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Abstract

We define certain objects associated to a modular elliptic curve
E and a discriminant D satisfying suitable conditions. These objects
interpolate special values of the complex L-functions associated to
E over the quadratic field Q(

√
D), in the same way that Bernouilli

numbers interpolate special values of Dirichlet L-series. Following an
approach of Mazur and Tate [MT], one can make conjectures about
congruences satisfied by these objects which are resonant with the
usual Birch and Swinnerton-Dyer conjectures. These conjectures ex-
hibit some surprising features not apparent in the classical case.

1 Heegner objects

1.1 Modular elliptic curves

Let E be an elliptic curve defined over Q by the Weierstrass equation

y2 = 4x3 − g2x− g3, g2, g3 ∈ Z,

and let N denote the arithmetic conductor of E, which can be computed
from g2 and g3 by Tate’s algorithm [Ta]. To simplify the discussion, let us
assume that N is odd.

The group E(C) is isomorphic to the complex torus C/Λ, where Λ is a
free Z-lattice of rank 2. The lattice Λ can be computed explicitely from the
coefficients g2 and g3, by using the arithmetic-geometric mean. An isomor-
phism from C/Λ to E is given by

z 7→ (℘(z), ℘
′
(z)),

where ℘(z) denotes the Weierstrass ℘-function.

The set Ens(Fp) of non-singular points on the reduction of E mod p is a
finite abelian group. Let Np denote its order, and define ap = p + δp − Np,
where δp = 0 if E has bad reduction at p, and is equal to 1 otherwise. Extend
this to an, for any positive integer n, by equating coefficients in the formal
series identity: ∑

n≥0

ann
−s =

∏
p

(1− app
−s + δpp

1−2s)−1.
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¿From the inequality of Hasse, |ap| ≤ 2
√
p, it follows that the Fourier series

fE(τ) =
∞∑

n=1

ane
2πinτ

converges absolutely for im(τ) > 0. Hence the differential ωE = 2πifE(τ)dτ
is a holomorphic differential on the upper half plane H. The group SL2(R)
of matrices of determinant 1 acts (on the left) on H by(

a b
c d

)
τ =

aτ + b

cτ + d
.

Taking pullbacks defines a right action of SL2(R) on the space of holomorphic
functions or differentials on H.

The Atkin-Lehner involution wN and the Hecke operators Tp act on the
space of differentials by

Tpg(τ)dτ = pg(pτ)dτ + 1/p
p−1∑
k=0

g(
τ + k

p
)dτ,

wNg(τ)dτ = g(−1/Nτ)d(−1/Nτ).

Let Γ0(N) denote the group of matrices in SL2(Z) whose lower left entry is
divisible by N . The following conjecture is supported by extensive compu-
tational and theoretical evidence, and is widely believed to be true:

Conjecture 1.1 (Shimura-Taniyama-Weil) .

1. The differential ωE is invariant under the action of Γ0(N), i.e.,

fE(
aτ + b

cNτ + d
) = (cNτ + d)2fE(τ),

for all

(
a b
cN d

)
of determinant 1 with a, b, c, d ∈ Z.

2. The set L of all
∫ γz
z ωE, with γ ∈ Γ0(N) and z ∈ H, is a lattice in

C, and there exists an integer λ such that λL ⊂ Λ. (Hence the map
φ : τ 7→ λ

∫ τ
i∞ ωE is a surjective analytic map from H/Γ0(N) to C/Λ.)
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3. The differential ωE is an eigenvalue for the Hecke operators Tp and the
Atkin-Lehner involution,

TpωE = apωE, (p,N) = 1, wNωE = εωE, ε = ±1.

We assume that this conjecture is true for E - in theory, it can be checked
by a finite amount of computation, cf. [Me]. All of our constructions rely
crucially on the truth of the Shimura-Taniyama-Weil conjecture for E.

1.2 Binary quadratic forms

Let D = D0f
2, where D0 is a fundamental discriminant and f is a square-free

integer prime to D0, and let K = Q(
√
D) = Q(

√
D0) be the corresponding

quadratic field with ring of integers OK . Let Of be the order in OK of con-
ductor f , consisting of all elements in OK which are congruent to a rational
integer modulo f .

Definition 1.2 The pair (E,D) satisfies the Heegner hypothesis if for all p
dividing N , the Kronecker symbol (D

p
) is equal to 1.

Assume from now on that (E,D) satisfies the Heegner hypothesis; then there
is an integer B0 such that

B2
0 ≡ D0 (mod 4N).

Fix such a B0 once and for all. The standard shorthand (A,B,C) will be
used to denote the binary quadratic form Ax2 +Bxy + Cy2.

Definition 1.3 A quadratic form F = (A,B,C) is said to be Heegner if N
divides the coefficient A, and B ≡ B0f (mod 2N).

