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Euler Systems and Refined Conjectures of

Birch Swinnerton-Dyer Type

HENRI DARMON

Abstract. The relationship between arithmetic objects (such as global
fields, or varieties over global fields) and the analytic properties of their L-
functions poses many deep and difficult questions. The theme of this paper
is the Birch and Swinnerton Dyer conjecture, and certain refinements that
were proposed by Mazur and Tate. We will formulate analogues of these
conjectures over imaginary quadratic fields involving Heegner points, and

explain how the fundamental work of V.A. Kolyvagin sheds light on these
new conjectures.

§1 Preliminaries.

The relationship between arithmetic objects (such as global fields, or varieties

over global fields) and the analytic properties of their L-functions poses many

deep and subtle questions. The theme of this paper is the Birch Swinnerton-Dyer

conjecture, which concerns the case where the arithmetic object in question is

an elliptic curve defined over a global field.

Let E be an elliptic curve defined over the rational numbers. The conjecture

of Shimura-Taniyama-Weil asserts that E is modular, i.e., is equipped with a

rational map

ϕ : X0(N) −→ E,

where X0(N) is the modular curve of level N , defined over Q, which parameter-

izes elliptic curves with a distinguished cyclic N -isogeny. We assume that E has

this property. (For a specific E this can be checked by a finite computation.)
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2 EULER SYSTEMS AND REFINED CONJECTURES

The pullback of the Néron differential ω on E is a cusp form of weight 2 on

X0(N),

ϕ∗ω = cf(q)dq/q,

where f(q) =
∑

n>0 anqn is normalized so that a1 = 1, and c denotes the Manin

constant associated to the modular parametrization ϕ.

Let K be a number field. (In the applications we discuss, K will be either Q,

or a quadratic field.) Given a place v of K, let Kv denote the completion of K

at v, and let kv denote the residue field if v is non-archimedean.

Let S be a finite set of places of K, and let ES(K) denote the subgroup of

finite index in E(K) which is defined by the exact sequence

0 −→ ES(K) −→ E(K) −→ ⊕v∈SEns(kv) ⊕ E/E0(K) −→ JS −→ 0,

where Ens(kv) denotes the group of non-singular points in the special fiber of E

at v, and where E/E0(K) is the group of connected components in the Néron

model E/OK
of E over SpecOK .

§1.1 Arithmetic invariants. The triple (E, K, S) gives rise to the following

arithmetic data:

1. The rank r of the finitely generated abelian groups E(K) and ES(K).

2. The order of the conjecturally finite Shafarevich-Tate group III(E/K).

This is the group of elements in H1(K, E) whose restrictions in H1(Kv, E) are

0 for all places v of K. It arises naturally in descent arguments.

3. The Néron-Tate canonical height associated to the Poincaré divisor on

E × E; it is a positive-definite bilinear pairing

〈 , 〉NT : E(K) × E(K) −→ R.

It gives rise to a regulator term.

We describe the general construction of the regulator suggested in [MT2].

While not strictly necessary for this section, the extra generality will be useful

later. Let 〈 , 〉 denote a G-valued pairing on A×B, where G is an abelian group

and A and B are subgroups of finite index in E(K). We embed G as the degree

one elements in the graded algebra

Sym(G) = ⊕r≥0Symr(G).

If A and B are free, the regulator R(A, B) in Sym(G) is defined to be the deter-

minant of the r × r matrix (〈Pi, Qj〉), where P1, . . . , Pr and Q1, . . . , Qr denote

integral bases for A and B respectively which induce compatible orientations on

E(K)⊗R. The element R(A, B) is homogeneous of degree r and can be viewed

as belonging to Symr(G). If A and B are not free, one needs the hypothesis that

there exist subgroups A
′

and B
′

of A and B which are free and of finite index,

such that multiplication by [A : A
′

][B : B
′

] induces an isomorphism on G. This

hypothesis is satisfied, for example, if G = R, or if G is finite and of order prime
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to the order of the torsion subgroups of A and B. One then defines R(A, B) by

the formula:

R(A, B) = [A : A
′

]−1[B : B
′

]−1R(A
′

, B
′

).

This definition is independent of the choice of A
′

and B
′

.

