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Introduction. Historically, two approaches have been followed to study the clas-
sical Fermat equationxr + yr = zr . The first, based on cyclotomic fields, leads to
questions about abelian extensions and class numbers ofK = Q(ζr ) and values of
the Dedekind zeta-functionζK(s) at s = 0. Many open questions remain, such as
Vandiver’s conjecture thatr does not divide the class number ofQ(ζr )+. The second
approach is based on modular forms and the study of 2-dimensional representations of
Gal(Q̄/Q). Even though 2-dimensional representations are more subtle than abelian
ones, it is by this route that Fermat’s last theorem was finally proved (cf. [Fre], [Se2],
[Ri2], [W3], and [TW]; or [DDT] for a general overview).

This article examines the equation

xp+yq = zr . (1)

Certain 2-dimensional representations of Gal(K̄/K), whereK is the real subfield
of a cyclotomic field, emerge naturally in the study of equation (1), giving rise to a
blend of the cyclotomic and modular approaches. The special valuesζK(−1), which
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in certain cases are related to the class numbers of totally definite quaternion algebras
overK, appear asobstructionsto proving that (1) has no solutions. The condition
that r is a regular prime also plays a key role in the analysis leading to one of our
main results about the equationxp+yp = zr (see Theorem 3.22).

One is interested inprimitive solutions(a,b,c) to equation (1), that is, those sat-
isfying gcd(a,b,c) = 1. (Such a condition is natural in light of theabc conjecture,
for example; see also [Da2].) A solution is callednontrivial if abc �= 0. It is assumed
from now on that the exponentsp, q, andr are prime and thatp is odd.

Let (a,b,c) be a nontrivial primitive solution to equation (1). One wishes to show
that it does not exist. The program for obtaining the desired contradiction, following
the argument initiated by Frey and brought to a successful conclusion by Wiles in the
case ofxp+yp = zp, can be divided into four steps.

Step 1 (Frey, Serre).Associate to(a,b,c) a modp Galois representation

ρ : Gal(K̄/K)−→GL2(F)

having “very little ramification,” that is, whose ramification can be bounded precisely
and a priori independently of the solution(a,b,c). HereK is a number field andF
is a finite field. For the Fermat equationxp+ yp = zp, one may takeK = Q and
F= Z/pZ: the representationρ is then obtained by considering the action ofGQ on
thep-division points of the Frey elliptic curvey2 = x(x−ap)(x+bp). As explained
in Section 1, one is essentially forced to takeK =Q(ζq,ζr )+ andF, the residue field
of K at a prime abovep, in studying equation (1).

Step 2 (Wiles).Prove thatρ is modular, that is, arises from a Hilbert modular form
on GL2(AK). In the setting of Fermat’s equation, Wiles proves that all semistable
elliptic curves overQ arise from a modular form, which implies the modularity ofρ.

Step 3 (Ribet).Assuming step 2, show thatρ comes from a modular form of
small level, and deduce (in favorable circumstances) that its image issmall, that is,
contained in a Borel subgroup or in the normalizer of a Cartan subgroup ofGL2(F). In
the setting of Fermat’s equation, Ribet showed thatρ has to bereducible; for reasons
that are explained in Section 3, one cannot rule out the case where the image ofρ is
contained in the normalizer of a Cartan subgroup when dealing with equation (1).

Step 4 (Mazur).Show that the image ofρ is large; for example, that it contains
SL2(F). Historically, this is the step in the proof of Fermat’s last theorem that was
carried out first, in the seminal papers [Ma1] and [Ma2], which also introduced many
of the tools used in steps 2 and 3.

In the classical setting, combining the conclusions of steps 3 and 4 leads to a con-
tradiction and shows that(a,b,c) does not exist, thus proving Fermat’s last theorem.
In [Da1] and [DMr], it was observed that the program above can be used to show that
xp+yp = zr has no nontrivial primitive solutions whenr = 2,3 andp ≥ 6− r (the
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result forr = 3 being conditional on the Shimura-Taniyama conjecture, which is still
unproved for certain elliptic curves whose conductor is divisible by 27). The purpose
of this article is to generalize the analysis to the general case of equation (1).

Sections 1, 2, 3, and 4 describe the generalizations of steps 1, 2, 3, and 4, re-
spectively. As a concrete application, the main results of Section 3 relate solutions to
xp+yp = zr to questions aboutp-division points of certain abelian varieties with real
multiplications byQ(cos(2π/r)). Alas, our understanding of these questions (and of
the arithmetic of Hilbert modular forms over totally real fields) is too poor to yield
unconditional statements. For the time being, the methods of this paper should be en-
visaged as a way of tying equation (1) to questions that are more central, concerning
Galois representations, modular forms, and division points of abelian varieties.

Acknowledgements.The author is grateful to F. Diamond, J. Ellenberg, A. Kraus,
and K. Ribet for their helpful comments, and to N. Katz and J.-F. Mestre for pointing
out a key construction used in Section 1. The author greatly benefitted from the support
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hospitality of the Université Paris VI (Jussieu) and the Institut Henri Poincaré, where
the work on this paper was started, and of the Eidgenössische Technische Hochschule
(ETH) in Zürich, where it was completed.

1. Frey representations

1.1. Definitions. If K is any field of characteristic zero, writeGK := Gal(K̄/K)
for its absolute Galois group. Typically,K is a number field; letK(t) be the function
field overK in an indeterminatet . The groupGK(t) fits into the exact sequence

1−→GK̄(t) −→GK(t) −→GK −→ 1.

Let F be a finite field, embedded in a fixed algebraic closure of its prime field.

Definition 1.1. A Frey representationassociated to the equationxp+yq = zr over
K is a Galois representation

� = �(t) :GK(t) −→GL2(F)

satisfying the following conditions.
(1) The restriction of� toGK̄(t) has trivial determinant and is irreducible. Let

�̄geom:GK̄(t) −→ PSL2(F)

be the projectivization of this representation.
(2) The homomorphism̄�geom is unramified outside{0,1,∞}.
(3) It maps the inertia groups at 0, 1, and∞ to subgroups ofPSL2(F) of orderp,

q, andr, respectively.
The characteristic ofF is also called thecharacteristicof the Frey representation.

One should think of� = �(t) as a 1-parameter family of Galois representations of
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GK indexed by the parametert . Condition (1) in Definition 1.1 ensures that this family
has constant determinant but is otherwise “truly varying” witht . The motivation for
the definition of�(t) is the following.

Lemma 1.2. There exists a finite set of primesS of K depending on� in an
explicit way, such that, for all primitive solutions(a,b,c) to the generalized Fermat
equationxp+yq = zr , the representationρ := �(ap/cr) has a quadratic twist that
is unramified outsideS.

Sketch of proof. Let

�̄ :GK(t) −→ PGL2(F)

be the projective representation deduced from�. The field fixed by the kernel of̄�
is a finite extension ofK(t), whose Galois group is identified with a subgroupG of
PGL2(F) by �̄; in other words, it is the function field of aG-covering ofP1 over
K. This covering is unramified outside{0,1,∞} and its ramification indices arep,
q, andr above those three points: it is aG-covering of “signature(p,q,r)” in the
sense of [Se3, Sec. 6.4]. The lemma now follows from a variant of the Chevalley-Weil
theorem for branched coverings (see, e.g., [Be] or [Da2]).

Definition 1.3. Two Frey representations�1 and�2 attached to equation (1) are
said to beequivalentif their corresponding projective representations�̄1 and�̄2 differ
by an inner automorphism ofPGL2(F̄), that is, if�1 is conjugate (over̄F) to a central
twist of �2.

To a Frey representation� we assign a triple(σ0,σ1,σ∞) of elements inPSL2(F)
of ordersp, q, andr satisfyingσ0σ1σ∞ = 1 as follows (cf. [Se3, Ch. 6]). The element
σj is defined as the image bȳ�geomof a generator of the inertia subgroup ofGK̄(t) at
t = j . The elementsσ0,σ1, andσ∞ are well defined up to conjugation, once primitive
p, q, andrth roots of unity have been chosen. One can choose the decomposition
groups in such a way that the relationσ0σ1σ∞ = 1 is satisfied (cf. [Se3, Th. 6.3.2]).
The triple(σ0,σ1,σ∞) is then well defined up to conjugation.

If Cj is the conjugacy class ofσj in PSL2(F), one says that the Frey representation
� is of type(C0,C1,C∞).

For the following definition, assume that the exponentsp, q, andr are odd, so that
σ0, σ1, andσ∞ lift to unique elements̃σ0, σ̃1, andσ̃∞ of SL2(F) of ordersp, q, and
r, respectively.

Definition 1.4. The Frey representation attached toxp+yq = zr is said to beodd
if σ̃0σ̃1σ̃∞ =−1, and is said to beevenif σ̃0σ̃1σ̃∞ = 1.

1.2. Classification: The rigidity method.If n is an integer, letζn denote a prim-
itive nth root of unity. Given an odd primep, write p∗ := (−1)(p−1)/2p, so that
Q(

√
p∗) is the quadratic subfield ofQ(ζp). We now turn to the classification of Frey

representations, beginning with the classical Fermat equation.
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The equationxp+yp = zp

Theorem 1.5. Letp be an odd prime. There is a unique Frey representation�(t)

of characteristicp (up to equivalence) associated to the Fermat equationxp+yp =
zp. One may takeK =Q andF= Fp, and the representation�(t) is odd.
Remark. This theorem is originally due to Hecke [He], where it is expressed as a

characterization of a certain field of modular functions of levelp.

Proof of Theorem 1.5.SetF= Fp. We begin by classifying conjugacy classes of
triples σ0, σ1, andσ∞ of elements of orderp in PSL2(F) satisfyingσ0σ1σ∞ = 1.
There are two conjugacy classes of elements of orderp in PSL2(F), denotedpA
andpB, respectively. The classpA (resp.,pB) is represented by an upper-triangular
unipotent matrix whose upper right-hand entry is a square (resp., a nonsquare). These
two classes arerational overQ(

√
p∗) in the sense of [Se3, Sec. 7.1], and they

are interchanged by the nontrivial element in Gal(Q(
√
p∗)/Q) as well as by the

nontrivial outer automorphism ofPSL2(F). Lift σ0, σ1, andσ∞ to elements̃σ0, σ̃1,
andσ̃∞ of orderp in SL2(F). The groupSL2(F) acts on the spaceV = F2 of column
vectors with entries inF. Sinceσ̃j is unipotent, there are nonzero vectorsv1 andv2 in
V which are fixed bỹσ0 andσ̃1, respectively. Becauseσ0 andσ1 do not commute, the
vectorsv1 andv2 form a basis forV . Scalev2 so thatσ̃0 is expressed by the matrix(

1 1
0 1

)
in this basis; let

(
1 0
x 1

)
be the matrix representing̃σ1. Sinceσ̃∞ has trace 2, the

relationσ̃0σ̃1 = σ̃−1∞ forcesx = 0, which is impossible sinceσ1 is of orderp. Hence
there are no even Frey representations of characteristicp. The relationσ̃0σ̃1 =−σ̃−1∞
givesx = −4. Note that the resulting elementsσ0, σ1, andσ∞ belong to the same
conjugacy class inPSL2(F). It is well known that they generatePSL2(F). Hence
there are exactly two distinct conjugacy classes of surjective homomorphisms

�̄
geom
A , �̄

geom
B :GQ̄(t) −→ PSL2(F),

of type(pA,pA,pA) and(pB,pB,pB), respectively, which are interchanged by the
outer automorphism ofPSL2(F). By the rigidity theorem of Bely̆ı, Fried, Thompson,
and Matzat (cf. [Se3, Sec. 7]),�̄geom

