and write φord := eordφ for the ordinary projection
of an overconvergent modular form.

Lemma 2.2. If φ is an overconvergent p-adic modular form of weight two on Γ1(N), then
the class of ωφ belongs to H1

rig(Wε)
Φ,1. Furthermore, the assignment φ 7→ [ωφ] induces iso-

morphisms

Sord
2 (N ;K)

∼−→ H1
rig(Wε/K)Φ,1, Sord

2 (N ;K)0
∼−→ H1

dR(XK)Φ,1.

Proof. The Frobenius morphism Φ : Ω1(Wε) −→ Ω1(Wε/p) is related to the operator V on
overconvergent modular forms of weight two by Φ(ωf ) = pωV f . The relation between the
operators U and Φ on cohomology (relative to the identifications described above between
differentials and weight two modular forms) is therefore given by

Φ = pV = pU−1.

Hence, if φ belongs to the slope zero subspace for the action of U , the class of the rigid
differential ωφ lies in the slope one subspace H1

rig(Wε)
Φ,1 for the action of Φ. The first

statement follows. The second is a well-known result of Coleman: cf. the cases k = 0 of
Cor. 6.3.1. and Prop. 6.6 of [Cole95] for the injectivity and surjectivity respectively of the
maps induced by restriction. �

Proposition 2.3. For any class η ∈ H1
dR(XK)u-r and any overconvergent modular form

φ ∈ Soc
2 (N ;K)0, we have

〈η, ωφ〉 = 〈η, ωφord〉,
and Poincaré duality induces a well-defined non-degenerate pairing

〈 , 〉 : H1
dR(XK)u-r × Sord

2 (N ;K)0 −→ K.

Proof. This follows directly from Lemma 2.2 in light of (12). �

Modular forms of higher weight. Turning now to the case of forms of general weight k ≥ 2,
let E −→ Y denote the universal elliptic curve over the affine modular curve Y = Y1(N)/Q.
Let ω := π∗Ω

1
E/Y denote the line bundle of relative differentials on E over Y . It extends to a

sheaf over X = X1(N), also denoted by ω, by setting

H0(Spec Q[[q]], ω) = Q[[q]] · ωcan,

where ωcan := dt
t is the canonical differential on the Tate curve Gm/q

Z.

Let Ω1
X(log cusps) be the sheaf of differentials 1-forms on X with logarithmic poles at the

cusps, for which

H0(Spec Q[[q]],Ω1(log cusps)) = Q[[q]] · dq
q
.

A modular form φ on X of weight k = r + 2 with fourier coefficients in a field K (viewed
as a function on “test objects” (E,ωE), following the point of view adopted in [Kat73, Ch. 1]
for example) corresponds to a global section of the sheaf ωr+2 over XK , by sending φ to the
global section φ(E,ωE)ωr+2

E , and hence we can define

Sk(N ;K) = H0(X1(N)K , ω
k).
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Let

L := R1π∗Ω
•

E/Y

be the relative de Rham cohomology sheaf on Y . It is equipped with a filtration

(20) 0 −→ ω −→ L −→ ω−1 −→ 0

arising from the Hodge filtration on the fibers. The sheaf L and its r-th symmetric power

Lr := symr L
are vector bundles over Y (of rank 2 and r+1 respectively) endowed with a canonical integrable
connection:

∇ : Lr −→ Lr ⊗ Ω1
X(log cusps),

the so-called Gauss-Manin connection. The sheaf Lr extends to a sheaf on X by setting

(21) H0(Spec Q[[q]],Lr) = Q[[q]]ηr
can + Q[[q]]ηr−1

can ωcan + · · · + Q[[q]]ωr
can,

where ηcan := ∇(q d
dq )(ωcan) is a complementary vector to ωcan in H1

dR(E/Z[[q]]), and similarly

at the other cusps of X. The connection ∇ extends by setting

(22) ∇ωcan = ηcan ⊗ dq

q
, ∇ηcan = 0.

The filtration (20) gives rise to an (r+1)-step decreasing filtration on Lr, with successive
quotients

(23) Lr/Fil1Lr ' ω−r, · · · ,Filr−jLr/Filr−j+1Lr ' ωr−2j, · · · ,FilrLr ' ωr.

The connection ∇ obeys Griffiths transversality:

∇Filr−jLr ⊂ Filr−j−1Lr ⊗ Ω1
X(log cusps).

Furthermore, it induces an isomorphism of OX -modules:

(24) ∇ :
Filr−jLr

Filr−j+1Lr

' Filr−j−1Lr

Filr−jLr

⊗ Ω1
X(log cusps),

which gives rise (by setting r = 1 and j = 0 for example) to the Kodaira-Spencer isomorphism

KS : ω⊗2 ∼−→ Ω1
X(log cusps).

It follows that a modular form φ of weight r+2 can be interpreted, via this isomorphism, as a
global section of ωr ⊗Ω1

X(log cusps), while a cusp form can be interpreted as a global section
of ωr ⊗ Ω1

X , i.e.,

Sk(N ;K) = H0(XK , ω
r ⊗ Ω1

X).

At a geometric point of X attached to an elliptic curve E with Γ1(N)-level structure, the
section ωφ is given by

ωφ = φ(E,ωE)ωr
E KS(ω2

E).

At the test object (Gm/q
Z, ωcan) corresponding to the Tate curve with its canonical differential,

this leads to the formula for ωφ in terms of the q-expansion of φ:

ωφ(q) = φ(q)ωr
can

(

dq

q

)

.

Let (Lr ⊗ Ω1
X)par denote the subsheaf of Lr ⊗ Ω1(log cusps) defined in the neighborhood of

the cusps by

H0(Spec Q[[q]], (Lr ⊗ Ω1
X)par) = ∇H0(Spec Q[[q]],Lr)

= (Q[[q]]ηr
can + Q[[q]]ηr−1

can ωcan + · · · + qQ[[q]]ωr
can)

dq

q
.
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Note that for r = 0 we have (Lr ⊗ Ω1
X)par = Ω1

X . A standard inductive argument using (24)
shows that the natural inclusion ωr −→ Lr induces an isomorphism

(25) H0(XK , ω
r ⊗ Ω1

X) ' H0(XK , (Lr ⊗ Ω1
X)par)

∇H0(XK ,Lr)
.

We write

Hj
dR(XK ,Lr,∇) := Hj(0 → Lr

∇−→ Lr ⊗ Ω1
X(log cusps) → 0)

for the j-th hypercohomology of the complex of sheaves on X over K associated to ∇, and

Hj
par(XK ,Lr,∇) for the parabolic cohomology:

Hj
par(XK ,Lr,∇) := Hj(0 → Lr

∇−→ (Lr ⊗ Ω1
X)par → 0).

(Cf. also Chapter 2.1 of [BDP] for example.) These algebraic de Rham cohomology groups are
finite-dimensional K-vector spaces. The group H 1

par(XK ,Lr,∇) is equipped with a two-step
Hodge filtration given by

(26) FiljH1
par(XK ,Lr,∇) =







H1
par(XK ,Lr,∇) if j ≤ 0;

H0(XK , ω
r ⊗ Ω1

X) if 1 ≤ j ≤ r + 1;
0 if j ≥ r + 2,

giving rise to the exact sequence

(27) 0 −→ H0(XK , ω
r ⊗ Ω1

X) −→ H1
par(XK ,Lr,∇) −→ H1(XK , ω

−r) −→ 0.

We note the Poincaré duality pairing

(28) 〈 , 〉 : H1
par(XK ,Lr,∇) ×H1

par(XK ,Lr,∇) −→ K(−1 − r).

Since H0(XK , ω
r ⊗ Ω1

X) is its own orthogonal complement under (28), Poincaré duality de-
scends to a perfect pairing

(29) 〈 , 〉 : H1(XK , ω
−r) ×H0(XK , ω

r ⊗ Ω1
X) −→ K(−1 − r),

which is denoted by the same symbol by a slight abuse of notation.
In the sequel, if L is a local system on a variety V , endowed with an integrable connection

∇ that is clear from the context, we shall write H ?(V,L) instead of H?(V,L,∇), and likewise
for similar cohomology groups.

2.3. Nearly holomorphic modular forms and the Shimura-Maass derivative. Sup-
pose now that K = C. Hodge theory gives a canonical (real-analytic, but non-holomorphic)
splitting

Splhdg : L −→ ω

of the exact sequence (20) over the affine modular curve Y . This map can be viewed as
a homomorphism of OY (C)an–modules, where OY (C)an is the structure sheaf of real analytic

functions on Y (C). We will also denote by the same symbol the associated map Lk −→ ωk,
as well as the resulting map

(30) Splhdg : H0(XC, (Lr ⊗ Ω1
X)par) −→ H0(Y (C)an, ω

r ⊗ Ω1
X)

restricted to regular (i.e., holomorphic) sections over X of the sheaf (Lr ⊗ Ω1
X)par.

Definition 2.4. The image of Splhdg is called the space of nearly holomorphic cusp forms of
weight k = r + 2 on Γ1(N).

Nearly holomorphic cusp forms were introduced in [Sh86]; see also [Hi93, Ch. 10] for a more
elementary description. The space of nearly holomorphic cusp forms on Γ1(N) is denoted
by Snh

k (N ; C). It is contained in the space of real analytic functions on the upper half plane
which satisfy the same transformation property under Γ1(N) as (holomorphic) modular forms
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of weight k. The following basic facts about nearly holomorphic modular forms, which we
recall without proof, will be useful in the sequel:

(i) The map Splhdg of (30) is injective, and hence induces an isomorphism of finite-
dimensional complex vector spaces:

Splhdg : H0(XC, (Lr ⊗ Ω1
X)par)

∼−→ Snh
k (N ; C).

(Cf. equation (5a) in §10.1 of [Hi93].)
(ii) If K is any subfield of C, the image of H0(XK , (Lr ⊗ Ω1

X)par) under Splhdg yields a

natural K-structure on Snh
k (N ; C), and is denoted by Snh

k (N ;K).

(iii) If φ = Splhdg(ωφ) belongs to Snh
k (N ;K), then equation (25) allows us to write

(31) ωφ = Πhol
N (φ) + ∇s, with

{

Πhol
N (φ) ∈ H0(XK , ω

r ⊗ Ω1
X) = Sk(N ;K),

s ∈ H0(XK ,Lr).

The modular form Πhol
N (φ) is called the holomorphic projection of the nearly holomor-

phic modular form φ. (Cf. equation (8a) in §10.1 of [Hi93]; the fact that Πhol
N , which

is denoted by H in loc. cit., preserves K-rational structures is stated in (8b).)
(iv) The inverse of the Kodaira-Spencer isomorphism followed by the Gauss-Manin con-

nection gives a well-defined map

(32) ∇̃ : H0(XK , (Lr ⊗ Ω1
X)par) −→ H0(XK , (Lr+2 ⊗ Ω1

X)par).

This map corresponds (under the identification Splhdg) to the weight k Shimura-Maass

derivative operator δk = 1
2πi (

d
dz + k

z−z̄ ), i.e., the following diagram commutes:

H0(XK , (Lr ⊗ Ω1
X)par)

Splhdg
//

∇̃
��

Snh
k (N ;K)

δk

��

H0(XK , (Lr+2 ⊗ Ω1
X)par)

Splhdg
// Snh

k+2(N ;K).

This follows from a direct calculation based on the identities (in terms of the standard complex
coordinates τ ∈ H and z ∈ C/〈1, τ〉)

∇(2πidz) = 2πi

(

dz − d̄z

τ − τ̄

)

⊗ dτ, ∇d̄z = 0, KS((2πidz)⊗2) = 2πidτ.

Since nearly holomorphic modular forms are closed under taking products and under ap-
plying the Shimura-Maass derivative, it follows that, if g ∈ S`(N ;K) and h ∈ Sm(N ;K) are
classical cusp forms with fourier coefficients in K, then for all t ≥ 0, the product δ t

`g × h

belongs to Snh
`+m+2t(N ;K). More precisely, let

(33) ∇̃tωg ⊗ ω̃h ∈ H0(XK , (L`+m+2t−2 ⊗ Ω1
X)par)

be the global section obtained by tensoring the sections

∇̃tωg ∈ H0(XK , (L`+2t−2 ⊗ Ω1
X)par) and ω̃h := KS−1(ωh) ∈ H0(XK ,Lm).

Then

(34) δt
`g × h = Splhdg(∇̃tωg ⊗ ω̃h).

Hodge theory gives a canonical splitting of the exact sequence (27):

H1
par(XC,Lr) = H0(XC, ω

r ⊗ Ω1
X) ⊕H0(XC, ωr ⊗ Ω1

X).
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The Petersson scalar product ( , )N of level N on Snh
k (N ; C) is defined by the familiar rule

(35) ( , )N : Snh
k (N ; C) × Snh

k (N ; C) −→ C, (f1, f2)N =

∫

Γ1(N)\H
f1(z) f2(z) y

k dxdy

y2
,

where the integration is performed relative to the variable z = x + iy on any fundamental
domain in the upper-half plane H under the action of Γ1(N). Note that this pairing is
Hermitian-linear in the first argument and C-linear in the second, in contrast with the more
customary conventions.

Lemma 2.5. For all η ∈ Sr+2(N ; C), and all φ ∈ Snh
r+2(N ; C),

(η, φ)N = (η,Πhol
N (φ))N .

The equation of Lemma 2.5 gives an independent definition of the holomorphic projection,
since the Petersson product is a perfect pairing on the space Sk(N ; C) of cusp forms.

2.4. Nearly overconvergent modular forms and the d operator. Recall the ordinary
locus A and its system of wide open neighborhoods Wε ⊃ A that were introduced in Section
2.2. We define

(36) H1
rig(Wε,Lr) :=

H0(Wε, (Lr ⊗ Ω1
X)par)

∇H0(Wε,Lr)
,

where H0(Wε,−) designates a space of rigid sections. The quotient on the right of (36) is
related to overconvergent cusp forms of weight k = r + 2 by noting that any rigid section
η ∈ H0(Wε, (Lr ⊗ Ω1

X)par) can be written as

(37) η = η0 + ∇s, with η0 ∈ H0(Wε, ω
r ⊗ Ω1

X), s ∈ H0(Wε,Lr).

This fact follows from an inductive argument based on (24).
Similarly as in (18), the spaces of overconvergent modular (cusp) forms of weight k are

(38) Soc
k (N ;K) =

⋃

ε>0

H0(Wε/K, ω
r ⊗ Ω1

rig) ⊆Moc
k (Γ1(N),K) =

⋃

ε>0

H0(Wε/K, ω
k).

It is also known (cf. [Cole95]) that any overconvergent modular form of weight −r, viewed
as a section s ∈ H0(Wε, ω

−r), admits a unique lift s̃ under the projection H 0(Wε,Lr) −→
H0(Wε, ω

−r) induced by (23) satisfying

∇s̃ ∈ H0(Wε, ω
r ⊗ Ω1

X),

and that ∇s̃ corresponds to the overconvergent modular form dr+1s, where d := q d
dq is Serre’s

operator sending p-adic modular forms of weight m to p-adic modular forms of weight m+ 2.
(Note that the operator d does not preserve overconvergence in general, even though dr+1

maps Soc
−r(N) to Soc

r+2(N).) Thanks to (37), equation (36) can be re-written as

(39) H1
rig(Wε,Lr) =

H0(Wε, ω
r ⊗ Ω1

X)

∇H0(Wε,Lr) ∩H0(Wε, ωr ⊗ Ω1
X)

=
Soc

r+2(N)

dr+1Soc
−r(N)

.

