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1. Introduction

Let E be an elliptic curve defined over a number field F . For each finite extension
L of F , write rE(L) for the rank of the group E(L) of L-rational points on E. A
p-adic Lie extension of F is a Galois extension L∞/F whose Galois group G is a
p-adic Lie group (for example, the splitting field of any continuous representation
of the absolute Galois group of F acting on a finite dimensional Qp-vector space).
The present note is motivated by the following general problem:

Question 1.1. To understand the variation of rE(L) as L ranges over all finite
extensions of F contained in L∞.

This question dates back at least to the foundational article [Ma], which considers
the case when G = Zp, and makes the first steps towards examining this problem
by the methods of Iwasawa theory. As in classical descent theory, it is convenient
to replace the Mordell-Weil group E(L) by the p-power Selmer group of E over L,
thus sidestepping the difficulties associated with the Shafarevich-Tate conjecture.
This Selmer group is defined to be

(1.1) Selp(E/L) := ker

(
H1(L,E[p∞]) −→

⊕

v

H1(Lv, E)[p∞]

)
,

where E[p∞] denotes the Galois module of all p-power division points on E, and v
runs over all places of L. The idea of Iwasawa theory is to exploit the structure of
the Selmer group of E over L∞ as a module for the Galois group G to show that
the groups Selp(E/L) exhibit some coherence as L varies.

A rich, well-developed theory now paints a fairly precise picture when F = Q
and G is either abelian or dihedral.

The last decade has seen the emergence of a program of non-abelian Iwasawa
theory whose goal is to study Question 1.1 in settings which are further removed
from the abelian setting. A prototypical example is the case where L∞ = Q(A[p∞])
is the field generated over Q by the coordinates of the p-power division points of
an elliptic curve A over Q. The article [Har] exhibits cases where rE(Q(A[pn])) is
unbounded with n, but it is fair to say that the type of growth it could exhibit is
at present only poorly understood.
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An intermediate case which appears more tractable, while still representing a
significant departure from the cyclotomic and anti-cyclotomic situations, is the case
of Kummer towers (sometimes also called false Tate curve extensions), where Ln is
an extension of the form Q(µpn , q1/pn

) for some q ∈ Q× which is p-power free, and
L∞ is the union of the Ln. In that case G = Zp ⋊Z×

p contains no abelian subgroup
of finite index. A detailed case study by Coates, Fukaya, Kato and Sujatha [CFKS]
and V. Dokchitser [Do-V] has led these authors to predict unbounded and strikingly
regular growth for rE(Ln) in certain cases. The aim of this note is to explain how
some of these predictions might be accounted for by Heegner points arising from a
varying collection of Shimura curve parametrisations.

From now on, let E be an elliptic curve defined over Q. We recall the deep
fact that E is known to be modular, a result which underlies all of our subsequent
work. We begin by reviewing earlier results in the (abelian) Iwasawa theory of
elliptic curves which provide both a context and some essential tools for our study.

A. Cyclotomic towers. Let L∞ = Q(µp∞) be the field obtained by adjoining the
group µp∞ of all p-power roots of unity to Q. Thus Gal(L∞/Q) = Z×

p . Any finite
extension L ⊂ L∞ is contained in Ln = Q(µpn) for some n, where µpn denotes the
group of pn-th roots of unity. A qualitative answer to Question 1.1 in this case is
supplied by:

Theorem 1.2 (Kato-Rohrlich). The rank rE(Ln) is bounded as n → ∞.

The proof of Theorem 1.2 falls naturally into two parts. A non-vanishing theorem
of Rohrlich [Ro] shows that ords=1L(E/Ln, s) remains bounded as n −→ ∞, or
equivalently that the twisted L-values L(E,χ, 1) are non-zero for all but finitely
many Dirichlet characters χ of p-power conductor. Secondly, a deep theorem of
Kato [Ka] shows that the χ-part of E(L∞) ⊗ C is trivial when L(E,χ, 1) 6= 0. It
follows that E(L∞) must have the same rank as E(Ln) for all sufficiently large n.

B. Anticyclotomic towers. It will be assumed from now on that p > 2. Let
K be an imaginary quadratic field, and let L∞ be the anticyclotomic Zp-extension
of K. This is the unique Zp-extension of K which is Galois over Q and for which
G = Gal(L∞/Q) is a semi-direct product of the form Zp⋊Z/2Z, where the quotient
of order two acts nontrivially on Zp. For each n ≥ 0, let Ln be the unique subfield
of L∞ of degree pn over K. The group Gal(Ln/Q) is a dihedral group of order
2pn. Suppose for simplicity that the conductor of E is relatively prime to p and
the discriminant of K. Then one has:

Theorem 1.3. The ranks rE(Ln) are either bounded, or of the form pn +O(1), as
n → ∞.

The dichotomy in Theorem 1.3 is controlled by the sign in the functional equation
for the L-series L(E/K, s). Let sign(E,K) ∈ {−1, 1} denote this sign. If χ is a
finite order character of Gal(L∞/K), the functional equation for the twisted L-
series L(E/K,χ, s) relates L(E/K,χ, s) to L(E/K,χ, 2−s), and the sign occurring
in this functional equation is equal to sign(E,K).

If sign(E,K) = 1, a non-vanishing result of Vatsal [Va1] establishes the analogue
of Rohrlich’s theorem: L(E/K,χ, 1) 6= 0 for almost all finite order characters of
Gal(L∞/K). The main result of [BD4] supplies the analogue of the theorem of
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Kato alluded to in the discussion of the cyclotomic case. It then follows that
E(L∞) = E(Ln) for n sufficiently large.

If sign(E,K) = −1, the twisted L-series L(E/K,χ, s) all vanish to odd order,
and therefore

ords=1L(E/Ln, s) ≥ pn.

The Birch and Swinnerton-Dyer conjecture therefore predicts a growth for rE(Ln)
which is at least linear in [Ln : K]. Heegner points arising from the modularity of
E and the theory of complex multiplication can be used to construct an explicit
subgroup HP (n) of E(Ln). The main theorem of [Cor] and [Va2] states that the
rank of HP (n) is equal to pn + O(1). The methods of Kolyvagin [Ko1], [Ko2]
(suitably adapted to ring class characters, as in [BD1]) then prove the result.

The key novelty of the anticyclotomic setting is the possibility of unbounded
(and in fact, linear in the degree) growth of rE(Ln); up to a bounded error term,
this linear growth is accounted for by Heegner points. (We remark that, although
the case where sign(E,K) = 1 seems closer to the cyclotomic case, Heegner points
still play a crucial role in the proof of the main results of [BD4].)

