Note on a polynomial of Emma Lehmer

Henri Darmon

September 9, 2007

1 Abstract

In [Leh], Emma Lehmer constructed a parametric family of units in real quintic fields of prime conductor $p = t^4 + 5t^3 + 15t^2 + 25t + 25$, as translates of Gaussian periods. Later, Schoof and Washington [SW] showed that these units were fundamental units. In this note, we observe that Lehmer's family comes from the covering of modular curves $X_1(25) \longrightarrow X_0(25)$. This gives a conceptual explanation for the existence of Lehmer's units: they are modular units (which have been studied extensively, for example in [K-L]). By relating Lehmer's construction with ours, one finds expressions for certain Gauss sums as values of modular units on $X_1(25)$.

2 Lehmer's polynomial

Throughout the discussion, we fix a choice $\{\zeta_n\}$ of primitive *n*th roots of unity for each *n*, say by $\zeta_n = e^{2\pi i/n}$.

Let

$$P_5(Y,T) = Y^5 + T^2Y^4 - 2(T^3 + 3T^2 + 5T + 5)Y^3 + (T^4 + 5T^3 + 11T^2 + 15T + 5)Y^2 + (T^3 + 4T^2 + 10T + 10)Y + 1$$
(1)

 $^{^1\}mathrm{Partially}$ supported by a Doctoral Fellowship from the Natural Sciences and Engineering Research Council of Canada (NSERC).

²I wish to thank Dan Abramovich and Noam Elkies for some interesting discussions.

be the quintic polynomial constructed in [Leh]. The discriminant of $P_5(Y,T)$, viewed as a polynomial in Y with coefficients in $\mathbf{Q}(T)$, is

$$D(T) = (T^3 + 5T^2 + 10T + 7)^2 (T^4 + 5T^3 + 15T^2 + 25T + 25)^4.$$

The projective curve C in \mathbf{P}_2 defined by the affine equation (1) has three nodal singularities whose T-coordinates are the roots of the first factor of D(T). The points (y,t), where t is a root of the second factor, are branch points for the covering of C onto the T-line.

As shown in [Leh] the polynomial $P_5(Y,T)$ defines a regular Galois extension of $\mathbf{Q}(T)$ with Galois group $\mathbf{Z}/5\mathbf{Z}$. By the analysis above, it is ramified at the four conjugate points $T = -\sqrt{5}\zeta_5$, $\sqrt{5}\zeta_5^2$, $-\sqrt{5}\zeta_5^{-1}$, $\sqrt{5}\zeta_5^{-2}$, satisfying the minimal polynomial

$$T^4 + 5T^3 + 15T^2 + 25T + 25$$
.

(Here $\sqrt{5}$ denotes the positive square root.) If $t \in \mathbf{Z}$ is chosen so that

$$p = t^4 + 5t^3 + 15t^2 + 25t + 25$$

is prime, (hence in particular $p \equiv 1 \mod 5$), then the roots r_1, \ldots, r_5 of $P_5(Y, t)$ are translates of Gaussian periods:

$$r_i = (\frac{t}{5})\eta_i + [(\frac{t}{5}) - t^2]/5,$$

where

$$\eta_j = \sum_{x \in \Gamma_j} \zeta_p^x,$$

and Γ_j denotes the jth coset of $(\mathbf{Z}/p\mathbf{Z})^{*5}$ in $(\mathbf{Z}/p\mathbf{Z})^*$.

Since C admits a five-to-one map to \mathbf{P}_1 which is totally ramified at four points, the geometric genus of C is 4 by the Riemann-Hurwitz theorem. On the other hand, C is realized as a plane curve of degee d=6, and its arithmetic genus is (d-1)(d-2)/2=10. Let C' denote the normalization of C; it is a smooth projective curve of genus 4. The covering $C' \longrightarrow \mathbf{P}_1$ defines a Galois covering of \mathbf{P}_1 with Galois group $\mathbf{Z}/5\mathbf{Z}$, and has the following properties:

1. It is ramified only over the four closed points in $R = \{-\sqrt{5}\zeta_5, \sqrt{5}\zeta_5^2, -\sqrt{5}\zeta_5^{-1}, \sqrt{5}\zeta_5^{-2}\}.$

2. The closed points of the fiber above $\infty \in \mathbf{P}_1$ are rational.

Proposition 2.1 The properties 1 and 2 determine the covering C' uniquely up to \mathbf{Q} -isomorphism.