A and�̄geom
B extend uniquely to homomorphisms

�̄A, �̄B :GQ(t) −→ PGL2(F)= Aut
(
PSL2(F)

)
,

which are conjugate to each other. Thus there is at most one Frey representation�

attached toxp+ yp = zp, whose corresponding projective representation�̄ is con-
jugate to�̄A and �̄B . To prove the existence of�, it is necessary to show that�̄A
(say) lifts to a linear representationGQ(t) → GL2(F). Choose a set-theoretic lifting
s of �̄A to GL2(F) satisfying det(s(x)) = χ(x), whereχ is the modp cyclotomic
character, and note that such a lifting satisfiess(x)s(y)=±s(xy). Hence, the obstruc-
tion to lifting �̄A to a homomorphism intoGL2(F) is given by a cohomology class
c(x,y) := s(x)s(y)s(xy)−1 in H 2(Q(t),±1). We note that (forj = 0, 1, and∞) the
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homomorphism̄�A maps the decomposition group att = j to the normalizer ofσj ,
which is the image inPGL2(Fp) of a Borel subgroupB of upper-triangular matrices.
Since the inclusionF×p → B splits, it follows that the restrictionsc0, c1, andc∞ of the

cohomology classc inH 2(Q((t)),±1),H 2(Q((t−1)),±1), andH 2(Q((1/t)),±1)
vanish. In particular,c has trivial “residues” att = 0, 1, ∞ in the sense of [Se4,
Ch. II, Annexe, Sec. 2]. Hence,c is “constant,” that is, comes fromH 2(Q,±1) by
inflation (see [Se4, Ch. II, Annexe, Sec. 4]). But note thatH 2(Q,±1) injects into
H 2(Q((t)),±1), since a nontrivial conic overQ cannot acquire a rational point over
Q((t)). Therefore, the classc vanishes, and the result follows. (For an alternate and,
perhaps, less roundabout argument, see [By].)

The equationxp+yp = zr . Let us now turn to the equationxp+yp = zr , where
r andp are distinct primes. One is faced here with the choice of considering Frey
representations either of characteristicp or of characteristicr. From now on, we
adopt the convention that the primep is always used to denote the characteristic of
the Frey representation, so that the equationsxp+yp = zr andxr+yr = zp require
seperate consideration.

The following theorem is inspired from the proof given in [Se3, Prop. 7.4.3 and
7.4.4] for the caser = 2 and r = 3; the general case follows from an identical
argument (see also [DMs]).

Theorem 1.6. Suppose thatr andp are distinct primes and thatp �= 2. There
exists a Frey representation of characteristicp overK associated toxp+yp = zr if
and only if

(1) the fieldF contains the residue field ofQ(ζr )+ at a primep abovep, and
(2) the fieldK containsQ(ζr )+.

When these two conditions are satisfied, there are exactlyr−1 Frey representations
up to equivalence. Whenr �= 2, exactly(r − 1)/2 of these are odd and(r − 1)/2
are even.

Proof. for condition (3) in Definition 1.1 to be satisfied, it is necessary that
PSL2(F) contain an element of orderr. This is the reason for condition (1) in The-
orem 1.6. Condition (2) arises from the fact that (forr �= 2) the (r −1)/2 distinct
conjugacy classes of elements of orderr in PSL2(F) are rational overQ(ζr )+ (in
the sense of [Se3, Sec. 7.1]) and are not rational over any smaller extension. Assume
conversely that conditions (1) and (2) are satisfied. Letσ0, σ1, andσ∞ be chosen as
in the proof of Theorem 1.5, and letσ̃j be the lift ofσj to SL2(F) of orderp when
j = 0,1. Finally, letσ̃∞ be a lift ofσ∞ to an element of orderr if r is odd and to an
element of order 4 ifr = 2. Letω̄ ∈ F be the trace of̃σ∞. Whenr = 2, one has̄ω = 0,
and whenr is odd,ω̄ is of the formϕ(ζr + ζ−1

r ) whereϕ is a homomorphism from
Z[ζr+ζ−1

r ]+ to F. Note that there are exactly(r−1)/2 suchϕ’s. One now finds, as
in the proof of Theorem 1.5, that(σ̃0, σ̃1, σ̃∞) is conjugate to one of the following
two triples:
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((

1 1
0 1

)
,

(
1 0

−(2+ ω̄) 1

)
,

( −1 1
−2− ω̄ 1+ ω̄

))
,

((
1 1
0 1

)
,

(
1 0

−(2− ω̄) 1

)
,

(
1 −1

2− ω̄ −1+ ω̄

))
.

When r = 2, these triples are equal inPSL2(F). Whenr is odd, they are distinct.
An argument based on rigidity as in the proof of Theorem 1.5 produces(r − 1)
inequivalent homomorphisms fromGK(t) to GL2(F), yielding the desired odd and
even Frey representations. These Frey representations are constructed explicitly in
Section 1.3 (cf. Lemma 1.9 and Theorem 1.10).

The equationxr+yr = zp

Theorem 1.7. Suppose thatr andp are distinct odd primes. There exists a Frey
representation of characteristicp overK associated toxr+yr = zp if and only if

(1) the fieldF contains the residue field ofQ(ζr )+ at a primep abovep, and
(2) the fieldK containsQ(ζr )+.

When these two conditions are satisfied, there are exactly(r−1)(r−2)/2 inequiva-
lent Frey representations:(r−1)2/4 odd representations and(r−1)(r−3)/4 even
representations.

Although the conclusion is somewhat different, the proof of Theorem 1.7 follows
the same ideas as the proof of Theorem 1.6. Each triple(C0,C1,pA), whereC0

andC1 each range over the(r − 1)/2 possible conjugacy classes of elements of
orderr in PSL2(F), gives rise to a unique odd and even projective representation of
GK(t) of type(C0,C1,pA), with one caveat: There is no even representation of type
(C0,C1,pA) whenC0 = C1.

The equationxp+yq = zr . We finally come to the general case of equation (1).
Assume that the exponentsp, q, andr are distinct primes and thatp is odd.

Theorem 1.8. There exists a Frey representation of characteristicp overK as-
sociated toxp+yq = zr if and only if

(1) the fieldF contains the residue fields ofQ(ζq)+ and ofQ(ζr )+ at a primep

abovep, and
(2) the fieldK containsQ(ζq)+ andQ(ζr )+.

When these two conditions are satisfied, there are(r−1)(q−1)/2 inequivalent Frey
representations overQ(ζq,ζr )+. If q,r �= 2, then(r−1)(q−1)/4 of these are odd
and(r−1)(q−1)/4 are even.

The proof is the same as for Theorems 1.5, 1.6, and 1.7.

1.3. Construction: Hypergeometric abelian varieties

The equationxp + yp = zp. One can construct the Frey representation�(t) of
Theorem 1.5 explicitly, by considering the Legendre family of elliptic curves
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J = J (t) : y2 = x(x−1)(x− t).

It is an elliptic curve overQ(t) which has multiplicative reduction att = 0 and
1 and has potentially multiplicative reduction att = ∞. The moduleJ [p] of its
p-division points is a 2-dimensionalF-vector space on whichGQ(t) acts linearly.
The corresponding representation�(t) is the Frey representation of characteristicp

attached toxp+yp = zp.

The equationxp+yp = zr . Whenr = 2, letC2(t) be the elliptic curve overQ(t)
given by the equation

C2(t) : y2 = x3+2x2+ tx. (2)

Lemma 1.9. Themodp Galois representation associated toC2 is the Frey repre-
sentation associated toxp+yp = z2.

The proof of this lemma is omitted. It follows the same ideas but is simpler than
the proof of Theorem 1.10 for the case of oddr, for which all the details are given.

Suppose now thatr is an odd prime. Letωj = ζ
j
r + ζ

−j
r , and writeω for ω1, so

thatK =Q(ω) is the real subfield of the cyclotomic fieldQ(ζr ). Let �K denote its
ring of integers, and letd = (r−1)/2 be the degree ofK overQ.

Let g(x)= ∏d
j=1(x+ωj ) be the characteristic polynomial of−ω, and letf (x) be

an antiderivative of±rg(x)g(−x); for example, we take

f (x)= xg
(
x2−2

) = g(−x)2(x−2)+2= g(x)2(x+2)−2.

Following [TTV], consider the following hyperelliptic curves overQ(t) of genusd:

C−
r (t) : y2 = f (x)+2−4t, (3)

C+
r (t) : y2 = (x+2)

(
f (x)+2−4t

)
. (4)

Let J−
r = J−

r (t) andJ+
r = J+

r (t) be their Jacobians overQ(t).
In [TTV], Tautz, Top, and Verberkmoes show that these families of hyperelliptic

curves have real multiplications byK, that is, that

EndQ̄(t)
(
J±
r

) � �K. (5)

Their proof shows that the endomorphisms ofJ±
r are in fact defined overK, and that

the natural action of Gal(K/Q) on EndK(t)(J±
r ) and on�K are compatible with the

identification of equation (5), which is canonical (see also [DMs]).
Fix a residue fieldF of K at a prime abovep, and letϕ be a homomorphism

of �K to F. The moduleJ±
r [p] ⊗ϕ F is a 2-dimensionalF-vector space on which

GK actsF-linearly. By choosing anF-basis for this vector space, one obtains Galois
representations (depending on the choice ofϕ, although this dependence is supressed
from the notation)

�±r (t) :GK(t) −→GL2(F).
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Theorem 1.10. The representations�−r (t) and�+r (t) (asϕ varies over the(r−
1)/2 possible homomorphisms from�K to F) are ther−1 distinct Frey representa-
tions of characteristicp associated toxp+yp = zr . The representations�−r are odd,
and the representations�+r are even.

Proof. (See also [DMs, Prop. 2.2 and 2.3].) Observe the following.
(1) Outside oft = 0,1,∞, the curvesC±

r (t) have good reduction. Hence�±r (t)
satisfies condition (2) in Definition 1.1 of a Frey representation.

(2) TheC±
r (t) areMumford curvesover Spec(K[[t]]) and Spec(K[[t−1]]), that is,

the special fiber ofC±
r (t) over these bases is a union of projective lines intersecting

transversally at ordinary double points. For example, replacingy by 2y+(x+2)g(x)
yields the following equation forC+

r (t) over Spec(K[[t]]), whose special fiber is the
union of two projective lines crossing at thed+1 ordinary double points(x,y) =
(−2,0), (−ωj ,0):

y2+(x+2)g(x)y+ t (x+2)= 0. (6)

Likewise, replacingy by 2y+xg(−x) gives the following equation forC+
r (t) over

Spec(K[[t−1]]):
y2+xg(−x)y+g(−x)2+(x+2)(t−1)= 0. (7)

Its special fiber is a projective line with thed ordinary double points(x,y)= (ωj ,0).
A similar analysis can be carried out forC−

r (t). By Mumford’s theory, the Jacobians
J±
r (t) have purely toric reduction att = 0 andt = 1, and hence�±r maps the inertia

at these points to unipotent elements ofSL2(F).
(3) The curveC−

r (t) has a quadratic twist that acquires good reduction over
K[[(1/t)1/r ]], while C+

r (t) acquires good reduction over this base. For example,
settingt̃ = (1/t)1/r and replacingx by 1/x andy by (2y+1)/x(r+1)/2 in equation
(4) for C+

r (t) gives the model

y2+y = xr+ t̃h(x,y, t̃/2), (8)

whereh is a polynomial with coefficients inZ. Therefore�−r (resp.,�+r ) maps the
inertia at t = ∞ to an element of order 2r (resp.,r) of SL2(F) whose image in
PSL2(F) is of orderr.