Note that the group Gal(Ln/Q), while non-abelian, is still not far from abelian,
in the sense that it contains an abelian normal subgroup of index 2.

C. Kummer towers. Fix an odd prime p, and an integer q > 1 which is p-power
free. Then define

Ln = Q(µpn , q1/pn

), (n ≥ 1); L∞ =
⋃

n≥1

Ln.

Thus

Gal(Ln/Q) ≃ (Z/pnZ) ⋊ (Z/pnZ)×, G = Gal(L∞/Q) ≃ Zp ⋊ Z×
p .

The study of elliptic curves over this tower has been undertaken by a number of
authors, notably in [HV] (from the algebraic point of view of descent, and Iwasawa
theory) and in [Do-V] (from the analytic point of view of L-functions and root
numbers.)

On the algebraic side, assuming that E has good ordinary reduction at p, it is
proven in [HV] that there exists a positive constant C > 0 such that the Zp-corank
of Selp(E/Ln) is at most Cpn for all n.

On the analytic side, if we write

Fn = Q(µpn)+, Kn = Q(µpn),

it follows from the modularity of E over Q and the theory of abelian base change
that the Hasse-Weil L-series L(E/Kn, s) is entire, and has a functional equation
of the standard type; the same also holds for its twists L(E/Kn, χ, s) by abelian
characters χ of Kn. It follows that

L(E/Ln, s) =
∏

χ∈ ̂Gal(Ln/Kn)

L(E/Kn, χ, s)

is entire and has a functional equation and analytic continuation. Alternately (and
more germane to the methods of this article), abelian base change shows that E/Fn

arises from a Hilbert modular form fn on GL2(Fn). The L-series L(E/Kn, χ, s)
can be expressed in terms of the Rankin convolution of fn with a theta-series over
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Fn associated to IndKn

Fn
χ, and the analytic continuation of L(E/Kn, χ, s) follows

from Rankin’s method. The following result is proved in [Do2]:

Proposition 1.4. Suppose that

(1) p is an odd prime of good reduction for E;
(2) q is an odd prime of multiplicative reduction for E;
(3) q generates (Z/p2Z)×;
(4) sign(E, Q(µp)) = 1.

Then
ords=1L(E/Ln, s) ≥ pn − 1.

In the setting of Proposition 1.4, the Birch and Swinnerton-Dyer conjecture
predicts that

(1.2) rE(Ln)
?
≥ pn − 1.

The following result (Theorem 11 of [CS], improved by [CFKS]) singles out some
special cases where the inequality (1.2) is expected to be sharp.

Proposition 1.5. Assume the hypothesis of Proposition 1.4, and assume in addi-
tion that Selp(E/Q(µp∞)) = 0. Then

(1.3) corankZp
Selp(E/Ln) = pn − 1.

The assumption on Selp(E/Q(µp∞)) is used in the proof via p-descent in the
spirit of the methods of non-commutative Iwasawa Theory developed in [HV].

In the setting of Proposition 1.5, both the Birch and Swinnerton-Dyer conjecture
and the Shafarevich-Tate conjecture predict that

(1.4) rE(Ln)
?
= pn − 1, for all n ≥ 0.

The purpose of this note is to point out a possible strategy for verifying (1.4) inde-
pendently of these deep conjectures. Our main result (Theorem 1.8 below) removes
the dependence on the Birch and Swinnerton-Dyer conjecture and the Shafarevich-
Tate conjecture, but remains conditional on Conjecture 1.7 below, which might be
viewed as a natural extension of the ongoing work of Skinner and Urban [SU] to
the setting of totally real fields. We now introduce the notations and concepts that
are needed to formulate Conjecture 1.7 precisely.

Let f0 be the elliptic modular form associated to the elliptic curve E/Q. Let F
be a totally real abelian extension of Q, and let f denote the (normalized) Hilbert
modular eigenform on GL2(F ) associated to f0 by abelian base change. For each
prime λ of F , let aλ(f) be the coefficient attached to λ in the Fourier expansion of
f , and let T be the Hecke algebra over F . Let

ϕ : T −→ Z

be the homomorphism on T which sends the Hecke operator Tλ to aλ(f).
Let K be a totally imaginary quadratic extension of F and ω the associated

quadratic Hecke character over F . Assume for simplicity that the discriminant of
K is relatively prime to the conductor N of E over F . Let Σ′ denote the following
finite set of places of F :

(1.5) Σ′ = { places v of F : v|∞ or ωv(N) = −1}.

Lemma 1.6. If L(E/K, 1) 6= 0, then Σ′ has even cardinality.
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Proof. The non-vanishing of L(E/K, 1) implies that sign(E,K) = 1. A standard
formula (for example, (1.1.2) of [Zh2]) for the root number asserts that sign(E,K)

is equal to (−1)#Σ′

. The lemma follows. ¤

Let B′ denote the (unique, up to isomorphism) quaternion algebra over F which
is ramified precisely at the places of Σ′. Such a quaternion algebra exists, by Lemma
1.6, and is totally definite. Fix an embedding K →֒ B′ (such an embedding exists
since Kv := K ⊗F Fv is a field whenever B′ is ramified at v) and choose an order

R′ in B′ containing OK as a subring of relative discriminant N . Write Ẑ for the
profinite completion of Z, and set

R̂′ := R′ ⊗Z Ẑ, B̂′ = R̂′ ⊗ Q.

Let G′ denote the algebraic group over F representing the functor on F -algebras

given by A 7−→ (B′ ⊗F A)×. Let U ′ be the compact open subgroup R̂′
×

of G′(Af )
where Af is the ring of finite adèles of F . By strong approximation, the set

(1.6) X ′ = G′(F )\G′(Af )/U ′

is finite. (It can be viewed as the points on the Shimura variety of dimension 0
associated to the pair (G′, U ′).) The set X ′ is also in bijection with the conjugacy
classes of Eichler orders in B′ that are locally conjugate to R′, equipped with
an orientation at N in the sense of §2.2 of [BD2]. Let Z[X ′] denote the finitely
generated Z-module of Z-valued functions on X ′. We call it the space of integral
automorphic forms for G′ of weight 2 and level N . This module is equipped with an
action of the Hecke algebra T and with a natural non-degenerate Z-valued bilinear
form

(1.7) 〈 , 〉 : Z[X ′] × Z[X ′] −→ Z

for which the Hecke operators Tλ (with λ ∤ N) are self-adjoint. By the Jacquet-
Langlands correspondence and multiplicity one, there is a unique rank one Z-module
in Z[X ′] on which T acts via the homomorphism ϕ. Let φ′ denote a generator of
this Z-module. Note that φ′ is well-defined up to sign, so the quantity 〈φ′, φ′〉 is a
well-defined integer. The algebraic part of L(E/K, 1) is defined by the formula

(1.8) L(E/K, 1) := 2−([F :Q]+1)
√

N(dK/F )
L(E/K, 1)

(f, f)
〈φ′, φ′〉,

where dK/F is the relative discriminant of K/F and N(dK/F ) is its absolute norm.
The quantity (f, f) is the period of the Hilbert modular form f , as defined in The-
orem 6.1 of [Zh3]. As will be explained in Section 2 below, the quantity L(E/K, 1)
is an integer. We make the following conjecture:

Conjecture 1.7. Let p be a prime that does not divide the absolute norm of N .
Assume that p does not divide the Tamagawa numbers of E/K, and that the mod
p Galois representation E[p] is absolutely irreducible. If Selp(E/K) is trivial, then
p does not divide L(E/K, 1).