Let R denote the ring of germs of analytic functions of a complex variable s

in a neigbourhood of s = 1, and let I denote the ideal of germs which vanish

at s = 1. The choice of the local parameter (s − 1) determines an isomorphism

I/I2 ' C, and hence the Néron-Tate height can be viewed as taking values in

I/I2. Since Symr(I/I2) maps to Ir/Ir+1 via a natural projection map p, one

can define the regulator RS by:

RS := p(R(E(K), ES(K))) ∈ Ir/Ir+1.

4. The module H0(E/OK
, Ω1) of global invariant differentials on E/OK

is a

projective OK-module of rank 1, and can be written as

H0(E/OK
, Ω1) = Aω,

where A is a fractional ideal of K and ω is a differential for E over K. To each

archimedean place of v we assign a period γv as follows:

γv =

∫

E(Kv)

|ω| if v is real,

γv = 2

∫

E(Kv)

ω ∧ ω̄ if v is complex.

§1.2 The L-function. For each non-archimedean place v of K, let Nv be the

norm of v and let

av = 1 + Nv − #E(kv).

When E has good reduction at v, the local L-function L(E/Kv, s) is defined by

L(E/Kv, s) = (1 − avNv−s + Nv1−2s)−1.

A definition of the local factor L(E/Kv, s) can also be given for the places of

bad reduction of E, cf. [Si], p. 360. One always has:

L(E/Kv, 1) = Nv/#Ens(kv).

The L-series LS(E/K, s) is given by the Euler product

LS(E/K, s) =
∏

v/∈S

L(E/Kv, s),

taken over all non-archimedean places v of K which do not belong to S. The

Hasse bound |av| < 2
√

Nv implies that LS(E/K, s) converges in the right half

plane <(s) > 3/2. One conjectures that it has a meromorphic continuation to

the entire complex plane, given by a functional equation. When E is modular
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and K is Q or a quadratic field, the functional equation is known. In particular,

one can speak of the germ of LS(E/K, s) at s = 1. Let θS denote this germ.

§1.3 The Birch Swinnerton-Dyer conjecture. We give an S-integral formula-

tion of the Birch Swinnerton-Dyer conjecture.

conjecture 1.1. 1. θS belongs to Ir.

2. Let θ̃S denote the image of θS in Ir/Ir+1. Then

θ̃S = (
∏

v∈S

Nv−1)Disc(K)−1/2(NK/QA)(
∏

v

γv) · #III(E/K)#JSRS .

The arithmetic data associated to the triple (E, K, S), and the corresponding

L-function LS(E/K, s) live in different worlds. The conjecture of Birch and

Swinnerton-Dyer provides a mysterious bridge between them.

§1.4 The Euler System. In certain special cases, there is a sort of island

between the two worlds, which Kolyvagin calls an Euler system. The bridge

predicted by the Birch Swinnerton-Dyer conjecture can be constructed in two

seperate stages, using the Euler sysem as a stepping stone.

When K is a quadratic imaginary field satisfying certain extra hypotheses, the

Euler system is made up of Heegner points defined in the tower of ring class fields

of K. The bridge between the world of the L-function and the Euler system is

provided by the formula of Gross and Zagier. The work of Kolyvagin completes

the picture by showing how the Euler system of Heegner points controls the

arithmetic invariants r and III(E/K). Together, these two bridges yield the

most striking evidence so far for the Birch Swinnerton-Dyer conjecture. This

situation is summed up in the following diagram:
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Let us now be more precise. Let K be a quadratic imaginary field of dis-

criminant D < −4 such that every prime p which divides the conductor N of E

splits in K/Q, and let ω denote the corresponding odd Dirichelet character. If

N = pe1

1 · · · pek

k , choose for each pi an ideal Pi of K above it, and set

N = Pe1

1 · · · Pek

k .

Given a positive square-free integer S which is relatively prime to N and D, let

OS denote the order of K of conductor T . The natural projection of complex

tori

C/OS −→ C/(OS ∩ N )−1

corresponds to an N -isogeny of elliptic curves, and hence can be identified with

a point of X0(N). By the theory of complex multiplication, this point is defined

over KS , the ring class field of K of conductor S. Let α(S) denote the image of

this point in E(KS) by the modular parametrization ϕ.

Given a prime l which is split in K/Q, let σl in Gal(Kl/K) denote the Frobe-

nius element at λ, where K l denotes the maximal abelian extension of K which

is unramified at l, and λ is a prime of K above l. If l is inert in K, let σl = 1.

Finally, given a square free integer T which is prime to D, let σT =
∏

l|T σl.