Proof: Let $(\mathbf{P}_1 - R)$ be the projective line with the points of R removed, viewed as a curve over $\bar{\mathbf{Q}}$. The space $V = H^1_{et}(\mathbf{P}_1 - R, \mathbf{Z}/5\mathbf{Z})$ is a vector space of dimension 3 over \mathbf{F}_5 , and is endowed with a natural action of $\mathrm{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$. In fact, one has

$$V = H_{et}^{1}(\mathbf{P}_{1} - R, \mu_{5}) \otimes \mu_{5}^{-1},$$

where μ_5 denotes the group scheme of 5th roots of unity. By Kummer theory, $H_{et}^1(\mathbf{P}_1 - R, \mu_5)$ is identified with the subspace of $\mathbf{\bar{Q}}(T)^*/\mathbf{\bar{Q}}(T)^{*5}$ spanned by the elements

$$(T + \zeta_5\sqrt{5})/(T - \zeta_5^2\sqrt{5}), \qquad (T - \zeta_5^2\sqrt{5})/(T + \zeta_5^{-1}\sqrt{5}), (T + \zeta_5^{-1}\sqrt{5})/(T - \zeta_5^{-2}\sqrt{5}), \qquad (T - \zeta_5^{-2}\sqrt{5})/(T + \zeta_5\sqrt{5}),$$

whose product is 1. Hence the action of $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ on $H^1_{et}(\mathbf{P}_1 - R, \mu_5)$ factors through $\operatorname{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$, and is isomorphic to the regular representation of $\operatorname{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$ minus the trivial representation. It follows that V decomposes as a direct sum of three irreducible one-dimensional Galois representations,

$$V = V_0 \oplus V^{\omega} \oplus V^{\omega^2},$$

where V_0 is the trivial representation, and V^{ω} , V^{ω^2} denote one dimensional spaces on which $\operatorname{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$ acts via the Teichmuller character ω and the square of the Teichmuller character ω^2 respectively. In particular, V_0 is the unique one-dimensional subspace of V which is fixed by $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$. But the cyclic quintic coverings of \mathbf{P}_1 which are Galois over \mathbf{Q} and unramified outside R correspond exactly to such subspaces. Hence the property 1 determines C' uniquely as a curve over $\bar{\mathbf{Q}}$. (Alternately, one could use the "rigidity criterion" of Matzat, cf. [M, p. 368].) It is not hard to see that there is a unique rational form of the covering C' such that the closed points above $\infty \in \mathbf{P}_1$ are all rational (twisting this rational form by a cocycle c in $H^1(\mathbf{Q}, \operatorname{Aut}(C'/\mathbf{P}_1))$ will cause these points to be defined over the larger extension "cut out" by c). Thus, property 2 determines $C' \longrightarrow \mathbf{P}_1$ up to \mathbf{Q} -isomorphism.

3 A modular covering interpretation of Lehmer's quintic

We assume in this section some basic facts about modular forms and the geometry of modular curves. A good reference for this material is [Ogg].

Let $X_0(25)$ and $X_1(25)$ denote the modular curves of level 25, compactified by adjoining a finite set of cusps. The curve $X_0(25)$ is of genus 0 and is isomorphic to \mathbf{P}_1 over \mathbf{Q} . The covering $X_1(25) \longrightarrow X_0(25)$ is Galois with Galois group canonically isomorphic to $G = (\mathbf{Z}/25\mathbf{Z})^*/< \pm 1>$. The quotient X of $X_1(25)$ by the involution $7 \in G$ gives a cyclic covering of $X_0(25)$ of degree 5.

Let $T_5 = \eta(z)/\eta(25z)$, $F_5 = (\eta(z)/\eta(5z))^6$ be Hauptmoduls for $X_0(25)$ and $X_0(5)$ respectively. One has:

$$F_5 = T_5^5 / (T_5^4 + 5T_5^3 + 15T_5^2 + 25T_5 + 25).$$

The curve $X_0(5)$ has two cusps C_1 and C_2 corresponding to the values $F_5=0$ and $F_5=\infty$ respectively. Hence $X_0(25)$ has six cusps: a unique one lying above C_1 , corresponding to $T_5=0$; and five cusps above C_2 , given by $T_5=\infty$, $-\sqrt{5}\zeta_5$, $\sqrt{5}\zeta_5^2$, $-\sqrt{5}\zeta_5^{-1}$, $\sqrt{5}\zeta_5^{-2}$ (cf. [K]). The covering $X\longrightarrow X_0(25)$ is ramified at the four non-rational cusps, and the fiber above the cusp $T_5=\infty$ is composed of rational points (cf. [K, p. 226]). By proposition 2.1, X can be described by Lehmer's quintic; the roots r_1,\ldots,r_5 of $P_5(Y,T_5)$ are modular functions on $X_1(25)$ (in fact, on X) with divisor supported at the P_i , where P_1,\ldots,P_5 are the closed points of X which lie above the cusp $T_5=\infty$ of $X_0(25)$. By using Hensel's lemma to solve explicitly the equation $P_5(Y,T_5)=0$, one obtains the following q-expansions for the r_i :