Let F denote the set of primitive binary quadratic forms of discriminant
D, and let FN denote the set of primitive binary quadratic forms which are
Heegner. The group SL2(Z) acts on the right on F by the rule:

F (x, y)

(
a b
c d

)
= F (ax+ by, cx+ dy).
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Proposition 1.4 .

1. The set FN is stable under the action of Γ0(N).

2. The natural map FN/Γ0(N) −→ F/SL2(Z) is an isomorphism.

To show surjectivity in 2, let F be a form in F , and suppose without loss
of generality that F = (A,B,C) with (C,N) = 1. (One can bring F to this
form by modifying it by an element of SL2(Z).) Let t be an integer satisfying
the congruence

tC ≡ B0f −B

2
(mod N),

and let γ =

(
1 0
t 1

)
. Then Fγ is an SL2(Z)-representative of F which

belongs to FN . To show injectivity, one may proceed by a direct argument.
This part of the proof breaks down when D is not prime to N . (In our case,
(D,N) = 1 follows from the Heegner hypothesis.) A more general statement
which also covers the cases where D and N are not assumed to be coprime
is given in [GKZ], pp. 504-506.

Let h+(D) denote the number of inequivalent primitive binary quadratic
forms of discriminant D. Proposition 1.4 says that the set FN/Γ0(N) is finite
and has order h+(D). In addition, FN/Γ0(N) inherits a group structure from
the Gaussian composition of binary quadratic forms in F/SL2(Z). Let GD

denote the set FN/Γ0(N) endowed with this group structure.

Class field theory interprets GD as the Galois group of an abelian exten-
sion of K:

GD = Gal(Kf/K),

where Kf is the ring class field of K associated to the order of conductor f
(cf. [Co], pp. 180-182). The following proposition gives the order of GD in
terms of h, the class number of the field K.

Proposition 1.5 .

1. If D < 0, then

h+(D) = hu−1
∏
p|f

(p− (
p

D0

)),

where u = #O∗
K/2.
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2. If D > 0, let w be a fundamental unit of K, and let u be the smallest
integer such that wu is congruent to a rational integer modulo f , and
wu is totally positive. Then

h+(D) = hu−12
∏
p|f

(p− (
p

D0

)).

Our program in the next two sections is to associate to each (not neces-
sarily primitive) Heegner form F = (A,B,C) of discriminant D a Heegner
object which belongs to a certain Z-module MD.

The nature of the Heegner construction, and the nature of MD, depends
on whether D is positive or negative; we will treat those two cases separately.

1.3 The case D < 0: Heegner points

If D < 0, the two roots of the dehomogenized form Ax2+Bx+C are complex
conjugate and distinct, and there is a unique root τ0 which lies in the upper
half plane. Let

q0 = e2πiτ0 ,

and let

z0 =
∞∑

n=1

an

n
qn
0 .

Theorem 1.6 The value of z0 is independent of the choice of the Γ0(N)-
representative of F , up to addition of elements of Λ ⊂ C.

Proof: Since the root of Fγ in the upper-half plane is γ−1τ0, the value of
τ0 is well defined in H/Γ0(N). But z0 = φ(τ0), where φ is the map defined
in conjecture 1.1. Hence theorem 1.6 follows from conjecture 1.1 which we
assumed to be true in our case.

By theorem 1.6, the point αF = (x0, y0) = (℘(z0), ℘
′
(z0)) is a well-defined

complex point on E corresponding to F ∈ GD, and satisfying the Weierstrass
equation

y2
0 = 4x3

0 − g2x0 − g3.
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Theorem 1.7 The complex numbers x0 and y0 satisfy an algebraic equation
of degree 2h+(D) over Q, and can be viewed as elements of the ring class
field Kf . Hence αF belongs to the Mordell-Weil group E(Kf ).

This is a consequence of the theory of complex multiplication. See [Cx],
chapter three, or [Sh].

LetMD = E(Kf ). It is a finitely generated Z-module by the Mordell-Weil
theorem.

1.4 The case D > 0: Heegner cycles

When D > 0, the roots τ1 and τ2 of the dehomogenized form Ax2 +Bx+ C
lie on the real line. Let C be the geodesic in the hyperbolic plane joining
τ1 and τ2. A geodesic joining two rational numbers on the real line maps
to a cycle of finite length on X0(N), joining a cusp to a cusp. In general,
an arbitrary geodesic joining irrational real numbers maps to a path with
dense image on X0(N). Because τ1 and τ2 are real quadratic and conjugate,
the image of C on X0(N)(C) is an infinite periodic cycle. More precisely,
the form Ax2 + Bxy + Cy2 is preserved by an infinite abelian subgroup of
SL2(Z) of rank 1. A generator for this group modulo torsion is called an
automorph of F . When F is primitive, the automorph MF can be written
down by choosing a fundamental solution to Pell’s equation

u2 −Dv2 = 1,

and setting

MF =

(
u−Bv −2Cv

2Av u+Bv

)
.