Now define the regularized Heegner points by the formulas:

y+(S) =
∑

T |S

µ(T )ω(T )σ−1
S/T α(T ), y−(S) =

∑

T |S

µ(T )σS/T α(T ),

where µ denotes the Möbius function, µ(T ) = (−1)#(l|T ).

§1.5 The Gross Zagier formula. Let GS = Gal(KS/K), and let χ : GS −→ C∗

denote a complex character of GS . Let

eχ =
1

#GS

∑

σ∈GS

χ−1(σ)σ

denote the idempotent in the group ring C[GS ] associated to the character χ,

and let

y±(χ) = eχy±(S) ∈ E(KS) ⊗C

denote the projection of y±(S) to the χ-component of E(KS) ⊗ C for the GS-

action. Let 〈 , 〉S denote the Néron-Tate pairing over KS, extended to a Her-

mitian pairing on E(KS) ⊗ C.

The points y+(χ) and y−(χ) depend on the choice of the σl (i.e., the choice

of a prime λ of K above l for each l) but the complex number 〈y+(χ), y−(χ)〉S
does not. From the formula of Gross and Zagier one expects this number to be

related up to some simple factors to the value of L
′

S(E/K, χ, 1). (By abuse of

notation, we identify S with the set of primes of K which divide it, so that the

L-function LS(E/K, s) has the obvious meaning.)
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theorem 1.2. Assume that χ : GS −→ C∗ is unramified, i.e., factors through

G1, where G1 = Gal(K1/K) is the Galois group of the Hilbert class field of K.

Then

〈y+(χ), y−(χ)〉S = c2S

√
DS

hS
· L

′

S(E/K, χ, 1)

||ω||2 .

A similar result should hold for ramified characters but the computations in

[GZ] were only carried out for characters of Gal(K1/K).

§1.6 The work of Kolyvagin. V.A. Kolyvagin has established a relation be-

tween the arithmetic of E/K and the system y±(S) of Heegner points.

Let Z be a subring of Q in which the following primes are invertible:

1. The primes 2 and 3.

2. All primes p for which Gal(Q(Ep∞/Q) is not isomorphic to the full

GL2(Ep∞). By a result of Serre [Se], this is a finite set of primes, if E has

no complex multiplications.

3. The primes p which divide #GS .

Let Z[χ] denote the ring obtained by adjoining to Z the values of the character

χ. The points y±(χ) can be viewed as belonging to the module E(KS) ⊗Z[GS]

Z[χ]. Let rχ denote the rank of this module over Z[χ]. It is equal to the

dimension of the χ-component of E(KS) ⊗ C for the action of GS , because

the order of E(KS)tor is invertible in Z[χ]. Let E(KS) ⊂ E(KS) denote the

submodule generated be the Heegner points of E(KS).

theorem 1.3. If y±(χ) 6= 0, then

1. rχ = 1.

2. The module M = (E(KS)/E(KS)) ⊗Z[GS] Z[χ] is finite.

3. The group III(E/KS) ⊗Z[GS] Z[χ] is finite, and its order divides (#M)2.

Kolyvagin presents the proof of this theorem when χ is the trivial character,

but his methods extend to non-trivial ring class characters as well, as is shown

in [BD].

When L
′

(E/K, s) does not vanish at s = 1, then theorem 1.2 shows that the

Heegner point TrK1/Ky(1) is non-torsion, and theorem 1.3 says that E(K) has

rank one. It also says that III(E/K)⊗Z is finite and that its order is bounded

by a number which is consistent with the Birch Swinnerton-Dyer conjecture. In

fact, by a more careful analysis Kolyvagin shows that III(E/K) is finite in this

case.

§1.7 Refined conjectures. When L
′

(E/K, 1) = 0, one does not know how to

prove the weak Birch Swinnerton-Dyer conjecture that the rank of E(K) is equal

to the order of vanishing of L(E/K, s) at s = 1. One does not even know how

to exhibit a non-torsion point on E(K) (although the conjecture predicts that

the rank of E over K is at least 3!) Likewise, the finiteness of III(E/K) is still

unproved in this case.
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However, Kolyvagin has observed ([Ko4]) that from his methods it should

follow that the Euler system {y±(S)} of all the Heegner points carries enough

information to determine the structure of the Selmer groups SelpM (E/K). The

precise result is too technical to state here (cf. [Ko4] or [Mc]).

These results suggested that one should study the relationship between the

Galois module of Heegner points and the arithmetic of E over K (the bridge

on the lower left in our diagram) as an interesting question in its own right.