We can now state the main result.

Theorem 1.8. Let p and q be two odd primes such that q generates (Z/p2Z)×. Let
E be an elliptic curve defined over Q, and let Ln = Q(µpn , q1/pn

). Assume that

(1) E has good ordinary reduction at p and Gal(Q(E[p])/Q) ∼= GL2(Fp);
(2) E has multiplicative reduction at q;
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(3) Selp(E/Q(µp∞)) = 0.
(4) Conjecture 1.7 holds for E and the extensions F = Q(µpn)+ and K =

Q(µpn) for all n.

Then

rE(Ln) = pn − 1, rE(Q(q1/pn

)) = n.

Concerning the behaviour of the Hasse-Weil L-series and the Shafarevich-Tate
groups, our proof of Theorem 1.8 leads to the following information:

Theorem 1.9. Under the assumptions of Theorem 1.8, we have

ords=1L(E/Ln, s) = pn − 1, ords=1L(E/Q(q1/pn

), s) = n.

Furthermore, the Shafarevich-Tate groups of E over Ln and Q(q1/pn

) are finite.

The next two sections are devoted to a discussion of the two critical hypotheses
(3) and (4) that are made in Theorem 1.8.

2. Conjecture 1.7 and Zhang’s formula

The formulation of Conjecture 1.7 is justified by an explicit formula of Zhang for
L(E/K, 1) (generalising a formula of Gross [Gr]) which shows that this quantity is
always an integer.

The article [Zh3] associates to X ′ and K a canonical element ∆′
K of Q[X ′]. This

element is obtained by considering the conjugacy classes of optimal embeddings of
OK into Eichler orders in B′ which are locally conjugate to R′. Such an optimal
embedding is defined to be a pair

(Ψ, α) ∈ G′(F )\ (hom(K,B′) × G′(Af )) /U ′

satisfying

(2.1) α−1
v Ψ(OK,v)αv ⊂ R′

v, for all places v of F .

The class group K×\K̂×/
∏

v O
×
K,v acts naturally on the optimal embeddings by

the rule

ξ ⋆ (Ψ, α) := (Ψ,Ψ(ξ)α).

Let (Ψ1, α1), . . . , (Ψh, αh) be a full orbit for this action, and let wj be the cardinality
of the automorphism group of (Ψj , αj). Then we define

(2.2) ∆′
K :=

h∑

j=1

w−1
j αj ∈ Q[X ′].

It can be shown that ∆′
K belongs to the dual lattice Z[X ′]∨ of Z[X ′] under the

pairing (1.7).
Zhang’s formula (cf. Theorem 7.1 of [Zh3]) relates the position of the vector ∆′

K

in Z[X ′]∨ to the special value of L(E/K, 1):

〈φ′,∆′
K〉2

〈φ′, φ′〉
= 2−([F :Q]+1)

√
N(dK/F )

L(E/K, 1)

(f, f)
.

(Note that the expression on the left is unchanged when φ′ is rescaled.) This formula
shows that

(2.3) L(E/K, 1) = 〈φ′,∆′
K〉2
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is an integer. Moreover, as ∆ ranges over all the elements of Z[X ′]∨, the fact that φ′

is not divisible by any integer > 1 in Z[X ′] implies that the quantities 〈φ′,∆〉 have
no common prime divisor. This is why we expect that if a prime p does not arise in
the extraneous factors of the Birch and Swinnerton-Dyer conjecture (namely, the
Tamagawa numbers of E/K and the cardinality of E(K)tors) it should only divide
L(E/K, 1) when the Selmer group Selp(E/K) is non-trivial.

A proof of conjecture 1.7 has been announced in [SU] in the case where F = Q.
The approach of [SU] is to assume that p divides L(E/K, 1) and to relate this
quantity to the constant term of an Eisenstein series on U(2, 2) arising from a
lift of f0. A mod p congruence between this Eisenstein series and a cusp form
leads to an irreducible but residually reducible p-adic Galois representation from
which the sought-for non-trivial element of Selp(E/K) can be constructed. It is
the authors’ hope that Conjecture 1.7 might eventually yield to similar methods.
While the technical obstacles may be considerable, it is fair to say that Conjecture
1.7 presents less mystery than either the Birch-Swinnerton-Dyer or the Shafarevich-
Tate conjectures, thanks to the ideas introduced in [SU].

We also remark that the converse of Conjecture 1.7 is proved, in the case where
F = Q and under certain extra hypotheses, in [BD4]. The approach described
there, just like the methods of [SU], admits a generalization to totally real fields.
(See for example [Lo] and [TZ].)

The proof of Theorem 1.8 involves certain imprimitive versions of the invariants
∆′

K and L(E/K, 1). More precisely, given an ideal λ of OF , we let

OK [λ] := OF + λOK

be the OF -order of K of conductor λ. An optimal embedding of K into B′ of
conductor λ is defined in the obvious way, by replacing OK by OK [λ] in the def-
inition (2.1) of an optimal embedding of conductor 1. The invariant ∆′

K,λ is then

defined as in (2.2), but summing this time over an orbit of optimal embeddings of

conductor λ under the action of the class group K×\K̂×/ÔK [λ]×. Finally we set

(2.4) L(E/K, 1)(λ) := 〈φ′,∆′
K,λ〉

2.

Let us return now to the specific setting where F = Q(µpn)+ and where K =
Q(µpn). Let p be the unique prime of F above p, and let

ap := p + 1 − #E(Z/pZ) = p + 1 − #E(OF /p).

Lemma 2.1. For all integers t ≥ 1,

L(E/K, 1)(pt) ≡ (ap − 1)at−1
p L(E/K, 1) (mod p).

