Computational Verification of M_{11} and M_{12} as Galois Groups over \mathbf{Q}

Henri Darmon	David Ford
Department of Mathematics	Department of Computer Science
Harvard University	Concordia University
Cambridge, Massachusetts	02138
U.S.A.	Montreal, Quebec H3G 1M8 Canada

1. The Theory

For $n=11$ and $n=12$ we exhibit $f(x) \in \mathbf{Z}[x]$ monic, irreducible of degree n, which can be seen by the standard techniques of $[1]$ to have $M_{n} \subseteq \operatorname{Gal}_{\mathbb{Q}} f \subseteq A_{n}$. We prove $\operatorname{Gal}_{\mathbb{Q}} f=M_{n}$ by demonstrating that $\operatorname{Gal}_{\mathbb{Q}} f$ is not transitive on sets of roots taken $n-6$ at a time. The example polynomials are derived from [5].

We assume the prime p has been chosen so that $f(x)$ has n distinct p-adic integer roots. We let $\alpha_{1}, \ldots, \alpha_{n}$ be the roots of $f(x)$ in $\mathbf{Z}_{p}, \beta_{1}, \ldots, \beta_{n}$ the roots of $f(x)$ in \mathbf{C}, and R_{n} a complete set of coset representatives of M_{n} in A_{n}.

We define

$$
F\left(x_{1}, \ldots x_{n}\right)=\sum_{\theta} \prod_{j \in \theta} x_{j}
$$

the subscripts in each term being taken from a distinct ($n-6$)-tuple θ of the Steiner system $S(n-7, n-6, n)$. By definition, $F\left(x_{1}, \ldots x_{n}\right)$ is fixed by any $\sigma \in M_{n}$. We assume the values of $\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ are known to be distinct as σ ranges over R_{n}. Then $\operatorname{Gal}_{\mathbb{Q}} f \neq A_{n}$ if and only if there is a labelling of the roots for which $F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbf{Z}$.

We define

$$
g(x)=\prod_{\sigma \in R_{n}}\left(x-\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right)=\prod_{\sigma \in R_{n}}\left(x-\sigma F\left(\beta_{1}, \ldots, \beta_{n}\right)\right) \in \mathbf{Z}[x] .
$$

It is enough to show that $g(v)=0$ for some $v \in \mathbf{Z}$. Taking B an upper bound on the absolute values of the conjugates of $F\left(\beta_{1}, \ldots, \beta_{n}\right), h=\left|R_{n}\right|$, and k sufficiently large, we have

$$
|g(v)| \leq(|v|+B)^{h}<p^{k} .
$$

If we can produce a labelling of the roots for which

$$
\begin{equation*}
F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv v \quad\left(\bmod p^{k}\right) \tag{1}
\end{equation*}
$$

it will follow that $g(v) \equiv 0\left(\bmod p^{k}\right)$, so that $g(v)=0$, and the proof will be complete.

2. The Method

The value of v is discovered by examination of the values of $\sigma F\left(\beta_{1}, \ldots, \beta_{n}\right), \sigma \in R_{n}$, using sufficiently precise approximations of $\beta_{1}, \ldots, \beta_{n}$.

By testing whether $f(x)$ divides $x^{p}-x \bmod p$ we discover the smallest prime modulus p for which $f(x)$ has n distinct roots. It follows that $f(x)$ has n distinct roots $\alpha_{1}, \ldots, \alpha_{n}$ in \mathbf{Z}_{p}.

We confirm that $\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ assumes distinct values $\bmod p^{2}$ for $\sigma \in R_{n}$ (the values are not distinct $\bmod p)$. In the process we discover a "correct" labelling of the roots, so that $F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \equiv v\left(\bmod p^{2}\right)$.

When the roots are correctly labelled we apply Hensel lifting to obtain sufficiently precise rational integer approximations of the p-adic integer roots so that (1) can be confirmed.