This relationship can be formulated as a refined conjecture of Birch Swinnerton-

Dyer type whose statement is motivated by the classical Birch Swinnerton-Dyer

conjecture, but which avoids any mention of the complex-analytic L-function.

The fundamental reference for such refined conjectures is [MT2].

The refined conjectures presented in [MT2] are a close relative of the p-

adic Birch Swinnerton-Dyer conjecture (cf. [MTT]), where the Zp-extension is

replaced by a finite (typically, tamely ramified) abelian extension. The analogue

of the L-function is constructed using certain integral homology cycles on E(C),

the so-called modular symbols. The first section gives a slightly modified and

simplified presentation of the conjectures of Mazur and Tate.

In the second section homology cycles are replaced by Heegner points, and a

refined conjecture is formulated, of which much has been proved (cf. [D1], [D2])

thanks to the methods of Kolyvagin.

§2. The Mazur-Tate conjectures.

This section is devoted to an exposition of the conjectures in [MT2]. We

ignore the extremely interesting phenomena which occur when S is divisible by

a prime of multiplicative reduction for E, which are discussed in [MT2], leading

to some simplification in the exposition. Also, we avoid the introduction of the

“regularized determinant” by working with regularized modular symbols instead,

which for our purposes seems more natural. Throughout this section, K = Q,

and S is a square-free integer prime to N .

§2.1 The Birch Swinnerton-Dyer conjecture. We briefly recall the statement of

the classical Birch Swinnerton-Dyer conjecture when K = Q, keeping the same

notations as in section 1.3.

conjecture 2.1. 1. θS belongs to Ir.

2. Let θ̃S denote the image of θS in Ir/Ir+1. Then

θ̃S = S−1γ∞ · #III(E/Q)#JSRS .

Here γ∞ denotes the period associated to the real completion of Q and the

Néron differential for E as in section 1.1.

§2.2 The Mazur-Tate regulator. Let GS = Gal(Q(µS)+/Q) = (Z/SZ)∗/ ± 1

be the Galois group of the maximal tamely ramified abelian extension of Q

unramified outside S.
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In [MT2], pp. 731-734, Mazur and Tate define a height pairing

〈 〉S : E(Q) × ES(Q) −→ GS .

Let Z be a subring of Q in which the order of E(Q)tor is invertible, and let IS

be the augmentation ideal in the group ring Z[GS ]. The map sending σ to σ− 1

gives a homomorphism of GS to IS/I2
S , and hence we can view the Mazur Tate

pairing as taking values in the graded Z-algebra

sym(IS/I2
S) = ⊕r≥0I

r
S/Ir+1

S .

(The natural convention that I0/I = Z is used.) Since multiplication by the

order of E(Q)tor induces an isomorphism on IS/I2
S , we can define

RMT
S = p(R(E(Q), ES(Q))) ∈ Ir

S/Ir+1
S ,

where the regulator is computed with respect to the Mazur Tate height pairing.

§2.3 The modular symbols and the θ-element. The idea behind the Mazur

Tate conjectures is to replace the analytically defined object θS by an algebraic

object (which we denote by θMT
S ) which plays the role of θS . This element

belongs to the group ring Z[GS ], and is defined using modular symbols.

§2.3.1 Modular symbols. Let Λ ⊂ C be the Néron lattice of E, i.e., the set of

periods
∫

γ ω where γ runs through all the 1-cycles in H1(E(C),Z). Let Ω+ and

Ω− be the largest positive real numbers such that

Λ ⊂ ZΩ+ ⊕ iZΩ−.

Given a divisor T of S, and a ∈ Z/SZ, the modular symbol [a/T ]+ is defined by

the formula

2π

∫ a/T+i∞

a/T

ϕ∗ω = [a/T ]+Ω+ + i[a/T ]−Ω−.

Note that the symbol [a/T ] is indeed well defined, depending only on the value

of a mod S (in fact, mod T ) thanks to the modular invariance of ϕ∗ω. Let

T
′

denote the inverse of S/T modulo T . The regularized modular symbols are

defined by the formula

[a/S]∗ =
∑

T |S

µ(S/T )[aT
′

/T ].

Given a ∈ (Z/SZ)∗, let σa denote the natural image of a in GS .

The θ-element is defined by

θMT
S =

1

2

∑

a∈(Z/SZ)∗

[
a

S
]∗σa ∈ Z[G+

S ].