It follows from (2) and (3) that�±r (t) satisfies condition (3) in Definition 1.1.
(4) A strong version of condition (1) in Definition 1.1 now follows from the fol-

lowing group-theoretic lemma.

Lemma 1.11. Let σ0,σ1, andσ∞ be elements ofPSL2(F) of order p, p, and r
satisfyingσ0σ1σ∞ = 1. Thenσ0, σ1, andσ∞ generatePSL2(F) unless(p,r)= (3,5)
and σ̃0σ̃1σ̃∞ =−1, in which case they generate an exceptional subgroup isomorphic
to A5 ⊂ PSL2(F9).

Proof. LetG be the subgroup ofPSL2(F) generated by the images ofσ0, σ1, and
σ∞. The proper maximal subgroups ofPSL2(F) are conjugate to one of the groups
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in the following list (cf., e.g., [Hu, Ch. II.8, Th. 8.27]):
(1) the Borel subgroup of upper-triangular matrices;
(2) the normalizer of a Cartan subgroup;
(3) a group isomorphic toPSL2(F′) or PGL2(F′) for someF′ ⊂ F;
(4) one of the exceptional subgroupsA4, S4, orA5.

The fact thatG contains two unipotent elements that do not commute rules out
the possibility thatG is contained in a Borel subgroup or in the normalizer of a
Cartan subgroup, and the fact that it contains an element of orderr rules out the
groups isomorphic toPSL2(F′) or PGL2(F′). Obviously,G can be contained in
one of the exceptional subgroups only if bothp and r are less than or equal to
5, that is, if (r,p) = (2,3), (2,5), (3,5), or (5,3). In the first three cases,G is
isomorphic toPSL2(Fp). (Note thatPSL2(F3) � A4 and thatPSL2(F5) � A5.)
When(r,p)= (5,3) andσ̃0σ̃1σ̃∞ =−1, one checks directly thatG is isomorphic to
the exceptional subgroupA5 ⊂ PSL2(F9).

The equationxr+yr = zp. Choose a parameterj ∈ {1,3,5, . . . , r−2}, and define
curves over the function fieldQ(t) by the equations

X−
r,r (t) : y2r = u2xj−2

(
x−1

x−u

)j+2

,

X+
r,r (t) : yr = u2xj−2

(
x−1

x−u

)j+2

, u= t

t−1
.

A role is played in our construction by the Legendre familyJ (t) of elliptic curves,
whose equation we write in the more convenient form:

J (t) : y2 = u2xj−2
(
x−1

x−u

)j+2

.

These curves are equipped with the following structures.
(1) A canonical action ofµr onX−

r,r andX+
r,r defined by

ζ(x,y)= (x,ζy), ζ ∈ µr.
(2) An involutionτ onX−

r,r , X
+
r,r , andJ defined by

τ(x,y)= (u/x,1/y).

This involution has two fixed points onX+
r,r and has no fixed points onX−

r,r and onJ .
(3) Mapsπ :X−

r,r → J andπr :X−
r,r →X+

r,r are defined by

π(x,y)= (x,yr); πr(x,y)=
(
x,y2).

These maps obey the rules

τζ = ζ−1τ, πζ = π, πrζ = ζ 2πr, τπ = πτ, τπr = πrτ.
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Let
C±
r,r =X±

r,r/τ, J ′ = J/τ.

The mapsπ andπr commute withτ and hence induce maps fromC−
r,r to J ′ andC+

r,r ,
respectively, which are denoted by the same letters by abuse of notation. Writeπ∗
andπ∗

r for the maps between the Jacobians ofJ ′, C+
r,r , andC−

r,r induced byπ and
πr , respectively, by contravariant functoriality. Finally letJ+

r,r denote the Jacobian of
C+
r,r , and letJ−

r,r be the quotient of the Jacobian Jac(C−
r,r ) of C−

r,r defined by

J−
r,r := Jac

(
C−
r,r

)/(
π∗(J ′)+π∗

r

(
J+
r,r

))
.

Proposition 1.12. The abelian varietiesJ+
r,r (resp.,J

−
r,r ) have dimension equal to

(r−1)/2 whenj ∈ {1,3,5, . . . , r−4} (resp.,j ∈ {1,3,5, . . . , r−2}). In these cases
there is a natural identification

EndK
(
J±
r,r

) = �K,

which is compatible with the action ofGal(K/Q) on each side.

Proof. The computation of the dimension ofJ±
r,r is a direct calculation based on

the Riemann-Hurwitz formula. To study the endomorphism rings ofJ±
r,r , let

ηζ :X±
r,r −→ C±

r,r×C±
r,r

be the correspondence fromC±
r,r to C±

r,r given byηζ := (pr,pr◦ζ ), where pr is the
natural projection ofX±

r,r to C±
r,r . The resulting endomorphismηζ of Pic(C±

r,r ) is
defined (on effective divisors) by the equation

ηζ (prP)= pr(ζP )+pr(ζ−1P).

The commutation relations betweenζ , π , andπr show that

πηζ = 2π, πrηζ = ηζ2πr .

Hence, the subvarietiesπ∗(J ′) andπ∗
r (J

+
r,r ) of Jac(C−

r,r ) are preserved by these corre-
spondences, which induce endomorphisms ofJ−

r,r as well as ofJ+
r,r . The assignment

ζ �→ ηζ yields an inclusion of�K into End(J±
r,r ). It is an isomorphism sinceJ±

r,r has
multiplicative reduction att = ∞ and hence is not of complex multiplication (CM)
type. The result follows.

Choose as before a homomorphismϕ : �K → F, and let�±r,r be the Galois repre-
sentations obtained from the action ofGK(t) on the modulesJ±

r,r [p]⊗ϕ F. Note that
the representations�±r,r depend on the choice of the parameterj as well as on the
choice ofϕ.
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Theorem 1.13. (1)The representations�−r,r , asj ranges over{1,3, . . . , r−2} and
ϕ over the different homomorphisms�K → F, are the(r−1)2/4 distinct odd Frey
representations attached toxr+yr = zp.

(2) The representations�+r,r , as j ranges over{1,3, . . . , r − 4} and ϕ over the
different homomorphisms�K → F, are the(r−1)(r−3)/4 distinct even Frey repre-
sentations attached toxr+yr = zp.

Proof. See, for example, [Ka, Th. 5.4.4] or [CW].

Remarks. (1) The periods of the abelian varietiesJ±
r,r , as functions of the variable

t , are values of certain classical hypergeometric functions. These functions arise as
solutions of a second-order differential equation having only regular singularities
at t = 0, 1, and∞ and monodromies of orderr at 0 and 1 and quasi-unipotent
monodromy (with eigenvalue−1 for the odd Frey representation and 1 for the even
Frey representation) att =∞.

(2) Katz’s proof, which is based on his analysis of the behaviour of the local mon-
odromy of sheaves under the operation of “convolution onGm,” is significantly more
general than the rank 2 case used in our application. It also gives a motivic construc-
tion of rigid local systems overP1−{0,1,∞} of any rank. Katz’s “hypergeometric
motives” suggest the possibility of connecting equation (1) to higher-dimensional
Galois representations, for which questions of modularity are less well understood.

(3) In computing finer information such as the conductors of the Frey representa-
tions�±r,r (ar/cp) at the “bad primes,” it may be desirable to have a direct proof of
Theorem 1.13 along the lines of the proof of Theorem 1.10. The details, which are
omitted, will be given in [DK].

The equationxp+yq = zr . The notion of “hypergeometric abelian variety” ex-
plained in [Ka, Th. 5.4.4] and [CW, Sec. 3.3] also yields a construction of the
(r −1)(q −1)/2 Frey representations of characteristicp overK = Q(ζq,ζr )+ as-
sociated toxp+yq = zr , whenp,q, r are distinct primes andp is odd. We do not
describe the construction here, referring instead to [Ka, Sec. 5.4] for the details. All
that is used in the sequel is the following theorem.

Theorem 1.14. If q,r �= 2 (resp.,q = 2), there exist abelian varietiesJ−
q,r and

J+
q,r (resp.,J2,r ) overQ(t) of dimension(r−1)(q−1)/2 satisfying

EndK
(
J±
q,r

) = �K (resp.,End(J2,r )= �K ),

whosemodp representations give rise to all the Frey representations in characteristic
p associated toxp+ yq = zr . More precisely, fix a residue fieldF of K at p, and
let ϕ be a homomorphism ofQ(ζq)+Q(ζr )+ to F. There are(r−1)(q−1)/4 (resp.,
(r − 1)/2) suchϕ’s. Extendingϕ to a homomorphism�K −→ F, let �±q,r (resp.,
�2,r ) be the Galois representation obtained from the action ofGK(t) onJ±

q,r [p]⊗ϕ F
(resp.,J2,r [p]⊗ϕ F). Then the representations�±q,r (resp.,�2,r ) are the distinct Frey
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representations of characteristicp attached toxp+yq = zr . The representations�−q,r
(resp.,�+q,r ) are odd (resp., even).

Frey abelian varieties.We may now assign to each solution(a,b,c) of equation
(1) aFrey abelian variety, obtained as a suitable quadratic twist of the abelian variety
J (ap/bp) for xp+yp = zp, J±

r (a
p/cr) for xp+yp = cr , J±

r,r (a
r/cp) for xr+yr =

zp, andJ±
q,r (a

p/cr) for xp+yq = zr . These twists are chosen in such a way as to
make the corresponding modp representations as “little ramified” as possible, in
accord with Lemma 1.2.

The equationxp+yp = zp. If (a,b,c) is a solution to the Fermat equationxp+
yq = zr , the elliptic curveJ (ap/cp) has equationy2 = x(x−1)(x−ap/cp), which
is a quadratic twist (overQ(

√
c)) of the familiar Frey curve

J (a,b,c) : y2 = x(x+ap)(x−bp).

Let ρ be the associated modp representation ofGQ.

The equationxp+yp = zr . Whenr = 2, we associate to a solution(a,b,c) of
equation (1) the following twist ofC2(a

p/c2):

C2(a,b,c) : y2 = x3+2cx2+apx. (9)

Whenr is odd, the Frey hyperelliptic curvesC−
r (a,b,c) andC+

r (a,b,c) are given
by the equations

C−
r (a,b,c) : y2 = crf (x/c)−2(ap−bp), (10)

C+
r (a,b,c) : y2 = (x+2c)

(
crf (x/c)−2(ap−bp)

)
. (11)

Note thatC−
r (a,b,c) is a nontrivial quadratic twist ofC−

r (a
p/cr) (over the field

Q(
√
c)), whileC+

r (a,b,c) is isomorphic toC+
r (a

p/cr) overQ.
Here are the equations ofC−

r (a,b,c) for the first few values ofr:

r = 3 : y2 = x3−3c2x−2(ap−bp).

r = 5 : y2 = x5−5c2x3+5c4x−2(ap−bp).

r = 7 : y2 = x7−7c2x5+14c4x3−7c6x−2(ap−bp).

LetJ±
r (a,b,c) be the Jacobian ofC±

r (a,b,c), and letρ±r be the corresponding modp
Galois representations (which depend, as always, on the choice of a homomorphism
ϕ from �K to F). The representationρ±r is a quadratic twist of�±r (ap/cr).

