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ABSTRACT

This article is the first in a series devoted to Kato’s Euler system arising

from p-adic families of Beilinson elements in the K-theory of modular

curves. It proves a p-adic Beilinson formula relating the syntomic regulator

(in the sense of Coleman–de Shalit and Besser) of certain distinguished

elements in the K-theory of modular curves to the special values at integer

points ≥ 2 of the Mazur–Swinnerton–Dyer p-adic L-function attached to

cusp forms of weight 2. When combined with the explicit relation between

syntomic regulators and p-adic étale cohomology, this leads to an alternate

proof of the main results of [Br2] and [Ge] which is independent of Kato’s

explicit reciprocity law.
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1. Introduction

This article is the first in a series devoted to Kato’s Euler system arising from

p-adic families of Beilinson elements in the K-theory of modular curves. In

a simple but prototypical setting, Kato’s construction [Kato], [Colz2] yields a

global class κ in H1(Q, Vp(E)), where Vp(E) is the p-adic Galois representation

attached to a modular elliptic curve E/Q. Kato’s reciprocity law implies that

κ is crystalline, and hence belongs to the p-adic Selmer group of E, precisely

when the Hasse–Weil L-series L(E, s) vanishes at s = 1. In this case, Perrin-

Riou [PR1] conjectures that the image resp(κ) in H
1
f (Qp, Vp(E)) is non-zero if

and only if L′(E, 1) is non-zero, and predicts a precise relation between the

logarithm of resp(κ) and the formal group logarithm of a global point in E(Q).

The ultimate goal of this series is the proof of Perrin-Riou’s conjecture, which

will be described in [BD3]. One of the cornerstones of our strategy is a proof

of a p-adic Beilinson formula relating the syntomic regulators (in the sense

of Coleman–de Shalit and Besser) of certain distinguished elements in the K-

theory of modular curves to the special values at integer points ≥ 2 of the

Mazur–Swinnerton–Dyer p-adic L-function attached to a cusp form f of weight

2. This proof is independent of Kato’s reciprocity law, and will in fact be used in

[BD2] to re-derive it. It is based instead on the direct evaluation (Theorems 4.4

and 5.1) of the p-adic Rankin L-function attached to a Hida family interpolating

f introduced in Section 3.1. The p-adic Beilinson formula then follows from the

factorisation of this p-adic Rankin L-function into a product of two Mazur–

Kitagawa p-adic L-functions (Theorem 3.4).

In the complex setting, the connection between regulators and values of

L(E, s) at integers � ≥ 2 was described in the work of Beilinson [Bei], and in

prior work of Bloch [Bl] for elliptic curves with complex multiplication. The first

p-adic avatar of this formula was obtained by Coleman and de Shalit [CodS] in

the CM setting considered by Bloch. The work of Brunault [Br2] for � = 2 and

Gealy [Ge] for � ≥ 2 extended this p-adic Beilinson formula to all (modular)

elliptic curves as a consequence of Kato’s general machinery. Our approach,

which is somewhat more direct, relies instead on Besser’s description ([Bes1]

and [Bes2]) of the Coleman–de Shalit p-adic regulator and on the techniques

developed in [DR] for relating p-adic Abel–Jacobi images of diagonal cycles

to values of Garrett–Rankin triple product p-adic L-functions. The results of
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[DR]—and, by extension, of the present work as well as of [BDR]—were in-

spired by the study undertaken earlier in [BDP], which the reader may consult

for an analogous formula in the setting of Heegner points (resp. “generalised

Heegner cycles”) on modular curves (resp. on products of Kuga–Sato varieties

with powers of CM elliptic curves).

After this paper was submitted, the authors’ attention was drawn to the

earlier work of Maximilian Niklas [Nik] which also provides a direct proof of the

p-adic Beilinson formula based on a description of the rigid syntomic regulator

given in [BK]. The principal novelty of the present work—and, arguably, its

main interest—lies in the explicit connection that it draws with

(1) the results of [DR] relating the p-adic Abel–Jacobi images of diagonal

cycles on triple products of Kuga–Sato varieties to special values of

Harris–Tilouine’s p-adic L-functions attached to the Garrett–Rankin

convolution of three Hida families of cusp forms;

(2) the results in [BDR] relating the syntomic regulators of Beilinson–Flach

elements in higher Chow groups of products of two modular curves

to special values of Hida’s p-adic L-functions attached to the Rankin–

Selberg convolution of two cusp forms;

(3) the results in [BDP] relating the p-adic logarithms of Heegner points on

modular curves to special values of the p-adic L-functions attached to

the Rankin convolution of a weight two cusp form and a theta series of

an imaginary quadratic field, based on a formula of Waldspurger.

The authors’ strategy for proving Perrin–Riou’s conjecture is based on a com-

parison between Kato’s Euler system and those arising in the above settings.

Acknowledgements. The authors thank Victor Rotger for numerous ex-

changes related to this article, and François Brunault and Pierre Colmez for

helpful advice on improving its presentation. They are also grateful to the

anonymous referee for a number of suggestions which helped them to clarify

the exposition, and for drawing their attention to the related work of M. Niklas

[Nik].

2. Complex L-series

This section provides explicit formulae (see equations (20) and (23)) for the spe-

cial values of the complex Rankin L-functions associated to the convolution of
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cusp forms and Eisenstein series, based on Rankin’s method and the reducibility

of the Galois representations of Eisenstein series. These formulae are crucial in

the definition and study of the Rankin p-adic L-functions of Section 3. Along

the way, we briefly recall the application of Rankin’s method to the proof of the

original complex Beilinson formula (cf. Proposition 2.3).

The Poincaré upper half plane of complex numbers with strictly positive

imaginary part is denoted H, and the variable on H is written as z = x + iy

with x ∈ R and y ∈ R>0.

A Dirichlet character ofmodulus N is a homomorphism ψ : (Z/NZ)×−→C×,
extended to a function on Z by the convention that ψ(n) = 0 whenever

gcd(n,N) �= 1. The conductor of ψ is the smallest positive integer M for

which there is a Dirichlet character of modulus M agreeing with ψ on the inte-

gers that are relatively prime toN . A Dirichlet character is said to be primitive

if its conductor is equal to its modulus. If N = N1N2 is a factorisation of N

into co-prime positive integers N1 and N2, frequent use will be made of the fact

(following from the Chinese remainder theorem) that a character ψ of modulus

(resp. conductor) N can be uniquely expressed as ψ = ψ1ψ2, where ψj is of

modulus (resp. of conductor) Nj .

We denote by Sk(N,χ) ⊂ Mk(N,χ) the spaces of holomorphic cusp forms

and modular forms of weight k, level N and character χ, and by San
k (N,χ) ⊂

Man
k (N,χ) their real analytic counterparts consisting of real analytic func-

tions on H with the same transformation properties under Γ0(N), and having

bounded growth (resp. rapid decay) at the cusps for elements of Man
k (N,χ)

(resp. San
k (N,χ)). Likewise, for any congruence subgroup Γ of SL2(Z), the

spaces Sk(Γ) ⊂Mk(Γ) and S
an
k (Γ) ⊂Man

k (Γ) are given their obvious meanings.