Observe that MF belongs to Γ0(N), since N divides A. Now choose any
point τ lying on the geodesic C, and let Ci be the geodesic joining M iτ to
M i+1τ . Then C can be expressed as an infinite union

C = ∪i∈ZCi,

and each Ci maps to the same basic homology cycle αF inMD = H1(E(C),Z).
The construction of αF also works when F is not primitive, using the same
definiton for MF ; but observe that in this case the matrix MF could be a
non-trivial power of the automorph of F .
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The module MD can be identified with the lattice Λ by the map α 7→∫
α ωE. Thus αF can be computed by evaluating the integral∫ MF z

z
ωE

which belongs to Λ and does not depend on the choice of z, and using the
identification of Λ with H1(E(C),Z).

Theorem 1.8 Once a choice of a fundamental solution to Pell’s equation
has been made, the cycle αF does not depend on the choice of F modulo the
action of Γ0(N), and hence the assignment F 7→ αF is well-defined on GD.

Proof: Modifying F by an element γ in Γ0(N) has the effect of conjugating
MF by γ, i.e.,

MFγ = γ−1MFγ.

But the map ψ : M 7→
∫Mz
z ωE is a homomorphism from Γ0(N) to the abelian

group Λ, and hence ψ(MFγ) = ψ(MF ).

1.5 Properties of the Heegner objects

1.5.1 Action of the Hecke operators and wN

Let F ∈ GD be a class of binary quadratic forms represented by the Heegner
form (A,B,C). The Hecke operators can be defined on the forms by the rule

TpF = F∞ +
p−1∑
k=0

Fk,

F∞ = (A,Bp,Cp2), Fk = (Ap2, (B + 2Ak)p,Ak2 +Bk + C),

where the sum is to be viewed as a formal sum of (not necessarily primitive)
binary quadratic forms of dicriminant Dp2. Observe that the forms F∞ and
Fk are Heegner forms, and hence the construction of sections 1.3 or 1.4 can
be applied to them. Thus one defines

αTpF = αF∞ +
p−1∑
k=0

αFk
.
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Proposition 1.9 .

1. If D < 0, then αTpF = apuαF , where u = #O∗
f/2.

2. If D > 0, let u be the smallest integer such that (v+w
√
D)u is congruent

to a rational integer mod p, where (v, w) is a fundamental solution to
the Pell equation v2 −Dw2 = 1. Then αTpF = apuαF .

The Atkin-Lehner involution wN assigns to the Heegner form F the Heeg-
ner form (CN,B,A/N).

Proposition 1.10 αwNF = −εαF .

Propositions 1.9 and 1.10 can be verified by a direct argument, using the
definition of the objects αF in terms of ωE, and the the action of the Hecke
operators and the Atkin-Lehner involution on ωE described in part 3 of con-
jecture 1.1. For more details (when D < 0) see [Gr1], §5 and §6, or [Gr2].

Let FrobN be the class of quadratic forms in GD represented by the form
(N,B0f, (B

2
0f

2 − D)/(4N)). This terminology is appropriate, because this
form correponds to the Frobenius element at P1 · · · Pk, where Pj is prime
ideal above pj|N given by (pj, (B0 −

√
D0)/2). The action of the Atkin-

lehner involution wN can be written down in terms of the form FrobN and
the Gaussian composition law, as:

Proposition 1.11 wNF = FrobNF
−1.

1.5.2 Behaviour under norms

Let p be a prime which does not divide ND, and let F = (A,B,C) be an
element of GDp2 . Since the ring class field Kf is contained in the ring class
field Kfp, there is a natural homomorphism µp : GDp2 −→ GD. Let F̄ denote
a form in GD which represents µp(F ). Define the norm of F to be the formal
sum

NpF =
∑

µp(G)=F̄

G

of forms in GDp2 , and define the norm of αF to be the element

NpαF =
∑

µp(G)=F̄

αG,
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where the sum is taken over all inequivalent primitive Heegner forms of dis-
criminant Dp2 which map to F̄ .

If p is split in K, choose an ideal P of K above p, and let Frobp be
the quadratic form in GD which represents the frobenius element at P in
Gal(Kf/K). Choosing a different prime of K above p replaces Frobp by
Frob−1

p , so the element Frobp+Frob−1
p in the group ring Z[GD] is well-defined.

Proposition 1.12 .

1. If ( p
D0

) = 1, then NpαF = apαF̄ − αFrobpF̄ − αFrob−1
p F̄ .

2. If ( p
D0

) = −1, then NpαF = apαF̄ .

Proof: The formal sum NpF can be expressed in terms of the Hecke operators
Tp by

NpF = u−1(TpF̄ )− FrobpF̄ − Frob−1
p F̄ if (

p

D0

) = 1,

and
NpF = u−1(TpF̄ ) if (

p

D0

) = −1,

where u is as defined in proposition 1.9; the result follows from this proposi-
tion.