Proof. The elements ∆K,pt are related to the images of ∆′
K under powers of the

Hecke operator Tp via the following recursive formulae:

∆′
K,p = (Tp − 1)∆′

K , ∆′
K,pt+1 = Tp∆

′
K,pt − p∆′

K,pt−1 , for t ≥ 1.

Recall that Tp acting on Q[X ′] is self-adjoint, and that Tpφ
′ = apφ

′. It follows that

L(E/Kn, 1)(p) = 〈φ′, (Tp − 1)∆′
K〉 = (ap − 1)〈φ′,∆′

K〉 = (ap − 1)L(E/K, 1)(p).

Likewise, we have, for all t ≥ 1:

L(E/Kn, 1)(pt+1) = apL(E/Kn, 1)(pt) − pL(E/Kn, 1)(pt−1)

≡ apL(E/Kn, 1)(pt) (mod p).

The lemma follows. ¤
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3. Regular primes

We now make some remarks on hypothesis (3) that occurs in Theorem 1.8.
Assume, as in the statement of Theorem 1.8, that E has good ordinary reduction
at p. Let K∞ = Q(µp∞) and k = Q(µp), and let Γ = Gal(K∞/k) ≃ Zp be
the Galois group of the cyclotomic Zp-extension of k. Let X(E/K∞) denote the
Pontryagin dual of Selp(E/K∞). We call p a regular prime for E if the following
equivalent conditions are satisfied:

(i) Selp(E/K∞) = 0;
(ii) Selp(E/K∞) is finite;
(iii) the characteristic ideal of X(E/K∞) is trivial;

(iv) the Euler characteristic χ(E/K∞) :=
|H0(Γ,X(E/K∞))|

|H1(Γ,X(E/K∞))|
is a p-adic unit;

(v) the number
|X(E/k)| · |Ẽ(Fp)|

2 ·
∏

v cv

|E(k)|2
is a p-adic unit, where Ẽ is the

reduction of E at the unique prime of k above p, and cv denotes the Tam-
agawa number of E at a finite place v of k.

The equivalence between (i) and (ii) is given by Matsuno’s Theorem [Mat] that
X(E/K∞) is p-torsion-free. The remain equivalences are well-known.

The terminology of regular primes follows from the obvious analogy with the
notion of regular prime in the theory of cyclotomic fields. We expect that if rE(Q) =
0, then there are infinitely many regular primes for E. Although this appears hard
to prove, there is a readily computable criterion that allows one to test whether a
given prime is regular, which is analogous to Kummer’s criterion for regularity in
terms of Bernoulli numbers, and rests on the notion of modular symbols.

Write 2πif0(z)dz for the holomorphic differential form on Γ0(N)\H attached to
f0. The modular symbol [r] attached to r ∈ Q is the complex number defined by
the formula

[r] :=

∫ i∞

r

2πif0(z)dz.

The fact that the weight two modular form f0 is periodic with period 1 implies
that [r] depends only on the value of r in Q/Z. The set of values taken on by [r]
as r ∈ Q/Z generates a rank two lattice ΠE ⊂ C, which is commensurable with the
Néron lattice of E. This makes it possible to view [r] as taking values in ΠE .

For 0 ≤ j ≤ p − 2, define the “jth Bernoulli number attached to E” by the
formula

BE(j) =

p−1∑

r=1

[
r

p

]
rj ∈ ΠE .

Let Γ = Gal(K∞/k) and let Λ(Γ) be its Iwasawa algebra. A construction originally
due to Mazur and Swinnerton-Dyer attaches a p-adic L-function Gk ∈ Λ(Γ) to E
and the cyclotomic Zp-extension K∞/k. This p-adic L-function is defined in terms
of modular symbols, and it follows directly from its definition that the following
conditions are equivalent.

(i) Gk is a unit in the Iwasawa algebra Λ(Γ);
(ii) under the isomorphism Λ(Γ) ∼= Zp[[T ]], the constant term Gk(0) is p-adic

unit;
(iii) p does not divide BE(j) for all 0 ≤ j ≤ p − 2.
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We will say that a prime p is analytically regular for E if these equivalent conditions
are satisfied.

Theorem 3.1 (Kato). Let E be an elliptic curve defined over Q and p a good
ordinary prime for E. Assume that E[p] is an irreducible GQ-module. Then the
characteristic ideal of X(E/K∞) divides GkΛ(Γ). In particular, if p is analytically
regular for E, then p is regular for E.

A computer program can be used to find the first few analytically regular primes
for E by computing the numbers BE(j), much as Kummer’s criterion can be used
to generate tables of regular primes. The following list gives some regular primes
for the first few elliptic curves in Cremona’s tables, and indicates the proportion
of the primes < 20, 000 that are analytically regular. (The authors are grateful to
Jack Fearnley for performing these calculations.)

E Analytically regular p < 100 Percentage < 20, 000
11A 3, 23, 31, 59, 67, 89, 97. 27.5
14A 3, 5, 13, 59, 61, 83. 27.0
15A 17, 23, 31, 79. 27.0
17A 3, 7, 11, 13, 23, 31, 53, 79. 27.8
19A 5, 7, 11, 17, 47, 61. 28.0

Of course, it is expected that the converse to Theorem 3.1 holds, i.e., that a prime
p is anaytically regular if and only if it is regular. The ongoing work of Skinner and
Urban alluded to in the discussion of Conjecture 1.7 may shed some light on this
converse.

Theorem 3.1 and the above table yield plenty of instances where the hypotheses
made on E, p, and q in Theorem 1.8 are satisfied, proving that Theorem 1.8 is not
vacuous. For the sake of illustration, we mention the following result:

Corollary 3.2. Let E : y2 − y = x3 − x2 be the (unique, up to isogeny) elliptic
curve of conductor 11, and let p be one of the primes 3, 23, 31, 59, 67, 89, or 97. If
Conjecture 1.7 is true, then

rE(Q(µpn , 111/pn

)) = pn − 1, rE(Q(111/pn

)) = n.

The remainder of this article is devoted to explaining the proof of Theorem 1.8.

4. The basic strategy

We maintain the notations of the previous section and the assumptions in the
statement of Theorem 1.8. Let us begin by listing a few facts about E and its
behaviour over Ln that will be needed in the course of our study.

Lemma 4.1. With notations and assumptions of Theorem 1.8, we have

(1) E(L)[p∞] = 0 for any subfield L of L∞.
(2) The Shafarevich-Tate group X(E/k) has trivial p-primary part.
(3) The prime q is inert in K∞ and p ∤ ordq(qTate), where qTate denotes the

period of the Tate curve E over the completion of k at the unique prime
above q.