The only cases arising in this article are where Γ is one of the standard Hecke

congruence groups Γ0(N) or Γ1(N).

2.1. Eisenstein series. The non-holomorphic Eisenstein series of weight

k, level N attached to the primitive character χ : (Z/NZ)× −→ C× is the

function on H× C defined by

(1) Ẽk,χ(z, s) =
′∑

(m,n)∈NZ×Z

χ−1(n)

(mz + n)k
· ys

|mz + n|2s ,

where the superscript ′ indicates that the sum is taken over the non-zero lattice

vectors (m,n) ∈ NZ× Z.
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The series defining Ẽk,χ(z, s) converges for �(s) > 1 − k/2 but admits a

meromorphic continuation to all s ∈ C. A direct calculation shows that

Ẽk,χ

(
az + b

cz + d
, s

)
= χ(d)(cz + d)kẼk,χ(z, s), for all

(
a b

c d

)
∈ Γ0(N),

i.e., Ẽk,χ(z, s) transforms like a modular form of weight k and character χ on

Γ0(N) when viewed as a function of z, and hence belongs to Man
k (N,χ). In

particular, if k > 2

Ẽk,χ(z) := Ẽk,χ(z, 0) belongs to Mk(N,χ).

(The same conclusion holds for k ≥ 1, provided that χ is non-trivial.) Assume

from now on that χ satisfies the parity condition

(2) χ(−1) = (−1)k,

which guarantees that Ẽk,χ(z) is non-zero. We introduce (cf. [Hi93], p. 128) the

normalised Eisenstein series Ek,χ(z), related to Ẽk,χ(z) by the equation

(3) Ẽk,χ(z) = 2N−kτ(χ−1)
(−2πi)k

(k − 1)!
Ek,χ(z),

where

τ(χ) =

Nχ∑
a=1

χ(a)e2πia/Nχ , Nχ = cond(χ)

is the Gauss sum attached to χ, and the q-expansion of Ek,χ(z) is given by

(4) Ek,χ(z) = 2−1L(χ, 1− k) +

∞∑
n=1

σk−1,χ(n)q
n, σk−1,χ(n) =

∑
d|n

χ(d)dk−1.

The Shimura–Maass derivative operator

δk :=
1

2πi

(
d

dz
+
ik

2y

)
sends Man

k (N,χ) to Man
k+2(N,χ). A direct calculation (see also loc. cit.,

page 317, formula (13)) reveals that

(5) δkẼk,χ(z, s) = − (s+ k)

4π
Ẽk+2,χ(z, s− 1).

Denoting by δtk := δk+2t−2 · · · δk+2δk the t-fold iterate of the Shimura–Maass

derivative, it follows that

δtkẼk,χ(z, s) =
(−1)t

(4π)t
(s+ k) · · · (s+ k + t− 1)Ẽk+2t,χ(z, s− t).
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Replacing k by k − 2t and setting s = 0 in the above equation, we find

(6) Ẽk,χ(z,−t) = (k − 2t− 1)!

(k − t− 1)!
(−4π)tδtk−2tẼk−2t,χ(z).

In particular, if 0 ≤ t ≤ k/2 − 1, then the Eisenstein series Ẽk,χ(z,−t), while
not holomorphic, is an example of a nearly holomorphic modular form in

the sense of [Sh2].

We will also have a need for the more general Eisenstein series Ek(χ1
, χ

2
) ∈

Mk(N,χ1
χ

2
), attached to a pair χ

1
and χ

2
of Dirichlet characters of modulus

N1 and N2, respectively, with N1N2 = N . Recall that condition (2) is in force,

i.e., χ1χ2(−1) = (−1)k. Then, for k ≥ 1 and (χ1 , χ2) �= (1,1), the q-expansion

of Ek(χ1
, χ

2
) is given by

(7) Ek(χ1
, χ

2
)(z) = δχ

1
L(χ−1

1
χ

2
, 1− k) +

∞∑
n=1

σk−1(χ1
, χ

2
)(n)qn,

where δχ
1
= 1/2 if N1 = 1 and 0 otherwise, and

σk−1(χ1 , χ2)(n) =
∑
d|n

χ1(n/d)χ2(d)d
k−1.

Thus, Ek(1, χ) is equal to Ek,χ. Note that Ek(χ1
, χ

2
) is a simultaneous eigen-

vector for all the Hecke operators, and satisfies

(8) L(Ek(χ1 , χ2), s) = L(χ1 , s)L(χ2 , s− k + 1).

2.2. Rankin’s method. Let

f :=

∞∑
n=1

an(f)q
n ∈ Sk(N,χf )

be a cusp form of weight k, level N and character χf , and let

g :=
∞∑
n=0

an(g)q
n ∈M�(N,χg)

be a modular form of weight � < k and character χg. We do not assume for

now that f or g are eigenforms. Let

D(f, g, s) :=
∑

an(f)an(g)n
−s
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denote the Rankin L-series attached to f and g. Recall the Petersson scalar

product defined on San
k (N,χ)×Man

k (N,χ). It is given by the formula

(9) 〈f1, f2〉k,N :=

∫
Γ0(N)\H

ykf1(z)f2(z)
dxdy

y2
,

and is hermitian linear in the first argument and C-linear in the second. Let

χ := χ−1
f χ−1

g , and denote by f∗ ∈ Sk(N,χ
−1
f ) the modular form satisfying

an(f
∗) = an. Since the forms f∗(z) and Ẽk−�,χ(z, s)g(z) belong to Sk(N,χ

−1
f )

and Man
k (N,χ−1

f ) respectively, it is natural to consider their Petersson scalar

product.

Proposition 2.1 (Shimura): For all s ∈ C with �(s) >> 0,

〈
f∗(z) , Ẽk−�,χ(z, s) · g(z)

〉
k,N

= 2
Γ(s+ k − 1)

(4π)s+k−1
L(χ−1, 2s+ k − �)×D(f, g, s+ k − 1).

Proof. See formula (2.4) of [Sh1], where this result is proved by an application

of Rankin’s method. See also [Hi93], page 317, formula (1), for a statement in

the form given here.

Replacing s by s − k + 1 in Proposition 2.1 and rearranging the factors, we

obtain

(10)

L(χ−1, 2s−k−�+2)D(f, g, s) =
1

2

(4π)s

Γ(s)

〈
f∗(z), Ẽk−�,χ(z, s− k + 1) · g(z)

〉
k,N

.

Assume now that the modular forms f and g are normalised eigenforms of level

N . We do not assume that they are new of this level, but we do assume that they

are simultaneous eigenvectors for the Hecke operators Tr with gcd(r,N) = 1

as well as the operators Ur attached to the primes r dividing N . For each

prime p, let αp(f) and βp(f) be the roots of the Hecke polynomial

x2 − ap(f)x + χf (p)p
k−1, choosing (αp(f), βp(f)) = (ap(f), 0) when

p|N . Similarly, we let αp(g) and βp(g) denote the roots of the polynomial

x2 − ap(g)x+ χg(p)p
�−1.
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Then the coefficients of the L-series D(f, g, s) are weakly multiplicative and

hence D(f, g, s) has an Euler product factorisation over the rational primes p:

(11)

D(f, g, s) =
∏
p

D(p)(f, g, s), where D(p)(f, g, s) =

∞∑
n=0

apn(f)apn(g)p
−s.