We do not write down the equations forC±
r,r (a,b,c) orC±

q,r (a,b,c), as we have no
further use for them in this paper. A more careful study of the Frey abelian varieties
J±
r,r (a,b,c) associated toxr+yr = zp will be carried out in [DK].
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Conductors. We say that a Galois representationρ :GK → GL2(F) is finite at a
primeλ if its restriction to a decomposition group atλ comes from the Galois action
on the points of a finite flat group scheme over�K,λ. When� �= p, this is equivalent
to ρ being unramified. LetN(ρ) denote theconductorof ρ, as defined, for example,
in [DDT]. In particular,N(ρ) is divisible precisely by the primes for whichρ is
not finite.

The equationxp + yp = zp. By interchanginga, b, and c and changing their
signs if necessary so thata is even andb ≡ 3 (mod4), one finds that the conductor of
ρ := �(a,b,c) is equal to 2 (cf. [Se2]). The presence of the extraneous prime 2 in the
conductor (in spite of the fact that all the exponents involved in the Fermat equation
are odd) can be explained by the fact that the Frey representation used to constructρ

is odd, so that one of the monodromies of�(t) is necessarily of order 2p. In contrast,
we will see that the Galois representations obtained from even Frey representations
are unramified at 2.

The equationxp + yp = zr . Let r = (2−ω) be the (unique) prime ideal ofK
abover.

Proposition 1.15. (1)The representationρ−r is finite away fromr and the primes
above2.

(2) The representationρ+r is finite away fromr.

Proof. The discriminants2± of the polynomials used in equations (10) and (11)
to defineC±

r (a,b,c) are

2− = (−1)(r−1)/222(r−1) rr (ab)((r−1)/2)p,

2+ = (−1)(r+1)/222(r+1) rra((r+3)/2)p b((r−1)/2)p.

If 3 is a prime that does not divide2±, thenC±
r (a,b,c) has good reduction at3;

henceρ±r is finite at all primes above3. So it is enough to consider the primes that
divide 2ab. Suppose first that3 �= 2 dividesa, and letλ denote any prime ofK above
3. Let Kλ be the completion ofK at λ and �λ its ring of integers, and denote by
ρ±r,λ the restriction ofρ±r to an inertia groupIλ ⊂ Gal(K̄λ/Kλ) atλ. We observe that

ρ±r,λ = �±r (ap/cr)|Iλ , since3 does not dividec. To studyρ±r,λ, we consider the abelian
varietyJ±

r overKλ((t)). LetM be the finite extension ofKλ((t)) cut out by the Galois
representation�±r on thep-division points ofJ±

r . From the proof of Theorem 1.10,
one knows thatC±

r is a Mumford curve overKλ[[t]]. Hence, its JacobianJ±
r is

equipped with a(t)-adic analytic uniformization

1−→Q−→ T −→ J±
r

(
Kλ((t))

) −→ 1,

whereT � (Kλ((t))
×)d is a torus andQ is the sublattice of multiplicative periods.

HenceM is contained inL((t1/p)), whereL is a finite extension ofKλ. Because
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J±
r extends to an abelian scheme over the local ring�λ((t)), the extensionL/Kλ is

unramified when3 �= p and comes from a finite flat group scheme over�λ when3= p.
But the extension ofKλ cut out byρ±r,λ is contained inL(t1/p), wheret = ap/cr . Since
ord3(t)≡ 0 (modp), this extension is unramified atλ when3 �= p and comes from a
finite flat group scheme over�λ when3= p. The proof when3 �= 2 dividesb proceeds
in an identical manner, considering this timeC±

r (t) overKλ((t−1)) and using the fact
that ord3((ap/cr)−1) = ord3(−bp/cr) ≡ 0 (modp) to conclude. Consider finally
the case where3= 2. If 2 does not divideab, thenc is even. Making the substitution
(x,y)= (1/u,(2v+1)/u(r+1)/2), the equation ofC+

r (a,b,c) becomes

v2+v = 4c(ap−bp)ur+1− (ap−bp)

2
ur+(lower-order terms inu).

The coefficients involved in this equation are integral at 2, and(ap−bp)/2 is odd;
hence,C+

r (a,b,c) has good reduction at 2, and therefore,ρ+r is unramified atλ. If
2 dividesab, suppose without loss of generality that it dividesa, and note that the
equation (6) forC+

r (t) also shows thatC+
r (a,b,c) is a Mumford curve overKλ. The

result follows.

Remark. The reader will find in [Ell] a more general criterion for the Galois
representations arising from division points of Hilbert-Blumenthal abelian varieties
to be unramified, which relies on Mumford’s theory in an analogous way.

Proposition 1.15 implies that the conductor ofρ+r is a power ofr and that the
conductor ofρ−r is divisible only byr and by primes above 2. We now study the
exponent ofr that appears in these conductors.

Proposition 1.16. (1) If r dividesab, then the conductor ofρ−r and ρ+r at r

dividesr.
(2) If r does not divideab, then the conductor ofρ−r andρ+r at r dividesr3.

Proof. We treat the case ofρ+r , since the calculations forρ−r are similar. By
making the change of variablex = (2−ω)u−2, y = (2−ω)d+1v in equation (6),
one finds the new equation forC+

r :

C+
r : v2+u

∏
j

(
u− 2−ωj

2−ω

)
v+ t

(2−ω)d
u= 0. (12)

Settingt̃ = t/(2−ω)d , one sees thatC+
r (t̃ ) is a Mumford curve over Spec(�r[[t̃ ]]).

(The singular points in the special fiber have coordinates given by(u,v)= (0,0) and
((2−ωj )/(2−ω),0), which are distinct since(2−ωj )/(2−ω) ≡ j2 (modr).) One
concludes that when ordr(t) > d, the representation�+r (t) is ordinary atr, and its
conductor dividesr. When r divides a one has ordr(ap/cr) ≥ pd > d. A similar
reasoning works whenr dividesb, and so part (1) of Proposition 1.16 follows.

Part (2) is proved by analyzingJ±
r (t) over Spec(�r[t,1/(1− t),1/t]). The conduc-

tor of J±
r over this base is constant, and one finds that the conductor ofρ±r is equal

to r3.
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By combining the analysis of Propositions 1.15 and 1.16, we have shown the
following theorem.

Theorem 1.17. (1) The conductor ofρ−r is of the form2urv, whereu= 1 if ab is
even. One hasv = 1 if r dividesab, andv ≤ 3 otherwise.

(2) The conductor ofρ+r dividesr if r dividesab, andr3 otherwise.

2. Modularity

2.1. Hilbert modular forms.Let K be a totally real field of degreed > 1, and
let ψ1, . . . ,ψd be the distinct real embeddings ofK. They determine an embedding
of the group; = SL2(K) into SL2(R)d by sending a matrix

(
a b
c d

)
to thed-tuple((

ai bi
ci di

))d
i=1, whereaj = ψj(a) and likewise forbj , cj , anddj . Through this embed-

ding, the group; acts on the product�d of d copies of the complex upper half-plane
by Möbius transformations. More precisely, ifτ = (τ1, . . . , τd) belongs to�d , then

Mτ :=
(
aiτi+bi

ciτi+di

)d

i=1
.

If f is a holomorphic function on�d andγ ∈GL2(K), we define

(f |2γ )(τ )= det(γ )
∏

(ciτi+di)
−2f (γ τ).

Let ; be a discrete subgroup ofGL2(K).

Definition 2.1. A modular form of weight 2 on; is a holomorphic function on
�d which satisfies the transformation rule

f |2γ = f,

for all γ in ;.

A function that vanishes at the cusps is called acusp formon ;. The space of
modular forms of weight 2 on; is denotedM2(;), and the space of cusp forms is
denotedS2(;).

Let n be an ideal ofK. We now introduce the spaceS2(n) of cusp forms of
weight 2 and leveln, as in [W1, Sec. 1.1]. For this, choose a systemc1,c2, . . . ,ch of
representative ideals for the narrow ideal classes ofK. Let d denote the different of
K, and assume that theci have been chosen relatively prime tond. Define

;i(n) :=
{
M =

(
a b

c d

)
∈GL+

2 (K) | a,d ∈ �K, b ∈ (cid)−1,

c ∈ cidn, ad−bc ∈ �×
K

}
.

Definition 2.2. A cusp form of weight 2 and leveln is anh-tuple of functions
(f1, . . . ,fh), wherefi ∈ S2(;i(n)).
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Denote byS2(n) the space of cusp forms of weight 2 and leveln.
To the reader acquainted with the caseK = Q, the definition ofS2(n) may ap-

pear somewhat contrived. It becomes more natural when one considers the adelic
interpretation of modular forms of leveln as a space of functions on the coset
spaceGL2(AK)/GL2(K). As in the case whereK =Q, the spaceS2(n) is a finite-
dimensional vector space and is endowed with an action of the commuting self-adjoint
Hecke operatorsTp for all prime idealsp of K which do not dividen (cf. [W1,
Sec. 1.2]).

A modular formf ∈ S2(n) is called aneigenformif it is a simultaneous eigenvector
for these operators. In that case one denotes byap(f ) the eigenvalue ofTp acting on
f . Let Kf be the field generated by the coefficientsap(f ). It is a finite totally real
extension ofQ. If λ is any prime ofKf , letKf,λ be the completion ofKf at λ and
let �f,λ be its ring of integers.

Eigenforms are related to Galois representations ofGK thanks to the following
theorem.

Theorem 2.3. Let f be an eigenform inS2(n). There is a compatible system of
λ-adic representations

ρf,λ :GK −→GL2(�f,λ)

for each primeλ ofKf , satisfying

trace
(
ρf,λ

(
frobq

)) = aq(f ), det
(
ρf,λ

(
frobq

)) = Norm(q),

for all primesq ofK which do not dividenλ.

Sketch of proof.WhenK is of odd degree or whenK is of even degree and there
is at least one finite place wheref is either special or supercuspidal, this follows
from work of Shimura, Jacquet and Langlands, and Carayol (cf. [Ca]). In this case,
the representationρf,λ can be realized on theλ-adic Tate module of an abelian variety
overK. (It is a factor of the Jacobian of a Shimura curve associated to a quaternion
algebra overK which is split at exactly one infinite place.) In the general case, the
theorem is due to Wiles [W2] (for ordinary forms) and to Taylor [Tay] for allf . The
constructions of [W2] and [Tay] are more indirect than those of [Ca]: They exploit
congruences between modular forms to reduce to the situation that is already dealt
with in [Ca], but they do not realizeρf,λ on the division points of an abelian variety
(or even on the étale cohomology of an algebraic variety). A different construction,
by Blasius and Rogawski [BR], exhibits the Galois representations in the cohomology
of Shimura varieties associated to an inner form ofU(3).

Let A be an abelian variety overK with real multiplications by a fieldE. More
precisely, one requires thatE is a finite extension ofQ whose degree is equal to the
dimension ofA, and one also requires thatA is equipped with an inclusion:

E −→ EndK(A)⊗Q.
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Following the terminology of Ribet, callA an abelian variety ofGL2-typeoverK.
It gives rise to a compatible systemρA,λ of 2-dimensionalλ-adic representations of
GK for each primeλ of E by considering the action ofGK on (T3(A)⊗Q3)⊗E Eλ.
The conductorof A is defined to be the Artin conductor ofρA,λ for any primeλ
of good reduction forA. (One can show that this does not depend on the choice of
λ.) The following conjecture is the natural generalization of the Shimura-Taniyama
conjecture in the setting of abelian varieties ofGL2-type.

Conjecture 2.4 (Shimura and Taniyama). If A is an abelian variety ofGL2-type
overK of conductorn, then there exists a Hilbert modular formf overK of weight
2 and leveln such that

ρf,λ � ρA,λ

for all primesλ of E.