2 Relation with L-functions

2.1 Root numbers

Let L(E/K, s) denote the L-function of E over K, defined by the Euler
product expansion ∏

v

(1− aNvNv
−s + Nv1−2s)−1,

where the product is taken over the places v of K. This factors as a product
of two L functions

L(E/K, s) = L(E/Q, s)L(E(D)/Q, s),
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where E(D) is the twist of E by D defined by the equation

Dy2 = 4x3 − g2x− g3.

Let ran denote the order of vanishing of L(E/K, s) at s = 1, and let r+
an

(resp. r−an) denote the order of vanishing of L(E/Q, s) (resp. L(E(D)/Q, s))
at s = 1.

Proposition 2.1 .

1. If D < 0, then r+
an 6≡ r−an (mod 2), and ran is odd.

2. If D > 0, then r+
an ≡ r−an (mod 2), and ran is even.

Proof: Let ε be the eigenvalue for the Atkin-Lehner involution wN acting
on ωE. The sign in the functional equation for L(E/Q, s) is −ε, and hence
L(E/Q, s) vanishes to odd order at the critical point s = 1 if ε = 1, and
to even order if ε = −1. As explained in [Gr1], the sign in the functional
equation for the L function of the twist E(D) can be computed explicitely,
and is equal to ε if D < 0, and −ε if D > 0, when D satisfies the Heegner
hypothesis. The result follows.

2.2 Formulas of Gross-Zagier and Waldspurger

We define a Hermitian pairing 〈 , 〉D on MD ⊗C.

Definition 2.2 The pairing 〈 , 〉D : MD ×MD −→ C is defined by:

1. If D < 0, let it be the Néron-Tate canonical height on E(Kf ), extended
to a Hermitian pairing on E(Kf )⊗C.

2. If D > 0, let 〈α1, α2〉D =
∫
α1
ωE

∫
α2
ω̄E.

Given a complex character χ : GD −→ C∗, let

αχ =
1

h+(D)

∑
F∈GD

χ(F )αF ∈MD ⊗C.

To such a χ one can associate the twisted L-function

L(E/K, χ, s) =
∏
v

(1− χ(v)aNvNv
−s + χ2(v)Nv1−2s)−1.
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It has an analytic continuation to the complex plane. Let ω+, ω− ∈ Λ be the
real and imaginary periods attached to E; the lattice generated by ω+ and
ω− is of index 1 or 2 in Λ.

The following formula gives the relation between the elements αF and the
special values L(E/K,χ, 1). For D < 0 it is a result of Gross and Zagier,
and for D > 0, it was proved by Waldspurger.

Theorem 2.3 (Gross-Zagier, Waldspurger) Suppose that D = D0 is a
fundamental discriminant, and let h = h+(D).

1. If D < 0, then

〈αχ, αχ̄〉D ·
= u2

√
Dh−1(ω+ω−)−1L

′
(E/K,χ, 1),

where u = #O∗
K/2.

2. If D > 0, then

〈αχ, αχ̄〉D ·
=
√
Dh−1L(E/K,χ, 1),

where the symbol
·
= denotes equality up to multiplication by a power of 2

which could be explicitly determined.

For the case D < 0, see [GZ], and for D > 0, see [GKZ], p. 527 and [Wal].
A similar formula certainly holds for non-fundamental D, but it has not

been worked out for D < 0; one would need to adjust the formula to take
into account the Euler factors at the primes dividing f . Since the formulas
are given only to provide motivation for the later conjectures and results,
we have not strived for the greatest generality and precision in writing them
down.

3 A refined conjecture

3.1 Motivation and statement

Consider the formal elements

θD =
∑

F∈GD

αF · F, θ∗D =
∑

F∈GD

αF · F−1,
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viewed as elements of the tensor product MD ⊗ Z[GD]. Let LD be defined
by taking the formal product:

LD = θD · θ∗D ∈M⊗2
D ⊗ Z[GD].

The pairing 〈 , 〉D of section 2.2 is a linear map of M⊗2
D to C and hence

extends by linearity to a map from M⊗2
D ⊗ Z[GD] to C[GD]. Applying this

map to LD gives an element LC
D of C[G], which interpolates special values of

the L-function of E over K; for the expression 〈αχ, αχ̄〉D which appears in
theorem 2.3 is equal to χ(LC

D). The original element LD has more structure
than LC

D, since its coefficients are elements of a Z-module M⊗2
D . For instance,

it makes sense to talk about congruences for these coefficients. Let I denote
the augmentation ideal in the integral group ring Z[GD]. The first conjecture
we make is close in spirit to the Birch and Swinnerton-Dyer conjecture, (and,
even more so, to its p-adic avatars) and is inspired by a similar conjecture of
Mazur and Tate in the cyclotomic case (cf. [MT], [D3]).

Conjecture 3.1 .

1. If D < 0, then LD belongs to the subgroup M⊗2
D ⊗Ir−1 of M⊗2

D ⊗Z[GD].