(4) ap ≡/ 1 (mod p).
(5) Selp(E/Q(µpn)) = 0 for each n ≥ 0.
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(6) The functional equation of the L-function L(E/Q(µpn), s) has sign +1.
(7) Any elliptic curve isogenous to E still satisfies conditions (1)-(3) in Theo-

rem 1.8.

Proof. Part (1) of this lemma follows directly from the fact that Gal(Q(E[p])/Q) is
isomorphic to GL2(Fp) and that G has no quotient isomorphic to GL2(Fp). Parts
(2)-(4) then follow from the characterisation (v) in the definition of a regular prime
for E. To prove (5), let Γn = Gal(K∞/Q(µpn)). The kernel of the restriction map

Selp(E/Q(µpn)) −→ Selp(E/K∞)Γn

is contained in H1(Γn, Ep∞(K∞)) which is zero by (1), i.e. this restriction map is
injective. But Selp(E/K∞) = 0 by assumption, and (5) follows. Now (6) follows
from (5) and the parity theorem in Prop. 12.5.9.5(iv) of [Ne1]. (See also Theorem
1.1. of [Do-TV2] and [Ne2]; alternately, (6) is also a consequence of Conjecture 1.7.)
Part (7) follows from the fact that E[p] is an irreducible Gal(Q/Q)-module, in light
of the fact that properties (1)-(3) in Theorem 1.8 are preserved under isogenies of
degree prime to p. ¤

For each integer n ≥ 1, recall that Gn = Gal(Ln/Q) ∼= (Z/pnZ) ⋊ (Z/pnZ)×

and that Kn = Q(µpn). Let χn be any faithful character of Gal(Ln/Kn) ∼= Z/pnZ
(i.e., a surjective homomorphism to the group of pn-th roots of unity). The induced
representation

ρn := IndQ
Kn

χn

is an absolutely irreducible rational representation of Gn of dimension pn − pn−1

which is faithful and does not depend on the choice of χn.

Lemma 4.2. The representation ρn is the unique faithful irreducible representa-
tion of Gn. Any other irreducible representation of Gn factors through the group
Gal(Ln−1Kn/Q).

Theorem 1.8 is now a consequence of the following more precise statement.

Theorem 4.3. Assume all the hypotheses of Theorem 1.8. Then for each n ≥ 0,

(4.1) E(Ln) ⊗ Q ∼= ρ1 ⊕ ρ2 ⊕ · · · ⊕ ρn.

Our strategy to prove Theorem 4.3 is to proceed by induction on n. For n = 0,
we have Ln = Fn = Q, and there is nothing to show. So assume that

E(Ln−1) ⊗ Q = ρ1 ⊕ · · · ⊕ ρn−1.

In particular, rE(Ln−1) = pn−1 − 1. Proposition 1.5 implies that rE(Ln) ≤ pn − 1.
To show that equality is attained, it is enough to prove that

(4.2) HomGn
(ρn, E(Ln) ⊗ Q) 6= 0,

which implies that E(Ln) ⊗ Q contains exactly one copy of ρn, and therefore that
(4.1) holds.

Note that (by part (3) of Lemma 4.1) the prime q is inert in Kn/Q. Denote by
qn the unique prime of Kn above q. The prime qn is totally ramified in Ln/Kn,
with ramification degree pn. Let q′n denote the unique prime of Ln above qn, and
let Ln denote the completion of Ln at this prime. Finally let On denote the ring
of integers of Ln, and let En denote the Néron model of E over Spec(On). By
assumption, the elliptic curve E has split multiplicative reduction at qn. Thus E is



ELLIPTIC CURVES OVER KUMMER EXTENSIONS 11

a Tate curve over Ln, and the group of connected components of En is isomorphic
to

L×
n /qZ

TateO
×
Ln

≃ Z/ordq(qTate)p
nZ.

Let Φn denote the p-primary part of this group of connected components. By part
(3) of Lemma 4.1, we know that p ∤ ordq(qTate), and hence Φn is (canonically)
isomorphic to Z/pnZ. Write

∂ : En(On) −→ Φn

for the specialization map to the group of connected components. We can (and
will) also view ∂ as a map on E(Ln), by the universal property of the Néron model.

The following proposition gives a useful criterion in terms of the specialisation
map ∂ for equation (4.2) to be satisfied.

Proposition 4.4. Let y be a point in E(Ln) and let Vy ⊂ E(Ln)⊗Q be the rational
representation of Gn generated by y. If ∂(y) has order pn, then HomGn

(ρn, Vy) 6= 0.

Proof. By Lemma 4.2, we only need to show that y does not belong to

E(Ln)tors + E(L′
n−1), where L′

n−1 := Ln−1Kn.

Part (1) of Lemma 4.1 implies that

∂(E(Ln)tors) = 0,

while the fact that q has ramification degree pn−1 in L′
n implies that

∂(E(L′
n−1)) ⊂ pΦ ≃ Z/pn−1Z.

The proposition follows. ¤

Proposition 4.4 reduces the proof of Theorem 1.8 to the problem of producing,
for each n = 1, 2, . . ., an algebraic point yn ∈ E(Ln) such that ∂(yn) has order pn in
Φn. We will construct the point yn as a Heegner point arising from an appropriate
Shimura curve parametrisation of E.

5. Shimura Curves

In this section and the next, the integer n ≥ 1 will be fixed. In order to lighten
the notations, we will therefore supress it from the subscripts and write

F = Q(µpn)+, K = Q(µpn), and L = Ln = Q(µpn , q1/pn

).

Let q denote the unique prime of F above q, and let Fq denote the completion of
F at this prime. We will denote by OFq

the ring of integers of Fq, and choose a
uniformising element πq of OFq

. Finally, let Fq = OFq
/πq denote the residue field

of Fq at q.
Let f be the Hilbert modular form obtained by abelian base change of f0 to F

so that

L(f, s) = L(E/F, s), L(fK , s) = L(E/K, s).

Let ω be the quadratic Hecke character over F associated to the extension K/F .
By Lemma 4.1 (6), the sign of the functional equation for L(fK , s) is +1. It follows
that the set Σ′ introduced in (1.5) has even cardinality.

Fix an infinite place τ of F , and let

(5.1) Σ := Σ′ \ {τ, q}.
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Let B be the quaternion algebra over F ramified exactly at the places of Σ. Let OB

be a maximal order of B and fix an isomorphism OB,q
∼= M2(OFq

). Let R ⊂ OB

be an Eichler order of B of discriminant prime to q. Let g ∈ ÔB be an element

whose component at q is

(
1 0
0 πq

)
and whose other components are 1. Let R0(q)

be the order of B defined by

B ∩ (R̂ ∩ gR̂g−1).