Just as when r = 0, there is a canonical isomorphism

(40) H1
par(X

′
Cp
,Lr) = H1

rig(Wε,Lr)

between the algebraic (parabolic) de Rham cohomology over Cp and the rigid de Rham coho-
mology. As explained in [BDP, § 4.5], for each supersingular annulus Vj, j = 1, ..., s, there is
a residue map

(41) res : H1
rig(Wε,Lr) −→ (H0(Vj ,Lr)

∇=0)∨ ' Lr(Pj) '
(

Symr H1
dR(Ej)

)

(−1),

where Ej/Cp stands for the supersingular elliptic curve corresponding to the point P̃j.
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By [BDP, Prop. 4.11], the image of H1
par(XCp ,Lr) in H1

par(X
′
Cp
,Lr) under the restriction

map consists of those classes represented by Lr-valued differential forms ω on Wε whose
residues at the supersingular annuli Vj, j = 1, ..., s, are all zero.

Over A, the slope decomposition arising from the action of Frobenius gives a canonical
splitting

(42) Splu-r : L −→ ω

of the exact sequence (20). This map can be viewed as a homomorphism of OA-modules,
where OA is the structure sheaf of rigid analytic functions on A. We will also denote by the
same symbol the associated map Lr −→ ωr, as well as the resulting map

(43) Splu-r :
⋃

ε>0

H0(Wε, (Lr ⊗ Ω1
X)par) −→ H0(A, ωr ⊗ Ω1

X)

on overconvergent sections. The image of Splu-r is contained in the space of p-adic modular
forms of weight k = r+2, and contains the space of overconvergent modular forms, but is not
equal to it in general, because the splitting (42) does not extend to a rigid analytic splitting
over any of the wide opens Wε. The following definition arises naturally from our parallel
discussion of the complex-analytic setting.

Definition 2.6. The image of the map Splu-r in (43), denoted Sn-oc
k (N ; Cp), is called the

space of nearly overconvergent modular forms of weight k on Γ1(N).

We refer the reader to the forthcoming work [Ur] of Urban, where this notion has also been
introduced independently.

Note that the weight of a nearly overconvergent modular form always belongs to Z≥2, by
definition. The following basic facts about nearly overconvergent modular forms are analogous
to those that were observed in the complex setting:

(i) The map Splu-r of (43) is injective, and induces an isomorphism of p-adic Fréchet
spaces:

Splu-r :
⋃

ε>0

H0(Wε, (Lr ⊗ Ω1
X)par)

∼−→ Sn-oc
k (N ; Cp).

This is a consequence of the main theorem of [CGJ], which asserts that the p-adic
modular form E2 is transcendental over the ring of overconvergent modular forms.

(ii) If K is any subfield of Cp, the image of
⋃

ε>0H
0(Wε/K, (Lr ⊗ Ω1

X)par) under Splu-r

yields a natural K-vector space Sn-oc
k (N ;K) ⊂ Sn-oc

k (N ; Cp).
(iii) Let φ = Splu-r(ωφ) be an element of Sn-oc

k (N ; Cp), where ωφ is a global section of
(Lr ⊗ Ω1

X)par over some Wε. Equation (37) then allows us to write

(44) ωφ = Πoc
N (φ) + ∇s, with

{

Πoc
N (φ) ∈ H0(Wε, ω

r ⊗ Ω1) = Soc
k (N ;K),

s ∈ H0(Wε,Lr).

The overconvergent modular form Πoc
N (φ) of weight k and level N is called the over-

convergent projection of the nearly overconvergent modular form φ. Note that Πoc
N (φ)

is only well-defined modulo dr+1(Soc
−r(N)), by (39).

(iv) If K is a field equipped with simultaneous embeddings into C and Cp, then there are
natural identifications

Snh
k (N ;K) H0(XK , (Lr ⊗ Ω1

X)par)
Splhdg
oo

Splu-r // Sn-oc
k (N ;K).

It follows directly from the definitions that the holomorphic and overconvergent pro-
jections, restricted to Snh

k (N ;K) and Sn-oc
k (N ;K) respectively, take values in Sk(N ;K)

and are equal (under the above identification of Snh
k (N ;K) and Sn-oc

k (N ;K)).
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(v) The map ∇̃ of (32) corresponds (under the identification Splu-r) to the operator d =
q d

dq on p-adic modular forms, i.e., the following diagram commutes:

⋃

ε>0H
0(Wε, (Lr ⊗ Ω1

X)par)
Splu-r //

∇̃
��

Sn-oc
k (N ; Cp)

d
��

⋃

ε>0H
0(Wε, (Lr+2 ⊗ Ω1

X)par)
Splu-r // Sn-oc

k+2 (N ; Cp).

A nearly overconvergent modular form admits a q-expansion, and hence Hida’s ordinary pro-
jector eord of (15) extends formally to the space Sn-oc

k (N ; Cp). The following lemma relates
this ordinary projection to the overconvergent projection Πoc

N .

Lemma 2.7. Let φ be a nearly overconvergent modular form on Γ1(N). Its image under
Hida’s ordinary projector is overconvergent, and thus classical on Γ1(N) ∩ Γ0(p). More pre-
cisely,

(45) eordφ = eordΠoc
N (φ).

Proof. If s is any overconvergent section of Lr, then a direct calculation using the relations
(22) shows that

Splu-r(∇s) belongs to d(Cp ⊗OCp [[q]]) · ωr
can ⊗ dq

q
.

But eord annihilates the image under d of any q-series with bounded denominators, so

(46) eord(Splu-r(∇s)) = 0.

Now write φ = Splu-r(ωφ), with ωφ a rigid section of (Lr⊗Ω1
X)par over some Wε. By definition

of the overconvergent projection,

ωφ = φ0 + ∇s with φ0 ∈ H0(Wε, ω
r ⊗ Ω1

X) and s ∈ H0(Wε,Lr).

Applying the operator Splu-r to this last identity gives φ = Πoc
N (φ) + Splu-r(∇s). The result

now follows by applying eord and invoking (46). �

Let g ∈ S`(N ;K) and h ∈ Sm(N ;K) be classical cusp forms defined over K, and fix
embeddings of K into C and Cp. The forms g and h can then be regarded simultaneously as
complex and overconvergent modular forms.

Proposition 2.8. For all t ≥ 0, the modular form dtg × h belongs to Sn-oc
`+m+2t(N ;K) and

eord(dtg × h) = eordΠ
hol
N (δt

`g × h).

Proof. Recall the global section ∇̃tωg ⊗ ω̃h ∈ H0(XK , (L`+m+2t−2 ⊗ Ω1
X)par) that was intro-

duced in (33). Since

dtg × h = Splu-r(∇̃tωg ⊗ ω̃h), δt
`g × h = Splhdg(∇̃tωg ⊗ ω̃h),

it follows that

Πoc
N (dtg × h) = Πhol

N (δt
`g × h).

The proposition follows by applying the projector eord to this identity and invoking (45). �

We next turn to the case where the exponent appearing in Proposition 2.8 is strictly nega-
tive. After replacing g by its p-depletion g [p] ∈ Soc

k (N ; Cp), the form d−1−tg[p]×h (with t ≥ 0)
is still a p-adic modular form of weight k := `+m−2t−2. (Cf. for instance Théorème 5 of §2
of [Se].) The following proposition shows that it is nearly overconvergent, at least in certain
cases where k ≥ 2.
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Proposition 2.9. Assume that 0 ≤ t ≤ min(` − 2,m − 2), so that k := ` +m− 2t − 2 ≥ 2.

Then the p-adic modular form d−1−tg[p] × h belongs to Sn-oc
k (N ; Cp), and in particular

eord(d
−1−tg[p] × h) ∈ Sord

k (N ; Cp) ⊂ Sk(Γ1(N) ∩ Γ0(p); Cp).

Proof. Set r2 = `− 2 and r3 = m− 2. Since 1− V U annihilates H1
rig(Wε,Lr2), it follows that

the overconvergent section ωg[p] of ωr2 ⊗ Ω1
X is ∇-exact, i.e., there exists G[p] ∈ H0(Wε,Lr2)

satisfying ωg[p] = ∇G[p]. The q-expansion of the section G[p] can be written down explicitly

in terms of the differentials ωcan and ηcan on the Tate curve. Using (22), one checks that it is
equal to

(47) G[p](q) =

r2
∑

j=0

(−1)jj!

(

r2
j

)

d−j−1g[p](q)ωr2−j
can ηj

can.

Set r = r2 + r3 − t, and let L(1), . . . ,L(r) denote r copies of the sheaf L1 over X, numbered
consecutively. If S = {i1, . . . , is} with i1 < i2 < . . . < is is any subset of {1, . . . , r}, we set

LS := L(i1) ⊗ · · · ⊗ L(is).

Let εS := 1
a!

∑

σ∈Σs
sgn(σ)σ denote the symmetrisation projector and write LS := εSLS ,

viewed as a subsheaf of LS in the obvious way.
Choose now two subsets B and C of {1, . . . , r} of cardinalities r2 and r3 respectively, whose

union is equal to {1, . . . , r}. Such a choice is possible, since r = r2 + r3 − t ≤ r2 + r3. Put
A′ = B ∩ C and A = {1, . . . , r} \ A′.

Poincaré duality on the fibers of E gives rise to a duality L1 ×L1 −→ OX(−1) of sheaves.
Since the cardinality of A′ is t, this in turn induces a map of sheaves

(48) LB ⊗LC −→ LA(−t).
The natural inclusions Lr2 ⊂ Lr2 ' LB and Lr3 ⊂ Lr3 ' LC allow us to build certain rigid

sections of LB and (LC ⊗ Ω1
X)par out of G[p] and ωh respectively, denoted

G[p](B) ∈ H0(Wε,LB), ωh(C) ∈ H0(Wε, (LC ⊗ Ω1
X)par).

Taking the tensor product of these two sections and applying (48) gives an overconvergent

section G[p](B) ⊗ ωh(C) ∈ H0(Wε, (LA ⊗ Ω1
X)par), whose symmetrisation can be viewed as

an element εA(G[p](B) ⊗ ωh(C)) ∈ H0(Wε, (Lr−t ⊗ Ω1
X)par). A direct calculation using (47)

reveals that

(49) Splu-r(εA(G[p](B) ⊗ ωh(C))) = (−1)tt!(d−1−tg[p] × h)ωr1
can

(

dq

q

)

,

which implies that d−1−tg[p] × h belongs to Sn-oc
k (N ; Cp), as desired. �

The sheaf Lr equipped with the Gauss-Manin connection is an overconvergent F -crystal in
the sense of [Cole94, Sec. 10], i.e., the action of Frobenius on the relative de Rham cohomology
Lr induces a horizontal morphism

ΦLr,ε,ε′ : Φ∗(Lr)|Wε
−→ (Lr)|Wε′

,

for suitable ε, ε′ > 0. These give rise to the Frobenius endomorphism

Φr := comp−1
ε′ ◦ΦLr,ε,ε′ ◦ Φ∗ ◦ compε

of H1
dR(X,Lr), which is equal to Φ when r = 0. By abuse of notation, we will continue to

write Φ instead of Φr, since the context will make it clear which Frobenius endomorphism is
being referred to.
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The action of Φ on H1
dR(XCp ,Lr) induces a decomposition of its f -isotypic part, for all

ordinary modular forms f of weight k = r + 2:

H1
dR(XCp ,Lr,∇)f = H0(XCp , ω

r ⊗ Ω1
X)f ⊕H1

dR(XCp ,Lr)
f,u-r,

where the superscript u-r denotes the unit-root subspace, i.e., the part of the cohomology
on which the Frobenius endomorphism acts with slope zero. This decomposition plays a role
somewhat analogous to that of the Hodge decomposition in the complex setting.

The following lemma generalizes Lemma 2.2 to higher weight.

Lemma 2.10. If φ = Splu-r(ωφ) ∈ Sn-oc
k (N)0 is an ordinary overconvergent p-adic modular

form of weight k = r + 2 > 2 on Γ1(N), then the class of ωφ belongs to H1
dR(XK ,Lr)

Φ,k−1.
Furthermore, the assignment φ 7→ [ωφ] induces an isomorphism

Sord
k (N)

∼−→ H1
dR(XK ,Lr)

Φ,k−1.

Proof. The Frobenius morphism Φ is related to the operator V on overconvergent modular
forms of weight k by

Φ(ωf ) = pk−1ωV f ,

as can be seen from a computation on the Tate object (Gm/q
Z, dt

t ) after noting that Φ( dt
t ) =

pdt
t . The relation between the operators U and Φ on cohomology (relative to the identifications

described above between differentials and weight two modular forms) is therefore given by

Φ = pk−1V = pk−1U−1.

If φ belongs to the slope zero subspace for the action of U , the class of the rigid differential
ωφ lies in the slope k− 1 subspace of H1

rig(Wε,Lr)
Φ,k−1 for the action of Φ. Since Φ acts with

slope k/2 on the target of the residue map, the class ωφ automatically has vanishing residues
at the supersingular annuli when k > 2, and the class of ωφ can therefore be viewed as an
element of H1

dR(XK ,Lr). The injectivity and surjectivity assertions in the second statement
follow from Cor. 6.3.1. and Prop. 6.6 of [Cole95], just as in the proof of Lemma 2.2. �

We also record the generalisation of Prop. 2.3 for k ≥ 2.

Proposition 2.11. Let η be any class in H1
dR(XK ,Lr)

u-r, and let φ be a nearly overconvergent
modular form of weight k > 2 on Γ1(N) with vanishing residues at the supersingular annuli.
Then

〈η, ωφ〉 = 〈η, ωφord〉, where φord := eordφ.

In other words the expression 〈η, ωφ〉 depends only on the ordinary projection of φ, and
Poincaré duality induces a well-defined pairing

〈 , 〉 : H1
dR(XCp ,Lr)

u-r × eordS
n-oc
k (N) −→ Cp.

Proof. The Poincaré pairing of (28) is compatible with the Frobenius endomorphism Φ and
hence gives rise to a well-defined pairing

(50) 〈 , 〉 : H1
dR(XK ,Lr)

u-r ×H1
dR(XK ,Lr)

Φ,k−1 −→ Cp(−1 − r).

The proposition therefore follows from Lemma 2.10. �

2.5. Periods of modular forms. The newform f ∈ Sk(Nf , χf ;Kf ) ⊂ Sk(Nf ;Kf ) generates
an automorphic representation of GL2(AQ), denoted πf . For any multiple N of Nf and any
field K ⊃ Kf , let Sk(N ;K)[πf ] denote the f -isotypic subspace of Sk(N ;K), attached to
the automorphic representation πf . The space Sk(N ;K)[πf ] is a finite-dimensional K-vector
space of dimension σ0(N/Nf ), where σ0(m) denotes as usual the number of divisors of m, and
a basis for Sk(N ;K)[πf ] is given by

(51) {f(dz) = f(qd)}d|(N/Nf ).
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Similar remarks and notations apply to the modular forms g and h.
Fix from now on a field K ⊃ Kf , endowed with a complex embedding K ⊂ C.

Lemma 2.12. For all f̆ ∈ Sk(N ;K)[πf ] and all φ ∈ Sk(N ;K), the Petersson scalar product

(f̆ , φ)N is a K-rational multiple of the period (f, f)N .

Proof. Let TN be the Hecke algebra of level N generated over Q by the “good” Hecke operators
Tn with gcd(n,N) = 1. The eigenform f corresponds to an idempotent ef ∈ TN ⊗Kf which

induces a projection of Sk(N ;K) onto Sk(N ;K)[πf ]. The vector f̆ is orthogonal to the kernel

of ef and therefore (f̆ , φ)N = (f̆ , efφ)N depends only on the projection of φ to Sk(N ;K)[πf ].
By the remark preceeding equation (51), it is thererefore enough to show that, for all divisors
d1 and d2 of N/Nf ,

(f(d1z), f(d2z))N = %(f, d1, d2) · (f, f)N , with %(f, d1, d2) ∈ Kf .