The search for the splitting prime p and the enumeration of the distinct values of

$$
\sigma F\left(\alpha_{1}, \ldots, \alpha_{n}\right)\left(\bmod p^{2}\right)
$$

were programmed in PASCAL and VAX MACRO assembler. The Hensel lifting was done by a program in the ALGEB language (see [2]). All computations were performed on a VAX 8550 computer at the Computer Centre of Concordia University.

3. An example for M_{11}

The Steiner system $S(4,5,11)$ is described in [3], from which we take

$$
\begin{aligned}
f(x)= & x^{11}+101 x^{10}+4151 x^{9}+87851 x^{8}+976826 x^{7}+4621826 x^{6} \\
& -5948674 x^{5}-113111674 x^{4}-12236299 x^{3}+1119536201 x^{2} \\
& -1660753125 x-332150625 .
\end{aligned}
$$

We find:

$$
h=2520 ; \quad v=-688814 ; \quad B=111000000 ; \quad p=37061 ; \quad k=4439 .
$$

A correct labelling of the p-adic integer roots is given by

$$
\begin{aligned}
& \alpha_{1} \equiv 3562 \quad \alpha_{4} \equiv 6490 \quad \alpha_{7} \equiv 9100 \quad \alpha_{10} \equiv 15236 \\
& \alpha_{2} \equiv 3891 \quad \alpha_{5} \equiv-17375 \quad \alpha_{8} \equiv-5956 \quad \alpha_{11} \equiv 7030 \\
& \alpha_{3} \equiv 4847 \quad \alpha_{6} \equiv-18529 \quad \alpha_{9} \equiv-8397
\end{aligned}
$$

The Hensel lifting for this example required 7 hours, 32 minutes of CPU time.

4. An example for M_{12}

The Steiner system $S(5,6,12)$ is described in [4], from which we take

$$
\begin{aligned}
f(x)= & x^{12}+100 x^{11}+4050 x^{10}+83700 x^{9}+888975 x^{8}+3645000 x^{7} \\
& -10570500 x^{6}-107163000 x^{5}+100875375 x^{4}+1131772500 x^{3} \\
& -329614375 x^{2}+1328602500 x+332150625 .
\end{aligned}
$$

We find:

$$
h=2520 ; \quad v=-7508700 ; \quad B=2843000000 ; \quad p=1044479 ; \quad k=3959 .
$$

A correct labelling of the p-adic integer roots is given by

$$
\begin{array}{llll}
\alpha_{1} \equiv-480839 & \alpha_{4} \equiv-199074 & \alpha_{7} \equiv 216720 & \alpha_{10} \equiv 394385 \\
\alpha_{2} \equiv-319442 & \alpha_{5} \equiv-116833 & \alpha_{8} \equiv 392842 & \alpha_{11} \equiv-100630 \\
\alpha_{3} \equiv-292338 & \alpha_{6} \equiv-54522 & \alpha_{9} \equiv 425417 & \alpha_{12} \equiv 134214
\end{array}
$$

The Hensel lifting for this example required 14 hours, 12 minutes of CPU time.

References

1. D. W. Erbach, J. Fischer, \& J. McKay. Polynomials with PSL(2,7) as Galois Group. Journal of Number Theory 11 (1979), 69-75.
2. D. Ford. On the Computation of the Maximal Order in a Dedekind Domain. Ph.D. Dissertation, Ohio State University (1978).
3. D. Ford \& J. McKay. From Polynomials to Galois Groups. Lecture Notes in Computer Science 204 (1985), 535-536. Proc. Eurocal '85 (Linz).
4. D. Ford \& J. McKay. Computation of Galois Groups from Polynomials over the Rationals. In COMPUTER ALGEBRA, D. Chudnovsky \& R. Jenks, editors, pp. 145-150. Marcel Dekker, New York (1988).
5. B. H. Matzat \& A. Zeh-Marschke. Realisierung der Mathieugruppen M_{11} und M_{12} als Galoisgruppen über Q. Journal of Number Theory 23 (1986), 195-202.