Let G be the algebraic group over F representing the functor on F -algebras A 7−→
(B ⊗F A)×. Consider the following two open compact subgroups of G(Af ):

U = R̂×, U0(q) = R̂0(q)
×

.

Let H = C − R and let X and X0(q) be the Shimura curves over F associated to
(G,H) of level U and U0(q) respectively. They have complex points

X(C) = G(F )\H × G(Af )/U,

X0(q)(C) = G(F )\H × G(Af )/U0(q).

These two (not necessarily connected) curves are equipped with two natural “de-
generacy maps”

X0(q) −→ X,

denoted π1 and π2 respectively. These two maps satisfy π1 = π2 ◦ wq, where wq is
the Atkin-Lehner involution at q. Let J and J0(q) denote the Jacobians of X and
X0(q), respectively.

Let Π be the automorphic representation for G such that the automorphic rep-
resentation for GL2,F corresponding to f is the Jacquet-Langlands lift of Π. Let φ
be a new vector in Π. It is unique up to multiplication by a non-zero scalar and
is an eigenvector of the Hecke algebra TU0(q) of level U0(q). The annihilator of the
new line Cφ in TU0(q) cuts out a quotient of J0(q) which is isogenous to E over F .

Theorem 5.1. The elliptic curve E is isogenous over F to a quotient of J0(q).

By eventually replacing E with another elliptic curve in its isogeny class, we will
assume without loss of generality (by part (7) of Lemma 4.1) that E is an optimal
quotient of J0(q), so that the modular parametrization

(5.2) η : J0(q) −→ E

has connected kernel.
The curves X and X0(q) have canonical nodal models (in the sense of Section

1 of [Ed]) over Spec(OFq
), which will be denoted by X and X0(q) respectively.

The special fiber of X0(q) is the union C0 ∪ C∞ of two copies of X/Fq
intersecting

transversally at the set XSS of supersingular points of X/Fq
. A local equation in

a neighbourhood of a supersingular point s ∈ XSS is given by t1t2 = πms

q , where
ms = #Aut(s). Assume for simplicity that ms = 1 for all s ∈ XSS . This can
always be achieved at the cost of replacing the level structure U by a subgroup of
finite index. It will simplify our subsequent discussion, without altering any of its
essential features, to assume that this condition is satisfied.

The generic fiber of X0(q), viewed as a q-adic rigid analytic space, can be ex-
pressed as the union of two wide open spaces (in the terminology of Coleman [Cole]),
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Figure 1. The nodal model of X0(q) over Spec(OFq
).

denoted W0 and W∞, intersecting in a disjoint union of open annuli As indexed by
the elements of XSS :

W0 ∩ W∞ = ∪s∈XSS
As.

Let U0 and U∞ denote the largest affinoid subregions contained in W0 and W∞

respectively, so that X0(q)(F̄q) can be expressed as a disjoint union:

X0(q)(F̄q) = U0 ∪ U∞ ∪
⋃

s∈XSS

As.

Any point in X0(q)(Fq) is contained in one of the affinoids U0 and U∞, and
the Cartier divisor associated to such a point meets the special fiber at a smooth
point, belonging to either C0 or C∞ (but not to both). The same also holds if Fq is
replaced by any unramified extension. For each s ∈ XSS , choose a local parameter
js of OAs

which identifies the annulus As with the standard annulus in Cq defined
by {|πq| < |z| < 1}. We choose these local parameters in such a way that they give
rise to compatible orientations in the sense of [Cole] on each of the annuli As. The
situation (in the case where X has genus 0 and three supersingular points, labelled
1, 2 and 3, so that X0(q) has genus two) is depicted in Figure 1.

Let Kq be any unramified extension of Fq and let L be a totally ramified exten-
sion of Kq of degree d. We will write πL for a uniformising element of the ring of
integers OL of L, so that (πd

L) = (πq).
Over the ramified base Spec(OL), the nodal model of X0(q) is obtained by re-

solving the singularities of the special fiber by a sequence of blowups, so that the
singular points of the two irreducible components C0 and C∞ of XFq

are now con-
nected at each supersingular point by a chain of d − 1 rational curves intersecting
transversally at ordinary double points. Let ℓs,1, . . . , ℓs,d−1 denote this chain of
projective lines ordered in such a way that

(1) The line ℓs,1 intersects C0 at the singular point ss,1 on C0 attached to s.
(2) The lines ℓs,j−1 and ℓs,j intersect transversally in a singular point ss,j , for

j = 2, . . . , d − 1.
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Figure 2. The nodal model of X0(q) over Spec(OL).

(3) The line ℓs,d−1 intersects C∞ in the singular point ss,d on C∞ attached to
s.

The reduction map from the OL-points of the generic fiber to the smooth points
of the special fiber can be described by introducing, for each s ∈ XSS , the affinoid
regions

Affs,j = {α ∈ As such that |js(α)| = |πj
L|}, j = 1, . . . , d − 1.

The open annulus As is a disjoint union of the d − 1 affinoids Affs,j with the open
annuli of the form

As,j = {α ∈ As such that |πj
L| < js(α)| < |πj−1

L |}, j = 1, . . . , d.

On the level of L-rational points, we have

As(L) = Affs,1(L) ∪ · · · ∪ Affs,d−1(L).

A point P ∈ X (L) on the ordinary locus reduces to a smooth point on one of the
components C0 or C∞. If P belongs to the supersingular locus, its image under
the reduction map is a smooth point on the unique irreducible component ℓs,j such
that P belongs to Affs,j . The nodal model of X0(q) over Spec(OL) is represented
schematically in Figure 2.

Let G denote the dual graph of the special fiber of X0(q) over Spec(OL). Its
vertices are indexed by the irreducible components of this special fiber, and we will
denote this set of vertices by

V(G) = {v0, v∞} ∪ {vs,j , where s ∈ XSS , j = 1, . . . , d − 1.}

Two vertices are joined by an edge if they intersect. The set E(G) of (ordered)
edges of G is therefore in bijection with the singular points of the special fiber, and
we write

E(G) = {es,j , where s ∈ XSS , j = 1, . . . , d.}.
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Figure 3. The dual graph G of the special fiber of X0(q) over Spec(OL).

The dual graph of X0(q) over Spec(OL) is depicted in Figure 3. Note that it need
not be connected, because X0(q) may have several distinct components.