2. If D > 0, then LD belongs to the subgroup M⊗2
D ⊗ Ir of M⊗2

D ⊗ Z[GD].

Let r denote the rank of E(K). Let E(K)+ and E(K)− denote the
plus and minus eigenspaces of E(K) under the action of the involution in
Gal(K/Q). They generate a submodule of E(K) of index at most 2. Let r+

and r− denote the ranks E(K)+ and E(K)−; thus r+ is the rank of E over
Q, and r+ +r− = r. The Birch and Swinnerton-Dyer conjecture implies that
r± = r±an. Let ρ = max(r+, r−).

Guided by the main result of [D1], one is lead to make the following
stronger conjecture about the “square root” θD of LD.

Conjecture 3.2 .

1. If D < 0, then θD belongs to the subgroup MD ⊗ Iρ−1 of MD ⊗ Z[GD].

2. If D > 0, then θD belongs to the subgroup MD ⊗ Iρ of MD ⊗ Z[GD].
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When D < 0, conjecture 3.2 implies that LD belongs to M⊗2
D ⊗I2ρ−2. Assum-

ing that r is odd (which is implied by the Birch Swinnerton-Dyer conjecture
r = ran together with proposition 2.1) one has 2ρ− 2 ≥ r − 1, with equality
holding if and only if |r+ − r−| = 1. When D > 0, conjecture 3.2 implies
that LD belongs to M⊗2

D ⊗ I2ρ, and 2ρ ≥ r, with equality holding if and only
if r+ = r−.

The evidence for conjecture 3.2 is of two types. By applying the descent
argument of Kolyvagin, one can prove part 1 of the conjecture (for D < 0)
under certain mild extra hypotheses. This result will be presented in section
3.4.

The proof of the conjecture for D > 0 would seem to require new ideas,
but it is more amenable to numerical verification on the computer, since the
module MD in this case is simpler. A summary of some of the computer
calculations that were performed is given in section 3.5.

3.2 Properties of θD

Let νp denote the map MDp2 ⊗ Z[GDp2 ] −→ MDp2 ⊗ Z[GD] induced by the
natural homomorphism µp : GDp2 −→ GD.

Proposition 3.3 .

1. νp(θDp2) = (ap − Frobp − Frob−1
p )θD if ( p

D0
) = 1.

2. νp(θDp2) = apθD if ( p
D0

) = −1,

Proof: This is a direct consequence of proposition 1.12.

Let θ 7→ θ∗ denote the involution which sends σ ∈ GD to σ−1, extended
by linearity to the group ring Z[GD]. The following result can be viewed as
the analogue of the functional equation for the element θD.

Proposition 3.4 Frob−1
N θ∗D = −εθD.

Proof: By proposition 1.10, wNθD = −εθD, and by proposition 1.11, wNθD =
Frob−1

N θ∗D. The result follows.

Let Z be the ring Z[1
2
], and let θD denote the image of θD in MD⊗Z[GD].

Define the order of vanishing of θD to be the greatest t such that θD belongs
to MD ⊗ I t.

14



Proposition 3.5 If ε = 1, then θD has odd order of vanishing, and if ε =
−1, then θD has even order of vanishing.

Proof: Let t denote the order of vanishing, and let θ̃D and θ̃
∗
D denote the

leading coefficients in MD ⊗ (I t/I t+1). Since θ̃∗D = (−1)tθ̃D, the functional
equation of proposition 3.4 implies that

(−1)tθ̃D = −εθ̃D.

Since the group MD ⊗ (I t/I t+1) is of odd order, it follows that

(−1)t+1 = ε,

which proves the proposition.

3.3 The leading coefficient

Assuming the truth of the order of vanishing conjectures 3.1 and 3.2, define
the leading coefficient of θD to be the projection of θD to the group MD ⊗
(Iρ−1/Iρ) if D < 0, and to MD ⊗ (Iρ/Iρ+1) if D > 0. It is natural to search
for an interpretation of the leading coefficient θ̃D in terms of arithmetic data
for the curve E over K. Such a conjecural interpretation can only be given
at the moment for the following cases:

1. D < 0, |r+ − r−| = 1.

2. D > 0, r+ = r−.

(These represent exactly the cases for which conjecture 3.2 is no stronger
than conjecture 3.1). The conjecture concerning the value of the leading
coefficient in case 1 is stated in full generality in [D2]. We concentrate here
on the simpler case where D > 0. To simplify the discussion, we will state
the conjecture only in the case where f is a prime > 3 and r > 0, and E(K)
is torsion-free. (In the general case, one needs to modify the naive element
θD by a kind of regularization process which is explained in [D2] to make the
conjecture compatible under norms and take into account the Euler factors
at the primes dividing f .)