$$r_{1} = -q^{3} + q^{4} + q^{10} - q^{11} - q^{12} + q^{13} - q^{15} + q^{17} + \cdots$$

$$r_{2} = q^{-1} + 1 + q^{6} + q^{7} - q^{10} - q^{11} + \cdots$$

$$r_{3} = -q - q^{3} + q^{4} + q^{6} - q^{12} - q^{14} + q^{18} + q^{20} + \cdots$$

$$r_{4} = -q^{-2} - q - q^{2} - q^{5} + q^{15} + q^{17} + q^{18} + \cdots$$

$$r_{5} = q^{-1} + q^{5} + q^{7} - q^{8} - q^{12} + q^{13} - q^{14} + \cdots$$

$$(2)$$

By [SW, p. 548], the transformation

$$r \mapsto \frac{(T_5+2)+T_5r-r^2}{1+(T_5+2)r}$$

permutes the roots of $P(Y, T_5)$ cyclically; one can thus label the r_i in such a way that a generator of $\operatorname{Gal}(X/X_0(25)) \simeq \mathbf{Z}/5\mathbf{Z}$ sends r_i to r_{i+1} , where the subscripts are taken modulo 5. The five cusps of X lying above the cusp $T_5 = \infty$ are permuted cyclically by the Galois group of X over $X_0(25)$. By considering the q-expansions above, we may fix a labelling of the cusps P_1, \ldots, P_5 so that a generator of $\operatorname{Gal}(X/X_0(25))$ sends P_i to P_{i+1} and such that:

Divisor
$$(r_1) = 3P_1 - P_2 + P_3 - 2P_4 - P_5$$
.

Now, let a belong to $\mathbb{Z}/25\mathbb{Z}$, and define

$$\wp_a(\tau) = \wp(a/25; \tau),$$

where

$$\wp(z;\tau) = \frac{1}{z^2} + \sum_{(m,n)\in\mathbf{Z}^2 - 0} \frac{1}{(z - n - m\tau)^2} - \frac{1}{(n + m\tau)^2}$$

is the Weierstrass \wp -function. It is well-known that the functions

$$\wp_{a,b}(\tau) = \wp_a(\tau) - \wp_b(\tau)$$

are modular units on $X_1(25)$. The divisors of these functions are computed in [K]. In particular, we find that

Divisor
$$\left(\frac{\wp_{7,9}\wp_{6,3}\wp_{1,12}\wp_{8,4}}{\wp_{1,3}\wp_{7,4}\wp_{6,7}\wp_{8,1}}\right) = 3P_1 - P_2 + P_3 - 2P_4 - P_5,$$

where the P_i denote the cusps on X which are above the cusp ∞ of $X_0(25)$. By expressing the function on the left in terms of so-called Klein forms $t_{(a_1,a_2)}$ (cf. [K-L]), the above simplifies to give:

Divisor
$$\left(\frac{t_{(0,1)}t_{(0,7)}}{t_{(0,9)}t_{(0,12)}}\right) = 3P_1 - P_2 + P_3 - 2P_4 - P_5.$$

Let us abbreviate $t_{(0,a)}$ to t_a . By comparing divisors and q-expansions, one finds the following infinite product expressions for the r_i :

$$r_1 = \frac{t_1 t_7}{t_9 t_{12}} (25\tau) = -q^3 \prod_{n \equiv \pm 1, \pm 7(25)} (1 - q^n) / \prod_{n \equiv \pm 9, \pm 12(25)} (1 - q^n)$$

$$r_{2} = \frac{t_{2}t_{11}}{t_{1}t_{7}}(25\tau) = q^{-1} \prod_{n \equiv \pm 2, \pm 11(25)} (1 - q^{n}) / \prod_{n \equiv \pm 1, \pm 7(25)} (1 - q^{n}),$$

$$r_{3} = \frac{t_{4}t_{3}}{t_{11}t_{2}}(25\tau) = -q \prod_{n \equiv \pm 4, \pm 3(25)} (1 - q^{n}) / \prod_{n \equiv \pm 11, \pm 2(25)} (1 - q^{n})$$

$$r_{4} = \frac{t_{8}t_{6}}{t_{3}t_{4}}(25\tau) = -q^{-2} \prod_{n \equiv \pm 8, \pm 6(25)} (1 - q^{n}) / \prod_{n \equiv \pm 3, \pm 4(25)} (1 - q^{n})$$

$$r_{5} = \frac{t_{9}t_{12}}{t_{6}t_{8}}(25\tau) = q^{-1} \prod_{n \equiv \pm 9, \pm 12(25)} (1 - q^{n}) / \prod_{n \equiv \pm 6, \pm 8(25)} (1 - q^{n})$$