If d1d2 = 1, this is clear. Otherwise, let q be a prime dividing d1d2. The compatibility beween
the weight k slash operator and the Petersson scalar product shows that

(52) (f(d1z), f(d2z))N = q−k(f(d1/qz), f(d2/qz))N , if q|d1 and q|d2.

Otherwise, assume without loss of generality that q divides d1 but not d2. We then have

(53) (f(d1z), f(d2z))N =











q1−kaq(f)
q+1 (f(d1/qz), f(d2z))N if q||d1,

q1−kaq(f)
q (f(d1/qz), f(d2z))N

− χf (q)q−k−1(f(d1/q
2z), f(d2z))N , if q2|d1.

These relations imply that
(54)

%(f, d1, d2) =











q−k%(f, d1/q, d2/q) if q|d1 and q|d2;
q1−kaq(f)

q+1 %(f, d1/q, d2) if q||d1 and q - d2;
q1−kaq(f)

q %(f, d1/q, d2) − χf (q)q−1−k%(f, d1/q
2, d2), if q2|d1 and q - d2.

Equation (54), together with the fact that %(f, 1, 1) = 1 and %(f, d1, d2) = %̄(f, d2, d1) make it
clear (by induction on d1d2) that %(f, d1, d2) belongs to Kf for all d1, d2 dividing N/Nf . �

The above proposition allows us to associate to any (not necessarily new) eigenform f̆ ∈
Sk(N ;Kf ), and to any modular form φ ∈ Sk(N ;K), a K-rational period

J(f̆ , φ) :=
(f̆ , φ)N

(f, f)N
∈ K.

Let

(55) ηa-h
f̆

∈ H0(XC, ωr ⊗ Ω1
X) ⊂ H1

dR(XC,Lr)

denote the class of the anti-holomorphic form 1
〈ω

f̆
,ω

f̆
〉 ·ωf̆ , and let ηf̆ denote its natural image

in H1(XC, ω
−r) under the projection in (27).

Corollary 2.13. The class ηf̆ belongs to H1(XKf
, ω−r).

Proof. By Lemma 2.12, for any ωφ ∈ H0(XKf
, ωr ⊗ Ω1

X) associated to a cusp form φ ∈
Sk(N ;Kf ) with Kf -rational fourier coefficients, we have

(56) 〈ηf̆ , ωφ〉 = 〈ηa-h
f̆
, ωφ〉 =

(f̆ , φ)N

(f, f)N
belongs to Kf .

(Where the first occurence of 〈 , 〉 designates the pairing of (29) induced from Poincaré
duality, with K = C.) But H1(XKf

, ω−r) can be characterized as the set of η ∈ H1(XC, ω
−r)

satisfying (56) for all φ ∈ Sk(N ;Kf ). Corollary 2.13 follows. �
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2.6. Hida families. Fix a rational prime p > 2 and assume that the field K ⊃ Kf of the
previous section is furnished with a p-adic embedding K ↪→ Cp. Let O denote the ring of
integers of the p-adic closure of K in Cp.

For every p - N write the characteristic polynomial of a Frobenius element at p acting on
the two-dimensional Galois representation over Kf ⊗ Qp associated by Deligne to f as

(57) L(p)(f ;T ) = (1 − ap(f)T + χf (p)pk−1T ) = (1 − αf,pT )(1 − βf,pT ),

where χ is the nebentype character of f and αf,p and βf,p ∈ Q̄ are the reciprocal roots of the

polynomial L(p)(f ;T ).
The modular form f is said to be ordinary at p if the two reciprocal roots of (57) can be

labelled in such a way that αf,p is a p-adic unit, i.e., belongs to O×. The modular form given
by

f (p)(q) := f(q) − βf,pf(qp)

is called the ordinary p-stabilization of f ; it has level pN , although it is only new at the primes
dividing N , and it is again an eigenform for all the Hecke operators. To be precise,

f (p)|T` = a`(f)f (p), ∀` 6= p, f (p)|Up = αf,pf
(p).

Set Γ = 1 + pNZp and let Λ = O[[Γ]] be the completed group ring of Γ. The weight space is
defined to be

Ω = Spf(Λ)(O) = HomO−alg(Λ,O),

which may naturally be identified with the space Homcts(Γ,O×) of continuous characters of
Γ. The subset of classical characters of Ω is defined to be

Ωcl = {χk := (γ 7→ γk), with k ∈ Z≥2}.
Given any finite flat extension Λf of Λ, let

Ωf := Spf(Λf )(O) = Hom(Λf ,O).

This space is endowed with a natural p-adic topology and is equipped with a natural projection

κ : Ωf → Ω

to weight space induced by the inclusion Λ ⊆ Λf of O-algebras. A point x ∈ Ωf for which
κ(x) belongs to Ωcl will be referred to as a classical point of Ωf , and the set of all such classical
points will be denoted Ωf,cl.

We will mostly work with the following definition of a Hida family of p-adic modular forms,
which is slightly more restrictive than what can sometimes be found in the literature.

Definition 2.14. Let Nf ≥ 1 be an integer and let p be a prime not dividing Nf . A Hida
family of tame level Nf is a quadruple (Λf ,Ωf ,Ωf,cl, f), where

(i) Λf is a finite flat extension of Λ;
(ii) Ωf is a non-empty open subset of Xf := Hom(Λf ,Cp) and Ωf,cl is a p-adically dense

subset of Ωf whose image under κ lies in Ωcl;
(iii) f :=

∑

anq
n ∈ Λf [[q]] is a formal q-series with coefficients in Λf such that, for all

x ∈ Ωf,cl, the power series

f (p)
x :=

∞
∑

n=1

an(x)qn

is the q-expansion of the ordinary p-stabilization of a normalised newform (denoted
fx) of weight κ(x) on Γ1(Nf ).
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The collection of {fx}x∈Ωf,cl
arising from Hida theory can be thought of as a p-adically

coherent collection of eigenforms on Γ1(Nf ) of varying weights. In particular, the fourier
coefficients an(fx) are analytic functions of x when p - n, (but not when p|n, in general). The
following theorem of Hida reveals the ubiquity of Hida families in the above sense.

Theorem 2.15 (Hida). [Hi86b] Let f be an ordinary newform in Sk(Nf ;Kf ). There exists
a Hida family (Λf ,Ωf ,Ωf,cl, f) of tame level Nf and a classical point x0 ∈ Ωf satisfying

κ(x0) = k, fx0 = f.

By shrinking Ωf if necessary, we can and will assume that κ(x) = k (mod p − 1) for all
x ∈ Ωf ; in particular the integers κ(x) and k have the same parity for all classical x ∈ Ωf .

It will be also convenient, for later purposes, to dispose of a somewhat more flexible no-
tion of p-adic families of modular forms, interpolating classical modular forms which are not
necessarily new, or even Hecke eigenvectors; as well, it will be convenient to allow the fourier
coefficients to belong to more general coefficients rings which are not necessarily finite over
Λ. This leads to the following definition:

Definition 2.16. A Λ-adic modular form of tame level N is a quadruple (R,Ωφ,Ωφ,cl,φ),
where

(i) R is a complete, finitely generated (but not necessarily finite), flat extension of Λ;
(ii) Ωφ is an open subset of Hom(R,Cp) and Ωφ,cl is a dense subset of Ωφ;
(ii) φ :=

∑

anq
n ∈ R[[q]] is a formal q-series with coefficients in R such that, for all

x ∈ Ωφ,cl, the power series

φ(p)
x :=

∞
∑

n=1

an(x)qn ∈ Cp[[q]]

is the q-expansion of a classical ordinary cusp form in Sκ(x)(Γ1(N) ∩ Γ0(p); Cp) :=
Sκ(x)(Γ1(N) ∩ Γ0(p); Q) ⊗ Cp.

The following examples of Λ-adic families of modular forms are of importance in our dis-
cussion.

1. Families of old forms. Let f ∈ Sk(Nf ;Kf ) be a newform of level Nf and let N be some

multiple of Nf with p - N . Let f̆ ∈ Sk(N ;Kf )[πf ] be an element of the old class of level N
associated to f . By the remark preceding equation (51), there are (unique) scalars λd ∈ K
indexed by the divisors of N/Nf and satisfying

f̆ =
∑

d|(N/Nf )

λd · f(qd).

The p-stabilisation of the modular form f(qd) is the weight k specialisation of the formal
q-series

f(qd) :=
∑

n

anq
dn,

where (Λf ,Ωf ,Ωf,cl, f) is the Hida family of tame level Nf attached to f via Theorem 2.15.
We can then set

(58) f̆(q) :=
∑

d|(N/Nf )

λdf(q
d).

The triple (Λf ,Ωf ,Ωf,cl, f̆) is a Λ-adic modular form whose classical specialisations are eigen-
vectors for the good Hecke operators Tn with gcd(n,N) = 1, and for the U operator, but they

are not new at the primes dividing N/Nf and specialise to the old-form f̆ at the weight k
point x0 ∈ Ωf,cl alluded to in Theorem 2.15.



24 HENRI DARMON AND VICTOR ROTGER

2. Products of modular forms. Let (Λg,Ωg,g) and (Λh,Ωh,h) be Λ-adic modular forms
of tame level N (for example, Hida families of eigenforms arising from Theorem 2.15 or
families of oldforms constructed as in the previous paragraph). Let Λgh := Λg ⊗O Λh be the
finitely generated (but not finite) Λ-algebra equipped with the natural diagonal embedding
Λ −→ Λg ⊗ Λh sending the group-like element [a] ∈ Λ to [a] ⊗ [a]. Set

Ωgh := Ωg × Ωh, Ωgh,cl := Ωg,cl × Ωh,cl.

Then the quadruple (Λgh,Ωgh,Ωgh,cl, eord(g × h)), where the power series g × h is viewed as
an element of Λgh[[q]] in the natural way, and eord is Hida’s ordinary projection operator, is
an example of a Λ-adic family of modular forms with Fourier coefficients in Λgh.

3. Derivatives of modular forms. Recall the operators U , V defined in (13), and the differential
operator d := q d

dq , which induces a map from p-adic modular forms of weight k to p-adic

modular forms of weight k + 2. Recall that

Ω := Spf(Λ)(O) = HomO−alg(Λ,O) = Hom(Γ,O×)

and notice that for any n ∈ Z such that p - n, the group-like element [n] gives rise to a function

[n] : Ω −→ O
whose value at a character k ∈ Ω represented by γ 7→ γk, is simply [n](k) = nk.

Let g and h be Λ-adic families of eigenforms of tame level N (but not necessarily new of
that level). Assume that p is a prime that does not divide N , and let ap(g) ∈ Λg, ap(h) ∈ Λh

denote the Hecke eigenvalues associated to the Hecke operator Tp. Let

g[p] := (1 − V U)g = (1 − ap(g)V + [p]p−1V 2)g =
∑

p-n

an(g)qn

be the Λ-adic counterpart of the modular form defined in (14). The specialisation g
[p]
y of g[p]

at a classical point y ∈ Ωg,cl can either be viewed as a p-adic modular form of tame level N

as in (14), or as a classical modular form of level Np2. Note that g[p] is not ordinary; in fact

it lies in the kernel of the U operator. But the fact that g[p] has fourier coefficients supported
on the integers prime to p allows the formal q-series

(59) d•g[p] :=
∑

p-n

[n]an(g)qn

to be viewed as an element of Λ ⊗O Λg[[q]]. The specialization of this q-series at a classical
point (t, y) ∈ Ωcl × Ωg,cl is simply

(d•g[p])(t,y) = dtg[p]
y .

Define Rgh := Λ⊗O Λg ⊗O Λh, regarded as a Λ-algebra by mapping the group-like element
[a] ∈ Γ to [a2] ⊗ [a] ⊗ [a], so that the map from Hom(Rgh,Cp) = Ω × Ωg × Ωh to the weight
space sends the classical point (t, y, z) ∈ Z≥0 × Ωg,cl × Ωh,cl to κ(y) + κ(z) + 2t.

Let d•g[p]×h denote the product of d•g[p] and h, viewed as a formal series with coefficients
in Rgh. Let eord(d•g × h) denote its image under the ordinary projection operator. The

specialisation of eord(d•g[p] × h) at (t, y, z) is equal to

(60) eord(d•g[p] × h)t,y,z = eord(dtg[p]
y × h(p)

z ) = eord(d
tg[p]

y × hz),

where the last equality is a consequence of the following simple but extremely useful lemma:

Lemma 2.17. If g and h are p-adic modular forms of tame level N , then g [p] × (V h) is in
the kernel of the U operator, and in particular

eord(g
[p] × V h) = 0.
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Proof. This follows from the fact that an(g[p] × (V h)) = 0 whenever p|n. �

The above discussion is summarised in the following proposition, which plays a key role in
the construction of the triple Garrett-Rankin p-adic L-function described in Chapter 4.

Proposition 2.18. Let

Ωgh,cl := {(t, y, z) ∈ Z × Ωg,cl × Ωh,cl, t > −min(κ(y), κ(z)).}
The quadruple

eord(d
•g[p] × h) := (Rgh,Ω × Ωg × Ωh,Ωgh,cl, eord(d•g[p] × h))

is an ordinary Λ-adic modular form of tame level N . For all (t, y, z) ∈ Ωgh,cl, the specialisation
of this family at (t, y, z) is the classical modular form (with coefficients in Cp)

eord(dtg[p]
y × hz) ∈ Sk(Γ1(N) ∩ Γ0(p); Cp).

This specialisation has algebraic fourier coefficients (lying in K = KgyKhz
) when t ≥ 0.

We conclude this section by describing the Λ-adic interpolation of the periods that arise in
Lemma 2.12. Write Sord(N ;R) for the space of Λ-adic modular forms with coefficients in the
Λ-algebra R. A Hida family (Λf ,Ωf , f) of eigenforms in the sense of definition 2.14 gives rise
to a subspace

Sord(N ; Λf )[πf ] :=
{

f̆ ∈ Sord(N ; Λf ) such that Tnf̆ = anf̆ , for all (n,N) = 1
}

.

Letting Λ′
f denote the fraction field of the integral domain Λf , the vector space Sord(N ; Λ′

f )[πf ]

is finite-dimensional over Λ′
f and has for basis the set {f(qd)}d|(N/Nf ) of Λ-adic forms. Let

f ∈ Sord(Nf ,Λf ) be a Hida family of ordinary eigenforms, and let f̆ ∈ Sord(N,Λf )[πf ] be an
associated test vector of tame level N .

Let φ = (R,Ωφ,Ωφ,cl,φ) ∈ Sord(N ;R) be a Λ-adic modular form, and let (x, y) ∈ Ωf,cl ×
Ωφ,cl be a pair of points with κ(x) = κ(y). The specialisation φ

(p)
y of φ at y ∈ Ωφ,cl need not

be the p-stabilisation of a classical modular form, but its projection efx
φ

(p)
y to the fx-isotypic

component is the p-stabilisation of a classical modular form, which shall be denoted φx,y.
If R is any flat Λ-algebra with associated analytic space ΩR = Hom(R,O), the elements of

the ring Λ′
f ⊗Λ R can be viewed as “rational functions” on the fiber product Ωf ×Ω ΩR with

poles at finitely many x ∈ Ωf . Given J ∈ Λ′
f ⊗ΛR and (x, y) ∈ Ωf ×Ω ΩR, we write J(x, y) for

the value of J at (x, y), when it is defined. Let ( , )N,p denote the Petersson scalar product
on modular forms attached to the group Γ1(N) ∩ Γ0(p).

Lemma 2.19. For all f̆ ∈ Sord(N ; Λf )[πf ] and all φ = (R,Ωφ,Ωφ,cl,φ) ∈ Sord(N ;R), there

exists (a unique) J(f̆ ,φ) ∈ Λ′
f ⊗Λ R such that, for all classical points (x, y) ∈ Ωf,cl ×Ωcl

Ωφ,cl,

(61) J(f̆ ,φ)(x, y) =
(f̆

(p)
x , φ

(p)
x,y)N,p

(f
(p)
x , f

(p)
x )N,p

=
(f̆x, φx,y)N
(fx, fx)N

= 〈ηfx
, φx,y〉,

where the last pairing is the Poincaré duality between H 1(XCp , ω
−r) and H0(XCp , ω

r ⊗ Ω1
X).