If A satisfies the conclusion of Conjecture 2.4, one says thatA ismodular.

Remark. To prove thatA is modular, it is enough to show that it satisfies the
conclusion of Conjecture 2.4 for a single primeλ of E.

Conjecture 2.4 appears to be difficult in general, even with the powerful new tech-
niques introduced by Wiles in [W3]. In connection with equation (1), one is particu-
larly interested in Conjecture 2.4 for hypergeometric abelian varieties.

Conjecture 2.5. For all t ∈Q, the hypergeometric abelian varietyJ (t) (resp.,
J±
r (t), J

±
r,r (t), J

±
q,r (t)) attached to the equationx

p+yp = zp (resp.,xp+yp = zr ,
xr+yr = zp, xp+yq = zr ) is modular overQ (resp.,Q(ζr )+,Q(ζr )+,Q(ζq,ζr )+).

2.2. Modularity of hypergeometric abelian varieties

The modularity ofJ . The modularity of the curves in the Legendre familyJ fol-
lows from Wiles’s proof of the Shimura-Taniyama conjecture for semistable elliptic
curves. To prove thatJ is modular, Wiles begins with the fact that the mod 3 rep-
resentationJ [3] is modular. This follows from results of Langlands and Tunnell on
base change; the key fact being thatGL2(F3) is solvable. Wiles then shows (at least
when the representationJ [3] is irreducible and semistable) that every “sufficiently
well-behaved” lift ofJ [3] is also modular. This includes the representation arising
from the 3-adic Tate module ofJ , and henceJ itself is modular.

The modularity ofJ±
r andJ±

r,r . Whenr = 2, the abelian varietyJ2 is an elliptic
curve (which arises from the universal family onX0(2)) and its modularity follows
from the work of Wiles and its extensions [Di1].

Likewise, whenr = 3, the abelian varietiesJ±
r andJ−

r,r are elliptic curves, so that
their modularity follows from the Shimura-Taniyama conjecture. It is still conjectural
in this case, in spite of the progress made toward the Shimura-Taniyama conjecture
in [Di1] and [CDT]: For many values oft , the conductors ofJ±

3 (t) andJ−
3,3(t) are

divisible by 27.
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For r > 3, the prime 3 is never split inQ(ζr )+, so that the image of the Galois
representation acting onJ±

r [3] or J±
r,r [3] is contained in a product of groups isomor-

phic toGL2(F3s ) with s > 1. BecauseGL2(F3s ) is not solvable whens > 1, it seems
difficult to directly prove the modularity ofJ±

r [3] or J±
r,r [3] and use the prime 3 as

in Wiles’s original strategy.
Consider instead the primer of norm r. SinceGQ fixes r, it acts naturally on

the modulesJ±
r [r] andJ±

r,r [r] of r-torsion points ofJ±
r andJ±

r,r . Furthermore, these
modules are 2-dimensionalFr -vector spaces, and the action ofGQ on them isFr -
linear.

Theorem 2.6. (1) The modulesJ−
r [r] andJ−

r,r [r] are isomorphic to a quadratic
twist of themodr representation associated to the Legendre familyJ .

(2) The modulesJ+
r [r] andJ+

r,r [r] are reducible Galois representations.
Proof. By the same arguments as in the proof of Theorem 1.10, one shows that the

representations attached toJ−
r [r] andJ−

r,r [r] (resp.,J+
r [r] andJ+

r,r [r]), if irreducible,
are Frey representations associated to the Fermat equationxr + yr = zr which are
odd (resp., even). By Theorem 1.5, there is a unique odd Frey representation (up
to twisting by a quadratic character) associated toxr + yr = zr , which is the one
associated to ther-torsion points on the Legendre familyJ (t). Part (1) follows. Since
there are no even Frey representations associated toxr + yr = zr , the reducibility
of J+

r [r] andJ+
r,r [r] follows as well. (Alternately, in [DMs, Prop. 2.3], an explicit

r-isogeny fromJ+
r (t) to J+

r (−t) defined overK is constructed, which shows that
the corresponding representation is reducible and, in fact, thatJ+

r has aK-rational
torsion point of orderr.)

LetN±
r andN±

r,r be the conductors of theGQ-representationsJ±
r [r] andJ±

r,r [r].
Corollary 2.7. TheGQ-representationsJ

±
r [r] andJ±

r,r [r] arise from a classical
modular formf0 on;0(N

±
r ) and;0(N

±
r,r ).

Proof. Since the elliptic curveJ : y2 = x(x−1)(x− t) is modular for allt ∈Q,
it is associated to a cusp form on;0(NJ ) whereNJ is the conductor ofJ (t). The
lowering-the-level result of Ribet [Ri2] ensures that there is a formf0 of levelN−

r

(resp.,N−
r,r ) attached toJ−

r [r] (resp.,J−
r,r [r]). In the case of the even Frey represen-

tations, the appropriate modular formf0 can be constructed directly from Eisenstein
series.

Consider now the restriction of the Galois representationsJ±
r [r] andJ±

r,r [r] toGK ,
which we denote with the same symbol by abuse of notation.

Theorem 2.8. There are Hilbert modular formsf overK giving rise toJ±
r [r] or

J±
r,r [r].
Proof. This is a consequence of cyclic base change, takingf to be the base change

lift of f0 fromQ toK.
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In light of Theorem 2.8, what is needed now is a “lifting theorem” in the spirit
of [TW] and [W3] for Hilbert modular forms overK, which would allow us to
conclude the modularity of ther-adic Tate module ofJ±

r andJ±
r,r . The methods of

[TW] are quite flexible and have recently been partially extended to the context of
Hilbert modular forms over totally real fields by a number of mathematicians, notably
Fujiwara [Fu] and Skinner and Wiles [SW1]–[SW3]. Certain technical difficulties
prevent one from concluding the modularity ofJ±

r andJ±
r,r in full generality.

(1) Whenr does not divideab, the r-adic Tate module ofJ±
r is neither flat nor

ordinary atr. One needs lifting theorems that take this into account. The work of
Conrad, Diamond, and Taylor [CDT] is a promising step in this direction, but many
technical difficulties remain to be resolved. Even whenr = 3, one cannot yet prove
that the elliptic curvesJ±

3 (t) andJ−
3,3(t) are modular for allt ∈Q.

(2) The reducibility of the representationJ+
r [r] may cause some technical difficul-

ties, although the recent results of Skinner and Wiles [SW1]–[SW3] go a long way
toward resolving these difficulties in theordinary case.

As an application of the results of Skinner and Wiles, we have the following
theorem.

Theorem 2.9. (1) If r divides ab, then the abelian varietiesJ±
r (a,b,c) are

modular.
(2) If r dividesc, then the abelian varietiesJ±

r,r (a,b,c) are modular.

Proof. The abelian varietiesJ±
r (a,b,c) andJ±

r,r (a,b,c) have multiplicative re-
duction atr, by the proof of Proposition 1.16. Hence ther-adic Tate modulesT ±

r

andT ±
r,r of these varieties, viewed as a representation ofGK , areordinaryat r. Since

the residual representations attached toT +
r andT +

r,r are reducible, the modularity of
the associatedr-adic representations follows from [SW3, Sec. 4.5, Th. A]. (Note that
the five hypotheses listed in this theorem are satisfied in our setting, withk = 2 and
A = 1, since the field denoted there byF(χ1/χ2) is equal to the cyclotomic field
Q(ζr ).) In the case ofT −

r andT −
r,r , the associated residual representation isnever

reducible whenr > 5 by the work of Mazur, and the modularity of the associated
r-adic representations follows from [SW2, Sec. 5, Th. 5.1].

The modularity ofJ±
q,r . LetK =Q(ζq,ζr )+, and letq be a prime ofK aboveq.

This prime is totally ramified inK/Q(ζr )+. Denote byq also the unique prime of
Q(ζr )+ belowq, and letF be the common residue field ofQ(ζr )+ andK at q.

As in the previous section, one notes that the action ofGK on the moduleJ±
q,r [q]

extends to anF-linear action ofGQ(ζr )+ .

Theorem 2.10. The moduleJ±
q,r [q] is isomorphic to a quadratic twist ofJ±

r [q]
as aGQ(ζr )+-module.

Proof. The proof is exactly the same as the proof of Theorem 2.6.

Corollary 2.11. If J±
r is modular, then so isJ±

q,r [q].
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Proof. The proof is the same as for Corollary 2.7 and Theorem 2.8; this time
applying cyclic base change fromQ(ζr )+ toK.

Modularity of J [3] ←− Base change

|
| ←− Wiles lifting
↓

Modularity of J

↓
Modularity of J [r] −→ xr+yr = zr

|
| ←− Theorem 2.6 & Theorem 2.6
↓ base change ↓

Modularity of J−
r [r]

andJ−
r,r [r]

Modularity of J+
r [r]

andJ+
r,r [r]

| |
| ←− Generalized −→ |
↓ Wiles lifting? ↓

Modularity of J−
r

andJ−
r,r

Modularity of J+
r

andJ+
r,r

↓ ↓
Modularity of J−

r [q]
andJ−

r,r [q] −→ xq+yq = zr ,

xr+yr = zq
←− Modularity of J+

r [q]
andJ+

r,r [q]
| |
| ←− Theorem 2.10 & −→ |
↓ base change ↓

Modularity of J−
q,r [q] Modularity of J+

q,r [q]
| |
| ←− Generalized −→ |
↓ Wiles lifting? ↓

Modularity of J−
q,r Modularity of J+

q,r

↓ ↓
Modularity of J−

q,r [p] −→ xp+yq = zr ←− Modularity of J+
q,r [p]

Figure 1

Corollaries 2.7 and 2.11 suggest an inductive strategy for establishing the modu-
larity of J , J±

r , J±
r,r , andJ±

q,r : combining a series of base changes with successive
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applications of Wiles-type lifting theorems (at the last step, for Hilbert modular forms
overQ(ζq,ζr )+). This strategy, and its connections with Fermat’s equation and its
variants, is summarized in Figure 1.

3. Lowering the level

3.1. Ribet’s theorem.Let ρ : GK → GL2(F) be a Galois representation ofGK

with values inGL2(F), whereF is a finite field. Iff is a Hilbert modular form that
is an eigenform for the Hecke operators, denote by�f the ring generated by the
associated eigenvalues.

Definition 3.1. We say thatρ is modular if there exists a Hilbert modular form
f over K and a homomorphismj : �f → F such that, for all primesq that are
unramified forρ,

trace
(
ρ
(
frobq

)) = j
(
aq(f )

)
.

If f can be chosen to be of weightk and leveln, we say thatρ is modular of weight
k and leveln.

The following is a generalization of Serre’s conjectures [Se2] to totally real fields,
in a simple special case.

Conjecture 3.2. Suppose that

ρ :GK −→GL2(F)

is an absolutely irreducible Galois representation, whereF is a finite field of charac-
teristicp. Suppose also that

(1) ρ is odd, and its determinant is the cyclotomic character;
(2) ρ is finite at all primesp dividingp;
(3) the conductor ofρ in the sense of [Se2] is equal ton.

Thenρ is modular of weight2 and leveln.

This conjecture also seems quite difficult. (For example, the argument in [Se2,
Sec. 4, Th. 4] shows that Conjecture 3.2 implies the generalized Shimura-Taniyama
Conjecture 2.4.) The following conjecture, which extends a result of Ribet [Ri2] to
totally real fields, should be more approachable.