Let

L(f ⊗ g, s) :=
∏
p

L(p)(f ⊗ g, s), where

L(p)(f ⊗ g, s) :=(1− αp(f)αp(g)p
−s)−1(1− αp(f)βp(g)p

−s)−1

× (1 − βp(f)αp(g)p
−s)−1(1 − βp(f)βp(g)p

−s)−1.

The calculation of the Euler factors D(p)(f, g, s) — a mildly tedious exercise in

manipulation and rearranging of infinite series — shows that, for all primes p,

(12) D(p)(f, g, s) = (1− χ−1(p)pk+�−2−2s)L(p)(f ⊗ g, s),

so that

(13) L(f ⊗ g, s) = L(χ−1, 2s− k − �+ 2)D(f, g, s).

By combining (10) and (13), we find that

(14) L(f ⊗ g, s) =
1

2

(4π)s

Γ(s)

〈
f∗(z), Ẽk−�,χ(z, s− k + 1) · g(z)

〉
k,N

.

Choose integers m and t satisfying

k = �+m+ 2t,

and set

c :=
k + �+m− 2

2
= k − t− 1.

By specialising equation (14) at s = c, we find

(15) L(f ⊗ g, c) =
1

2

(4π)c

Γ(c)

〈
f∗(z), Ẽk−�,χ(z,−t) · g(z)

〉
k,N

.

If m ≥ 1 and t ≥ 0, then replacing k by k − � in equation (6), we obtain

(16) Ẽk−�,χ(z,−t) = (m− 1)!

(m+ t− 1)!
(−4π)tδtmẼm,χ(z).
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Combining (15) with (16) gives

(17)

L(f ⊗ g, c) =
1

2
(−1)t(4π)c+t

(m− 1)!

(m+ t− 1)!(c− 1)!

〈
f∗(z), δtmẼm,χ(z) · g(z)

〉
k,N

.

Furthermore, in light of equation (3), we have

(18) L(f ⊗ g, c)

=
(−1)t2k−1(2π)k+m−1(iN)−mτ(χ−1)

(m+ t− 1)!(c− 1)!

〈
f∗(z), δtmEm,χ(z) · g(z)

〉
k,N

.

Equation (18) is equivalent to Theorem 2 of [Sh1]. Note that the normalisations

of Eisenstein series used in loc. cit. are different from those adopted here.

2.3. A factorisation of critical values. Let now g be the Eisenstein

series E�(χ1
, χ

2
) of equation (7), and assume that

χg (= χ
1
χ

2
) = χ−1

f χ−1.

In light of (8), the left hand side of (18) becomes

(19) L(f ⊗ E�(χ1
, χ

2
), c) = L(f, χ

1
, c) · L(f, χ

2
, c− �+ 1).

Assumption 2.2: The following assumptions on (k, �,m) and (f, χ
1
, χ

2
) will be

enforced for the rest of the paper:

(1) � = m,

(2) χf = 1, so that f∗ = f and χ = χ̄
1
χ̄

2
,

(3) χ is primitive, so that |τ(χ)|2 = N ,

(4) (N1, N2) = 1, so that Nχ
1
= N1 and Nχ

2
= N2, and

τ(χ) = τ(χ̄
1
)τ(χ̄

2
)χ

1
(N2)χ2

(N1) = τ(χ
1
) τ(χ

2
)χ(−1)χ

1
(N2)χ2

(N1).

Under the above assumptions, f is an eigenform on Γ0(N) of even weight

k = 2�+2t. If furthermore t ≥ 0, then c = k/2+ �− 1 is a critical point for the

L-functions L(f ⊗ E�(χ1
, χ

2
), s) and L(f, χ

1
, s), and (19) becomes

(20) L(f ⊗ E�(χ1
, χ

2
), k/2 + �− 1) = L(f, χ

1
, k/2 + �− 1) · L(f, χ

2
, k/2).

Note that k/2 is the central critical point for L(f, χ2 , s). We choose complex

periods Ω+
f and Ω−

f as in Proposition 1.1 of [BD1]. These periods satisfy

(21) Ω+
f Ω

−
f = (2π)2 〈f, f〉k,N ,
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and, for 1 ≤ j ≤ k − 1,

(22) L∗(f, ψ, j) :=
(j − 1)!τ(ψ̄)

(−2πi)j−1Ωεf
L(f, ψ, j) belongs to Qf,ψ,

where ψ is any Dirichlet character, ε = ψ(−1)(−1)j−1 and Qf,ψ is the field

generated by the Fourier coefficients of f and the values of ψ. (See Proposition

1.3 of loc. cit., where ψ = ψ̄.) By combining equations (18), (20) and (22), we

find

(23)

L∗(f, χ1 , k/2+�−1)·L∗(f, χ2 , k/2) = Cf,χ
1
,χ

2
·

〈
f, (δ

k/2−�
� E�,χ) · E�(χ1

, χ
2
)
〉
k,N

〈f, f〉k,N
,

where

(24) Cf,χ
1
,χ

2
:=

i2k−1

N �−1
χ

1
(N2)χ2

(N1).

2.4. Beilinson’s formula. We now focus on the case k = � = 2 (so that c = 2

and t = −1) and deduce a complex Beilinson formula for the non critical value

of L(f, s) at s = 2.

By equation (15) with g = E2(χ1
, χ

2
),

(25) L(f ⊗ E2(χ1
, χ

2
), 2) =

1

2
(4π)2

〈
f(z), Ẽ0,χ(z, 1) · E2(χ1

, χ
2
)(z)

〉
2,N

.

By specialising equation (5) to the case k = 0 and s = 1, and invoking (3), we

obtain

(26)
1

2πi

d

dz
Ẽ0,χ(z, 1) = − 1

4π
Ẽ2,χ(z) = 2πN−2τ(χ−1)E2,χ(z).

Given a field F , let Eis�(Γ1(N), F ) denote the subspace of M�(Γ1(N), F )

spanned by the weight � Eisenstein series with coefficients in F . Let Y1 = Y1(N)

denote the usual open modular curve of level N over Q whose complex points

are identified with Γ1(N)\H, and let Ȳ1 = Ȳ1(N) denote its extension to Q̄.

The logarithmic derivative

dlog(u) :=
1

2πi

u′(z)
u(z)

gives a surjective homomorphism

(27) O(Ȳ1(N))× ⊗ F
dlog �� Eis2(Γ1(N), F ).
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Take F to be a finite extension of Q containing the values of all characters of

conductor dividing N . Let uχ and u(χ1 , χ2) be units satisfying

(28) dlog(uχ) = E2,χ, dlog(u(χ
1
, χ

2
)) = E2(χ1

, χ
2
).