In [MT], B. Mazur and J. Tate define a height pairing based on an idea
of Manin and Zarhin, which takes values in GD = I/I2. This height pairing
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is not defined on the full Mordell-Weil groups, but only on E(K) × Ef (K),
where Ef (K) denotes the subgroup of E(K) of finite index in E(K) defined
by the exact sequence:

0 −→ Ef (K) −→ E(K) −→ E/E0(K)⊕ E(kf ).

Here kf denotes the residue field of K at f . Let further JD denote the order
of the cokernel of the right-hand map.

Let P1, . . . , Pr (resp. Q1, . . . Qr) denote integral bases for E(K) (resp.
Ef (K)) modulo torsion which induce compatible orientations on E(K)⊗R.
Let RD be the determinant of r×r matrix (〈Pi, Qj〉D with entries in I/I2. It
belongs naturally to Ir/Ir+1. The element RD plays the role of the regulator.
It is independent of the choice of bases.

Conjecture 3.6

L̃D (= (−1)ρθ̃2
D) = #III(E/K) ·RD · JD · ω+ ⊗ ω+.

What is the correct generalization of this conjecture when ρ is greater than
r/2? In that case conjecture 3.2 predicts that the image of L̃D in M⊗2

D ⊗ Ir

is 0. It can also be shown that the Mazur-Tate regulator RD in Ir/Ir+1

vanishes: for the height pairing is trivial when restricted to E(Q) × Ef (Q)
or E−(K) × E−

f (K), and the hypothesis r+ 6= r− implies that one of the
isotropic subspaces has dimension > r/2.

However, one feels strongly that the leading coefficient θ̃D inMD⊗Iρ/Iρ+1

should have an arithmetic interpretation in all cases. 1

3.4 The case D < 0: theoretical evidence

We now return to the order of vanishing conjecture 3.2, and state a result
which gives evidence for it in the case where D < 0. For details and proofs
see [D2].

Suppose that E has no complex multiplications, and supppose that D < 0
is such that all primes dividing f are inert in K = Q(

√
D).

Let Z be a subring of Q such that the following are invertible:

1Note: Since this paper was submitted, such an interpretation has been found. See
the forthcoming publication by Massimo Bertolini and the author on “Derived Height
Pairings”.
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1. All primes p|6.

2. All primes p < ρ.

3. All primes p such that Gal(Q(Ep∞)/Q) is smaller than the full group
of Zp-linear automorphisms of the Tate module Tp(E).

4. All p which divide [E : E0].

By a result of Serre [Se], the set of primes satisfying condition 3 is a finite set
(in the case where N is squarefree, it consists at most of the primes ≤ 11).
Let θD be the image of θD in the group MD ⊗ Z[GD], and let I denote the
augmentation ideal in the group ring Z[GD].

Theorem 3.7 θD belongs to the subgroup MD ⊗ (Iρ−1/Iρ) of MD ⊗ Z[GD].

A key ingredient in the proof of this result is the descent method of Kolyvagin
[Ko1], [Ko2].

3.5 The case D > 0: computational evidence

The conjecture for D > 0 is closer to the original cyclotomic conjecture
of Mazur and Tate formulated in [MT] in terms of modular symbols, which
remains unproved. One must thus content oneself with numerical verification
on the computer. Fortunately, the module MD is much simpler than when
D < 0, making such calculations feasible.

Because of the close analogy between Heegner cycles and Heegner points,
it is hoped that the numerical study of Heegner cycles will provide insights
into the behaviour of Heegner points in the anticyclotomic tower. An un-
derstanding of this behaviour is crucial if one wants to extend Kolyvagin’s
methods to modular elliptic curves of higher rank.

We now give three representative examples, involving modular elliptic
curves of conductor 11, 37 and 5077.

3.5.1 The curve X0(11)

Let E be the modular curve X0(11), given by the equation

y2 + y = x3 − x2 − 10x− 20.
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Its Mordell-Weil group has rank 0 over Q, and the eigenvalue of the Atkin-
Lehner involution w11 is ε = −1.

A list of values of D0 ≤ 500 which satisfy the Heegner hypothesis for
E and for which L(E/K, s) has a (non-trivial) zero at s = 1 can be found
in the tables compiled by Glenn Stevens [St], p. 171. They are: D0 =
232, 265, 273, 364, 401, 421, 476, 488. If f is prime to 11D0, and if D = D0f

2,
conjecture 3.2 predicts that

θD ∈MD ⊗ I2.

In this case much of it can be proved. Let θD denote as in section 3.2 the
image of θD in MD ⊗ Z[GD], where Z is the ring Z[1

2
].

Proposition 3.8 θD belongs to MD ⊗ I2.

Proof: Waldspurger’s formula (theorem 2.3) implies that θD belongs to
MD ⊗ I. The result follows from proposition 3.5 and the fact that ε = −1
for the curve X0(11).

A verification of the full vanishing conjecture by computation remains inter-
esting nonetheless, since it enables us to compute the values of the mysterious
leading terms θ̃D ∈MD ⊗ (I2/I3).

A summary of some of these computations is presented in table 1.