Let l be a prime not dividing S, and let zl be the canonical map Z[G+
Sl] −→

Z[G+
S ] induced by the projection GSl −→ GS . The interest of working with the
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regularized θ-elements is that they are compatible under the maps zl, up to an

element in Z[G+
S ] which has the appearance of an Euler factor at l.

lemma 2.2.

zl(θ
MT
Sl ) = −σl(l − σ−1

l al + σ−2
l )θMT

S .

§2.3.2 Relation between θMT
S and LS(E/Q, 1). Let χ be an even Dirichlet

character of conductor f dividing S, and let g = S/f . The twisted L-series

LS(E/Q, χ, s) =
∑

(n,S)=1

χ(n)ann−s =
∏

p6|S

(1 − χ(p)app
−s + χ2(p)p1−2s)−1

is known to have an analytic continuation to the entire complex plane. Let

χ : Q[G+
S ] −→ C

be the ring homomorphism obtained by extending χ by linearity.

proposition 2.3.

χ(θMT
S ) = c(ϕ)g · τ(χ)LS(E/Q, χ̄, 1)

2Ω+
,

where τ(χ) =
∑S

a=1 χ(a)exp(2πia/S) is the (slightly modified) Gauss sum.

The element denoted by θA,S on p. 716 of [MT2] is not the same as our

element θMT
S , but for characters of conductor exactly S, one does have

χ(θMT
S ) = χ(θA,s).

Thus the result for primitve Dirichlet characters follows from (formula (1), p.

718) of [MT2]. In the general case it follows from lemma 2.2.

§2.4 The refined conjecture. With the notations of sections 2.2 and 2.3, Mazur

and Tate’s conjecture of Birch Swinnerton-Dyer type is analogous to the classical

S-integral conjecture 2.1.

conjecture 2.4. 1. θMT
S belongs to Ir

S.

2. The image θ̃MT
S of θMT

S in Ir
S/Ir+1

S is given by

θ̃MT
S = c(ϕ)#III(E/Q)RSJS .

Remark: The formulation of the conjecture on the leading coefficient differs

slightly from the one in [MT2], where the θ-element is constructed directly

from modular symbols, and the leading coefficient is conjecturally equal to a

regularized determinant built up from the Mazur Tate height pairings at level

T for all divisors T of S. In fact, the two formulations are equivalent: see the

discussion in [D1], pp. 37-39.
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§3. Heegner points.

We keep the same notations as in section 2, but now we assume that K is

an imaginary quadratic field in which all primes dividing N are split so that

the Heegner points y±(S) over the ring class fields KS of K are defined (cf.

section 1.4). Under the assumptions on K, the sign in the functional equation

for L(E/K, s) is −1, and hence this L-function vanishes to odd order at s = 1.

By the Birch Swinnerton-Dyer conjecture one expects that r is odd; writing

r = r++r−, where r+ and r− denote the ranks of the plus and minus eignespaces

of complex conjugation acting on E(K), one thus expects that r+ 6= r− (mod 2).

§3.1 The regulator term. Let GS = Gal(KS/K), and let Z denote a subring

of Q in which #E(K)tor is invertible. Let IS denote the augmentation ideal in

the group ring Z[GS ]. Consider the Mazur Tate pairing 〈 , 〉S on E(K)×ES(K)

with values in IS/I2
S .

This pairing vanishes when it is restricted to the spaces E(K)+ ×ES(K)+ or

E(K)− × ES(K)− (cf [MT1], p. 216). Thus when r+ 6= r− the regulator term

R(E(K), ES(K)) belonging to Ir
S/Ir+1

S formed from the pairing 〈 , 〉S is equal to

0. One is thus lead to search for a more sophisticated version of this regulator.

Define the extended pairing

〈 , 〉′S : E(K) × ES(K) −→ (IS/I2
S) ⊕ E(K)⊗2

(P, Q) 7→ (〈P, Q〉S , P ⊗ Q).

We view the group (IS/I2
S)⊕E(K)⊗2 as the group of homogeneous elements of

degree one in the graded algebra

sym
′

(GS) = ⊕r≥0[ (Ir
S/Ir+1

S ) ⊕ (E(K)⊗2 ⊗ (Ir−1
S /Ir

S)) ].