Proof. Let TN be the Λ-adic Hecke algebra of tame level N generated by the Hecke operators
Tn with gcd(n,Np) = 1 and U acting on Sord(N ; Λ). The Hida family f corresponds to an
idempotent ef ∈ TN ⊗ΛΛ′

f which induces a projection of Sord(N ; Λ) to Sord(N ; Λ′
f )[πf ]. Hence

efφ is a (Λ′
f ⊗Λ R)-linear combination of the forms f(qd) with d|N/Nf , while the same is of

course true for f̆ . It is therefore enough to show that, for all divisors d1 and d2 of N/Nf ,

(f
(p)
x (qd1), f

(p)
x (qd2))N,p

(f
(p)
x , f

(p)
x )N,p

= %(f , d1, d2)(x), for some %(f , d1, d2) ∈ Λf ⊗ Q.
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But the proof of Lemma 2.12 with f replaced by f
(p)
x and Γ1(N) by Γ1(N) ∩ Γ0(p) shows

that %(f
(p)
x , d1, d2) (defined in the obvious way) is a polynomial involving the expressions

qκ(x), aq(fx), 1
q and 1

q+1 as q ranges over the divisors of d1d2. Since the primes q that arise

are different from p, these expressions all belong to Λf ⊗ Q and hence the same is true of

%(f , d1, d2). It follows that the expression J(f̆ ,φ) defined by

J(f̆ ,φ)(x, y) :=
(f̆

(p)
x , φ

(p)
y )N,p

(f
(p)
x , f

(p)
x )N,p

belongs to Λ′
f ⊗Λ R, and the first equality in (61) follows. The second equality follows from a

direct calculation, and the third from the definition of ηfx
and the familiar expression for the

Poincaré pairing in terms of the Petersson scalar product. Lemma 2.19 follows. �

3. Diagonal cycles and p-adic Abel-Jacobi maps

3.1. Generalised Gross-Kudla-Schoen cycles. The main aim of this section is to intro-
duce, for each triplet (k, `,m) of balanced weights, a distinguished algebraic cycle ∆k,`,m on
the product of three Kuga-Sato varieties fibered over the modular curve X = X1(N). When
the triplet is (k, `,m) = (2, 2, 2), the cycle ∆2,2,2 is the one introduced by Gross and Kudla in
[GrKu] and studied in detail by Gross and Schoen in [GrSc].

Let E denote the universal elliptic curve fibered over X, as constructed in [Sc]. It is a
projective smooth algebraic surface defined over Q equipped with a proper regular (but not
smooth) fibration

π : E −→ X,

whose fiber Ex at a point x ∈ Y outside the finite set of cusps is the elliptic curve corresponding
to x under the moduli interpretation.

Fix a base point o ∈ X(Q), say the cusp at infinity. Write u for the unique automorphism
on E extending the involution −1 on the fibers with respect to the zero section σ0 of π.

For any r ≥ 0, write Er = E1 ×X ... ×X Er for the r-th fibered product of E over X. A
generic point in Er is (x;P1, ..., Pr) where x ∈ X and Pi are points in the fiber Ex. Let

εsym =
1

r!

∑

σ∈Σr

sgn(σ)σ ∈ Corr(Er) ⊗ Q

denote the projector in which a permutation σ acts on E r by permuting the factors in the
fibration π : Er −→ X. Let also

εinv :=

(

1 − u1

2

)

⊗ · · · ⊗
(

1 − ur

2

)

∈ Corr(Er) ⊗ Q

denote the idempotent in the ring of correspondences from E r to itself, in which uj denotes
the involution on the j-th factor in the fibration E r −→ X. Write

(62) εr = εsym · εinv ∈ Corr(Er) ⊗ Q

for the composition of the two idempotents.
Put (k, `,m) = (r1 + 2, r2 + 2, r3 + 2) with r3 ≥ r2 ≥ r1 ≥ 0 and set

r =
r1 + r2 + r3

2
≥ 0.

Let us now define a generalized Gross-Kudla-Schoen cycle ∆k,`,m of codimension r+ 2 in the
(2r + 3)-dimensional variety

W = Er1 × Er2 × Er3

introduced in (1) of the introduction. We shall regard it as an element in the group

CHr+2(W ) := Zr+2(W ) ⊗ Q/Zr+2
rat (W ) ⊗ Q
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of rational equivalence classes of cycles of codimension r + 2 with coefficients in Q.
We treat the three cases (k, `,m) = (2, 2, 2), (2, `, `) with ` > 2, and k, `,m > 2 separately.

Definition 3.1. Assume (k, `,m) = (2, 2, 2). For any non-empty subset I ⊆ {1, 2, 3}, let

XI := {(P1, P2, P3) ∈ X ×X ×X : Pi = Pj for all {i, j} ⊂ I, Pj = o for all j 6∈ I}.
Then the Gross-Kudla-Schoen diagonal cycle is defined to be

∆2,2,2 = X123 −X12 −X13 −X23 +X1 +X2 +X3 ∈ CH2(X1 ×X2 ×X3).

To treat the remaining cases, choose three subsets

(63) A = {a1, . . . , ar1}, B = {b1, . . . , br2}, C = {c1, . . . , cr3}
of {1, . . . , r} of cardinalities r1, r2 and r3 respectively, such that A ∩ B ∩ C = ∅. If some
of the ri is 0, we take the corresponding subset to be the empty set. One readily checks
that such subsets exist, and that they satisfy A = B ∪ C \ B ∩ C, B = C ∪ A \ C ∩ A and
C = A ∪ B \ A ∩ B. The choice of the triplet (A,B,C) is unique up to permutations in Sr.
Since the union of any two of the sets A, B, C is equal to {1, ..., r}, the maps

(64)
ϕABC : Er −→ Er1 × Er2 × Er3 , (x;P1, ..., Pr) 7→ ((x;Pai

), (x;Pbi
), (x;Pci

))

and ϕBC : Er −→ Er2 × Er3 , (x;P1, ..., Pr) 7→ ((x;Pbi
), (x;Pci

))

are closed embeddings of E r into W (and likewise for the analogous maps ϕAB and ϕAC).

Definition 3.2. If (k, `,m) = (2, `, `) for some ` = r + 2 > 2, the generalised Gross-Kudla-
Schoen cycle is defined by

∆2,`,` = (Id, εr2 , εr3)(ϕABC (Er) − {o} × ϕBC(Er)) ∈ CHr+2(X × Er × Er).

Definition 3.3. If k, `,m > 2, the generalised Gross-Kudla-Schoen cycle is defined by

∆k,`,m = (εr1 , εr2 , εr3)ϕABC(Er) ∈ CHr+2(W ).

By examining the image of these cycles by the cycle class map in each of the Künneth
components of the complex de Rham cohomology group H 2r+4

dR (W/C) of the variety W , it
follows from [BDP, Lemma 2.2] that the cycles ∆k,`,m we defined for each triple of balanced
weights (k, `,m) are null-homologous, that is to say:

∆k,`,m ∈ CHr+2(W )0 := ker
(

cl : CHr+2(W ) → H2r+4
dR (W )

)

.

Fix a prime p - N and

(65) AJp : CHr+2(W )0 −→ Filr+2H2r+3
dR (W )∨

denote the p-adic Abel-Jacobi map, as introduced e.g. in [Ne2, (1.2)], [Bes00].
There are several equivalent definitions of (65). Given that Filr+2H2r+3

dR (W )∨ is naturally

isomorphic to the group Ext1(Qp,H
2r+3
dR (W )) of isomorphism classes of extensions of the

trivial filtered frobenius module Qp by H2r+3
dR (W ), the map AJp sends ∆ to the extension

class given by

(66) 0 // H2r+3
dR (W ) // V∆

��

// Qp

cldR

��

// 0

0 // H2r+3
dR (W ) // H2r+3

dR (W \ |∆|) // H2r+4
|∆| (W ) // 0,

where the lower row is the short excision exact sequence associated with the pair (W,∆) and
the upper row is obtained from the lower by pull-back under the cycle class map cldR in de
Rham cohomology.
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3.2. A formula for AJp(∆k,`,m) in terms of Coleman integration. The goal of this
section is to give a p-adic analytic description of (a piece of) the functional AJp(∆k,`,m),
involving p-adic integration of differential forms, à la Coleman.

Let (k, `,m) = (r1 +2, r2 +2, r3 +2) with r3 ≥ r2 ≥ r1 ≥ 0 be a triplet of balanced weights
and recall that we set r = r1+r2+r3

2 .

Our description of AJp(∆k,`,m) rests on the p-adic analytic description of H 1
dR(XCp ,Lr) that

was given in Sections 2.1 and 2.2. In order to keep track of the factors it will be convenient
to write X2 = X2 × X3 and likewise write (X ′)2 = X ′

2 × X ′
3, where X ′ denotes the affine

subvariety of X fixed in Section 2.1. By Proposition 2.1 and equation (40) we have

H1
dR(X ′,Lr2) ⊗H1

dR(X ′,Lr3) ' H1
rig(Wε,Lr2) ⊗H1

rig(Wε,Lr3).

We fix a choice of lift of Frobenius to Wε × Wε by setting Φ := Φ2 × Φ3, where Φ2 and
Φ3 denote the canonical lift of the Frobenius endomorphism on Wε described in (17), viewed
as acting on the first and second factors of X2 ×X3 respectively. This choice yields a linear
transformation

Φ := Φ2 ⊗ Φ3 : Ω1
rig(Wε,Lr2) ⊗ Ω1

rig(Wε,Lr3) −→ Ω1
rig(Wε,Lr2) ⊗ Ω1

rig(Wε,Lr3)

and induces an endomorphism of H1
rig(Wε,Lr2)⊗H1

rig(Wε,Lr3) which we denote with the same
letter. View Lr2 ⊗Lr3 as a sheaf on X ×X. The Gauss-Manin connection on Lr1 and on Lr2

gives rise to a connection

∇ : Lr2 ⊗Lr2 −→ Lr2 ⊗Lr3 ⊗ Ω1
X×X

on sheaves on X ×X, denoted again by ∇ by abuse of notation, and defined on sections by
the rule

∇(s2 ⊗ s3) = ∇(s2) ⊗ s3 + s2 ⊗∇(s3).

Given a class

ω2 ⊗ ω3 ∈ H0(X,Ω1
X ⊗ ωr2) ⊗H0(X,Ω1

X ⊗ ωr3)

= Filr2+r3+2(H1
dR(X,Lr2) ⊗H1

dR(X,Lr3))

⊂ H1
rig(Wε,Lr2) ⊗H1

rig(Wε,Lr3) ⊂ H2
rig(Wε ×Wε,Lr2 ⊗Lr3),

choose a polynomial P ∈ Cp[x] satisfying

(i) P (Φ) = P (Φ2Φ3) annihilates the class of ω2 ⊗ ω3 in H2
rig(Wε ×Wε,Lr2 ⊗Lr3).

(ii) For each supersingular annulus Vj, j = 1, ..., s, P (Φ) annihilates the target of the
residue map (41), namely (Symr H1

dR(Ej))(−1).

(iii) None of the roots of P (x) are of complex absolute value p
r2+r3+1

2 .

The existence of such a polynomial follows from the fact that the eigenvalues of the geo-
metric Frobenius Φ acting on H1

dR(XCp ,Lr) (resp. on (Symr H1
dR(Ej))(−1)) are algebraic

numbers with complex absolute value p
r+1
2 (resp. p

r+2
2 ), and hence a polynomial P satisfying

(i) and (ii) can be chosen so that all its roots have complex absolute value either p
r2+r3+2

2 or

p
r+2
2 ; such a choice of P automatically satisfies (iii) because the triplet of weights is assumed

throughout to be balanced.
See the discussion right after Proposition 3.7 below for a justification of the need of condi-

tions (ii) and (iii). As for (i), note that a direct consequence of it is the existence of a rigid
analytic primitive of P (Φ)(ω2 ∧ ω3), as we quote in the following statement.

Lemma 3.4. There exists a real ε > 0 and an Lr2 ⊗ Lr3-valued rigid one-form ρ(P, ω2, ω3)
on Wε ×Wε satisfying

(67) ∇ρ(P, ω2, ω3) = P (Φ)(ω2 ∧ ω3).

This one-form is well-defined up to rigid ∇-closed one-forms on Wε ×Wε.
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Recall the base point o ∈ X that was chosen to define the cycle ∆2,2,2. This choice of base
point determines the horizontal and vertical inclusions

(68) ι2 : X = X × {o} ↪→ X ×X, ι3 : X = {o} ×X ↪→ X ×X.

Let

(69) ι23 : X ↪→ X ×X

denote the diagonal morphism. By abuse of notation, we will denote by the same symbols
the resulting maps

ι2, ι3, ι23 : X ′ ↪→ X ′ ×X ′, ι2, ι3, ι23 : Wε ↪→ Wε ×Wε.

Finally write

ϕ∗
23 := ι∗23 − ι∗2 − ι∗3 : Ω1

rig(Wε ×Wε) −→ Ω1(Wε)

for the maps obtained by combining the pullbacks of these three morphisms.

Lemma 3.5. The map H1
rig(Wε ×Wε) −→ H1

rig(Wε) induced by ϕ∗
23 is the zero map.

Proof. This is a direct consequence of the following two facts:

(1) The map

ϕ∗
23 : H1

dR(X ′
2 ×X ′

3/Qp) −→ H1
dR(X ′/Qp)

is 0. This can be checked by choosing a complex embedding of Qp and noting that
the map ϕ23 : H1(X

′/C) −→ H1(X
′
2 ×X ′

3/C) vanishes, using topological methods.
(2) There is a commutative diagram

H1
dR(X ′

2 ×X ′
3/Qp)

ϕ∗
23 //

compε

H1
dR(X ′/Qp)

compε

H1
rig(Wε ×Wε/Qp)

ϕ∗
23 // H1

rig(Wε/Qp).

�

To formulate the counterpart of Lemma 3.5 for general weights (k, `,m), recall the subsets
A, B and C of {1, . . . , r} of cardinalities r1, r2 and r3 ≥ 0 that were chosen in §3.1, and
denote by A′, B′ and C ′ their respective complements. Note that

A′ = B ∩ C, B′ = A ∩ C and C ′ = A ∩B.
Recall also the diagonal inclusions

ϕABC : Er −→ Er1 × Er2 × Er3 and ϕBC : Er −→ Er2 × Er3

introduced in (64). As in (48), the map ϕBC together with Poincaré duality on the fibers of
the projection Er → Er1 induced by A, give rise to a pullback operation on sheaves

(70) Lr2 ⊗Lr3 −→ LA(−t)
where t := |A′| = r − r1 satisfies k = `+m− 2 − 2t. We hence obtain a map

ϕ∗
A,BC : Ω1

rig(Wε ×Wε,Lr2 ⊗Lr3) −→ Ω1
rig(Wε,LA(−t)).

Set

(71) ϕ∗ :=

{

ϕ∗
23 if (k, `,m) = (2, 2, 2),

ϕ∗
A,BC otherwise.