1. Column 1 of the table indicates the value of D, written in the form
D0f

2. In some cases the full θD was not computed, but only its projec-
tion in Z[G

(2)
D ], where G

(2)
D is the quotient of GD by its 2-primary part.

These cases are indicated by an asterisk next to the value of D.

2. Column 2 indicates the order, and structure, of the class group GD by
giving the factorization h+(D) = h1 · · ·hk, where

GD = Z/h1 × · · · × Z/hkZ,

and hi is divisible by hj whenever j > i. The integers hi are determined
uniquely by GD and determine the structure of GD completely. In the
cases where the 2-part was ignored, the similar factorization is given,
but only for the odd part of the class group.
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3. Column 3 indicated generators σ1, . . ., σk for each of the cyclic pieces
of the class group.

4. Column 4 gives the leading coefficient of the θ-element. The expres-
sions σ1, . . . , σk refer to the corresponding generators given in column
3. We have omitted the factor of ω+ which appears in all of the leading
coefficients.

3.5.2 The curve X0(37)+

Let E be the elliptic curve of conductor 37 given by the equation

y2 − y = x3 − x.

The curve E is modular; in fact, it is the quotient of the modular curve
X0(37) of genus 2 by the Atkin-Lehner involution w37, and hence the map φ
of conjecture 1.1 is of degre 2.

If D satisfies the Heegner hypothesis for E, then conjecture 3.2 predicts
that

θD belongs to MD ⊗ I.

In this case the conjecture follows from the formula (theorem 2.3) of Wald-
spurger. It is interesting to check that this predicted order of vanishing is
sharp, i.e., that the leading coefficients of θ̃D are in general non-trivial in
MD ⊗ (I/I2).

Since ρ = r+ = r− = 1, conjecture 3.6 of section 3.3 gives a precise
prediction for the value of the leading coefficient. We plan to verify this
conjecture by finding rational points on the relevant twists of X0(37)+ and
computing the Mazur-Tate height pairing between them, but have not carried
out this computation at present.

The first 10 positive fundamental discriminants which satisfy the Heegner
hypothesis are 12, 21, 28, 33, 40, 41, 44, 53, 65, and 73. We have limited our
computations to discriminants of the form D0f

2 where D0 is one of these ten
fundamental discriminants, and f is prime. The results of the computation
are summarized in table 2, with the same conventions as for the previous
table.
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Table 1: The curve X0(11)

D = D0f
2 h+(D) Generators of GD Leading term

232 · 132 14 · 2 (33, 134,−161), 11 · (σ1 − 1)2

(69, 142,−69) +(σ1 − 1)(σ2 − 1)
232 · 352 6 · 2 (−3, 530, 275) 4(σ1 − 1)2

(−2, 532, 147)
232 · 3232 18 · 2 · 2 (−3, 4916, 3106) 8(σ1 − 1)2

(1673, 3116,−2166)
(−1847, 2974, 2079)

232 · 78412 2614 · 2 (40293, 41732,−77694), 486(σ1 − 1)2

(−50919, 84196, 35226) +(σ1 − 1)(σ2 − 1)
232 · 1463292(∗) 21 · 21 (9, 2228804,−1600486) 9(σ1 − 1)2

(57121, 2174902,−1039137) +15(σ2 − 1)2

265 · 3732 372 · 2 (−60, 6065, 354) 294(σ1 − 1)2

(−1320, 4465, 3207)
273 · 7272 364 · 2 · 2 (2, 12009,−9042) 284(σ1 − 1)2

(−21, 11991, 6004)
(−6028, 12009, 3)

401 · 16012 2670 (−1502, 29659, 24665) 2520(σ1 − 1)2

421 · 972 96 (15, 1967,−1535) 42(σ1 − 1)2

421 · 1392 138 (15, 2849,−289) 2(σ1 − 1)2

421 · 3312 166 (15, 6791,−125) 138(σ1 − 1)2

421 · 43372 4338 (−5, 88983, 42713) 3147(σ1 − 1)2

488 · 972 32 · 2 (−118, 2040, 911) 5(σ1 − 1)2

(−61, 2074, 1189) +(σ1 − 1)(σ2 − 1)
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Table 2: The curve X0(37)+

D = D0f
2 h+(D) Generators of GD Leading term

12 · 6072 38 · 2 (−1034, 2066, 37) 8 · (σ1 − 1)
(3, 2100,−949)

12 · 21312 164 · 2 (−3351, 6042, 1342) 128(σ1 − 1)
(2, 7382,−1)

12 · 36912 284 · 2 (3489, 8136,−6971) 12(σ1 − 1)3

(3, 12780,−12781)
21 · 20892 190 · 2 (−3617, 4923, 4659) 94(σ1 − 1)

(3, 9573,−1)
21 · 31912 290 · 2 (−1433, 14047, 2881) 34(σ1 − 1)