By reduction, a divisor on X0(q)(OL) gives rise to a formal integral linear com-
bination of elements of V(G). Let

red : Div(X0(q)) −→ Z[V(G)]

denote this reduction map. Let Div0(X0(q)) denote the group of divisors which are
homologically trivial (i.e., whose restrictions to each component of the generic fiber
are of degree zero). Given any ∆ ∈ Div0(X0(q)(L)), write γ∆ for any path in G
(i.e., element of Z[E(G)]) satisfying

boundary(γ∆) = red(∆).

Note that the path γ∆ is determined by this equation only up to elements of
H1(G, Z).

Assume now for simplicity of exposition that ordπq
(qTate) = 1, so that E/Fq

has
trivial group of connected components. This implies that the group Φ of connected
components in the special fiber of E/OL

is isomorphic to Z/dZ.
We now recall the description of the specialisation map

∂ ◦ η : Div0(X0(q)(L)) −→ Z/dZ

that follows from the discussion in [Ed].
Let 1E be a generator of the character group of the torus attached to E, and let

ξE := η∗(1E)

denote its pullback under the modular parametrisation η. The element ξE can
be viewed as an element of Z[XSS ]. The set XSS is identified with the double
coset space X ′ associated to the quaternion algebra B′ introduced in (1.6). By the
argument explained in [Rib], which adapts to the more general setting of Shimura
curves over totally real fields, the fact that E/Fq

has a trivial group of connected
components implies that the element ξE is indivisible. Since it belongs to the
eigenspace for the Hecke algebra associated to f , it follows that

ξE = ±φ′,

where φ′ is the element introduced just before (1.8). After eventually adjusting the
sign of φ′, we can assume that ξE = φ′.

To give a concrete description of the specialisation map to connected components,
it is useful to view ξE as a function on the set E(G) of ordered edges of G, by setting,
for all s ∈ XSS :

〈ξE , es,1〉 = · · · = 〈ξE , es,d〉 := 〈ξE , s〉.
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We may extend ξE to Z[E(G)] by Z-linearity. Note then that

〈ξE , γ〉 := ξE(γ) belongs to dZ, for all γ ∈ H1(G, Z).

In particular, if ∆ is a degree 0 divisor on X0(q)(L), the expression 〈ξE , γ∆〉 is well
defined in Z/dZ.

The following proposition is a reformulation of the main result of [Ed].

Proposition 5.2. For all ∆ in Div0(X0(q)(L)), we have

∂ ◦ η(∆) = 〈ξE , γ∆〉 = 〈φ′, γ∆〉.

6. Heegner Points

Fix an embedding ρ : K −→ B. Assume that the maximal order OB of B has
been chosen to contain OK and fix an isomorphism OB,q

∼= M2(OFq
). Finally, let

R ⊂ OB be an order of B containing OK with relative discriminant N/q.
Let T be the algebraic group over F representing the functor A 7−→ (K ⊗F A)×

for any F -algebra A. We may regard T as a torus in G via the fixed embedding
ρ : K −→ B. Then T (F ) →֒ G(F )+ acts on H. Let h0 be the unique fixed point
of T (F ) in the upper half plane H+. Then X(C) is equipped with the set of CM
points:

CU : = G(F )+\G(F )+h0 × G(Af )/U

≃ T (F )\G(Af )/U,

where the last identification is given by [(h0, g)] 7−→ [g]. By Shimura’s theory, these
CM points by K are defined over abelian extensions of K. More precisely, there

is an action of T (Af ) ≃ K̂× on CU , given by the left multiplication on G(Af ).
Shimura’s reciprocity law asserts that this action factors through the reciprocity
map T (Af ) ։ Gal(Kab/K) and corresponds to the Galois action on CU . For a CM
point z = [g] in CU with g ∈ G(Af ), the stabilizer of z in T (Af ) equals

Uz := T (F ) · (T (Af ) ∩ gUg−1).

There exists a unique order Oc = OF + cOK of OK , with c a nonzero ideal of OF ,

such that Ô×
c = T (Af ) ∩ gUg−1. We say that the conductor of z is c.

Let λ be a prime of OF which is relatively prime to q, and let z0 ∈ CU be a
CM point by K of conductor λ. This point is defined over the ring class field H[λ]
of K of conductor λ. This ring class field is characterized by the reciprocity law
isomorphism

Gal(H[λ]/K) ≃ K×\K̂×/ÔK [λ]×

of class field theory, where we recall that OK [λ] = OF + λOK is the OF -order of
K of conductor λ.

The fibers of z0 under the maps

πi : X0(q) −→ X, i = 1, 2

are isomorphic to SpecH[λq]. The field H[λq] is a cyclic extension of H[λ] which
is totally ramified at all the primes of H[λ] above q. Let

dλ := [H[λq] : H[λ]]

denote the degree of H[λq] over H[λ].
Choose any two closed points z1, z2 ∈ X0(q)(H[λq]) satisfying

(6.1) π1(z1) = z0, π2(z2) = z0.
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For each σ ∈ Gal(H[λ]/K), choose a lift σ̃ ∈ Gal(H[λq]/K) of σ to this group, and
write

∆λ,q =
∑

σ∈Gal(H[λ]/K)

(z1 − z2)
σ̃ ∈ Div0(X0(q)(H[λq])),

yλ,q = η(∆λ,q) ∈ E(H[λq]),

where we recall that η is the modular parametrization of (5.2). Because the prime
q is inert in K/F , it splits completely in H[λ]/K. Choose a prime of H[λ] above q

and write

∂ : E(H[λq]) −→ Z/dλZ

for the associated projection onto the group Φ of connected components of E over
H[λq] at this prime.

We remark that the lifts z1 and z2 are well defined by (6.1) up to translation
by an element of Gal(H[λq]/H[λ]). Since this extension is totally ramified at the
primes above q, and since the inertia groups at these primes act trivially on the
connected components, the expression ∂(yλ,q) does not depend on the choice of
points z1 and z2 satisfying (6.1). For the same reason, it does not depend on the
choice of lifts σ̃, which are well defined up to multiplication by elements in the
inertia group at q. Finally, because the group Gal(H[λ]/K) acts transitively on the
primes of H[λ] above q, the expression ∂(yλ,q) obtained through summing over the
Gal(H[λ]/K)-translates of the divisor (z1 − z2) is also independent of the choice of
this prime.

Theorem 6.1. We have

∂(yλ,q)
2 = 4L(E/K, 1)(λ) (mod dλ).

Proof. Let

∆′
K,λ =

∑

s∈XSS

m(s)s ∈ Z[X ′]

denote the Heegner vector introduced in Section 2. It follows from the formula
(2.3) of the appendix to [BD3] and Gross’ work on quasi-canonical liftings of formal
groups that (after eventually permuting z1 and z2 if necessary) we have

red




∑

σ∈Gal(H[λ]/K)

zσ̃
1


 =

∑

s∈XSS

m(s)vs,dλ−1,

red




∑

σ∈Gal(H[λ]/K)

zσ̃
2


 =

∑

s∈XSS

m(s)vs,1.