Corollary 3.6. If σ ∈ Ω1(Wε ×Wε,Lr2 ⊗Lr3) is ∇-closed, then ϕ∗(σ) is ∇-exact on Wε.
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Proof. If (r1, r2, r3) = (0, 0, 0), this is just Lemma 3.5. If r3, r2 > 0, by the Künneth decom-
position we have

H1
dR(X ′ ×X ′,Lr2 ⊗Lr3) ' H1

dR(X ′,Lr2) ⊗H0
dR(X ′,Lr3)

⊕ H0
dR(X ′,Lr2) ⊗H1

dR(X ′,Lr3),

and these modules vanish because the sheaves Lr2 and Lr3 have no global horizontal sections
(cf. [BDP, Lemma 2.1]). In light of (40) we deduce that in fact σ is already exact, and a
fortiori so is ϕ∗(σ). �

Proposition 3.7. The element

ξ(P, ω2, ω3) := class of ϕ∗ρ(P, ω2, ω3) in H1
rig(Wε,LA(−t))

does not depend on the choice of rigid differential ρ(P, ω2, ω3) satisfying (67) of Lemma 3.4
and has vanishing annular residues. In particular, ξ(P, ω2, ω3) belongs to H1

dR(X,LA(−t)).

Proof. The first assertion is a direct consequence of Corollary 3.6. In light of (41) and the
discussion following it, the second assertion follows the condition (ii) satisfied by P . �

The Frobenius endomorphism Φ acts on H1
dR(X,LA(−t)) with eigenvalues of complex ab-

solute value
√
p1+r2+r3 . Therefore, since the roots of P have absolute value either pr+1 or√

p2+r2+r3 , the endomorphism P (Φ) acts invertibly on H1
dR(X,LA(−t)). In particular, for all

η ∈ H1
dR(X,LA(−t)), the class P (Φ)−1η is well-defined. Furthermore, the class

(72) ξ(ω2, ω3) := P (Φ)−1ξ(P, ω2, ω3) ∈ H1
rig(Wε,LA(−t))

does not depend on the choice of polynomial P . More precisely, replacing P by a polynomial
PQ satisfying the conditions before the statement of Lemma 3.4, one sees that

ρ(PQ,ω2, ω3) = Q(Φ)ρ(P, ω2, ω3), ξ(PQ,ω2, ω3) = Q(Φ)ξ(P, ω2, ω3).

We will now describe (part of) the image of the generalized Gross-Kudla-Schoen cycle
∆k,`,m under the p-adic Abel-Jacobi map. More precisely, we will describe the restriction of
the functional AJp(∆k,`,m) to the summand

(73) H1
dR(X,Lr1) ⊗H0(X,ωr2 ⊗ Ω1

X) ⊗H0(X,ωr3 ⊗ Ω1
X) ⊆ H2r+3

dR (W ),

where the inclusion arises from the Künneth decomposition as in (5).
Let ιA : EA −→ Er1 denote the natural isomorphism between the varieties EA := Ea1 ×X

×...×X Ear1
and Er1 , giving rise to an isomorphism of sheaves between Lr1 and LA.

Theorem 3.8. Let η ⊗ ω2 ⊗ ω3 be any class in (73). Then

(74) AJp(∆k,`,m)(η ⊗ ω2 ⊗ ω3) = 〈ι∗Aη, ξ(ω2, ω3)〉,
where

〈 , 〉 : H1
dR(X,LA) ×H1

dR(X,LA(−t)) −→ Cp(−1 − r)

arises from Poincaré duality.

Remark 3.9. The reader mainly interested in the case (k, `,m) = (2, 2, 2) will notice that
Theorem 3.8 asserts that the image of the Gross-Kudla-Schoen cycle ∆2,2,2 in X3 under the
p-adic Abel-Jacobi map satisfies

(75) AJp(∆2,2,2)(η ⊗ ω2 ⊗ ω3) = 〈η, ξ(ω2, ω3)〉,
where 〈 , 〉 is the usual Poincaré duality pairing on H 1

dR(X).
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3.3. Proof of the formula: Besser’s finite polynomial cohomology. The goal of this
section is proving Theorem 3.8, and to do that we first set some notation. Let V be a smooth,
proper, irreducible variety of dimension d over Qp which admits a smooth proper, flat model
V over Zp. There are syntomic and finite polynomial cohomology groups

Hi
syn(V, n) ⊆ H i

fp(V, n)

for every i, n ≥ 0 (cf. e.g. [Bes00] and the references therein). These groups are related to the
p-adic de Rham cohomology of V by the following diagram (cf. [Bes00, Prop. 2.5 (1-2)]):

(76) 0 // Hi−1
dR (V )/FilnHi−1

dR (V )
isyn

// Hi
syn(V, n)

psyn
//

��

FilnHi
dR(V )

0 // Hi−1
dR (V )/FilnHi−1

dR (V )
ifp

// Hi
fp(V, n)

pfp
// FilnHi

dR(V ) // 0,

in which the rows are exact. In addition there are compatible cycle class maps

CHi(V)

��

clsyn
//

clfp

''

H2i
syn(V, i)

psyn

&&N

N

N

N

N

N

N

N

N

N

N

// H2i
fp(V, i)

pfp

��

CHi(V )
cldR // FiliH2i

dR(V )

which give rise (by the formalism of e.g. [Ne2, (1.2)]) to the p-adic Abel-Jacobi maps

(77) AJp : CHi(V )0 −→ ker(psyn) = H2i−1
dR (V )/Fili(H2i−1

dR (V )) ' Fild−i+1H2d−2i+1
dR (V )∨

that we already introduced in (65). Besides the definition of AJp given in (66), Besser proved
in [Bes00, Theorem 1,2] that the p-adic Abel-Jacobi map may be expressed purely in terms
of Coleman integration.

Namely, let ∆ =
∑

aj∆j be a representative of a class in CHi(V)0, with aj ∈ Q and
∆j irreducible, smooth proper subschemes of V over Zp. Besser showed that AJp sends the
null-homological cycle ∆ to the functional

(78) AJp(∆) : Fild−i+1H2d−2i+1
dR (V ) −→ Qp, ω 7→

∫

∆
ω :=

∑

ajtr(ι
∗
j (ω̃)),

where ω̃ ∈ H2d−2i+1
fp (V, d−i+1) is a lift of ω under the map pfp appearing in (76), ιj : ∆j ↪→ V

is the natural inclusion and

tr : H2d−2i+1
fp (∆j, d− i+ 1)

∼−→ Qp

is the canonical trace isomorphism ([Bes00, Prop. 2.5 (4)]).
It is Besser’s formula (78) which we shall apply in order to prove Theorem 3.8. As a final

piece of notation, let

(79) 〈 , 〉fp : Hi
fp(V, n) ×H2d+1−i

fp (V, d + 1 − n) −→ Qp

denote the cup product in finite polynomial cohomology described in [Bes00, Prop. 2.5 (4)].
We first focus in the particular case (k, `,m) = (2, 2, 2). Set

ϕdR,∗ := ι23,dR,∗ − ι2,dR,∗ − ι3,dR,∗ : H1
dR(X) −→ Fil1H3

dR(X2),

ϕfp,∗ := ι23,fp ∗ − ι2,fp ∗ − ι3,fp ∗ : H1
fp(X , 0) −→ H3

fp(X 2, 1)

to be the maps induced by push-forward by the three embeddings ι2, ι3, ι23 introduced in
(68) and (69) on de Rham and finite polynomial cohomology, respectively.
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By [Bes00, Proposition 2.5 (1) and Lemma 5.1], there is a commutative diagram

(80) 0
i1 //

��

H1
fp(X , 0)

p1
//

ϕfp,∗

��

H1
dR(X) //

ϕdR,∗

��

0

0 //
H2

dR(X2)

Fil1H2
dR(X2)

i2 // H3
fp(X 2, 1)

p2
// Fil1H3

dR(X2) // 0

with exact rows arising from (76).
Let η̃ ∈ H1

fp(X , 0) be a preimage of η under p1 and ω̃2, ω̃3 ∈ H1
fp(X , 1) be preimages of ω2

and ω3 respectively, so that ω̃2 ⊗ ω̃3 is a preimage in H2
fp(X 2, 2) of ω2 ⊗ ω3 ∈ Fil2H2

dR(X2).

Lemma 3.10. The following equality holds in Qp:

〈clfp(∆2,2,2), η̃ ⊗ ω̃2 ⊗ ω̃3〉fp = 〈ϕfp ∗(η̃), ω̃2 ⊗ ω̃3〉fp.
Proof. The class of the cycle X123 − X12 − X13 − X23 + X1 + X2 + X3 is an integral, smooth
proper model of ∆2,2,2 in CH2(X 3)0. Hence

〈clfp(∆2,2,2), η̃ ⊗ ω̃2 ⊗ ω̃3〉fp = −
∑

I

(−1)|I|trX (ι∗I(η̃ ⊗ ω̃2 ⊗ ω̃3))

where I ranges through the seven non-empty subsets of {1, 2, 3} and trX : H3
fp(X , 2)

∼−→ Qp

is Besser’s trace isomorphism. For I = 123, 12 and 13, it follows from the very definitions
that the above traces may be recast as the cup-products

trX (ι∗123(η̃ ⊗ ω̃2 ⊗ ω̃3)) = 〈η̃, (ω̃2 ⊗ ω̃3)|X23
〉fp

trX (ι∗12(η̃ ⊗ ω̃2 ⊗ ω̃3)) = 〈η̃, (ω̃2 ⊗ ω̃3)|X2
〉fp

trX (ι∗13(η̃ ⊗ ω̃2 ⊗ ω̃3)) = 〈η̃, (ω̃2 ⊗ ω̃3)|X3
〉fp

on X , while trX (ι∗I(η̃ ⊗ ω̃2 ⊗ ω̃3)) vanishes for the remaining four choices of I.
On the other hand, the push-forward map ϕfp ∗ is dual under cup-product (79) to the

pull-back homomorphism ϕ∗
fp = ι∗23,fp − ι∗2,fp − ι∗3,fp : H2

fp(X 2, 2) → H2
fp(X , 2), and hence

〈ϕfp ∗(η̃), ω̃2 ⊗ ω̃3〉fp = 〈η̃, (ω̃2 ⊗ ω̃3)|X23
〉fp − 〈η̃, (ω̃2 ⊗ ω̃3)|X2

〉fp − 〈η̃, (ω̃2 ⊗ ω̃3)|X3
〉fp.

This proves the lemma. �

Lemma 3.10 combined with (78) yields

(81) AJp(∆2,2,2)(η ⊗ ω2 ⊗ ω3) = 〈ϕfp ∗(η̃), ω̃2 ⊗ ω̃3〉fp.
By the functoriality of [Bes00, (8)], there is another commutative diagram with exact rows

(82) 0 // H1
dR(X2)

i //

ϕ∗

dR

��

H2
fp(X 2, 2)

p
//

ϕ∗

fp

��

Fil2H2
dR(X2) //

ϕ∗

dR

��

0

0 // H1
dR(X)

i // H2
fp(X , 2)

p
// Fil2H2

dR(X) = 0.

In light of [Bes00, Def. 2.2 and eq. (6)], a pair

(α, β) ∈ Ω1
rig(W2

ε ) ⊕ Fil2H2
dR(X2) = Ω1

rig(W2
ε ) ⊕ Ω2(X2)

satisfying dα = P (Φ)(β) gives rise to a class in H 2
fp(X 2, 2). Since the map p of the upper row

of (82) is the projection [α, β] 7→ [β] to the second factor, the class ω̃2 ⊗ ω̃3 in H2
fp(X 2, 2) may

be represented by the pair

(ρ, ω2 ⊗ ω3) ∈ Ω1
rig(W2

ε ) ⊕ Ω2(X2),
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where ρ := ρ(P, ω2, ω3) is as in Lemma 3.4. Since Fil2H2
dR(X) = 0, the class ϕ∗

fp(ω̃2 ⊗ ω̃3) has

a preimage in H1
dR(X) under the map i of the lower row of (82). Such preimage is the class

of ξ := ξ(ω2, ω3) ∈ H1
dR(X), as

(83) i(ξ) := [P (Φ)ξ, 0] = [ϕ∗ρ, 0] = ϕ∗
fp(ω̃2 ⊗ ω̃3) ∈ H2

fp(X , 2).
From this we find, as desired, that

〈ϕfp ∗(η̃), ω̃2 ⊗ ω̃3〉fp = 〈η̃, ϕ∗
fp(ω̃2 ⊗ ω̃3)〉fp = 〈η̃, i(ξ)〉fp = 〈η, ξ〉,

where the first equality follows from the functoriality of the cup product, the second is (83)
and the third is a direct consequence of [Bes00, (14)].

This concludes the proof of Theorem 3.8 in the case where all three weights are equal to 2.
We turn now to show how a similar approach yields Theorem 3.8 in the remaining cases, that
is to say, when either (r1, r2, r3) = (0, r, r) with r > 0 or (r1, r2, r3) with r3 ≥ r2 ≥ r1 > 0 and
r3 ≤ r1 + r2.

By a slight abuse of notation, let us still denote W the base change of the triple product
Er1 × Er2 × Er3 to Qp, which recall has dimension r1 + r2 + r3 + 3 = 2r + 3.

Let η ∈ H1
dR(X,Lr1) ⊂ Hr1+1

dR (Er1) and

ω2 ∈ H1
dR(X,ωr2 ⊗ Ω1

X) ⊂ Filr2+1Hr2+1
dR (Er2), ω3 ∈ H1

dR(X,ωr3 ⊗ Ω1
X) ⊂ Filr3+1Hr3+1

dR (Er3)

be classes as in (73), which we may interchangeably regard either as Lri
-valued 1-forms on X

or as (ri + 1)-forms on Eri . We thus have

η ⊗ ω2 ⊗ ω3 ∈ Filr2+r3+2H3
dR(X3,Lr1 ⊗Lr2 ⊗Lr3) ⊂ Filr2+r3+2H2r+3

dR (W ).

Denote Er the canonical integral, smooth and proper model of E r over Zp. Let

η̃ ∈ Hr1+1
fp (Er1 ,−t), ω̃2 ∈ Hr2+1

fp (Er2 , r2 + 1) and ω̃3 ∈ Hr3+1
fp (Er3 , r3 + 1)

be, respectively, lifts of η, ω2 and ω3 in finite polynomial cohomology, and write η̃⊗ ω̃2⊗ ω̃3 ∈
H2r+3

fp (W, r + 2) for their tensor product.

Similarly as for ϕBC and ϕABC , write ϕA : Er −→ Er1 , (x;P1, ..., Pr) 7→ (x;Pa1 , ..., Par1
) for

the natural projection induced by the choice of the subset A of {1, ..., r}.
Lemma 3.11. We have

(84) AJp(∆k,`,m)(η ⊗ ω2 ⊗ ω3) = 〈ϕ∗
A,fp(η̃), ϕ∗

BC,fp(ω̃2 ⊗ ω̃3)〉Er ,fp.

Proof. Cycle ∆k,`,m is a linear combination
∑

j aj∆j, where aj ∈ Q and ∆j are irreducible
subvarieties of W , all of which are the image of E r under a closed embedding ιj : Er ↪→ W ;
see Definitions 3.2 and 3.3 for more details. These embeddings lift in a natural way to proper
maps ιj : Er ↪→ W, and

∑

ajιj(E
r) is thus a representative of ∆k,`,m in CHr+2(W)0.

By Besser’s formula (78),

(85) AJp(∆k,`,m)(η ⊗ ω2 ⊗ ω3) = 〈clfp(∆k,`,m), η̃ ⊗ ω̃2 ⊗ ω̃3〉fp =
∑

j

ajtrEr(ι∗j (η̃ ⊗ ω̃2 ⊗ ω̃3)).