It can be shown that u(χ1 , χ2) belongs to the χ1-eigenspace (O(Ȳ1)
× ⊗F )χ1 for

the natural action of GQ on the space of modular units. The unit uχ is only

determined up to a multiplicative constant. It can be shown (see for example

[Br1], Section 5) that uχ can be normalised in such a way that the equality

(29) Ẽ0,χ(z, 1) = 2πN−2τ(χ−1) log |uχ(z)|

holds. Note that equation (29) is consistent with (26). By combining (25) with

(29) and (28), we obtain

(30)

L(f⊗E2(χ1
, χ

2
), 2)=16π3N−2τ(χ−1) 〈f(z), log |uχ(z)| · dlog(u(χ1

, χ
2
)(z))〉2,N .

Extend definition (22) of L∗(f, ψ, j) to integers j lying outside of the critical

range. By the formulae in Section 2.3, we may rewrite (30) as

(31)

L∗(f, χ
1
, 2) ·L∗(f, χ

2
, 1) =

Cf,χ
1
,χ

2

〈f, f〉2,N
·
∫
Γ0(N)\H

f̄ · log |uχ| · dlog(u(χ1
, χ

2
))dxdy.

Define the anti-holomorphic differential attached to f to be

(32) ηahf :=
f̄(z)dz̄

〈f, f〉2,N .

Up to the constant Cf,χ
1
,χ

2
, the right-hand side of (31) is the value on the class

of ηahf of the complex regulator regC{uχ, u(χ1
, χ

2
)} attached to the symbol

{uχ, u(χ1
, χ

2
)} ∈ K2(C(Ȳ1(N)).

We obtain the following proposition, which generalizes slightly the explicit ver-

sion of Beilinson’s theorem proved in [Br1].

Proposition 2.3:

L∗(f, χ
1
, 2) · L∗(f, χ

2
, 1) = Cf,χ

1
,χ

2
· regC{uχ, u(χ1

, χ
2
)}(ηahf ).

This is the formula whose precise p-adic counterpart is obtained in Corollary

5.2 below.
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2.5. Algebraicity. The modular form

(33) Ξk,�(χ1
, χ

2
) := (δ

k/2−�
� E�,χ) · E�(χ1

, χ
2
)

belongs to the space Mnh
k (N,Qχ

1
χ
2
) of nearly-holomorphic modular forms de-

fined over Qχ
1
χ
2
in the sense of Shimura (cf. Section 2.3 of [DR]). Hence, its

image

(34) Ξhol
k,� (χ1 , χ2) := Πhol

N (Ξk,�(χ1 , χ2))

under the holomorphic projection Πhol
N of loc. cit. belongs to Mk(N,Qχ

1
χ
2
).

The ratio appearing in the right-hand side of (23) can then be re-written as

(35)

〈
f,Ξk,�(χ1

, χ
2
)
〉
k,N

〈f, f〉k,N =

〈
f,Ξhol

k,�(χ1
, χ

2
)
〉
k,N

〈f, f〉k,N ,

and hence belongs to Qf,χ
1
χ
2
. One recovers Shimura’s approach [Sh1] to the

algebraicity of L∗(f, ψ, j), which differs from the approach based on modular

symbols followed in [BD1].

For the purposes of making the connection with p-adic regulators, it is use-

ful to describe the right-hand side of (35) more algebraically, in terms of the

Poincaré duality on the de Rham cohomology of the open modular curve with

values in appropriate sheaves with connection (as described in Section 2.2 of

[DR]). More precisely, let Y , resp. X be the open modular curve Y0(N), resp.

the complete modular curve X0(N), and let K be any field containing Qf,χ
1
χ
2
.

Denote by E −→ Y the universal elliptic curve over Y , and by ω the sheaf of

relative differentials on E over Y , extended to X = X0(N) as in Section 1.1 of

[BDP]. Recall the Kodaira–Spencer isomorphism ω2 = Ω1
X(log cusps), where

Ω1
X(log cusps) is the sheaf of regular differentials on Y with log poles at the

cusps. A modular form φ on Γ0(N) of weight k = r+2 with Fourier coefficients

in K corresponds to a global section of the sheaf ωr+2 = ωr ⊗ Ω1
X(log cusps)

over XK .

The sheaf ωr can be viewed as a subsheaf of Lr := Symr L, where
L := R1π∗(E −→ Y )

is the relative de Rham cohomology sheaf on Y , suitably extended to X ,

equipped with the filtration

(36) 0 −→ ω −→ L −→ ω−1 −→ 0
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arising from the Hodge filtration on the fibers. The sheaf Lr is a coherent sheaf

over X of rank r+1, endowed with the Gauss–Manin connection

∇ : Lr −→ Lr ⊗ Ω1
X(log cusps).

Let H1
dR(YK ,Lr,∇), resp. H1

dR,c(YK ,Lr,∇) be the de Rham cohomology, resp.

the de Rham cohomology with compact support of Lr. These two groups are

related by the perfect Poincaré pairing

(37) 〈 , 〉k,Y : H1
dR,c(YK ,Lr,∇)×H1

dR(YK ,Lr,∇) −→ K.

There are exact sequences

(38)

0 −→ H0(XK , ω
r ⊗ Ω1

X) −→ H1
dR,c(YK ,Lr,∇) −→ H1(XK , ω

−r ⊗ I) −→ 0,

(39)
0 −→ H0(XK , ω

r ⊗ Ω1
X(log cusps)) −→ H1

dR(YK ,Lr,∇)

−→ H1(XK , ω
−r) −→ 0,

where I is the ideal sheaf of the cusps (cf. Sections 2 and 3 of [Col94]). The

left-most terms of these two sequences are mutually isotropic, and hence (37)

induces a perfect pairing

(40) 〈 , 〉k,Y : H1(XK , ω
−r ⊗ I)×H0(XK , ω

r ⊗ Ω1
X(log cusps)) −→ K,

which is denoted by the same symbol by a slight abuse of notation.

The antiholomorphic differential ηahf of equation (32) gives rise to a class in

H1
dR,c(YC,Lr,∇), whose image ηf inH

1(XC, ω
−r⊗I) belongs toH1(XK , ω

−r⊗I)
(cf. Corollary 2.13 of [DR]). Recalling the concrete definition of (40) via complex

integration given in (9), we find that the right-hand side of (35) is equal to

(41)

〈
f,Ξhol

k,�(χ1
, χ

2
)
〉
k,N

〈f, f〉k,N
=
〈
ηf ,Ξ

hol
k,�(χ1

, χ
2
)
〉
k,Y

.

3. p-adic L-functions

This section defines the Rankin p-adic L-function associated to the convolution

of two Hida families of cusp forms and Eisenstein series (cf. equation (46)).

Furthermore, it shows that this p-adic L-function factors as a product of two

Mazur–Kitagawa p-adic L-functions (cf. Theorem 3.4).

A similar p-adic L-function, associated to the convolution of two Hida families

of cusp forms, has been constructed by Hida [Hi93]. For the sake of brevity,
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we follow here the approach of [DR], which constructs the p-adic L-function

associated to a triple product of Hida families of cusp forms, referring to the

calculations of this article whenever possible.

3.1. Rankin’s p-adic L-functions. Let p ≥ 3 be a prime, and fix an embed-

ding of K into Cp. From now on we will be working under the following

Assumption 3.1: The eigenform f is ordinary at p, and p � N .

