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1 Abstract

In [Leh], Emma Lehmer constructed a parametric family of units in real
quintic fields of prime conductor p = t* + 5t3 4 15t2 4 25¢ + 25, as translates
of Gaussian periods. Later, Schoof and Washington [SW] showed that these
units were fundamental units. In this note, we observe that Lehmer’s family
comes from the covering of modular curves X;(25) — X(25). This gives a
conceptual explanation for the existence of Lehmer’s units: they are modular
units (which have been studied extensively, for example in [K-L]). By relating
Lehmer’s construction with ours, one finds expressions for certain Gauss sums
as values of modular units on X;(25).

2 Lehmer’s polynomial

Throughout the discussion, we fix a choice {(,} of primitive nth roots of
unity for each n, say by ¢, = e>™/".
Let

Ps(Y,T) = Y°+T°Y*—2(T° +37° + 5T +5)Y* +
(T* +5T° + 11T* + 15T + 5)Y? + (1)
(T® 44T + 10T + 10)Y + 1
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be the quintic polynomial constructed in [Leh]. The discriminant of P5(Y,T),
viewed as a polynomial in Y with coefficients in Q(T), is

D(T) = (T? + 5T% + 10T + 7)*(T* + 5T + 1572 + 25T + 25)*.

The projective curve C' in Py defined by the affine equation (1) has three
nodal singularities whose T-coordinates are the roots of the first factor of
D(T). The points (y,t), where t is a root of the second factor, are branch
points for the covering of C' onto the T-line.

As shown in [Leh| the polynomial P5(Y, T") defines a regular Galois exten-
sion of Q(T") with Galois group Z/5Z. By the analysis above, it is ramified
at the four conjugate points T' = —v/5¢s, V52, —v/5(5 Y, V55 2, satisfying

the minimal polynomial
T* +5T% + 1572 + 25T + 25.

(Here V/5 denotes the positive square root.) If t € Z is chosen so that
p =t + 565 + 15t% + 25t + 25

is prime, (hence in particular p = 1 mod 5), then the roots rq,...,75 of
P5(Y,t) are translates of Gaussian periods:

r= G+ () - A1/,

where

n= > G,
z€el'y
and I'; denotes the jth coset of (Z/pZ)* in (Z/pZ)*.

Since C' admits a five-to-one map to P; which is totally ramified at four
points, the geometric genus of C is 4 by the Riemann-Hurwitz theorem.
On the other hand, C' is realized as a plane curve of degee d = 6, and its
arithmetic genus is (d — 1)(d — 2)/2 = 10. Let C" denote the normalization
of C; it is a smooth projective curve of genus 4. The covering C' — P
defines a Galois covering of P; with Galois group Z/5Z, and has the following
properties:

1. It is ramified only over the four closed points in R = {—\/5(’5, \/ch,
_\/SCE;IJ \/gggz}



2. The closed points of the fiber above oo € Py are rational.

Proposition 2.1 The properties 1 and 2 determine the covering C' uniquely
up to Q-isomorphism.

Proof: Let (P — R) be the projective line with the points of R removed,
viewed as a curve over Q. The space V' = H},(Py— R, Z/5Z) is a vector space
of dimension 3 over Fj, and is endowed with a natural action of Gal(Q/Q).

In fact, one has
V= Hy(P1— R, pi5) @ i3

where p5 denotes the group scheme of 5th roots of unity. By Kummer theory,
HL(P; — R, ui5) is identified with the subspace of Q(T)*/Q(T)** spanned by
the elements

(T+GVB)/(T = ¢3V5), (T —=¢V5)/(T+G'V5),
(T+ G VBT = G*Vh), (T—¢*V5)/(T+GV5),

whose product is 1. Hence the action of Gal(Q/Q) on H} (P, — R, ui5) factors
through Gal(Q({5)/Q), and is isomorphic to the regular representation of
Gal(Q(¢5)/Q) minus the trivial representation. It follows that V' decomposes
as a direct sum of three irreducible one-dimensional Galois representations,

V=V, oV V",

where Vj is the trivial representation, and V<, V" denote one dimensional
spaces on which Gal(Q((5)/Q) acts via the Teichmuller character w and the
square of the Teichmuller character w? respectively. In particular, V; is the
unique one-dimensional subspace of V which is fixed by Gal(Q/Q). But the
cyclic quintic coverings of P; which are Galois over Q and unramified outside
R correspond exactly to such subspaces. Hence the property 1 determines
C’ uniquely as a curve over Q. (Alternately, one could use the “rigidity
criterion” of Matzat, cf. [M, p. 368].) It is not hard to see that there
is a unique rational form of the covering C’ such that the closed points
above oo € Py are all rational (twisting this rational form by a cocycle ¢
in H'(Q, Aut (C"/P;)) will cause these points to be defined over the larger
extension “cut out” by c). Thus, property 2 determines C' — Py up to
Q-isomorphism.



3 A modular covering interpretation of Lehmer’s
quintic

We assume in this section some basic facts about modular forms and the
geometry of modular curves. A good reference for this material is [Ogg].

Let X0(25) and X;(25) denote the modular curves of level 25, compact-
ified by adjoining a finite set of cusps. The curve X;(25) is of genus 0 and
is isomorphic to Py over Q. The covering X;(25) — X(25) is Galois with
Galois group canonically isomorphic to G = (Z/25Z)*/ < £1 >. The quo-
tient X of X;(25) by the involution 7 € G gives a cyclic covering of X((25)
of degree 5.

Let Ts = n(2)/n(25z2), F5 = (n(2)/n(52))°® be Hauptmoduls for X(25)
and X;(5) respectively. One has:

Fy = T2 /(Ts + 512 + 1517 + 25T + 25).