(3, 14619,−9745)
28 · 2712 54 · 2 (498, 538,−887) 36(σ1 − 1)

(7, 1428,−613)
28 · 6172 88 · 2 (−3, 3260, 2641) 8(σ1 − 1)

(7, 3262,−666)
33 · 1512 38 · 2 (−2, 867, 93) 26(σ1 − 1)

(62, 867,−3)
33 · 20692 414 · 2 (−3284, 7875, 6033) 140(σ1 − 1)

(−3, 11883, 4952)
40 · 2812 56 · 2 (−6, 1772, 769) 24(σ1 − 1)

(−5, 1770, 1277)
40 · 32212 358 · 2 (−7734, 10576, 9799) 102(σ1 − 1)

(−5, 20370, 2837)
41 · 2412 80 (−206, 1347, 688) 128(σ1 − 1)
41 · 14932 166 (2, 9557,−6845) 128(σ1 − 1)
41 · 992412 6616 (−1112, 634453, 285344) 5808(σ1 − 1)
44 · 1992 50 · 2 (−10, 1318, 133) 18(σ1 − 1)

(11, 1320,−1)
44 · 3792 76 · 2 (−659, 1460, 1589) 68(σ1 − 1)

(11, 2508,−685)
44 · 4192 84 · 2 (−7, 2768, 2245) 60(σ1 − 1)

(11, 2772,−925)
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Table 2 (cont’d): The curve X0(37)+.

D = D0f
2 h+(D) Generators of GD Leading term

53 · 25492 510 (−11, 18537, 16861) 40(σ1 − 1)
53 · 35812 398 (−11, 26055, 17857) 186(σ1 − 1)
65 · 892 18 · 2 (244, 249,−464) 4(σ1 − 1)

(−5, 715, 182)
65 · 1492 30 · 2 (−10, 1185, 971) 14(σ1 − 1)

(−5, 1195, 752)
65 · 1812 20 · 2 (−10, 1445, 1036) 8(σ1 − 1)

(−5, 1455, 622)
65 · 2572 86 · 2 (−14, 2059, 959) 38(σ1 − 1)

(−5, 2065, 1448)
65 · 3532 32 · 2 (−14, 2823, 2326) 8(σ1 − 1)

(−5, 2845, 278)
65 · 4492 30 · 2 (−1316, 1663, 1964) 12(σ1 − 1)

(−5, 3615, 1792)
73 · 19012 380 (−12, 16225, 11601) 232(σ1 − 1)
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3.5.3 The curve of conductor 5077

Let E be the elliptic curve of conductor 5077 given by the equation

y2 + y = x3 − 7x+ 6.

It was proved by Mestre [Me], p. 232, that E is modular. (In fact, the degree
of the map φ of conjecture 1.1 was computed by Zagier [Z], and is equal to
1984.)

If D satisfies the Heegner hypothesis for E, then conjecture 3.2 predicts
that

θD belongs to MD ⊗ I3.

This has been checked for a number of values of D; the results of the com-
putation are summarized in table 3.
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Table 3: The curve of conductor 5077

D = D0f
2 h+(D) Generators of GD Leading term

12 · 712 10 · 2 (13, 238,−74) 0
(2, 242,−241)

21 · 20892 190 · 2 (−1915, 5749, 7649) 122(σ1 − 1)3

(7, 9669,−2735)
21 · 31912 290 · 2 (3527, 13205,−2797) 286(σ1 − 1)3

(−1, 14621, 14615)
28 · 172 6 · 2 (3, 86,−58) 0

(−27, 44, 57)
53 · 25492 510 (6773, 12507,−6937) 194(σ1 − 1)3

53 · 44812 640 (97, 32603,−3223) 560(σ1 − 1)3

53 · 35812 398 (211, 25745,−19957) 393(σ1 − 1)3

57 · 1512 76 · 2 (2, 1137,−861) 4(σ1 − 1)3

(−1, 1139, 584)
61 · 7612 254 (3, 5941,−2575) 30(σ1 − 1)3

61 · 52092 1042 (827, 39703,−23829) 472(σ1 − 1)3

61 · 33732 482 (19, 26335,−6219) 198(σ1 − 1)3

65 · 2572 86 · 2 (2, 2069,−1553) 8(σ1 − 1)3

(−622, 1657, 622)
76 · 1132 38 · 2 (3, 980,−837) 10(σ1 − 1)3

(2, 982,−765)
85 · 13612 272 · 2 (3, 12547,−1673) 32(σ1 − 1)3

(5, 12545,−3513)
88 · 1972 98 · 2 (3, 1844,−1238) 8(σ1 − 1)3

(22, 1848,−1)
89 · 532 52 (2, 497,−374) 8(σ1 − 1)3

89 · 1012 34 (2, 949,−911) 4(σ1 − 1)3

97 · 5692 570 (388, 5529,−538) 482(σ1 − 1)3

97 · 4012 134 (3, 3949,−258) 4(σ1 − 1)5
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