Therefore we can choose

(6.2) γ∆λ,q
=

∑

s∈XSS

m(s)(es,2 + · · · + es,dλ−1).

By Proposition 5.2,

(6.3) ∂(yλ,q) = ∂ ◦ η(∆λ,q) = 〈φ′, γ∆λ,q
〉.

Combining (6.2) and (6.3) gives

∂(yλ,q) = (dλ − 2)〈φ′,∆′
K,λ〉.
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The theorem now follows after squaring both sides, in light of the definition of
L(E/K, 1)(λ) given in (2.4). ¤

Let L ⊂ H[λq] be a cyclic extension of K of degree d which is totally ramified
at q, and write

∆L =
∑

σ∈Gal(H[λq]/L)

(z1 − z2)
σ ∈ Div0(X0(q))(L),(6.4)

yL = η(∆L) ∈ E(L).(6.5)

Theorem 6.2. We have

∂(yL)2 = 4L(E/K, 1)(λ) (mod d).

Proof. Since q splits completely in H[λ]/K and is totally ramified in L/K, the
extensions L and H[λ] are linearly disjoint over K. Therefore the natural homo-
morphism Gal(H[λq]/L) −→ Gal(H[λ]/K) is surjective. We may therefore choose
the lifts σ̃ of σ in such a way that σ̃ belongs to Gal(H[λq]/L). After defining yλ,q

with this choice of lifts, we have

yL = NormH[λq]/LH[λ](yλ,q),

where LH[λ] is the compositum of L and H[λ] and NormH[λq]/LH[λ] is the norm
to this field. Since all the primes of LH[λ] above q are totally ramified in H[λq], it
follows that this norm element induces the natural projection map Z/dλZ −→ Z/dZ
from the group of connected components of E over H[λq] to the group of connected
components over L. It follows from Theorem 6.1 that

∂(yL)2 ≡ 4L(E/K, 1)(λ) (mod d),

as was to be shown. ¤

7. Conclusion of the Proof

We can now prove Theorems 1.8 and 1.9 of the introduction.

Proof of Theorem 1.8. The extension L = Ln = Q(µpn , q1/p) is an abelian exten-
sion of K = Q(µpn) which is unramfied outside p and q and is tamely ramified at
q. This extension is also Galois over the totally real subfield F = Q(µpn)+, and
Gal(L/F ) is a dihedral group. It follows from class field theory that L is contained
in a ring class field of the form H[ptq] for a suitable t ≥ 1. Let yn = yL ∈ E(L) de-
note the Heegner point that was constructed in (6.5). By Theorem 6.2 and Lemma
2.1, we have

∂(yn)2 ≡ 4L(E/K, 1)(pt) (mod pn)

= 4(ap − 1)at−1
p L(E/K, 1) (mod p).

Recall that by Lemma 4.1 the Selmer group Selp(E/Q(µpn)) is trivial. Conjecture
1.7 for E and the quadratic extension K/F implies that the special value L(E/K, 1)
is a p-adic unit. Hence the same is true of ∂(yn)2, in light of part (4) of Lemma
4.1. Therefore ∂(yn) has order pn, and Theorem 1.8 follows (by induction on n)
from Proposition 4.4. ¤
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Proof of Theorem 1.9. The L-series L(E/L) factors as a product of abelian L-series
of E/K:

L(E/L, s) =
∏

χ∈ ̂Gal(L/K)

L(E/K,χ, s).

The factor L(E/K, 1) associated to the trivial character is non-vanishing by assump-
tion, while the remaining pn−1 factors each have a zero of odd order because of the
sign in the functional equation of L(E/K,χ, s). Our proof that rank(E(L)) ≥ pn−1
exhibited a Heegner point whose natural image in the χ-component (E(L)⊗C)χ is
non-zero. It follows from Zhang’s generalisation of the Gross-Zagier formula that
each factor associated to a non-trivial χ has non-vanishing derivative. The method
of Euler systems, as generalised to the setting of totally real fields in [KL] and [TZ]
(and suitably adapted to non-trivial ring class characters, as in [BD1]) implies the
second statement in Theorem 1.9. ¤

Remark. Theorem 4.3 completely determines the structure of E(Ln) ⊗ Q as a
representation for Gal(Ln/Q). One can therefore compute rE(L) for any subfield
L of L∞ finite over Q from this theorem. Let L be an arbitrary finite extension of
Q contained in L∞, let K = L ∩ K∞. Define integers m,n, d by

[L : K] = pn, [K : Q] = dpm−1 with d | p − 1.

One can show that if d 6= p − 1 then L = K(q1/pn

) for some pn-th root q1/pn

of q,

and if d = p − 1 then L = K(ζpℓ

q1/pn

) with 0 ≤ ℓ ≤ n − 1, where ζ is a primitive
pn+m-th root of unity.

Theorem 7.1. Assume the hypothesis of Theorem 1.8. Then

rE(L) =





pℓ−1 − 1, if d = p − 1 and 0 ≤ ℓ < m,

d ·
pn − 1

p − 1
, if d 6= p − 1 and n ≤ m,

d ·

(
pm − 1

p − 1
+ pm−1(n − m)

)
, otherwise.

In particular, rE(L) is equal to 0, n, and pn −1 for L = Q(µpn), Q(q1/pn

), and Ln,
respectively.
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[Ko1] V. Kolyvagin. The Mordell-Weil and Shafarevich-Tate groups for Weil elliptic curves.

Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 6, 1154–1180, 1327; translation in Math.
USSR-Izv. 33 (1989), no. 3, 473–499.

[Ko2] V. Kolyvagin, Euler systems, The Grothendieck Festschrift. Prog. in math., Boston,
Birkhauser (1990).

[KL] V.A. Kolyvagin and D.Yu. Logachev. Finiteness of X over totally real fields. (Russian)
Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), no. 4, 851–876; translation in Math. USSR-

Izv. 39 (1992), no. 1, 829–853.
[Lo] M. Longo. On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves

over totally real fields. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 3, 689–733.
[Ma] B. Mazur, Rational points of abelian varieties with values in towers of number fields.

Invent. Math. 18 (1972), 183–266.
[Mat] K. Matsuno, Finite Λ-submodules of Selmer groups of abelian varieties over cyclotomic

Zp-extensions. J. Number Theory 99 (2003) 415-443.

[Ne1] J. Nekovar, Selmer complexes. Astérisque 310 (2006), viii+559 pp.
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