The f -isotypic part of the exact sequence (38) with K = Cp then admits

a canonical unit root splitting, arising from the action of Frobenius on the

de Rham cohomology. Let ηurf be the lift of ηf to the unit root subspace

H1
dR,c(YCp ,Lr,∇)f,ur. The right-hand side of (41) is then equal to

(42)
〈
ηf ,Ξ

hol
k,�(χ1

, χ
2
)
〉
k,Y

=
〈
ηurf ,Ξ

hol
k,�(χ1

, χ
2
)
〉
k,Y

.

After viewing Ξhol
k,�(χ1

, χ
2
) as an overconvergent p-adic modular form, Lemma

2.10 of [DR] identifies its ordinary projection eordΞ
hol
k,�(χ1 , χ2) with a cohomology

class in H1
dR(YK ,Lr,∇)ord. By Proposition 2.11 of loc. cit., the right-hand side

of (42) can be re-written as

(43)
〈
ηurf ,Ξ

hol
k,�(χ1 , χ2)

〉
k,Y

=
〈
ηurf , eordΞ

hol
k,�(χ1 , χ2)

〉
k,Y

.

By Proposition 2.8 of loc. cit.,

(44) Ξord
k,� (χ1 , χ2) := eordΞ

hol
k,�(χ1 , χ2) = eord((d

k/2−�E�,χ) ·E�(χ1 , χ2)),

where d = q ddq is Serre’s derivative operator on p-adic modular forms.

Note that the ordinary p-stabilisation of E�(χ1
, χ

2
) is the weight � speciali-

sation of a Hida family of Eisenstein series denoted E(χ1 , χ2). Likewise, let f

be a Hida family of eigenforms on Γ0(N), indexed by a weight variable k in a

suitable neighborhood Uf of (Z/(p − 1)Z) × Zp, which is contained in a single

residue class modulo p− 1. For k ∈ Uf ∩Z≥2, let fk ∈ Sk(N) = Sk(N,1) be the

classical modular form whose p-stabilisation is the weight k specialisation of f .

Given a p-adic modular form g =
∑
bnq

n, let

g[p] :=
∑
p�n

bnq
n

denote its “p-depletion”. The family of p-adic modular forms

(45) Ξord,p
k,� (χ

1
, χ

2
) := eord((d

k/2−�E[p]
�,χ) ·E�(χ1

, χ
2
))
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has Fourier coefficients which extend analytically to Uf × (Z/(p− 1)Z×Zp), as

functions in k and �. See for example [Hi93] and [DR], Section 2.6.

Proposition 3.2: Let efk be the projector to the fk-isotypic subspace

H1
dR(YK ,Lr,∇)fk . For all k ≥ 2 and 2 ≤ � ≤ k/2,

efkΞ
ord,p
k,� (χ

1
, χ

2
) =

E(fk, χ1 , χ2 , �)

E(fk) · efkΞord
k,� (χ1

, χ
2
),

where

E(fk, χ1 , χ2 , �) =(1− βp(fk)χ1(p)p
−k/2−(�−1))(1 − βp(fk)χ̄1(p)p

−k/2+(�−1))

× (1− βp(fk)χ2
(p)p−k/2)(1 − βp(fk)χ̄2

(p)p−k/2),

E(fk) =1− βp(fk)
2p−k.

Proof. This follows from Corollary 4.13 of [DR], in light of Proposition 2.8 of

loc. cit.

Set

E∗(fk) := 1− βp(fk)
2p1−k.

Proposition 4.6 of loc. cit. shows that the expression

(46) Lp(f ,E(χ
1
, χ

2
))(k, �) :=

1

E∗(fk)

〈
ηurfk ,Ξ

ord,p
k,� (χ

1
, χ

2
)
〉
k,Y

,

defined for k in Uf ∩ Z≥2 and 2 ≤ � ≤ k/2 extends to an analytic function

Lp(f ,E(χ
1
, χ

2
)) on Uf × (Z/(p − 1)Z × Zp), which we refer to as the p-adic

Rankin L-function attached to f and E(χ
1
, χ

2
).

3.2. Factorisation of p-adic L-functions. Let Lp(fk, ψ, s) be the Mazur–

Swinnerton–Dyer p-adic L-function attached to (fk, ψ), with ψ equal to χ
1
or

χ2 (cf. Section 14 of [MTT]). We normalise Lp(fk, ψ, s) so that it satisfies the

interpolation property for 1 ≤ j ≤ k − 1:

(47) Lp(fk, ψ, j) = (1−ψ(p)βp(fk)p−j)×(1−ψ(p)βp(fk)p−(k−j))×L∗(fk, ψ, j).

Note that the values Lp(fk, χ1
, j) and Lp(fk, χ2

, j+ �− 1) depend on the choice

of periods Ω±
f and Ω∓

f that was made in Section 2.3, but their product does not,

in light of the normalising condition imposed in (21), since χ1χ2(−1) = (−1)�.
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Proposition 3.3: For all k ∈ Uf ∩ Z≥2 and for all 2 ≤ � ≤ k/2, we have

Lp(f ,E(χ
1
, χ

2
))(k, �)

= (Cfk,χ1 ,χ2
E(fk)E∗(fk))−1 × Lp(fk, χ1

, k/2+�−1)× Lp(fk, χ2
, k/2).

Proof. We have the sequence of equalities:

Lp(f ,E(χ
1
, χ

2
))(k, �) =

1

E∗(fk)

〈
ηurfk ,Ξ

ord,p
k,� (χ

1
, χ

2
)
〉
k,Y

by (46)

=
E(fk, χ1

, χ
2
, �)

E(fk)E∗(fk)
〈
ηurfk ,Ξ

ord
k,� (χ1

, χ
2
)
〉
k,Y

by Prop. 3.2

=
E(fk, χ1 , χ2 , �)

E(fk)E∗(fk)
〈
ηfk ,Ξ

hol
k,�(χ1

, χ
2
)
〉
k,Y

by (43) and (42)

=
E(fk, χ1

, χ
2
, �)

E(fk)E∗(fk)

〈
fk,Ξk,�(χ1

, χ
2
)
〉
k,N

〈fk, fk〉k,N by (41) and (35).

By (23), the last term can be re-written as

E(fk, χ1
, χ

2
, �)

E(fk)E∗(fk)Cfk,χ1 ,χ2

L∗(fk, χ1 , k/2+�−1) · L∗(fk, χ2 , k/2),

so that Theorem 3.3 follows by combining (47) with the exact shape of

E(fk, χ1
, χ

2
, �) stated in Proposition 3.2.

Fix k0 ∈ Uf∩Z≥2. Recall the Mazur–Kitagawa two-variable p-adic L-function

Lp(f , ψ)(k, s) defined in [Ki]. It is related to Lp(fk, ψ, s) by the equation

(48) Lp(f , ψ)(k, s) = λ±(k) · Lp(fk, ψ, s), k ∈ Uf ∩ Z≥2,

where λ±(k) ∈ Cp is a p-adic period, arising from the p-adic interpolation of

modular symbols, such that λ±(k0) = 1 (cf. Section 1.4 of [BD1]). In particular,

while we will see that λ±(k) need not extend to a p-adically continuous function

of k ∈ Uf , we nonetheless know that λ±(k) �= 0 for k in a neighborhood of k0.