The multiplication on this algebra is defined as follows: if α = (α1, α2) and

β = (β1, β2) are homogeneous elements of degrees r and s respectively (so that

α1 ∈ Ir
S/Ir+1

S , α2 ∈ E(K)⊗2 ⊗ Ir−1
S /Ir

S ,

β1 ∈ Is
S/Is+1

S , β2 ∈ E(K)⊗2 ⊗ Is−1
S /Is

S),

define the product α ·β as the homogeneous element of degree r + s given by the

formula:

α · β = (α1β1, β2α1 + α2β1).

The regulator R
′

S is the term R(E(K), ES(K)) associated to this pairing. It

is a homogeneous element of degree r. However, if r is odd, then the Ir
S/Ir+1

S -

component of this regulator term vanishes, and hence

R
′

S belongs to E(K)⊗2 ⊗ (Ir−1
S /Ir

S).

§3.2 The θ-element. We construct the θ-element θ
′

S from the Heegner points

y±(S) as follows. Let A+
S and A−

S be the resolvent elements associated to the
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Heegner points y+(S) and y−(S) respectively,

A+
S =

∑

σ∈GS

σy+(S) ⊗ σ ∈ E(KS) ⊗ Z[GS ],

A−
S =

∑

σ∈GS

σy−(S) ⊗ σ−1 ∈ E(KS) ⊗ Z[GS ].

The element θ
′

S is the tensor (over the ring Z[GS ]) of the elements A+
S and

A−
S ; it belongs to E(KS)⊗2 ⊗ Z[GS ],

θ
′

S = A+
S ⊗ A−

S =
∑

σ,τ∈GS

σy+(S) ⊗ τy−(S) ⊗ (στ−1).

Let zl be the natural map from E(KSl)
⊗2 ⊗ Z[GS1] to E(KSl)

⊗2 ⊗ Z[GS ]

induced by the homomorphism GSl −→ GS . The following lemma is the analogue

of lemma 2.2.

lemma 3.1.

zl(θ
′

Sl) = θ
′

S(l − al + 1)(l + al + 1) if l is inert in K,

zl(θ
′

Sl) = θ
′

S(l − alσ
−1
l + σ−2

l )(l − alσl + σ−2
l ) if l is split in K.

Relation between θ
′

S and L
′

S(E/K, 1): Let h : E(KS)⊗2 −→ R be the canon-

ical Néron-Tate height, and let χ : ΓS −→ C∗ be a complex character of ΓS . As

before, we denote by

χ : Z[ΓS ] −→ C

the ring homomorphism obtained by sending σ ∈ ΓS to χ(σ). By combining h

and χ one gets a natural linear map:

h ⊗ χ : E(KS)⊗2 ⊗ Z[ΓS ] −→ C.

The following theorem is a restatement of the Gross Zagier formula (theorem

1.2).

theorem 3.2. Suppose that S = 1 so that KS is the Hilbert class field of K.

Then

h ⊗ χ(θ
′

S) = c2ShS

√

DS
L

′

S(E/K, χ, 1)

||ω||2 .

§3.3 The refined conjecture. The Mazur Tate type conjecture is:

conjecture 3.3. 1. θ
′

S belongs to E(KS)⊗2 ⊗ Ir−1
S .

2. The image θ̃
′

S of θ
′

S in E(KS)⊗2 ⊗ Ir−1
S /Ir

S belongs to the image of the

natural map

t : E(K)⊗2 ⊗ Ir−1
S /Ir

S −→ E(KS)⊗2 ⊗ Ir−1
S /Ir

S .

3. θ̃
′

S = t(c2#III(E/K)#JSRS).

Unlike conjecture 2.4, much evidence can be given for conjecture 3.3.
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Let Z denote a ring in which the following are invertible:

1. The primes 2 and 3.

2. All primes p < (r − 1)/2.

3. All primes p such that Gal(Q(Ep∞)/Q) is not isomorphic to GL2(Zp).

The methods of Kolyvagin [Ko1,Ko2,Ko3] allow one to show:

theorem 3.4. Suppose that S is a product of primes which are inert in K.

Then parts 1 and 2 of conjecture 3.3 are true.

A proof of this result is given in [D1] and [D2]. In fact, more precise infor-

mation can be derived about the order of vanishing of θ
′

S ; cf. [D2].

An analogue of conjecture 3.3 can be made for elliptic curves over real qua-

dratic fields, replacing Heegner points by certain geodesic cycles associated to

binary quadratic forms of positive discriminant. See the paper [D3] where com-

putational data in support of this conjecture is given.
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