The Galois group $\operatorname{Gal}(X_1(25)/X_0(25)) = (\mathbf{Z}/25\mathbf{Z})^*/<\pm 1>$ acts on the t_a by multiplying the subscripts (which are viewed as belonging to $(\mathbf{Z}/25\mathbf{Z})^*/<\pm 1>$). Hence to go from r_i to r_{i+1} , one applies the Galois automorphism $2 \in \operatorname{Gal}(X/X_0(25)) = (\mathbf{Z}/25\mathbf{Z})^*/<\pm 1, \pm 7>$.

4 Gauss sums

Given a prime $p \equiv 1 \pmod{5}$, let $\Psi_p : \mathbf{F}_p \longrightarrow \mathbf{C}^*$ be the additive character sending 1 to ζ_p . We consider the Gauss sum:

$$g(p) = \sum_{x \in \mathbf{F}_p} \chi(x) \Psi_p(x),$$

where χ is a character of \mathbf{F}_p^* of order 5. The value of g(p) is independent of χ , up to the action of $\operatorname{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$.

By combining Lehmer's explicit determination of the roots of her polynomial as Gaussian periods, and our identification of these roots with certain modular forms of level 25, we obtain:

Theorem 4.1 If $\eta(\tau)/\eta(25\tau) = n \in \mathbf{Z}$, and $\eta(5\tau)^6/(\eta(\tau)\eta(25\tau)^5) = p$ is prime, then:

$$\prod_{i=1}^{4} (\eta(\tau)/\eta(25\tau) - \sigma_i^{-1}(\zeta_5\sqrt{5}))^{i/5} = (\frac{n}{5})g(p),$$

where $\sigma_i \in \text{Gal}(\mathbf{Q}(\zeta_5)/\mathbf{Q})$ sends ζ_5 to ζ_5^i .

There is some ambiguity in the formula, since the value of g(p) depend on the choice of a multiplicative character χ , and the left hand side is really

only defined up to a fifth root of 1. We are asserting that there is a way of making these choices so that the formula holds.

Observe that the left hand side is a modular unit (i.e., a unit for the covering $X_1(25) \longrightarrow X_0(1)$). Thus the above expresses Gauss sums as values of certain modular units on $X_1(25)$. It seems that the other coverings of lower degree studied by Lehmer yield similar results. It would be interesting to obtain such formulas a priori: this might provide a justification for the fact that translates of Gaussian period polynomials yield cyclic units for extensions of small degree.

Note: The idea of studying families of units in cyclic extensions of \mathbf{Q} arising from the modular covering $X_1(N) \longrightarrow X_0(N)$ has been explored by Odile Lecacheux (see, for example, the paper [Le1] which studies units in sextic extensions which arise from the modular covering $X_1(13) \longrightarrow X_0(13)$). Independently of the author, Lecacheux has also observed the connection between Lehmer's quintic and the modular curve $X_1(25)$ [Le2].

References

- [K] Daniel S. Kubert. Universal bounds on the torsion of elliptic curves, Proc. London Math. Soc. (3) 33 (1976) 193-237.
- [K-L] Daniel S. Kubert and Serge Lang. Modular Units. Springer-Verlag, 1981, New York.
- [Le1] Odile Lecacheux, Unités d'une famille de corps cycliques réels de degré 6 liés à la courbe modulaire $X_1(13)$, Journal of Number Theory 31, 54-63 (1989).
- [Le2] Odile Lecacheux, private communication.
- [Leh] Emma Lehmer. Connection between Gaussian periods and cyclic units, Math. Comp., vol. 50, No. 182, April 1988, pp. 535-541.
- [M] B.H. Matzat, Rationality Criteria for Galois Extensions, in Galois Groups over Q, Poceedings of a Workshop held March 23-27, 1987, MSRI publications, pp. 361-384, 1989.
- [Ogg] A. Ogg, Survey of modular functions of one variable, in Modular functions of one variable, Proceedings, Antwerp 1972, SLN 320.

[SW] Rene Schoof and Lawrence C. Washington, Quintic polynomials and real cyclotomic fields with large class numbers, Math. Comp. vol. 50, no. 182, April 1988, pp. 543-556.

Henri Darmon - Harvard Univ. Math. Dept., 1 Oxford St., Cambridge MA 02138.