If k = 2 (and thus ` = m ≥ 3), according to Definition 3.2 then half of the terms in the above
sum correspond to the image of {o} × ϕBC(Er) under some automorphism of E r1 × Er2 × Er3

that acts as the identity on the copy of E r1 . Here o is some choice of a base point in E r1 .
For such embeddings, it follows that ι∗j (η̃ ⊗ ω̃2 ⊗ ω̃3)) vanishes, and hence those terms do not

contribute to the sum in (85).
In view of this and Definition 3.3, for any balanced triple (k, `,m) 6= (2, 2, 2) we conclude

that AJp(∆k,`,m)(η ⊗ ω2 ⊗ ω3) is equal to a linear combination of the form

(86)
∑

aα1,α2,α3trEr(ϕ∗
ABC ◦ (α1 ⊗ α2 ⊗ α3)

∗(η̃ ⊗ ω̃2 ⊗ ω̃3))
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where αi are automorphisms of Eri for i = 1, 2, 3 and the scalars aα1,α2,α3 are each equal to
± 1

2n for some n ≥ 0. We refer to §3.1 for the explicit description of the automorphisms αi

that intervene here; all them satisfy α∗
i (ω̃) = ±ω̃ ∈ Hri+1

fp (Eri , ·) for the classes in play, so

that trEr(ϕ∗
ABC ◦ (α1 ⊗ α2 ⊗ α3)

∗(η̃ ⊗ ω̃2 ⊗ ω̃3)) = ±trEr(ϕ∗
ABC(η̃ ⊗ ω̃2 ⊗ ω̃3)). It is a simple

combinatorial exercise to check that the terms in (86) sum up to trEr(ϕ∗
ABC,fp(η̃ ⊗ ω̃2 ⊗ ω̃3)).

By Besser’s definitions of trace and cup-product in finite polynomial cohomology, it directly
follows that trEr(ϕ∗

ABC,fp(η̃ ⊗ ω̃2 ⊗ ω̃3)) = 〈ϕ∗
A,fp(η̃), ϕ∗

BC,fp(ω̃2 ⊗ ω̃3)〉Er ,fp. �

The class ϕ∗
BC,dR(ω2⊗ω3) in de Rham cohomology vanishes, because it lies in εrH

r2+r3+2
dR (Er)

and the idempotent εr annihilates Hj
dR(Er) for all j 6= r+1; note that indeed r2+r2+2 6= r+1

because the triplet (k, `,m) is balanced. Hence the pair (ϕ∗
BC(ρ(P, ω2, ω3)), 0) is a represen-

tative of ϕ∗
BC,fp(ω̃2 ⊗ ω̃3) in finite polynomial cohomology.

It follows exactly as in (83) that P (Φ)−1ϕ∗
BC(ρ(P, ω2, ω3)) is a preimage of the class

ϕ∗
BC,fp(ω̃2 ⊗ ω̃3) under Besser’s map

i : Hr2+r3+1
dR (Er)/Filr2+r3+2(Hr2+r3+1

dR (Er)) −→ Hr2+r3+2
fp (Er, r2 + r3 + 2).

It thus again follows that

(87) 〈ϕ∗
A,fp(η̃), ϕ∗

BC,fp(ω̃2 ⊗ ω̃3)〉Er ,fp = 〈ϕ∗
A,dR(η), P (Φ)−1ϕ∗

BC(ρ(P, ω2, ω3))〉Er ,dR.

Pulling-back under the natural immersion E r1 ↪→ Er induced by A, we obtain that the
right-hand side of (87) equals

〈ι∗Aη, P (Φ)−1ξ(P, ω2, ω3)〉Er1 ,dR = 〈ι∗Aη, ξ(ω2, ω3)〉Er1 ,dR.

Theorem 3.8 follows.

3.4. A formula for AJp(∆k,`,m) in terms of p-adic modular forms. Let g and h denote
modular forms of weights ` = r2 + 2 and m = r3 + 2, respectively, on Γ1(N). For the
calculations of this section, it is only necessary to assume that g and h are eigenvectors for
the Hecke operator Tp; in particular it will not be assumed that they are new of level N . Let

αg and βg be the roots of the Hasse polynomial x2 − ap(g)x+χg(p)p
`−1 for g at p, ordered in

such a way that ordp(αg) ≤ ordp(βg), and let

(88) gα = g − βgV g, gβ = g − αgV g

denote the respective p-stabilisations, on which the Up operator acts with eigenvalue αg and
βg respectively. Similar notational conventions are adopted for h. Note that with these
conventions, when g is ordinary then gα is the ordinary p-stabilisation of g that was previously
denoted g(p), but that no ordinariness assumption on g or h are made in this section.

Let f denote a modular form of weight k = r1 + 2 on Γ1(N) which is an eigenvector for
all the good Hecke operators, and is ordinary at p (but is not necessarily new of level N) and
let ηu-r

f ∈ H1
par(XCp ,Lr1)

u-r be the unique lift to the unit root subspace of the cohomology

class in H1(XKf
, ω−r1) attached to f as in Corollary 2.13. Recall that eord denotes Hida’s

ordinary projector. Let ef∗ denote the commuting idempotent in the Hecke algebra giving
the projection onto the f ∗-isotypic part, where f ∗ is the modular form which is dual to f ,
obtained by applying complex conjugation to the Fourier coefficients of f , and set

ef∗,ord = ef∗eord.

The goal of the next two theorems is to give an explicit expression for the class ξ(ωg, ωh) ∈
H1

dR(X,Lr1) that appears in Theorem 3.8, or rather, its image under ef∗,ord.
Theorem 3.12 below treats the setting where k = ` = m = 2, in which the cycle ∆2,2,2

is simply the Gross-Kudla-Schoen modified diagonal on X1(N)3. This setting is notationally
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simpler and therefore easier to follow, but already brings out the key ideas needed to handle
the general case, which will then be treated in Theorem 3.13.

Theorem 3.12. Suppose that k = ` = m = 2, so that ξ(ωg, ωh) can be viewed as an overcon-
vergent modular form of weight 2. The ordinary projection ef∗,ord(ξ(ωg, ωh)) is equal to the
classical modular form

ef∗,ord(ξ(ωg, ωh)) = − E1(f)

E(f, g, h)
ef∗,ord(d

−1g[p] × h),

where E1(f) and E(f, g, h) are defined as in Theorem 1.3 of the introduction.

Proof. Let

Pg(x) = 1 − ap(g)p
−1x+ χg(p)p

−1x2 = (1 − αgp
−1x)(1 − βgp

−1x),

Ph(x) = 1 − ap(h)p
−1x+ χh(p)p−1x2 = (1 − αhp

−1x)(1 − βhp
−1x),

denote the Hasse polynomials attached to the forms g and h, and set

Pgh(x) = (1 − αgαhp
−2x)(1 − αgβhp

−2x)(1 − βgαhp
−2x)(1 − βgβhp

−2x),

Pαα(x) = (1 − αgαhp
−2x)−1Pgh(x), Pαβ(x) = (1 − αgβhp

−2x)−1Pgh(x),

Pβα(x) = (1 − βgαhp
−2x)−1Pgh(x), Pββ(x) = (1 − βgβhp

−2x)−1Pgh(x).

Recall that Φ2 and Φ3 denote the canonical lift Φ of frobenius operating on the Hasse domains,
viewed as contained in the second and third factors respectively of the three-fold of X1(N)3.
The operator Φ is related to the V operator on (nearly) overconvergent p-adic modular forms
of weight two by the rule Φ = pV . After writing Φ2 = pV2 and Φ3 = pV3, the operator
Φ := Φ2Φ3 = p2V2V3 corresponds to the the canonical lift of Frobenius acting on Ω2

rig(Wε×Wε).

The operators Pg(Φ2) and Ph(Φ3) annihilate the classes of ωg and ωh in H1
rig(Wε). More

precisely, as in (19),

Pg(Φ2)ωg = (1 − ap(g)V2 + χg(p)pV
2
2 )g(q) = g[p](q) = dG[p],(89)

Ph(Φ3)ωh = (1 − ap(h)V3 + χh(p)pV 2
3 )h(q) = h[p](q) = dH [p],

where G[p] and H [p] ∈ OWε are given by

G[p](q) = d−1g[p] =
∑

p-n

an(g)

n
qn, H [p](q) = d−1h[p] =

∑

p-n

an(h)

n
qn.

These primitives are overconvergent modular forms of level N and weight 0. Note that they
have been normalized so that they vanish at the cusp ∞.

Equation (89) indicates that Pgh(Φ2Φ3) annihilates the class of the rigid differential ωgωh

in H2
dR(X1(N)2) . Hence, there is a rigid one-form ρ(Pgh, ωg, ωh) satisfying

(90) dρ(Pgh, ωg, ωh) = Pgh(Φ2Φ3)ωgωh.

To describe ρ(Pgh, ωg, ωh) more explicitly, we exploit the identities

g = (αg − βg)
−1(αggα − βggβ), h = (αh − βh)−1(αhhα − βhhβ)

expressing g and h as linear combinations of the stabilisations appearing in (88). This leads
to an expression for the right-hand side of (90) as a sum of four contributions:

Pgh(Φ2Φ3)ωgωh = θαα − θαβ − θβα + θββ,
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where θαα is the rigid two-form on Wε ×Wε (for a suitable ε > 0 given by

θαα =
αgαhPgh(Φ2Φ3)(gα ⊗ hα)

(αg − βg)(αh − βh)

=
αgαhPαα(Φ2Φ3)(1 − αgαhV2V3)(gα ⊗ hα)

(αg − βg)(αh − βh)
,(91)

and θαβ (resp. θβα and θββ) are defined in the identical way, after replacing (αg, αh) by
(αg, βh) (resp. (βg, αh), (βg, βh).) We next observe that

(1 − αgαhV2V3)(gα ⊗ hα) =
1

2

(

(1 − αgV2)(1 + αhV3) + (1 + αgV2)(1 − αhV3)
)

gα ⊗ hα

=
1

2

(

g[p] ⊗ (1 + αhV3)hα + (1 + αgV2)gα ⊗ h[p]
)

.(92)

It follows from (91) and (92), together with the fact that dΦ = Φd, that

(93) θαα = dραα,

where

(94) ραα = −αgαhPαα(Φ2Φ3)
(

G[p] ⊗ (1 + αhV3)hα − (1 + αgV2)gα ⊗H [p]
)

2(αg − βg)(αh − βh)
.

The rigid one-forms ραβ, ρβα, and ρββ are defined similarly, after replacing (αg, αh) as before
by (αg, βh), (βg, αh), and (βg, βh) respectively, and the differential one-form ρ(Pgh, ωg, ωh) of
(90) can be chosen to be

ρ(Pgh, ωg, ωh) = ραα − ραβ − ρβα + ρββ.

Let ξαα, ξαβ, ξβα, and ξββ denote the pullbacks to the modified diagonal of the one-forms ραα,
ραβ, ρβα, and ρββ, so that for example

(95) ξαα = −αgαhPαα(Φ)
(

G[p] × (1 + αhV )hα − (1 + αgV )gα ×H [p]
)

2(αg − βg)(αh − βh)
.

The frobenius operator Φ acts on ef∗,ord(H
1
rig(Wε)) with eigenvalue pα−1

f∗ = βf , and hence, by
Lemma 2.17,

ef∗,ord

(

Pαα(Φ)(G[p](1 + αhV )hα)
)

= Pαα(βf )ef∗,ord(G
[p]h),

ef∗,ord

(

Pαα(Φ)((1 + αgV )gαH
[p])
)

= Pαα(βf )ef∗,ord(gH
[p]).

Invoking Lemma 2.17 once again, we find

ef∗,ord(gH
[p]) = ef∗,ord(g

[p]H [p]) = −ef∗,ord(G
[p]h[p]) = −ef∗,ord(G

[p]h),

where the second equality follows by noting that g [p]H [p] +G[p]h[p] = d(G[p]H [p]) is exact and
invoking the fact that exact rigid differentials are in the kernel of the ordinary projection.
Hence applying the projector ef∗,ord to (95) gives

(96) ef∗,ord(ξαα) = − αgαhPαα(βf )

(αg − βg)(αh − βh)
ef∗,ord(G

[p]h).

The definition of ξ(ωg, ωh) given in (72) therefore implies that

(97) ef∗,ord(ξ(ωg, ωh)) = ξ′αα − ξ′αβ − ξ′βα + ξ′ββ,

where

ξ′αα = − αgαh

(αg − βg)(αh − βh)(1 − αgαhβfp−2)
ef∗,ord(G

[p]h),
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and likewise for the other three contributions to ef∗,ord(ξ(ωg, ωh)). A direct calculation reveals
that

ξ′αα − ξ′αβ = − αg

(αg − βg)(1 − αgαhβfp−2)(1 − αgβhβfp−2)
ef∗,ord(G

[p]h),

ξ′βα − ξ′ββ = − βg

(αg − βg)(1 − βgαhβfp−2)(1 − βgβhβfp−2)
ef∗,ord(G

[p]h).

Subtracting these two equations and invoking (97) gives

ef∗,ord(ξ(ωg, ωh)) = −
(1 − χf (p)−1β2

fp
−2)

E(f, g, h)
ef∗,ord(d

−1g[p] × h),

as was to be shown. �

We now turn to the case of general weights (k, `,m). Before stating the result, recall that
the triple of weights (k, `,m) is still assumed to be balanced, and that, following notations
similar to those in the proof of Proposition 2.9, we have set

k = `+m− 2 − 2t, with t ≥ 0, c = (k + `+m− 2)/2,

so that ξ(ωg, ωh) corresponds to a class in H1
dR(X,Lr1(−t)).

Theorem 3.13. The projection ef∗,ord(ξ(ωg, ωh)) is represented by the classical modular form

ef∗,ord(ξ(ωg, ωh)) = −(−1)t · t! · E1(f)

E(f, g, h)
ef∗,ord(d

−1−tg[p] × h),

where E1(f) and E(f, g, h) are defined as in Theorem 1.3 of the introduction.

Proof. Let ωg and ωh be the global sections of ωr2 ⊗ Ω1
X and of ωr3 ⊗ Ω1

X over X = X1(N)
attached to g and h respectively. Since these sections are algebraic, they can also be viewed
as Lr2 and Lr3-valued rigid differentials on Wε/Cp for any ε > 0. Modifying slightly the
definitions of the weight two setting, we define

Pg(x) = (1 − αgp
−r2−1x)(1 − βgp

−r2−1x), Ph(x) = (1 − αhp
−r3−1x)(1 − βhp

−r3−1x).

The operators Pg(Φ2) and Ph(Φ3) annihilate the classes of ωg and ωh in H1
rig(Wε,Lr2) and

H1
rig(Wε,Lr3) respectively, and in terms of q-expansions,

Pg(Φ2)(ωg) = (1 − αgV2)(1 − βgV2)g = g[p],

Ph(Φ3)(ωh) = (1 − αhV3)(1 − βhV3)g = h[p].

Let G[p] and H [p] denote the overconvergent sections of Lr2 and Lr3 satisfying

∇G[p] = ωg[p], ∇H [p] = ωh[p].

The q-expansions of these sections are given in equation (47) of Section 2.4, i.e.,

G[p](q) =

r2
∑

j=0

(−1)jj!

(

r2
j

)

d−1−jg[p](q)ωr2−j
can ηj

can,(98)

H [p](q) =

r3
∑

j=0

(−1)jj!

(

r3
j

)

d−1−jh[p](q)ωr3−j
can ηj

can.(99)

As in the weight two setting, we let

Pgh(x) = (1 − αgαhp
−r2−r3−2x)(1 − αgβhp

−r2−r3−2x)(1 − βgαhp
−r2−r3−2x)

×(1 − βgβhp
−r2−r3−2x).
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Just as before, the operator Pgh(Φ2Φ3) annihilates the class of ωg⊗ωh in the hypercohomology
group H2

dR(X1(N)2,Lr2 ⊗Lr3), so there is a rigid Lr2 ⊗Lr3-valued one-form ρ(Pgh, ωg, ωh) on
Wε ×Wε satisfying

(100) ∇ρ(Pgh, ωg, ωh) = Pgh(Φ2Φ3)ωgωh.