By combining (48) with Proposition 3.3, we obtain:

Theorem 3.4: There exists an analytic function η(k) on a neighborhood Uf ,k0

of k0, such that for all (k, �) in Uf ,k0 × (Z/(p− 1)Z× Zp),

Lp(f ,E(χ
1
, χ

2
))(k, �) = η(k)× Lp(f , χ1

)(k, k/2+�−1)× Lp(f , χ2
)(k, k/2).

The function η(k) satisfies

(49) η(k) = (Cfk,χ1 ,χ2
E(fk)E∗(fk)λ+(k)λ−(k))−1
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for (k, �) in (Uf ,k0 ∩ Z≥2)× (Z/(p− 1)Z× Zp), and in particular

η(k0) = (Cfk0 ,χ1 ,χ2
E(fk0)E∗(fk0))

−1.

This is crucial for the calculations of the next sections, where both sides of

(20) will be evaluated at points outside the range of classical interpolation.

Remark 3.5: Equation (49) gives insight into the question raised in Remark

1.6 of [BD1] about the behavior of the periods λ±. See also Proposition 5.2

of loc. cit., where the product λ+λ− is compared with a less explicit p-adic

period arising from the Jacquet–Langlands correspondence to forms on definite

quaternion algebras.

4. p-adic regulators

We will now describe the values of Lp(f ,E(χ
1
, χ

2
)) at integer points (k0, �0)

outside the range of classical interpolation in terms of certain p-adic regu-

lators in K-theory. Recall that the range of classical interpolation defining

Lp(f ,E(χ
1
, χ

2
)) is k0 ∈ Uf ∩ Z≥2 and 2 ≤ �0 ≤ k0/2.

Proposition 4.1: For all k0 ∈ Uf ∩ Z≥2 and �0 > k0/2,

(50) Lp(f ,E(χ
1
, χ

2
))(k0, �0) =

1

E∗(fk0)

〈
ηurfk0

,Ξord,p
k0,�0

(χ
1
, χ

2
)
〉
k0,Y

.

Proof. The terms in the defining expression (46) for Lp(f ,E(χ
1
, χ

2
)) vary ana-

lytically with � ∈ (Z/(p− 1)Z)× Zp.

We will be particularly interested in the case where k0 = 2 and fk0 corresponds

to an elliptic curve A/Q. Let X1 = X1(N) denote the complete modular curve

over Q of level N obtained by adjoining to Y1 = Y1(N) the finite set of cusps,

and write X̄1 = X̄1(N) for its extension to an algebraic closure of Q.

4.1. The regulator on K2. Given modular units u1 and u2 in O(Ȳ1)
×, let

{u1, u2} ∈ K2(Ȳ1)

be the associated Steinberg symbol.

We recall Besser’s description [Bes2] of the p-adic regulator regp{u1, u2} ∈
H1

dR(Y1) of Coleman–de Shalit [CodS]. Let ΦY1 denote the canonical lift of

Frobenius on Y1. It is a rigid morphism on a system {Wε} of wide open neigh-

borhoods of the ordinary locus A ⊂ Y1 obtained by deleting from Y1 both the
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supersingular and the cuspidal residue discs. (See Section 4.5 of [BDP], for in-

stance, for a brief review of the relevant definitions.) Let ΦY1×Y1 = (ΦY1 ,ΦY1)

be the corresponding lift of Frobenius on Y1 × Y1, and let P ∈ Q[x] be any

polynomial satisfying

(1) P (ΦY1×Y1) annihilates the class of du1

u1
⊗ du2

u2
in H2

rig(Wε ×Wε),

(2) P (ΦY1) acts invertibly on H1
rig(Wε).

The choice of P gives rise to a rigid 1-form ρ
P
(u1, u2) on Wε ×Wε satisfying

(51) dρ
P
(u1, u2) = P (ΦY1×Y1)

(
du1
u1

⊗ du2
u2

)
,

which is well-defined up to closed rigid 1-forms on Wε ×Wε. After choosing a

base point x ∈ Wε, let

δ : Wε ↪→ Wε ×Wε, ix : Wε = Wε × {x} ↪→ Wε ×Wε,

jx : Wε = {x} ×Wε ↪→ Wε ×Wε

denote the diagonal, horizontal, and vertical inclusions respectively, and set

ξ̃
P,x

(u1, u2) := (δ∗ − i∗x − j∗x)(ρP (u1, u2)) ∈ Ω1
rig(Wε).

It follows from the Künneth formula (cf. also the argument in the proof of

Lemma 3.5 of [DR]) that δ∗− i∗x− j∗x induces the zero map from H1
rig(Wε×Wε)

to H1
rig(Wε), and therefore that it sends closed one-forms to exact one-forms. In

particular, the natural image of ξ̃
P,x

(u1, u2) in H1
rig(Wε), denoted ξ

P,x
(u1, u2),

does not depend on the choice of one-form ρ
P
(u1, u2) satisfying equation (51).

Condition (2) imposed in the choice of the polynomial P then allows us to define

the class

ξx(u1, u2) := P (ΦY1)
−1ξP,x(u1, u2) ∈ H1

rig(Wε),

which is independent of the choice of P as above.

The exact sequence

(52) 0 −→ H1
dR(X1) −→ H1

rig(Wε) −→ Cp(−1)σ−1 −→ 0,

admits a canonical splitting that respects the Frobenius action. Let ξ(u1, u2) ∈
H1

dR(X1) denote the image of ξx(u1, u2) under this splitting.

Lemma 4.2: The class ξ(u1, u2) does not depend on the choice of base point x.
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Proof. Write ΦY1×Y1 = Φh × Φv, where Φh (resp. Φv) is the rigid endomor-

phisms of Wε ×Wε acting as the canonical lift of Frobenius on the horizontal

(resp. vertical) factor of the product and trivially on the other factor. Following

the proof of Proposition 3.3 of [Bes2], let t ≥ 1 be such that (Φ/p)t fixes the

classes of du1

u1
and du2

u2
, and choose

(53) P (x) = (1− xt/p2t),

so that, after setting q := pt,

P (ΦY1×Y1) = P (ΦthΦ
t
v) =

(
1− Φth

q

)
Φtv
q

+

(
1− Φtv

q

)
.

After writing

u
(0)
j := uqj/Φ

t∗(uj),

we find that the rigid one-form on Wε ×Wε defined by

ρ
P
(u1, u2) =

1

q2
log u

(0)
1 Φ∗t

(
du2
u2

)
− 1

q

du1
u1

log u
(0)
2

satisfies equation (51). (Cf., for instance, equation (3.2) of loc. cit.) With this

choice of primitive, we observe that

i∗x(ρP (u1, u2))=−1

q

du1
u1

log u
(0)
2 (x), j∗x(ρP (u1, u2))=

1

q2
log u

(0)
1 (x)Φ∗t

(
du2
u2

)
.