Conjecture 3.3. Suppose thatρ satisfies the assumptions of Conjecture 3.2 and
that it is modular of weight2 and some level. Thenρ is modular of weight2 and
leveln.

The following partial result is proved in [Ja] and [Ra], building on the methods
of [Ri2].

Theorem 3.4. Let ρ : GK −→ GL2(F) be an irreduciblemodp representation
associated to a Hilbert cuspidal eigenformf of weight2 and levelnλ, wheren, λ,
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andp are mutually relatively prime andλ is a prime ofK. If [K :Q] is even, assume
that f is either special or supercuspidal at a finite primeq not dividingp andλ. If
ρ is unramified atλ, thenρ comes from a Hilbert cuspidal eigenformg of weight2
and leveln.

3.2. Application toxp + yp = zr . In the remainder of this paper, we focus our
attention on the equationxp+yp = zr and attack it by studying the representations
ρ+r = �+(ap/cr) (and, toward the end,ρ−r ) attached to thep-torsion ofJ±

r (a,b,c).

Theorem 3.5. (1) If r dividesab, thenρ+r (resp.,ρ−r ) comes from a modular form
of weight2 and level dividingr (resp.,2ur, for someu).

(2) If r does not divideab, assume further thatJ±
r (t) is modular and that Conjec-

ture 3.3 holds for Hilbert modular forms overK. Thenρ+r (resp.,ρ−r ) comes from a
modular form of weight2 and level dividingr3 (resp.,2ur3, for someu).

Proof. The modularity ofJ±
r (a,b,c) (which, whenr dividesab, follows from

Theorem 2.9) implies thatρ±r is modular of weight 2 and some level. By Theo-
rem 1.17,ρ+r has conductor dividingr whenr | ab and dividingr3 in general, and it
satisfies all the other hypotheses in Conjecture 3.2; a similar statement holds forρ−r .
Conjecture 3.3 implies the conclusion. Note that, whenr | ab, the Hilbert modular
form f associated toJ+

r (a,b,c) is special or supercuspidal atr, so that the hypothe-
ses of Theorem 3.4 are satisfied. Hence, Theorem 3.4 can be applied to remove all
the unramified primes from the level of the associated modular form, proving part (1)
of Theorem 3.5 unconditionally.

Remark. Theorem 3.5 suggests that the analysis of the solutions(a,b,c) to xp+
yp = zr splits naturally into two cases, depending on whether or notr dividesab.
The following definition is inspired by Sophie Germain’s classical terminology.

Definition 3.6. A primitive solution(a,b,c) of xp+yp = zr is called afirst case
solutionif r dividesab, and asecond case solutionotherwise.

Remark. As with Fermat’s last theorem, the first case seems easier to deal with
than the second case (cf. Theorem 3.22).

Our hope is that Theorem 3.5 forces the image ofρ±r to be small (at least for some
values ofr). Before pursuing this matter further, observe that equation (1) has (up to
sign) three trivial solutions:(0,1,1), (1,0,1), and(1,−1,0).

Proposition 3.7. (1) If (a,b,c) = (0,1,1) or (1,0,1), then J+
r and J−

r have
degenerate reduction, and the representationsρ±r are therefore reducible.

(2) If (a,b,c) = (1,−1,0), thenJ±
r have complex multiplication byQ(ζr ), and

hence the image ofρ±r is contained in the normalizer of a Cartan subgroup of
GL2(F).

Proof. This can be shown by a direct calculation. For example, the curve
C+
r (1,−1,0) has equation
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y2 = xr+1−4x.

Making the substitution(x,y)= (−1/u,(2v+1)/u(r+1)/2), one obtains the equation

v2+v = ur,

and one recognizes this as the equation for the hyperelliptic quotient of the Fermat
curvexr+yr = zr that has complex multiplication byQ(ζr ).

Proposition 3.7 suggests the following question.

Question 3.8. Can one show that the image ofρ±r (a,b,c) is necessarily con-
tained in a Borel subgroup or in the normalizer of a Cartan subgroup ofGL2(F)?

The caser = 2 and3. For r = 2 (resp.,r = 3) one can answer this question in the
affirmative, by noting thatρ2(a,b,c) (resp.,ρ+3 (a,b,c)) is modular of level dividing
32 (resp., 27). (One needs to assume the Shimura-Taniyama conjecture forr = 3.) The
space of classical cusp forms of weight 2 and level 32 (resp., 27) is 1-dimensional. In
fact,X0(32) (resp.,X0(27)) is an elliptic curve with complex multiplication byQ(i)
(resp.,Q(ζ3)). (It is also a quotient of the Fermat curvex4+ y4 = z4 (resp.,x3+
y3 = z3).) So the Galois representations arising from nontrivial primitive solutions
of xp+yp = z2 andxp+yp = z3 are either reducible or of dihedral type. This was
proved in [Da1] (see also [DMr]).

Answering Question 3.8, for specific values ofr > 3 andp, requires a computation
of all the Hilbert modular forms overK of weight 2 and level dividingr3. We limit
ourselves to the simpler case whereK has narrow class number 1.

Remark. It is known thatK has narrow class number 1 for allr < 100 except
r = 29, when the narrow class number is equal to 8. (The author is grateful to
Cornelius Greither for pointing out these facts.)

We now give a formula for the dimension ofS2(1) andS2(r
k), with k = 1, . . . ,3

under the narrow class number 1 assumption. To do this we need to introduce some
notation.
• Recall thatd = (r−1)/2 denotes the degree ofK overQ.
• Setδ2 = 2 if r ≡ 1 (mod4) andδ2 = 0 if r ≡ 3 (mod4). Likewise letδ3 = 2 if

r ≡ 1 (mod3) andδ3 = 0 if r ≡ 2 (mod3).
• Let ζK(s) be the Dedekind zeta-function ofK. The main contribution to the

dimension ofS2(r
k) is given by the special valueζK(−1), a rational number that can

be computed from the formula:

ζK(−1)= (−1)d

12

∏
χ

B2,χ

2
, B2,χ = 1

r

r∑
a=1

χ(a)a2,

where the product is taken over all nontrivial even Dirichlet charactersχ : (Z/rZ)×/
〈±1〉 → C× of conductorr.



HILBERT MODULAR FORMS AND FERMAT’S LAST THEOREM 437

• Leth− be the minus part of class number ofQ(ζr ). This number can be evaluated
also as a product of generalized Bernoulli numbers:

h− = (−1)d2r
∏
χ

B1,χ

2
, B1,χ = 1

r

r∑
a=1

χ(a)a,

where the product this time is taken over the odd Dirichlet characters of conductorr.
• Let h(a) be the class number of the quadratic extensionK(

√
a), and (ford < 0)

let q(a) be the index of�×
K�×

Q(
√
a)

in �K(
√
a)

×. One hasq(a)= 1 or 2, andq(a)= 1

if r ≡ 3 (mod4). Only the ratiosh(−1)/q(−1) andh(−3)/q(−3) are involved in the
formula for the dimension ofS2(r

k). Let χ4 andχ3 denote the nontrivial Dirichlet
character mod 4 and 3, respectively. WhenK has narrow class number 1, these ratios
are given by the formulae

h(−1)

q(−1)
= (−1)d+1

∏
χ

B1,χχ4

2
,

h(−3)

q(−3)
= (−1)d+1

∏
χ

B1,χχ3

2
,

where the products are taken over the nontrivial even Dirichlet characters of conductor
r. Recall that

B1,χχ4 =
1

4r

4r∑
a=1

aχχ4(a), B1,χχ3 =
1

3r

3r∑
a=1

aχχ3(a).

Table 1 lists these invariants for the first few values ofr.

Table 1

r d ζK(−1) h− h(−1)/q(−1) h(−3)/q(−3)

5 2 1/30 1 1 1

7 3 −1/21 1 1 1

11 5 −20/33 1 1 1

13 6 152/39 1 3 2

17 8 18688/51 1 8 5

19 9 −93504/19 1 19 9

Let
χ(n)= 1+(−1)d dim

(
S2(n)

)
.

Under the assumption thatK has narrow class number 1, this is the arithmetic genus
of the Hilbert modular variety�d/;0(n); cf. [Fr, Ch. II, Sec. 4, Th. 4.8].

Theorem 3.9. Assume thatK has narrow class number1. Thenχ(rk) (and hence,
the dimension ofS2(r

k)) is given by the formulae
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χ(1)= ζK(−1)

2d−1
+ r−1

2r
h−+ h(−1)

4q(−1)
+ h(−3)

3q(−3)
,

χ(r)= (r+1)
ζK(−1)

2d−1
+ r−1

2r
h−+δ2

h(−1)

4q(−1)
+δ3

h(−3)

3q(−3)
,

χ
(
rk

) = rk−1(r+1)
ζK(−1)

2d−1
+δ2

h(−1)

4q(−1)
+δ3

h(−3)

3q(−3)
.

Proof. The formula forχ(1) is given in [We, Th. 1.14 and 1.15]. A routine cal-
culation then yields the formula forχ(rk), after noting that

(1) an elliptic fixed point of order 2 (resp., 3) on�d for the action ofSL2(�K)
lifts to δ2 (resp.,δ3) elliptic fixed points on�d/;0(r

k) for k ≥ 1;
(2) an elliptic fixed point of orderr lifts to a unique elliptic fixed point modulo

;0(r), and there are no elliptic fixed points of orderr on �d/;0(r
k) when

k > 1.

Noting thatK has narrow class number 1 whenr < 23, Theorem 3.9 allows us to
compute the dimensions for the relevant spaces of cusp forms (see Table 2).

Table 2

r dim
(
S2(1)

)
dim

(
S2(r)

)
dim

(
S2

(
r2

))
dim

(
S2

(
r3

))
5 0 0 0 2

7 0 0 1 5

11 0 1 6 56

13 1 4 24 290

17 6 55 879 14895

19 12 379 7300 138790

The caser = 5and7. Whenr = 5, the action of the Hecke operators on the spaces
S2(n) overK = Q(√5) can be calculated numerically by exploiting the Jacquet-
Langlands correspondence between forms onGL2(K) and on certain quaternion
algebras. LetB be the (unique, up to isomorphism) totally definite quaternion algebra
overK which is split at all finite places. The algebraB can be identified with the
standard Hamilton quaternions overK, since 2 is inert inK:

B = {
x+yi+zj+wk, x,y,z,w ∈Q(√

5
)}
.

The class number ofB is equal to 1: The maximal orders inB are all conjugate to
the ring oficosians

R = Z
[
ω,i,j,k,

1

2
(1+ i+j+k),

1

2
(i+ωj+ ω̄k)

]
,
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whose unit groupR× is isomorphic to the binary icosahedral group of order 120 (cf.,
e.g., [CS, Ch. 8, Sec. 2.1]). LetRn be an Eichler order of leveln in R, and write

R̂n := Rn⊗ Ẑ, B̂ = B⊗ Ẑ.
The Jacquet-Langlands correspondence shows thatS2(n) is isomorphic as a Hecke
module to the space

L2(R̂×
n \ B̂×/B×)

,

on which the Hecke operators act in the standard way.
Table 3 lists the eigenvalues of the Hecke operatorsTp acting onS2(r

3), for all the
primesp of K of norm less than or equal to 50. It turns out that the two eigenforms
in S2(r

3) are conjugate to each other overQ(
√

5), so we have only displayed the
eigenvalues of one of the two eigenforms.