The curve Xy (5) has two cusps Cy and Cy corresponding to the values F5 = 0
and Fs = oo respectively. Hence X(25) has six cusps: a unique one lying
above (', corresponding to Ty = 0; and five cusps above Cy, given by Ty = o0,
—V/5Cs, VBCE, —V5(t, V(2 (cf. [K]). The covering X — X(25) is
ramified at the four non-rational cusps, and the fiber above the cusp T5 = oo
is composed of rational points (cf. [K, p. 226]). By proposition 2.1, X
can be described by Lehmer’s quintic; the roots rq,...,r; of Ps(Y,T5) are
modular functions on X;(25) (in fact, on X) with divisor supported at the
P;, where Pi,..., Ps are the closed points of X which lie above the cusp
Ts = oo of Xy(25). By using Hensel’s lemma to solve explicitly the equation
P5(Y,Ts) = 0, one obtains the following g-expansions for the r;:

B I L s R AL DL S LTI

ry = ¢ 14+ —q 0=t

r3 = - +¢"+¢"—¢"—¢"+¢"+¢°-- (2)
ry = _q72_q_q2_q5+ql5+q17+q18__.

rs = G Pt = =g g — Mt
By [SW, p. 548], the transformation

(T5+2)+T5T—7’2
H
1+ (T5+2)r
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permutes the roots of P(Y,T5) cyclically; one can thus label the r; in such
a way that a generator of Gal(X/Xy(25)) ~ Z/5Z sends r; to r;11, where
the subscripts are taken modulo 5. The five cusps of X lying above the
cusp T5 = oo are permuted cyclically by the Galois group of X over X,(25).
By considering the g-expansions above, we may fix a labelling of the cusps
Py, ..., Ps so that a generator of Gal(X/X((25)) sends P; to P;;; and such
that:
DiViSOI’(Tl):3P1—P2+P3—2P4—P5.

Now, let a belong to Z/25Z, and define

0a(T) = p(a/25;7),

where
1 1

de=de T i

(m)e2?—0 (z—=n—m7)2  (n+m7)?

is the Weierstrass p-function. It is well-known that the functions

Pap(T) = 0a(T) — (T)

are modular units on X;(25). The divisors of these functions are computed
in [K]. In particular, we find that

Divisor <@7,9@6,3@1,12K98,4> — 3P, — Py+ P,— 2P, — P,
§21,3627,46%6,7678,1

where the P; denote the cusps on X which are above the cusp co of X(25).
By expressing the function on the left in terms of so-called Klein forms #(4, 4,)
(cf. [K-L]), the above simplifies to give:

tont
Divisor (“’”(‘”)> =3P, — P+ Py — 2P, — Ps.
(0,9)t(0,12)

Let us abbreviate ¢4 to t,. By comparing divisors and g-expansions,
one finds the following infinite product expressions for the r;:

t1t7

(&1

257)=—¢ [ a-¢)/ I @-q)

tot1z n=+1,+7(25) n=+9,£12(25)



tot11

ry = @2r)=q¢' JI a-¢9/ 1] @a-4q),

tity n=42,+11(25) n=41,+7(25)

tats n n
s = (25 =—¢ [ (-¢)/ I (1-q"

1152 n=+4,+3(25) n=+11,+2(25)

tsle - n n
ra o= () =—¢" I (0-¢)/ I (0-a)

344 n=+8,+6(25) n=+3,+4(25)

tot12 _ n n
rs = ——r)=¢" JI (0-¢)/ I (-g"

6°8 n=49,+12(25) n=46,+8(25)

The Galois group Gal(X(25)/X(25)) = (Z/25Z)*/ < £1 > acts on the ¢,
by multiplying the subscripts (which are viewed as belonging to (Z/25Z)*/ <
+1 >). Hence to go from r; to r;.1, one applies the Galois automorphism
2 € Gal(X/Xy(25)) = (Z/25Z)* ] < £1,£7 >.

4 (Gauss sums

Given a prime p = 1( mod 5), let ¥, : F,, — C* be the additive character
sending 1 to (,. We consider the Gauss sum:

g(p) = D x(x)¥y(x),

zeF,

where x is a character of F; of order 5. The value of g(p) is independent of
X, up to the action of Gal(Q((5)/Q).

By combining Lehmer’s explicit determination of the roots of her polyno-
mial as Gaussian periods, and our identification of these roots with certain
modular forms of level 25, we obtain:

Theorem 4.1 If n(7)/n(257) = n € Z, and n(57)°%/(n(T)n(257)°) = p is
prime, then:

1 n

Tn(r)/n(257) = o7 (G VB)° = (5

where o; € Gal(Q((5)/Q) sends (5 to (L.
There is some ambiguity in the formula, since the value of g(p) depend on
the choice of a multiplicative character y, and the left hand side is really

)9(p),



only defined up to a fifth root of 1. We are asserting that there is a way of
making these choices so that the formula holds.

Observe that the left hand side is a modular unit (i.e., a unit for the
covering X;(25) — Xo(1)). Thus the above expresses Gauss sums as values
of certain modular units on X;(25). It seems that the other coverings of
lower degree studied by Lehmer yield similar results. It would be interesting
to obtain such formulas a priori: this might provide a justification for the
fact that translates of Gaussian period polynomials yield cyclic units for
extensions of small degree.

Note: The idea of studying families of units in cyclic extensions of Q
arising from the modular covering X;(N) — X(/V) has been explored
by Odile Lecacheux (see, for example, the paper [Lel] which studies units in
sextic extensions which arise from the modular covering X;(13) — X(13)).
Independently of the author, Lecacheux has also observed the connection
between Lehmer’s quintic and the modular curve X;(25) [Le2].
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