The cohomology classes of these one-forms, being multiples of the classes at-

tached to the logarithmic derivatives of modular units, are in the kernel of the

Frobenius splitting of (52) used to define ξ(u1, u2), and the result follows.

It follows from the proof of Lemma 4.2 above that the differential η0(f, g)

(with f = u1, g = u2) that appears in Proposition 3.3 of [Bes2] represents the

class ξP,x (u1, u2), up to the addition of logarithmic derivatives of modular units

which are in the kernel of the splitting (52), and therefore that the image of the

class η(f, g) appearing in Proposition 3.3 of [Bes2] in H1
dR(X1) agrees with the

class of ξ(u1, u2). We can therefore define, following [Bes2],

(54) regp{u1, u2} := ξ(u1, u2).

In parallel with the complex notation of Proposition 2.3, we therefore have

regp{uχ, u(χ1
, χ

2
)}(ηurf ) :=

〈
ηurf , regp{uχ, u(χ1

, χ
2
)}〉

2,Y

(where regp{uχ, u(χ1
, χ

2
)} is viewed as a class in the de Rham cohomology of

Y ). We are now ready to state one of the main results of our paper.
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Theorem 4.3: For all χ
1
and χ

2
as in Assumption 2.2, and setting f = f2,

Lp(f ,E(χ
1
, χ

2
))(2, 2) =

E(f, χ
1
, χ

2
, 2)

E(f)E∗(f)
regp{uχ, u(χ1

, χ
2
)}(ηurf ).

Proof. By the recipe for the p-adic regulator described before, we have

regp{uχ, u(χ1 , χ2)}(ηurf ) =
〈
ηurf , ξ(uχ, u(χ1 , χ2))

〉
2,Y

=
〈
ηurf , P (ΦY )

−1ξ
P,x

(uχ, u(χ1
, χ

2
))
〉
2,Y

.(55)

For any ξ ∈ H1
dR(Y ), note that

(56)

〈
ηurf ,ΦY ξ

〉
Y,2

= αp(f)
−1
〈
ΦY η

ur
f ,ΦY ξ

〉
Y,2

= pαp(f)
−1
〈
ηurf , ξ

〉
Y,2

= βp(f) ·
〈
ηurf , ξ

〉
Y,2

.

Combining (55) and (56), we find〈
ηurf , regp{uχ, u(χ1 , χ2)}

〉
2,Y

= P (βp(f))
−1
〈
ηurf , ξP,x(uχ, u(χ1 , χ2))

〉
2,Y

= P (βp(f))
−1
〈
ηurf , efeordξP,x

(uχ, u(χ1
, χ

2
))
〉
2,Y

.(57)

Set

(58) P (x) := p−4(x− χ
1
(p))(x − χ̄

1
(p)p2)(x− χ

2
(p)p)(x− χ̄

2
(p)p).

Following Besser as in the proof of Lemma 4.2 above, a more optimal choice of

P would have been to take (x− χ̄
1
(p)p2), as (ΦY − χ̄

1
(p)p2) already annihilates

the class of E2,χ ⊗ E2(χ1
, χ

2
) in cohomology. However, the above choice of P

allows us to directly invoke the calculations that were already carried out in

Section 3.4 of [DR], in the setting where E2,χ and E2(χ1 , χ2) are replaced by

cusp forms. (In such a setting, it became necessary to work with a degree 4

polynomial.) With our choice of P , and setting x = ∞, we have

(59)
efeordξP,x

(uχ, u(χ1
, χ

2
)) = E∗(f)efeord(d−1E

[p]
2,χ × E2(χ1

, χ
2
))

= E∗(f)efΞord,p(χ
1
, χ

2
).

This follows by replacing the cusp forms ğ and h̆ by the Eisenstein series E2,χ

and E2(χ1 , χ2) in Theorem 3.12 of loc. cit. Combining (57) and (59), and ob-

serving that P (βp(f)) = E(f, χ
1
, χ

2
, 2), we obtain

(60)
〈
ηurf , regp{uχ, u(χ1 , χ2)}

〉
2,Y

= E(f, χ
1
, χ

2
, 2)−1E∗(f)

〈
ηurf , efΞ

ord,p(χ
1
, χ

2
)
〉
2,Y

.

Theorem 4.3 now follows from Proposition 4.1.
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4.2. The general case. Set �0 = r + 2, and assume in this section that

r > 0. Let E1, E2 be weight �0 Eisenstein series in Eis�0(Γ1(N),Q). Besser’s

description [Bes2] of the p-adic regulator regp{u1, u2} ∈ H1
dR(Y1) admits a

natural generalisation to the setting in which the logarithmic derivatives of u1

and u2 are replaced by the Eisenstein series E1 and E2. More precisely, note

that (Lr,∇) is equipped with the structure of an overconvergent Frobenius

isocrystal in the sense of Definition 4.15 of [BDP]. In particular, the cohomology

groups H1
dR(Y1,Lr,∇) are endowed with an action of the Frobenius lift ΦY1 .

Let P ∈ Q[x] be any polynomial satisfying

(1) P (ΦY1×Y1) annihilates the class of E1⊗E2 in H
2
rig(Wε×Wε,Lr⊗Lr,∇),

(2) P (ΦY1) acts invertibly on H1
rig(Wε)(r).

The choice of P gives rise to a L⊗2
r -valued rigid 1-form ρ

P
(E1, E2) on Wε×Wε

satisfying

ρP (E1, E2) = P (ΦY1×Y1)(E1 ⊗ E2).

Note that ρ
P
(E1, E2) is well-defined only up to closed forms on Wε ×Wε. Let

ξ
P
(E1, E2) ∈ H1

rig(Wε)(r) denote the class of the restriction of ρ
P
(E1, E2) to the

diagonal composed with the pairing

Lr × Lr −→ OY1(r),

and set

ξ0(E1, E2) := P (ΦY1)
−1ξ

P
(E1, E2) ∈ H1

rig(Wε)(r).

As before, let ξ(E1, E2) denote the natural image of ξ0(E1, E2) in H
1
dR(X1)(r)

under the Frobenius-equivariant splitting of the exact sequence (52). The p-adic

regulator attached to (E1, E2) is then defined to be

(61) regp{E1, E2} = ξ(E1, E2).

The following extends Theorem 4.3 to general � = �0, where as before we have

set

regp{E�,χ, E�(χ1
, χ

2
)}(ηurf ) :=

〈
ηurf , regp{E�,χ, E�(χ1

, χ
2
)}〉

2,Y
.

Theorem 4.4: For all χ
1
and χ

2
as in Assumption 2.2, and setting f = f2,

Lp(f ,E(χ
1
, χ

2
))(2, �) =

E(f, χ1 , χ2 , �)

E(f)E∗(f)
regp{E�,χ, E�(χ1

, χ
2
)}(ηurf ).

Proof. The proof is the same as the proof of Theorem 4.3, using the calculations

of Section 3.4 of [DR].
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5. The p-adic Beilinson formula

5.1. The main results. We can now state the main results of this article,

which apply to any pair (χ
1
, χ

2
) of primitive Dirichlet characters with relatively

prime conductors N1 and N2, satisfying

N = N1N2, χ−1 := χ
1
χ

2
is even.