Table 3

p (2) (3) (3−ω) (4+ω) (4−ω) (5+ω) (5−ω)

ap(f ) 0 0 (−1−5
√

5)/2 (−1+5
√

5)/2 0 0 0

p (6+ω) (7+2ω) (5−2ω) (7+ω) (6−ω) (7)

ap(f ) 0 (−11+5
√

5)/2 (−11−5
√

5)/2 (9+5
√

5)/2 (9−5
√

5)/2 0

Observe thatap(f )= 0 for all the primesp that are inert in the quadratic extension
Q(ζ5)/Q(ω). This suggests thatf is actually of CM type, and it corresponds to an
abelian variety of dimension 2 with complex multiplication byQ(ζ5).

In fact, this can be proved: The abelian variety

J+
5 (1,−1,0)= Jac

(
y2+y = x5)

has complex multiplication byQ(ζ5), and its Hasse-WeilL-function is a product
of HeckeL-series attached to Grössen characters ofQ(ζ5) of conductor(1− ζ5)

2.
A direct calculation shows thatJ+

5 (1,−1,0) is associated to the two eigenforms in
S2(

√
5
3
) overGL2(Q(

√
5)).

Whenr = 7, we did not carry out a numerical investigation of the Hecke eigenforms
of levelr2 andr3, but this turns out to be unnecessary in identifying the modular forms
that arise in these levels. LetA be the (unique, up to isogeny) elliptic curve overQ
of conductor 49, which has complex multiplication byQ(

√−7). It corresponds to
a cusp form overQ of level 49. Its base change lift toK = Q(cos(2π/7)) is the
unique modular form of levelr2. The spaceS2(r

3) contains a 2-dimensional space of
old forms, and hence there are three eigenforms of levelr3. These must consist of the
Hilbert modular forms associated to the Fermat quotient

J+
7 (1,−1,0) : y2+y = x7.
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So whenr = 5 and 7, the spacesS2(r
3) contain only eigenforms of CM type

associated to hyperelliptic Fermat quotients or CM elliptic curves. Hence, we have
the following theorem.

Theorem 3.10. Let r = 5 or 7, and let(a,b,c) be a nontrivial primitive solution
to the equationxp+yp = zr , wherep �= r is an odd prime. Letp be any prime of
K =Q(cos(2π/r)) abovep, and writeF := �K/p. Then we have the following.

(1) If (a,b,c) is a first case solution, themodp representation associated to
J+
r (a,b,c) is reducible.
(2) If (a,b,c) is a second case solution, assume further thatJ+

r (a,b,c) is modular
and that Ribet’s lowering-the-level theorem (see Conjecture 3.3) holds for Hilbert
modular forms overK. Then themodp representation associated toJ+

r (a,b,c) is
either reducible or its image is contained in the normalizer of a Cartan subgroup of
GL2(F).

Following [Se1], one can use the fact thatJ+
r is semistable to obtain more precise

information in the first case.

Proposition 3.11. If r = 5 or 7 and(a,b,c) is a first case solution toxp+yp =
zr , thenJ+

r (a,b,c) isQ-isogenous to an abelian variety having a rational point of
orderp.

Proof. Choose a primep of K abovep, and letχ1 :GK −→ F× be the character
giving the action ofGK on theK-rational 1-dimensionalF-vector subspaceL of
J+
r [p]. Let χ2 be the character ofGK describing its action onJ+

r [p]/L. The local
analysis in [Se1, Sec. 5.4., Lem. 6] shows thatχ1 andχ2 are unramified outside the
primes abovep. Also, the set of restrictions{χ1|Ip′ ,χ1|Ip′ } to an inertia groupIp′ at
a primep′ abovep is equal to{χ,1}, whereχ is the cyclotomic character giving the
action ofIp′ on thepth roots of unity. (Use the corollary to Proposition 13 of [Se1].)
Hence, one ofχ1 or χ2 is everywhere unramified. (When there is a single prime ofK

abovep, this is immediate. Ifp is split inK, one observes, by analyzing the image
of the map�×

K → (�K⊗Fp)× and using class field theory, that the inertia groups at
the variousp′, in the Galois group of the maximal tamely ramified abelian extension
of K unramified outsidep, have nontrivial intersection and, in fact, are equal for
all but finitely manyp.) SinceK has class number 1, one ofχ1 or χ2 is trivial. If
χ1 = 1, thenJ+

r [p] has aK-rational point whose trace gives a point of orderp in
J+
r (a,b,c). If χ2 = 1, the moduleL̃ generated by the�K [GQ]-translates ofL is a
Q-rational subgroup ofJ+

r [p] which is of rank 1 over�K⊗Fp. The quotientJ+
r /L̃

has a rational point of orderp.

Corollary 3.12. If 3 is a prime satisfying3 < p1/d − 2p1/2d + 1, then 3
dividesab.

Proof. If 3 does not divideab, thenJ+
r has good reduction at3 and #J+

r (F3) <
(1+√

3)2d by the Weil bounds. Hence,p>#J+
r (F3). This contradicts Proposition 3.11,
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since the prime-to-3 part of the torsion subgroup ofJ+
r (Q) injects intoJ+

r (F3) (and
likewise for any abelian variety isogenous toJ+

r ).

Theorem 3.13. Supposer = 5 or 7. There exists a constantC−
r depending only

on r such that, ifp ≥ C−
r and (a,b,c) is a first case solution toxp+yp = zr , the

Galois representationρ−r is reducible. (In this case, there is a quotient ofJ−
r (a,b,c)

overQ which has a rational point of orderp.)

Proof. By Corollary 3.12, ifp is large enough, then 2 dividesab, so that the
abelian varietyJ−

r (a,b,c) is semistable at 2 and, hence, everywhere (see the proof of
Proposition 1.15). The modp representation associated toJ−

r (a,b,c), if irreducible,
is therefore equal to the modp representation associated to a Hilbert modular form
f over K in S2(2r), by Theorem 3.5. Corollary 3.12 further implies that if3 ≤
p1/d − 2p1/2d + 1 is a rational prime, then3 divides ab, so thatJ−

r (a,b,c) has
multiplicative reduction at any primeλ ofK above3. By using the Tate uniformization
of J−

r (a,b,c) atλ, we find that

aλ(f )≡ norm(λ)+1 (modp), for all 3≤ p1/d−2p1/2d+1.

For eachf , there is a constantC−
f such that this statement fails wheneverp > C−

f ,
since the modp representations attached tof are irreducible for almost allp. Now
takeC−

r to be the maximum of theC−
f asf runs over the normalized eigenforms in

S2(2r). The statement in parentheses follows by applying toJ−
r the same arguments

used in the proof of Proposition 3.11.

Remark. Although the statement of Theorem 3.13 involves onlyρ−r , note the
crucial role played in its proof by the representationρ+r via Corollary 3.12. This
illustrates how information gleaned from one Frey representation may sometimes be
used to yield insights into a second a priori unrelated Frey representation associated
to the same generalized Fermat equation.

The caser = 11. Whenr = 11, there is a 44-dimensional space of newforms of
levelr3, and studying the equationxp+yp = z11 would require computing the Fourier
coefficients associated to these newforms. We content ourselves with the following
result, which requires only dealing withS2(r).

Theorem 3.14. Let(a,b,c) be a first case solution to the equationxp+yp = z11,
wherep > 19 is prime, and letp be any prime ofK =Q(cos(2π/11)) abovep. Then
themodp representation associated toJ+

11(a,b,c) is reducible, and in factJ
+
11(a,b,c)

has a rational point of orderp.

Proof. Let p be any ideal ofK abovep, and letρp denote the modp representation
associated toJ+

11(a,b,c). Suppose that it is irreducible. By exploiting the action of
Gal(K/Q), it follows thatρp is irreducible for all choices ofp. Theorem 3.5 implies
thatρp is modular of level dividingr. Table 2 shows that the space of cusp forms of
this level is 1-dimensional. In fact, the unique normalized eigenformf of level r is
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the base change lift toK =Q(cos(2π/11)) of the modular formf = η(z)2η(11z)2

of level 11 associated to the elliptic curveX0(11). Consider the prime ideal(2) of K
above 2, of norm 32. Then

a(2)(f )= a32(f )= 8.

This implies that
a(2) := a(2)

(
J+

11(a,b,c)
) ≡ 8 (modp)

for all primesp abovep. Taking norms, one finds

p5 divides normK/Q(a(2)−8).

By the Weil bounds, we have

|normK/Q(a(2)−8)| ≤ (
2
√

32+8
)5
.

Sincep > 20> 8(1+√
2), we must havea(2) = 8. But this leads to a contradiction.

For, if 2 dividesab, thenJ+
11(a,b,c) has purely toric reduction at 2 anda(2) =±1. If

ab is odd, thenJ+
11(a,b,c) has good reduction at(2), and 11 divides norm(32+1−

a(2))= 255 sinceJ+
11(a,b,c) has aK-rational point of order 11 (by Theorem 2.6). It

follows that the modp representations associated toJ+
11 are reducible. The proof of

Proposition 3.11 now shows thatJ+
11(Q) has a point of orderp, sinceQ(cos(2π/11))

has class number 1.

Corollary 3.15. If 3 is a prime satisfying3 < p1/5 − 2p1/10 + 1, then 3
dividesab.

The proof of this corollary is the same as for Corollary 3.12. Finally, we record the
following theorem.

Theorem 3.16. There exists a constantC−
11 such that, ifp ≥ C−

11 and (a,b,c)
is a first case solution toxp+yp = z11, the Galois representationρ−11 is reducible.
(In this case, there is a quotient ofJ−

11(a,b,c) overQ which has a rational point of
orderp.)

The proof is the same as for Theorem 3.13.

The caser = 13. Whenr = 13 there is a unique normalized cusp form of level 1,
which is the base change lift of the cusp form associated to the elliptic curveX1(13).
(Note that this curve acquires good reduction overQ(cos(2π/13)).) This modular
form does not pose any obstructions to studying first case solutions toxp+yp = z13,
since the representation attached to a solution of the equation is ramified atr.

On the other hand, the 2-dimensional space of newforms of levelr would have to
be studied more carefully in order to understand the (first case) solutions toxp+yp =
z13. The numerical calculation of eigenforms inS2(r) becomes increasingly difficult as
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r gets larger, and it has not been carried out even forr = 13. One can go further without
such explicit numerical calculations (cf. Theorem 3.22) by studying congruences
(modulor) for modular forms.

Generalr. Let 3 be a rational prime. The3-adic Tate moduleT3(J±
r (t))⊗Q3 is

a 2-dimensionalK3 := K ⊗Q3-vector space. Whent is rational, the linear action
of GK on this vector space extends to aGQ-action that isGK -semilinear; that is, it
satisfies

σ(αv)= ασσ(v), for all α ∈K3, σ ∈GQ.
Letting aq(J

±
r ) := trace(ρJ,3(frobq)), it follows that

aq
(
J±
r

)σ = aqσ
(
J±
r

)
. (13)

This motivates the following definition.

Definition 3.17. A Hilbert modular form overK of level n is called aQ-form if
for all idealsq of K which are prime ton, it satisfies the relation

aq(f )
σ = aqσ (f ), for all σ ∈GQ.

(In particular, this implies that the Fourier coefficientsaq(f ) belong toK.)

Equation (13) implies the following lemma, which reflects the fact that the abelian
varietiesJ±

r (t) with t ∈ Q are defined overQ (even though their endomorphism
rings are only defined overK).

Lemma 3.18. For all t ∈Q, if the abelian varietiesJ−
r (t) andJ

+
r (t) are modular,

then they are associated to a modularQ-form overK.