The same manipulations as in the weight two case allow us to express ρ(Pgh, ωg, ωh) as a
sum of four contributions:

ρ(Pgh, ωg, ωh) = ραα − ραβ − ρβα + ρββ,

where for instance

ραα = −αgαhPαα(Φ2Φ3)
(

G[p] ⊗ (1 + αhV3)ωhα
− (1 + αgV2)ωgα ⊗H [p]

)

2(αg − βg)(αh − βh)
,

just as in equations (93) and (94). Let ξαα, ξαβ, ξβα, and ξββ denote the pullbacks to the
generalised diagonal cycle E r of the one-forms ραα, ραβ , ρβα, and ρββ via the map ϕBC , viewed
as overconvergent sections of LA(−t) ⊗ Ω1 on Wε. Write

ξn-oc
αα = Splu-r(ξαα), ξoc

αα = Πoc
N (ξn-oc

αα ),

for the nearly overconvergent and overconvergent modular forms attached to ξαα. By equation
(44) defining Πoc

N , the elements ξαα and ξoc
αα have the same image in cohomology, and therefore

the following equality holds in H1
dR(X,Lr1(−t)):

ξ(Pgh, ωg, ωh) = ξoc
αα − ξoc

αβ − ξoc
βα + ξoc

ββ.

Applying ef∗,ord to this equation and invoking Lemma 2.7 gives

ef∗,ord(ξ(Pgh, ωg, ωh)) = ef∗,ord(ξ
n-oc
αα − ξn-oc

αβ − ξn-oc
βα + ξn-oc

ββ ),

and the same argument as in the proof of Proposition 2.9 (cf. in particular equation (49))
shows that

(101) ξn-oc
αα = −αgαhPαα(Φ)

(

d−1−tg[p] × (1 + αhV )hα − (1 + αgV )gα × d−1−th[p]
)

2(αg − βg)(αh − βh)
.

By exactly the same reasoning used to obtain (96) in the weight two case, and using the fact
that Φ acts on ef∗,ord(H

1
dR(X,Lr1(−t))) with eigenvalue pr1+1+tα−1

f∗ = βfp
t, we find after

applying the projector ef∗,ord to (101) that

(102) ef∗,ord(ξ
n-oc
αα ) = −(−1)t · t! · αgαhPαα(βfp

t)

(αg − βg)(αh − βh)
ef∗,ord(d

−1−tg[p] × h).

It now follows from (72) that

(103) ef∗,ord(ξ(ωg, ωh)) = ξ′αα − ξ′αβ − ξ′βα + ξ′ββ,

where

ξ′αα = − (−1)tt!αgαh

(αg − βg)(αh − βh)(1 − αgαhβfp−c)
ef∗,ord(d

−1−tg[p] × h),

and likewise for the other three contributions to ef∗,ord(ξ(ωg, ωh)). The result now follows
from a simple direct calculation, as in the conclusion of the proof of Theorem 3.12. �

We can now conclude this section with a (partial) formula for the image of the generalised
Gross-Kudla Schoen cycle ∆k,`,m under the p-adic Abel-Jacobi map.

Theorem 3.14. With notations as in the statement of Theorems 3.12 and 3.13,

AJp(∆k,`,m)(ηu-r
f ωgωh) = (−1)t+1 t! · E1(f)

E(f, g, h)
〈ηu-r

f , d−1−tg[p] × h〉,

for all ηu-r
f ∈ H1

dR(X,Lr1)
u-r[πf∗ ].
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Proof. Assume first that (k, `,m) = (2, 2, 2). By Proposition 2.3, the class ηu-r
f is orthogonal

to the kernel of ef∗,ord, and hence

〈ηu-r
f , ξ(ωg, ωh)〉 = 〈ηu-r

f , ef∗,ordξ(ωg, ωh)〉.
Theorem 3.14 therefore follows from Theorem 3.12. The case of general weights (k, `,m)
follows from an identical argument using Theorem 3.13 instead of Theorem 3.12. �

4. Garrett-Rankin triple product L-functions

4.1. Classical L-functions. As in the introduction, let

f ∈ Sk(Nf , χf ), g ∈ S`(Ng, χg), h ∈ Sm(Nh, χh)

be a triplet of normalized primitive cuspidal eigenforms such that χf · χg · χh = 1, and let

Qf,g,h = Qf · Qg · Qh = Q({an(f), an(g), an(h)}n≥1)

denote the field generated by the fourier coefficients of f , g and h. Write alsoN = lcm(Nf , Ng, Nh).
The Garrett-Rankin triple product L-function L(f, g, h; s) is defined by an Euler product

L(f, g, h; s) =
∏

p

L(p)(f, g, h; p−s)−1,

where, for p - N the local factor L(p)(f, g, h;T ) is the degree 8 polynomial

L(p)(f, g, h;T ) = (1 − αf,pαg,pαh,pT ) × (1 − αf,pαg,pβh,pT )(104)

×(1 − αf,pβg,pαh,pT ) × (1 − αf,pβg,pβh,pT )

×(1 − βf,pαg,pαh,pT ) × (1 − βf,pαg,pβh,pT )

×(1 − βf,pβg,pαh,pT ) × (1 − βf,pβg,pβh,pT ).

Piatetski-Shapiro and Rallis have given a precise recipe [PSR] for the local Euler factors

L(p)(f, g, h; s) at the bad primes p | N and have shown that there exists an archimedean

factor L(∞)(f, g, h; s) for which the completed L-function

Λ(f, g, h; s) = L(f, g, h; s) · L(∞)(f, g, h; s)

satisfies the functional equation

(105) Λ(f, g, h; s) = ε(f, g, h)Λ(f, g, h; k + `+m− 2 − s),

where ε(f, g, h) ∈ {±1}. The sign in this functional equation determines the parity of the
order of vanishing of L(f, g, h, s) at the center of symmetry

(106) c = cf,g,h =
k + `+m− 2

2
,

at which there is no pole (cf. [PSR, Theorem 5.2]). The sign ε(f, g, h) can be expressed as a
product

ε(f, g, h) =
∏

q

εq(f, g, h)

of local root numbers εq(f, g, h) ∈ {±1} indexed by the places q ≤ ∞ of Q. As already
anticipated in the introduction, we assume throughout that εq(f, g, h) = +1 for all finite
primes. According to e. g. [Pr90] and the references therein, we then have

(107) ε(f, g, h) = ε∞(f, g, h) =

{

−1 if (k, `,m) are balanced.

+1 if (k, `,m) are unbalanced.

We now recall a fundamental result which relates the central critical value of L(f, g, h, s)
to certain trilinear period integrals. For this, assume that (k, `,m) is unbalanced, namely
(without loss of generality, by eventually permuting f , g and h), that k = ` + m + 2t with
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t ≥ 0. Recall also the Shimura-Maass operators δ` defined in §2.3 and the space Sk(N)[πf ]
introduced in §2.5.

For any eigenform φ ∈ Sk(N) with character χ (not necessarily new at N), we write φ∗ for
the dual form obtained by twisting φ by the character χ−1. The eigenform φ∗ has nebentype
character χ−1, and its Hecke eigenvalues are complex conjugate to the Hecke eigenvalues
attached to φ.

Definition 4.1. Assume that k = `+m+ 2t with t ≥ 0. The trilinear period attached to

(f̆ , ğ, h̆) ∈ Sk(N)[πf ] × S`(N)[πg] × Sm(N)[πh]

is the expression

I(f̆ , ğ, h̆) := (f̆∗, δt
`ğ × h̆)N .

One of the main results of M. Harris and S. Kudla [HaKu], conjectured by H. Jacquet and
refined recently by A. Ichino [I] and T. C. Watson [Wa] is:

Theorem 4.2. Let (f, g, h) be a triple of modular forms of unbalanced weights (k, `,m) with
k = `+m+ 2t and t ≥ 0. Then there exist

• holomorphic modular forms f̆ ∈ Sk(N)[πf ], ğ ∈ S`(N)[πg], and h̆ ∈ Sm(N)[πh],
• for each prime q | N∞, a constant Cq ∈ Qf,g,h which depends only on the local

components at q of the vectors f̆ , ğ and h̆ in the admissible representations of GL2(Qq)
associated to πf , πg and πh;

such that

(108)

∏

q|N∞Cq

π2k
· L(f, g, h, c) = |I(f̆ , ğ, h̆)|2.

Furthermore, there is a choice of (f̆ , ğ, h̆) for which the constants Cq are all non-zero.

Remark 4.3. If Nf = Ng = Nh = N , then the space Sk(N)[πf ] is one-dimensional, and
likewise for g and h. In that case there is only one choice (up to scaling) for the vectors

f̆ , ğ and h̆. Otherwise, the triplet (f̆ , ğ, h̆) has to be chosen more carefully: see [GrPr] and
[DiNy] for explicit recipes when at least one of πf , πg or πh is not supercuspidal at the primes

q | gcd(Nf , Ng, Nh). It could be tempting to choose f̆ , ğ and h̆ to be the new vectors in
Sk(Nf ), S`(Ng) and Sm(Nh) attached to f , g and h respectively, but such a choice may not
always be suitable. For example, if there is a prime q dividing Nf but not Ng or Nh, then
Cq = 0 for this choice of test vectors.

4.2. p-adic L-functions. Let Q̄ denote the algebraic closure of Q in C and fix throughout
an odd prime p - N , an algebraic closure Q̄p of Qp and an embedding ιp : Q̄ ↪→ Q̄p. Let
ordp : Q̄×

p → Q be the valuation on Q̄p normalized so that ordp(p) = 1.
Fix a triple (f, g, h) of newforms and keep the notations of the previous section. As before

we assume that χfχgχh = 1, εq(f, g, h) = +1 for all finite primes q | N , and the triple (k, `,m)
of weights is unbalanced.

Let f̆ ∈ Sk(N ;Kf )[πf ], ğ ∈ S`(N ;Kg)[πg] and h̆ ∈ Sm(N ;Kh)[πh] be test vectors for
which the local constants Cq of Theorem 4.2 are non-zero and the central critical value of

L(πf , πg, πh, s) is (up to elementary non-zero fudge factors) equal to the square of I(f̆ , ğ, h̆).
Assume in addition that f , g and h are ordinary with respect to ιp and let

f̆ = (Λf ,Ωf ,Ωf,cl, f̆), ğ = (Λg,Ωg,Ωg,cl, ğ), h̆ = (Λh,Ωh,Ωh,cl, h̆)

be the Hida families of (not necessarily new) forms on Γ1(N) interpolating f̆ , ğ and h̆ in weights
k, ` and m respectively, as described in (58). Adapting the notations of the introduction, we
write

Σ := {(x, y, z) ∈ Ωf,cl × Ωg,cl × Ωh,cl},
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and set

Σf = {(x, y, z) ∈ Σ, such that 2t := κ(x) − κ(y) − κ(z) ≥ 0},
Σbal = {(x, y, z) ∈ Σ, such that (κ(x), κ(y), κ(z)) is balanced.}.

For each (x, y, z) ∈ Σf , we may consider the algebraic number

J(f̆x, ğy, h̆z) :=
I(f̆x, ğy, h̆z)

(f∗x , f
∗
x)N

∈ Q̄,

which we view in Cp via ιp. In light of the discussion in the previous section, our approach
to defining the p-adic L-function attached to πf ⊗ πg ⊗ πh will be to interpolate (suitable

multiples of) the ratios J(f̆x, ğy, h̆z) as (x, y, z) ranges over Σf . In order to do this, we let

φ := eord(d
•ğ[p] × h̆) be the ordinary family of modular forms attached to ğ and h̆ following

the recipe in Proposition 2.18.
Furthermore, define the Hida family f̆∗ = f̆ ⊗χ−1

f ; note that (f̆∗)x = (f̆x)∗ for all x ∈ Ωf,cl.

Recall that according to the notations settled in §2.6, a classical point corresponds to a
character of the form γ 7→ γk for some k ∈ Z≥2. We warn the reader that the equality

(f̆∗)x = (f̆x)∗ does not hold true for arithmetic points corresponding to characters γ 7→ ψ(γ)γk

for some Dirichlet character ψ of non-trivial p-power conductor.

Definition 4.4. The Garrett-Rankin triple product p-adic L-function attached to the triple
(f̆ , ğ, h̆) of Λ-adic modular forms is the element

Lp
f (f̆ , ğ, h̆) := J(f̆∗, eord(d•ğ[p] × h̆)) ∈ Λ′

f ⊗Λ (Λg ⊗ Λh ⊗ Λ)

attached to the families f̆ and φ = eord(d
•ğ[p] × h̆) following the notations of Lemma 2.19.

Remark 4.5. The definition of Lp
f (f̆ , ğ, h̆) depends not just on the p-adic families of automor-

phic representations interpolating πf , πg, and πh, but also on the choice of a triple (f̆ , ğ, h̆)
of test vectors in these automorphic representations. Note also that while

Lp
f (f̆ , ğ, h̆) = Lp

f (f̆ , h̆, ğ),

the Λ-adic family f̆ plays an essentially different role from the other two in the definition of
Lp

f (f̆ , ğ, h̆). There are thus three a priori distinct p-adic L-functions attached to ( f̆ , ğ, h̆),

namely, Lp
f (f̆ , ğ, h̆), Lp

g(f̆ , ğ, h̆) := Lp
g(ğ, f̆ , h̆), and Lp

h(f̆ , ğ, h̆).

Any element L ∈ Λ′
f ⊗Λ (Λg ⊗ Λh ⊗ Λ) as in Definition 4.4 has poles at (x, y, z) for

only finitely many x ∈ Ωf , and hence is completely determined by its values at the points of
Ωf,cl×Ω(Ωg,cl×Ωh,cl×Ω) where it is defined. Furthermore, it is always defined at (x, y, z) when
x belongs to Ωf,cl. By definition, for all (x, y, z) ∈ Σf , after setting κ(x) = κ(y) + κ(z) + 2t,

(109) Lp
f (f̆ , ğ, h̆)(x, y, z) =

(f̆
∗(p)
x , eord(dtğ

[p]
y × h̆z))N,p

(f
∗(p)
x , f

∗(p)
x )N,p

.

In particular, the special value Lp
f (f̆ , ğ, h̆)(x, y, z) is algebraic and belongs to the field K

generated by αfx
and by the fourier coefficients of f̆x, ğy and h̆z.

The following proposition supplements (109) with a formula for the p-adic special value

Lp
f (f̆ , ğ, h̆) at a point (x, y, z) ∈ Σbal.

Proposition 4.6. For all (x, y, z) ∈ Σbal, let (f, g, h) := (fx, gy, hz) and define (k, `,m, t) by
setting

(k, `,m) = (κ(x), κ(y), κ(z)), k = `+m− 2 − 2t.

Then
Lp

f (f̆ , ğ, h̆)(x, y, z) = E0(f)−1〈ηu-r
f̆x
, eord(d−1−tğ[p]

y × h̆z)〉,



42 HENRI DARMON AND VICTOR ROTGER

where

• E0(f) is the local factor given in (7);
• ηu-r

f̆x
∈ H1

par(XCp ,Lr)
u-r is the unique lift to the unit root subspace of the cohomology

class in H1(XKfx
, ω−r) attached to f̆∗x as in Corollary 2.13.

• the classical modular form eord(dtğ
[p]
y × h̆z) on Γ1(N) ∩ Γ0(p) is viewed as a class in

H0(Wε,Lr ⊗ Ω1
X) ⊂ H1

par(XCp ,Lr);

• 〈 , 〉X denotes the Poincaré duality on H1
par(XCp ,Lr).

Proof. Let ef∗
x

denote the idempotent attached to the eigenform f ∗
x , set

φ(p)
xyz := ef∗

x ,ord(d
tg[p]

y × hz),

and let φxyz ∈ Sk(N ; Cp)[πf∗
x
] be the classical modular form whose p-ordinary stabilisation is

equal to φ
(p)
xyz. The definition of Lp

f (f̆ , ğ, h̆), in view of the last equality in equation (61) of
Lemma 2.19, implies that, for all (x, y, z) ∈ Σf ∪ Σbal,

(110) Lp
f (f̆ , ğ, h̆)(x, y, z) = 〈ηf̆x

, φxyz〉.