Theorem 5.1: For all � ≥ 2,

Lp(f, χ1
, �) · L∗(f, χ

2
, 1) =Cf,χ

1
,χ

2
(1− βp(f)χ1

(p)p−�)(1 − βp(f)χ̄1
(p)p−(2−�))

× regp{E�,χ, E�(χ1
, χ

2
)}(ηurf ).

Proof. By comparing Theorem 3.4 with k0 = 2 and Theorem 4.4, we obtain

Lp(f, χ1 , �)×Lp(f, χ2 , 1) = Cf,χ
1
,χ

2
E(f, χ1 , χ2 , �)× regp{E�,χ, E�(χ1 , χ2)}(ηurf ).

The theorem now follows from equation (47), giving the interpolation prop-

erties of the Mazur–Swinnerton–Dyer p-adic L-function, and the definition of

E(f, χ
1
, χ

2
, �) given in Proposition 3.2.

For � = 2, Theorem 5.1 relates the value Lp(f, χ1 , 2) to the p-adic regulator

regp{E2,χ, E2(χ1
, χ

2
)} := regp{uχ, u(χ1

, χ
2
)}

previously defined in terms of modular units.

Corollary 5.2:

Lp(f, χ1
, 2) · L∗(f, χ

2
, 1) =Cf,χ

1
,χ

2
(1− βp(f)χ1

(p)p−2)(1 − βp(f)χ̄1
(p))

× regp{uχ, u(χ1
, χ

2
)}(ηurf ).

Note the strong analogy between Corollary 5.2 and the complex Beilinson for-

mula, as stated in Proposition 2.3. The factor L∗(f, χ
2
, 1) belongs to the field

Q(f, χ2), and χ2 can be chosen so that this factor does not vanish. Theorem

5.1 then expresses the value Lp(f, χ1
, �) of the Mazur–Swinnerton–Dyer p-adic

L-function at a point outside the range of classical interpolation as the p-adic

regulator attached to two Eisenstein series of weight �, times a non-zero alge-

braic number.
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5.2. Relation with the work of Brunault and Gealy. We conclude by

explaining the relation between the main results of this paper and the p-adic

Beilinson formulae proved in [Br2] (for the value at � = 2) and [Ge] (for the

value at general � ≥ 2).

The syntomic regulators of Coleman–de Shalit and Besser have counterparts

in p-adic étale cohomology, whose definition we first recall for K2(Y1) and for

the eigenspaces (K2(Ȳ1)⊗F )χ1 under the action of GQ, where F is an extension

of Qp large enough to contain the values of χ
1
and χ

2
. Kummer theory gives

connecting homomorphisms

δ : O(Y1)
× −→ H1

et(Y1,Qp(1)), δ : (O(Ȳ1)
× ⊗ F )χ1 −→ H1

et(Y1, F (1)(χ1
)).

The p-adic étale regulator of {u1, u2} is defined to be

reget{u1, u2} := δ(u1) ∪ δ(u2) ∈ H2
et(Y1, F (2)(χ1

)) = H1(Q, H1
et(Ȳ1, F (2)(χ1

))),

where the last identification follows from the Hochschild–Serre spectral se-

quence (cf. equation (28) of [Br2]). The restriction of reget{u1, u2} to GQp =

Gal (Q̄p/Qp) yields an element resp(reget{u1, u2}) of

H1(Qp, H
1
et(Ȳ1, F (2)(χ1

)) = Ext1RepQp
(Qp, H

1
et(Ȳ1, F (2)(χ1

))),

where the group of extensions is taken in the category of continuous p-adic

representations of GQp which are cristalline. On the other hand, regp{u1, u2}
belongs to

H1
dR(Y1) = H1

dR(Y1)/Fil
2H1

dR(Y1) = Ext1ffm(Qp, H
1
dR(Y1)(2)),

where the group of extensions is taken in the category of admissible filtered

Frobenius modules. Fontaine’s comparison functor sets up an isomorphism

(62) Ext1RepQp
(Qp, H

1
et(Ȳ1, F (2)(χ1

)))
comp �� Ext1ffm(Qp, H

1
dR(Y1)(2)).

More generally, the Eisenstein series E1 and E2 of weight �0 = r+2 introduced

in Section 4.2 give rise to classes

δ1 ∈ H1
et(Y1,Let

r (1)), δ2 ∈ H1
et(Y1,Let

r (1)(χ1
)),

where Let
r is the étale p-adic sheaf associated to the local system (Lr,∇) of

Section 2.5 (tensored with the field F containing the values of the characters
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χ
1
and χ

2
). Imitating the complex treatment of Beilinson [Bei], we define the

p-adic étale regulator of (E1, E2) to be

reget{E1, E2} := δ1∪δ2 ∈ H2
et(Y1, F (r+2)(χ

1
)) = H1(Q, H1

et(Ȳ1, F (r+2)(χ
1
))),

where we have used the pairing Let
r × Let

r −→ F (r), and as before the last

identification follows from the Hochschild–Serre spectral sequence. Note that

when r = 0, reget{E1, E2} is equal to reget{u1, u2}, with Ej = dlog(uj). As

in the case r = 0, there is an isomorphism

(63)

Ext1RepQp
(Qp, H

1
et(Ȳ1, F (r + 2)(χ

1
)))

comp �� Ext1ffm(Qp, H
1
dR(Y1)(r + 2)),

and we have

Proposition 5.3: For all u1, u2 ∈ O(Y1)
×,

regp{u1, u2} = comp(resp(reget{u1, u2})).

More generally, for all E1, E2 ∈ Eis�0(Γ1(N),Q),

regp{E1, E2} = comp(resp(reget{E1, E2})).
Proof. See Proposition 9.11 and Corollary 9.10 of [Bes1], and the references

therein.

Proposition 5.3 leads to an alternate definition of the p-adic regulator, which is

the one that enters in the p-adic Beilinson formulae of [Br2] and [Ge]. Theorem

5.1 and Corollary 5.2 thus give a different proof of the main results of [Ge] and

[Br2] respectively. The strategy followed in loc. cit. builds on the work of Kato,

in which a collection of norm-compatible elements in the K2 of a tower of mod-

ular curves is used to construct a Λ-adic cohomology class κ ∈ H1(Q,Vp(E))

with values in the Λ-adic representation Vp(E) of GQ interpolating the Tate

twists Vp(E)(j) for all j ∈ Z. Kato’s reciprocity law relates the image of κ in

H1(Qp,Vp(E)) to the p-adic L-function attached to E. Both [Br2] and [Ge]

exploit deep local results of Perrin-Riou ([PR2], [Colz1]) to parlay this relation

into a precise connection between the p-adic étale regulator of the Beilinson

elements and the special values at � ≥ 2 of the Mazur–Swinnerton–Dyer p-adic

L-function. The proof proposed in the present work can be viewed as somewhat

more direct, insofar as it does not rely on Kato’s Λ-adic classes or on any facts
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about the behaviour of the Bloch–Kato logarithm and dual exponential maps

in p-adic families.
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