Let f be an eigenform inS2(n), and letλ be a prime in the ring of Fourier coeffi-
cients�f . Denote byρf,λ theλ-adic representation associated tof by Theorem 2.3
and letV be the underlyingKf,λ-vector space. Choose aGK -stable�f,λ-latticeH in
V . The spacēH :=H/λH gives a 2-dimensional representationρ̄f,λ for GK over the
residue fieldkf,λ := �f,λ/λ. In general, this representation depends on the choice of
lattice, but its semisimplification does not. One says thatρf,λ is residually irreducible
if ρ̄f,λ is irreducible for some (and hence all) choices of latticeH. Otherwise one says
thatρf,λ is residually reducible. In the latter case, the semisimplification ofρ̄f,λ is a
direct sum of two 1-dimensional characters

χ1,χ2 :GK −→ k×f,λ,

whose product is the cyclotomic character

χ :GK −→ (Z/3Z)× ⊂ k×f,λ

giving the action ofGK on the3th roots of unity.
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Let f be aQ-form overK in the sense of Definition 3.17, so that in particular its
Fourier coefficients are defined overK. We say thatf is r-Eisenstein if its associated
r-adic representationρf,r is residually reducible.

Proposition 3.19. There exists a constantC+
r depending only onr such that, for

any first case solution(a,b,c) to equation (1) withp > C+
r , one of the following

holds:
(1) the representationρ+r is reducible, or
(2) it is isomorphic to themodp representation attached to anr-EisensteinQ-form

in S2(r).

Proof. Let g be any eigenform inS2(r). If g is not aQ-form, then there exists a
primeq of �g and aσ ∈GQ such thataq(g)

σ �= aqσ (g). If g is aQ-form but is not
r-Eisenstein, then there is a primeq of K such thatr does not divideaq(g)−Nq−1.
In either case, one has

aq(g) �= aq(f ),

for all modular formsf that correspond to aJ+
r (t) with t ∈ Q. Indeed, such anf

is aQ-form and isr-Eisenstein by Theorem 2.6. Iff ≡ g for some primep of �gK
abovep, then taking norms gives

p divides NormKgK/Q
(
aq(g)−aq(f )

) �= 0.

Let dg := [Kg :Q]. Applying the Weil bounds, one finds

∣∣NormKgK/Q
(
aq(g)−aq(f )

)∣∣ ≤ (
16NormK/Q(q)

)(r−1)dg/4,

so that
p ≤ Cg :=

(
16NormK/Q(q)

)(r−1)dg/4.

In particular, if p > Cg, the representationρ+r is not equivalent toρ̄g,p for any
prime of�gK abovep. Now setC+

r := maxg Cg, where the maximum is taken over
all eigenformsg in S2(r) which are either notQ-forms or are notr-Eisenstein. If
p > C+

r and (a,b,c) is a first case solution toxp + yp = zr and if the associated
representationρ+r is irreducible, then it is associated by Theorem 3.5 to a Hilbert
modular eigenform inS2(r). This form must be anr-EisensteinQ-form by the choice
of C+

r .

In light of Proposition 3.19, it becomes important to understand whether there exist
r-EisensteinQ-forms inS2(r).

Proposition 3.20. Suppose thatr is a regular prime. Then there are nor-
EisensteinQ-forms overK of level1 or r.

Proof. Suppose on the contrary thatf is a Q-form in S2(r) and thatρf,r is
residually reducible. Letχ1 and χ2 be the characters ofGK which occur in the
semisimplification ofH̄, for some (and hence all)GK -stable latticesH in V . Because
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f is aQ-form, it follows thatχ1 andχ2 are powers of the cyclotomic characterχ with
values in〈±1〉 ⊂ F×r . Furthermore,χ1χ2 = χ . Hence, we may assume without loss
of generality thatχ1 = 1 andχ2 = χ . By [Ri1, Prop. 2.1], there exists aGK -stable
latticeH for which

ρ̄f,r �
(
χ1 A0

0 χ2

)
=

(
1 A0

0 χ

)
, (14)

and it is not semisimple. This implies thatA := A0/χ is a nontrivial cocycle in
H 1(K,Z/rZ(−1)). Proposition 3.20 now follows from the next lemma.

Lemma 3.21. The cocycleA is unramified.

Proof. The cocycleA is unramified at all placesv �= r becausev does not divide
the level off . It is also unramified atr: If f is of level 1, this is becausēρf,r comes
from a finite flat group scheme overK. If f is of level r, then, by [W2, Th. 2], the
restriction of the representation̄ρf,r to a decomposition groupDr at r is of the form

ρ̄f,r|Dr �
(
χ A

0 1

)
.

But the restriction ofχ toDr is nontrivial. Comparing the equation above to equation
(14), it follows that the local representation̄ρf,r|Dr splits. Therefore, the cocycleA
is locally trivial atr. This completes the proof of Lemma 3.21.

Proposition 3.20 now follows directly: The cocycleA cuts out an unramified cyclic
extension ofQ(ζr ) of degreer, which does not exist ifr is a regular prime.

Theorem 3.22. Let r be a regular prime. Then there exists a constantC+
r (de-

pending only onr) such that, for allp > C+
r and all first case solutions(a,b,c) to

xp+yp = zr , themodp representation associated toJ+
r (a,b,c) is reducible.

Proof. Combine Propositions 3.19 and 3.20.

Remarks. (1) The value of the constantC+
r depends on the structure of the space of

Hilbert modular forms overQ(cos(2π/r)) of levelr. It would be possible in principle
to write down a crude estimate forC+

r by using the Chebotarev density theorem and
known estimates for the size of fourier coefficients of Hilbert modular eigenforms,
but we have not attempted to do this.

(2) The consideration ofr-EisensteinQ-forms so crucial for the proof of Theorem
3.22 is only likely to be of use in studying first case solutions. Indeed, there typically
existr-EisensteinQ-forms onS2(r

3); for example, the base change lifts fromQ toK
of certainr-Eisenstein forms onX0(r

2) or (more germane to the present discussion)
the form inS2(r

3) associated to the CM abelian varietyJ+
r (1,−1,0).

(3) The arguments based onr-EisensteinQ-forms yield no a priori information
about the Galois representationsρ−r , since the modr representation attached to
J−
r (a,b,c) is irreducible. (It is isomorphic to a twist of the representation coming
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from the r-torsion of the Frey curvey2 = x(x − ap)(x + bp), by Theorem 2.6.)
Nonetheless, one can still show the following theorem.

Theorem 3.23. Assume further thatK has class number1. Then
(1) J+

r (a,b,c) is isogenous to an abelian variety having a rational point of
orderp;

(2) there exists a further constantC−
r such that ifp > C−

r , the abelian vari-
ety J−

r (a,b,c) is isogenous to an abelian variety having a rational point of
orderp.

Proof. The proof of (1) is the same as for Proposition 3.11, and (2) follows from
the same reasoning as for Theorem 3.13.

4. Torsion points on abelian varieties. Ultimately, one wishes to extract a con-
tradiction from theorems like Theorems 3.10, 3.13, 3.14, 3.16, 3.22, and 3.23 by
proving that whenp is large enough (relative tor perhaps), the image ofρ±r is large;
for example, that this image containsSL2(F) or, at the very least, that the abelian
varietiesJ±

r (a,b,c), when semistable, cannot contain a rational point of orderp. The
following folklore conjecture can be viewed as a direct generalization of a conjecture
of Mazur for elliptic curves.

Conjecture 4.1. LetE be a totally real field andK a number field. There exists
a constantC(K,E) depending only onK andE, such that for any abelian variety
A of GL2-type withEndK(A)⊗Q = EndK̄ (A)⊗Q � E, and all primesp of E of
norm greater thanC(K,E), the image of themodp representation associated toA
containsSL2(F).

This conjecture seems difficult. The set of abelian varieties ofGL2-type with
End(A)⊗Q � E is parametrized by ad-dimensional Hilbert modular variety, and
very little is known about the Diophantine properties of these varieties.

Whenr = 2 andr = 3, one hasK = E = Q since the representationsρ±r arise
from elliptic curves. Much of Conjecture 4.1 can be proved thanks to the ideas of
Mazur [Ma1], [Ma2].
• Theorem 8 of [Ma1] implies that the image ofρ±r is not contained in a Borel

subgroup ofGL2(Fp) whenp > 5.
• A result of Momose [Mo] building on the ideas in [Ma1] implies that this image

is not contained in the normalizer of a split Cartan subgroup ifp > 17.
• Finally, a result of Merel and the author [DMr] implies that the image ofρ+r is

not contained in the normalizer of a nonsplit Cartan subgroup. (We were unable to
prove a similar result forρ−r .)

Combining these results with an ad hoc study (carried out by Bjorn Poonen [Po],
using traditional descent methods) of the equationsxp+yp = zr (r = 2,3) for small
values ofp yields the desired contradiction. Thus, the main result of [DMr] provides
an (essentially) complete analogue of Fermat’s last theorem for equation (1) when
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r = 2 or 3, which one would like to emulate for higher values ofr.

Theorem 4.2 [DMr]. (1) The equationxp+yp = z2 has no nontrivial primitive
solutions whenp ≥ 4.

(2)Assume the Shimura-Taniyama conjecture. Then the equationxp+yp = z3 has
no nontrivial primitive solutions whenp ≥ 3.

Return now to the caser > 3. The following special case of Conjecture 4.1, which
is sufficient for the applications to equation (1), seems more tractable.

Conjecture 4.3. There exists a constantBr depending only onr, such that for
any t ∈Q and all primesp of K =Q(ζr )+ of norm greater thanBr , the image of
themodp representation ofGK associated toJ±

r (t) is neither contained in a Borel
subgroup nor in the normalizer of a Cartan subgroup ofGL2(F).

A natural approach to this conjecture is to study the curvesX±
0 (p), X

±
s (p), and

X±
ns(p) which classify the abelian varietiesJ±

r (t) with a rational subgroup, a “nor-
malizer of split Cartan subgroup structure,” and a “normalizer of nonsplit Cartan
subgroup structure” on thep-division points, wherep is an ideal of the fieldK.

For the moment, we know very little about the arithmetic of these curves, except
when r = 2 andr = 3 when they are closely related to classical modular curves.
Whenr > 3, they appear as quotients of the upper half-plane by certain nonarithmetic
Fuchsian groups described in [CW]. We content ourselves here with giving a formula
for the genus of these curves. Letε =±1 be defined by the conditionNp ≡ ε (modr).

Lemma 4.4. (1) The genus ofX±
0 (p) is equal to

1

2

(
1− 1

r
− 2

p

)
Np− ε

2

(
1− 1

r

)
.

(2) The genus ofX±
s (p) is equal to

1

4

(
1− 1

r
− 2

p

)
Np(Np+1)− ε+1

4

(
1− 1

r

)
+1.

(3) The genus ofX±
ns(p) is equal to

1

4

(
1− 1

r
− 2

p

)
Np(Np−1)+ ε−1

4

(
1− 1

r

)
+1.

Proof. The curves above are branched coverings of the projective line with known
degrees and ramification structure. The calculation of the genus follows by a direct
application of the Riemann-Hurwitz genus formula.

Example. Whenr = 5 andp = (3), one finds that the curvesX−
0 (3) andX+

0 (3) are
of genus 1; that is, they are elliptic curves overQ. A direct calculation reveals that
X+

0 (3) is an elliptic curve of conductor 15, denoted by 15E in Cremona’s tables.
By looking up the curve 15E twisted byQ(

√
5), one finds that 15E has finite
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Mordell-Weil group overQ(
√

5). DoesJ+
0 (p) always have a nonzero quotient with

finite Mordell-Weil group overQ(ζr )+, at least whenp is large enough?
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