Since φxyz belongs to Filr+1H1
par(XCp ,Lr), we can also express this identity in terms of the

Poincaré pairing on H1
par(XCp ,Lr) by replacing ηf̆x

by its lift to H1
par(XCp ,Lr) under the unit

root splitting:

(111) Lp
f (f̆ , ğ, h̆)(x, y, z) = 〈ηu-r

f̆x
, φxyz〉.

By Proposition 2.11, we then have

(112) Lp
f (f̆ , ğ, h̆)(x, y, z) = 〈ηu-r

f̆x
, eordφxyz〉.

On the other hand, applying the ordinary projector to the identity φ
(p)
xyz = φxyz − βf∗

x
V φxyz

shows that

(113) φ(p)
xyz = (1 − βf∗

x

αf∗
x

)eordφxyz = (1 − βfx

αfx

)eordφxyz = E0(fx)eordφxyz,

and therefore

Lp
f (f̆ , ğ, h̆)(x, y, z) = E0(fx)−1〈ηu-r

f̆x
, φ(p)

xyz〉 = E0(fx)−1〈ηu-r
f̆x
, ef∗

x ,ord(d
tğ[p]

y × h̆z)〉

= E0(fx)−1〈ηu-r
f̆x
, eord(d

tğ[p]
y × h̆z)〉.

The proposition follows. �

The next theorem evaluates Lp
f (f̆ , ğ, h̆) at points (x, y, z) ∈ Σf and relates these values to

the complex periods I(f̆x, ğy, h̆z).

Theorem 4.7. Let (x, y, z) be a point of Σf and set

(f, g, h) := (fx, gy, hz), (f̆ , ğ, h̆) := (f̆x, ğy , h̆z), (k, `,m) = (κ(x), κ(y), κ(z)).

Then

(114) Lp
f (f̆ , ğ, h̆)(x, y, z) =

E(f, g, h)

E0(f)E1(f)
× I(f̆ , ğ, h̆)

(f∗, f∗)N
,

where E(f, g, h), E0(f) and E1(f) are given in equations (6), (7) and (8) of Theorem 1.3.
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Remark 4.8. Theorems 4.2 and 4.7 above justify the designation of Lp
f (f̆ , ğ, h̆) as a p-adic

Garrett-Rankin triple product L-function in that it interpolates the square-roots of the central
critical values of the complex L-series L(fx, gy , hz; s) for (x, y, z) ∈ Σf . Indeed, assume that

L(f, g, h; c) 6= 0,

so that Theorems 4.2 and 4.7 ensure that Lp
f (f̆ , ğ, h̆) is non-zero in Lf ⊗ Λg ⊗ Λh. By

the Weierstrass preparation theorem, Lp
f (f̆ , ğ, h̆) vanishes at a finite number of points and

therefore 〈f̆x, ğy · δn(h̆z)〉2N 6= 0 for all but finitely many (x, y, z) ∈ Σf . In addition, Jacquet’s
conjecture as formulated and proved in [HaKu], imply that the hypothesis εq(fx, gy , hz) = +1
for all finite primes q still holds true for all such (x, y, z). Hence Theorem 4.2 can again be

applied for the triple (fx, gy, hz), which implies that (114) expresses Lp
f (f̆ , ğ, h̆)(x, y, z) as a

non-zero multiple of the square-root of L(fx, gx, hx; cfx,gy,hz
). 2

We now turn to the proof of Theorem 4.7. As before, p is a prime which does not divide
N , and Sn-oc

k (N ; Cp) denotes the space of nearly overconvergent p-adic modular forms of level
N , as described in Section 2.4. Given a classical newform f =

∑

n anq
n of some level Nf |N ,

recall that

ef∗ : Sord
k (N ; Cp) −→ Sord

k (N ; Cp)[πf∗ ]

ef∗,ord = ef∗eord : Sn-oc
k (N ; Cp) −→ Sord

k (N ; Cp)[πf∗ ]

denote the associated projectors to the f ∗-isotypic component of the ordinary subspace in
the space of overconvergent p-adic modular forms. The operators U and V whose action on
q-expansions is given in (13) also act on the spaces of nearly overconvergent modular forms
of a given level.

Lemma 4.9. Let g ∈ Sn-oc
` (N ; C) and h ∈ Sn-oc

m (N ; C) be nearly overconvergent modular
forms of weights `,m ≥ 2 which are eigenvectors for all the good Hecke operators Tq with
q - N . (They are not assumed to be new or to be eigenvectors for the operators Tq with q|N .)
Let

φfgh := ef∗,ord(gh) ∈ Sord
k (N ; C)[πf∗ ], (with k = `+m).

For each r ≥ 0, the modular form

ef∗,ord((V
rg) × h) ∈ Sord

k (N ; C)[πf∗ ]

is a multiple of φfgh.

Proof. By Lemma 2.17,

(115) 0 = eord(g
[p] × V h) = eord(g × V h) − ap(g)eord(V g × V h) + χg(p)p

`−1eord(V
2g × V h).

But since

eordV = U−1eord, ef∗,ordV = α−1
f∗ ef∗,ord,

it follows after applying the projector ef∗ to (115) that

(116) ef∗,ord(g × V h) + χg(p)p
`−1α−1

f∗ ef∗,ord(V g × h) = ap(g)α
−1
f∗ φfgh.

The same argument with the roles of g and h interchanged shows that

(117) χh(p)pm−1α−1
f∗ ef∗,ord(g × V h) + ef∗,ord(V g × h) = ap(h)α

−1
f∗ φfgh.

The case r = 1 of the proposition is obtained by simultaneously solving equations (116) and
(117) above. The case of general r > 1 can then be treated by induction on r using the
identity

(118) ef∗,ord(V
rg × h) = α−1

f∗ ap(g)ef∗ ,ord(V
r−1g × h) − α−2

f∗ χh(p)pm−1ef∗,ord(V
r−1g × h),

which follows from Lemma 2.17, more precisely from the fact that eord(V rg × h[p]) = 0. �
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Lemma 4.10. The following identities, as well as their counterparts with (αg, αh) replaced
by (αg, βh), (βg, αh, and (βg, βh), are satisfied:

(1) ef∗,ord((V gα) × (V hα)) = α−1
f∗ ef∗,ord(gαhα);

(2) ef∗,ord(gα × V hα) = αgα
−1
f∗ ef∗,ord(gαhα);

(3) ef∗,ord(V gα × hα) = αhα
−1
f∗ ef∗,ord(gαhα);

(4) ef∗,ord(g
[p] × h) = ef∗,ord(g × h[p]) = (1 − αgαhα

−1
f∗ )ef∗,ord(gαhα).

Proof. To prove the first assertion, note that

eord((V gα) × (V hα)) = eord ◦ V (gαhα),

and that

eord ◦ V = limUn!
p ◦ V = limUn!−1

p = U−1
p eord.

The first assertion now follows from the fact that Up operates via multiplication by αf∗ on

Sord
k (N ; Cp)[π

∗
f ]. For the second assertion, we invoke Lemma 2.17 to assert that

(g[p] × (V hα)) = (g − ap(g)V g) × (V hα)

is in the kernel of the ordinary projection to conclude that

eord(g × V hα) = ap(g)ef∗,ord((V g) × (V h)),

and the second assertion now follows directly from the first. The third assertion follows from
the identical argument with the roles of g and h interchanged. The last identity then follows
from the previous ones by a direct calculation using the fact that g [p] = gα − αgV gα. �

Proposition 4.11. Let f ∈ Sk(N) be a holomorphic form of weight k and let g ∈ Sn-oc
` (N)

and h ∈ Sn-oc
m (N) be nearly holomorphic modular forms, with k = ` +m. Assume that f , g

and h are eigenvectors for the good Hecke operators of level N (but are not necessarily new of
this level.) Then for all primes p - N ,

(119) ef∗,ord(g
[p]h) =

E(f, g, h)

E1(f)
ef∗,ord(gh),

where E(f, g, h) is as in equation (6) of Theorem 1.3 (with c = k − 1).

Proof. The last identity of Lemma 4.10 shows, after setting φfg[p]h := ef∗,ord(g
p]h), that

ef∗,ord(gαhα) = (1 − αgαhα
−1
f∗ )−1φfg[p]h;(120)

ef∗,ord(gαhβ) = (1 − αgβhα
−1
f∗ )−1φfg[p]h;(121)

ef∗,ord(gβhα) = (1 − βgαhα
−1
f∗ )−1φfg[p]h;(122)

ef∗,ord(gβhβ) = (1 − βgβhα
−1
f∗ )−1φfg[p]h.(123)

Combining (120) and (121) with the identity

h = (αh − βh)−1(αhhα − βhhβ),

and similarly with (122) and (123), we obtain

ef∗,ord(gαh) = ((1 − αgαhα
−1
f∗ )(1 − αgβhα

−1
f∗ ))−1φfg[p]h;(124)

ef∗,ord(gβh) = ((1 − βgαhα
−1
f )(1 − βgβhα

−1
f∗ ))−1φfg[p]h.(125)

The result now follows from these two equations by a direct calculation using the fact that

g = (αg − βg)
−1(αggα − βggβ).

�
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Remark 4.12. A formula similar to Proposition 4.11 can be found in Proposition 2.2.2. of
[HaTi]. The approach followed there is conceptually sound but more complicated than the
one followed above; possibly for this reason, an error seems to have crept into the roughly five
pages of elementary but tedious calculations in the proof of Prop. 2.2.2. of loc.cit, and the
factor denoted there by EP (f, g, h) does not agree with the factor E(f, g, h) of Proposition
4.11. We note that the factor E(f, g, h) occuring in Proposition 4.11 is consistent with the
conjectural recipe for the “correction term at p” arising in the theory of p-adic L-functions,
as described in e. g. in [Pan, p. 285].

Corollary 4.13. Let f ∈ Sk(N), g ∈ S`(N) and h ∈ Sm(N) be holomorphic forms, and
assume that k = ` +m + 2t with t ∈ Z≥0. Assume that f , g and h are eigenvectors for the
good Hecke operators in level N (but are not necessarily new in this level.) Then for all primes
p - N ,

ef∗,ord(d
tg[p] × h) =

E(f, g, h)

E1(f)
ef∗,ord(d

tg × h).

Proof. This follows from Proposition 4.11 with (f, g, h) replaced by

(f, dtg, h) ∈ Sk(N) × Sn-oc
`+2t(N) × Sm(N),

in light of the fact that dt(g[p]) = (dtg)[p], αdtg = ptαg and βdtg = ptβg. �

Proof of Theorem 4.7. By (109), the value of Lp
f (f̆ , ğ, h̆) at (x, y, z) ∈ Σf is

Lp
f (f̆ , ğ, h̆)(x, y, z) =

(f̆
∗(p)
x , ef∗

x ,ord(d
tğ

[p]
y × h̆z))N,p

(f
∗(p)
x , f

∗(p)
x )N,p

(126)

=
E(fx, gy, hz)

E1(fx)

(f̆
∗(p)
x , ef∗

x ,ord(d
tğy × h̆z))N,p

(f
∗(p)
x , f

∗(p)
x )N,p

,(127)

where the second equality follows from Corollary 4.13. But then by Proposition 2.8,

(128)
(f̆

∗(p)
x , ef∗

x ,ord(d
tğy × h̆z))N,p

(f
∗(p)
x , f

∗(p)
x )N,p

=
(f̆

∗(p)
x , ef∗

x ,ordΠ
hol
N (δtğy × h̆z))N,p

(f
∗(p)
x , f

∗(p)
x )N,p

.

On the other hand, by equation (113),

(f̆
∗(p)
x , ef∗

x ,ordΠ
hol
N (δt

`ğy × h̆z))N,p

(f
∗(p)
x , f

∗(p)
x )N,p

=
(f̆

∗(p)
x , (ef∗

x
Πhol

N (δt
`ğy × h̆z))

(p))N,p

E0(fx)(f
∗(p)
x , f

∗(p)
x )N,p

=
(f̆∗x , ef∗

x
Πhol

N (δt
`ğy × h̆z))N

E0(fx)(f∗x , f
∗
x)N

(129)

=
(f̆∗x , δ

t
`ğy × h̆z)N

E0(fx)(f∗x , f
∗
x)N

(130)

=
I(f̆x, ğy, h̆z)

E0(fx)(f∗x , f
∗
x)N

.(131)

Theorem 4.7 follows.

5. The p-adic Gross-Zagier formula

Recall the class ηf̆ ∈ H1(XKf
, ω−r) attached to the test vector f̆ ∈ Sk(N ;Kf )[πf ] following

the discussion after (55). Thanks to the chosen embedding of Kf into Cp, the class ηf̆ can be

viewed as belonging to H1(XCp , ω
−r)[πf ]. Let

ηu-r
f̆

∈ H1
dR(XCp ,Lr)
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denote its unique lift to the unit root subspace. We can now state and prove the p-adic Gross-
Zagier formula of this paper, relating the image of the generalised diagonal cycles under the
p-adic Abel-Jacobi map to the value of the Garrett-Rankin triple product p-adic L-function
at points corresponding to balanced triples of classical modular forms.

Theorem 5.1. Given (x, y, z) ∈ Σbal, set

(f, g, h) = (fx, gy, hz), (f̆ , ğ, h̆) = (f̆x, ğy, h̆z), (k, `,m) = (κ(x), κ(y), κ(z)),

and let ∆ := ∆k,`,m ⊂ W be the generalised diagonal cycle attached to the weights (k, `,m).
Then after writing k = `+m− 2 − 2t with t ≥ 0,

Lp
f (f̆ , ğ, h̆)(x, y, z) = (−1)t E(f, g, h)

t! · E0(f)E1(f)
× AJp(∆)(ηu-r

f̆
⊗ ωğ ⊗ ωh̆).

Proof. This follows directly from Theorem 3.14 and Proposition 4.6. �
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(1986), 231–273.



A p-ADIC GROSS-ZAGIER FORMULA FOR DIAGONAL CYCLES 47

[Hi86b] H. Hida, Galois representations into GL2(Zp[[X]]) attached to ordinary cuspforms, Invent. Math. 85

(1986), 545–613.
[Hi88] H. Hida, On p-adic Hecke algebras for GL2 over totally real fields, Ann. Math. 128 (1988), 295–384.
[Hi88b] H. Hida, A p-adic measure attached to the zeta functions associated with two elliptic modular forms

II, Ann. Inst. Fourier (Grenoble) 38 (1988) 1–83.
[Hi93] H. Hida, Elementary theory of L-functions and Eisenstein series, London Math. Soc. St. Texts 26, 1993.
[I] A. Ichino, Trilinear forms and the central values of triple product L-functions, Duke Math. J. 145 (2008),

no. 2, 281–307.
[Ja] U. Jannsen, Continuous étale cohomology, Math. Ann. 280 (1988), 207–245.
[Kas99] P. Kassaei, p-adic modular forms over Shimura curves over Q, M.I.T. Ph.D thesis, 1999.
[Kat73] N. M. Katz, p-adic properties of modular schemes and modular forms, in Modular functions of one

variable, III, Lecture Notes Math. 350 (1973), 69–190.
[Kat78] N. M. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199–297.
[Ki] K. Kitagawa, On standard p-adic L-functions of families of elliptic cusp forms, in p-adic monodromy

and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), 81–110, Contemp. Math. 165, Amer.
Math. Soc., Providence, RI, 1994.

[La1] A.G.B. Lauder, Computations with classical and p-adic modular forms, LMS J. Comput. Math. 14 (2011)
214–231.

[La2] A.G.B. Lauder, Efficient computation of p-adic Rankin L-functions, in Boeckle, G. and Wiese, G. (eds.)
Computation with Modular Forms, Springer Verlag, to appear.
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