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Elliptic curves. An elliptic curve is a curve of genus one with a distin-
guished rational point. It can be described by a homogeneous equation of
the form

E : Y 2Z = 4X3 + aXZ2 + bZ3, (1)

where the parameters a, b ∈ Z satisfy the condition

∆ := −212(a3 + 27b2) 6= 0.

The Diophantine theory studies the rational solutions (X, Y, Z) ∈ Q3 of
equation (1). It is convenient to ignore the trivial solution (0, 0, 0) and to
identify solutions if they differ by multiplication by a non-zero scalar. So-
lutions to (1) are thus viewed as points in the projective plane P2(Q). Let
E(Q) ⊂ P2(Q) denote this solution set. More generally, if F is any field, let
E(F ) ⊂ P2(F ) be the corresponding set of solutions with values in F . It is
identified with the set of (x, y) ∈ F 2 satisfying the associated affine equation

y2 = 4x3 + ax + b, (2)

together with the “point at infinity” corresponding to (X, Y, Z) = (0, 1, 0).
Among all the projective1 curves over Q, the elliptic ones are worthy of

special consideration, because they alone are algebraic groups: the set E(Q)

∗This is a transcription of the author’s Coxeter-James lecture given at the CMS Winter
meeting in Kingston in December 1998. It is a pleasure to thank Massimo Bertolini and
Adrian Iovita for many fruitful exchanges over the years, and the Canadian Mathematical
Society for its invitation to deliver the Coxeter-James lecture.

1I.e., defined by a system of homogeneous equations.
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is equipped with a binary composition law

E(Q)× E(Q) −→ E(Q)

defined by a system of polynomials with rational coefficients, making E(Q)
into a commutative group, with identity element the distinguished point at
infinity. The same set of polynomials endows E(F ) with a natural addition
law2, admitting a simple geometric description in terms of the chord and
tangent method: viewing points in E(F ) as points on the affine plane by
equation (2), one simply sets P + Q + R = 0 whenever P , Q, and R lie on
the same line. (See for example [ST], ch. I.) The Diophantine study of E is
facilitated and enriched by the presence of this extra structure.

The group E(C) is isomorphic to the quotient of C by a lattice Λ. For
a suitable Λ, the inverse isomorphism sends z ∈ C to (℘(z), ℘′(z)) ∈ E(C),
where

℘(z) =
1

z2
+

∑
λ∈Λ−0

(
1

(z − λ)2
− 1

λ2

)

is the Weierstrass ℘-function attached to Λ. The group law on E(C) corre-
sponds to the usual addition law of complex numbers on C/Λ. This explicit
analytic description yields the structure of E(C) and E(R): the former is a
product of two circles, and the latter is either a circle or the product of a
group of order 2 with a circle.

The structure of E(Q) lies deeper. In the case of the elliptic curve

E : y2 = x3 + 877x, (3)

Bremner and Cassels [BC] showed that E(Q) is generated by the point (0, 0)
of order 2 and the point of infinite order

(x,y)=(( 612776083187947368101
78841535860683900210

)2, 256256267988926809388776834045513089648669153204356603464786949
788415358606839002103

).

For the elliptic curve3

y2 + xy + y = x3 − 20333x + 203852, (4)

2provided that the equation (1) remains non-singular over F , which is the case for
example if the characteristic of F does not divide ∆.

3its equation is not given in Weierstrass form as in equation (1), but can be brought
to this form by a simple change of variables.
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it turns out that E(Q) is generated by the six points Pj = (xj, yj) with

P1 = (−51, 1078), P2 = (3, 376), P3 = (165, 1078),
P4 = (−24, 835), P5 = (−132, 835), P6 = (136, 106).

In fact, a point in E(Q) can be written uniquely as n1P1 + · · ·+ n6P6, with
nj ∈ Z.

In general, how are the rational solutions to equation (2) calculated? As
with many fundamental questions in number theory, the first progress dates
back to Fermat, who introduced his famous method of infinite descent and
used it to show that certain elliptic curves, related to the Fermat equation
with exponent 4 and 3, have finitely many solutions. Fermat’s descent was
later adapted by Mordell4 to prove the following general result about E(Q),
which is suggested by the special cases (3) and (4).

Theorem The group E(Q) is a finitely generated abelian group, i.e.,

E(Q) ' T ⊕ Zr,

where T is a finite group (identified with the torsion subgroup of E(Q)).

The integer r is called the rank of E(Q): it represents the minimal number
of solutions needed to generate a finite index subgroup of E(Q) by repeated
application of the chord and tangent law. The rank depends in a subtle way
on E, and can get quite large5.

Unfortunately, the proof of Mordell’s theorem, based on Fermat’s descent,
is not effective; it is not known whether Fermat’s descent procedure always
terminates eventually. The following basic question remains open.

Question: Is there an algorithm to compute E(Q)?

4The proof was then further generalized by Weil to cover abelian varieties over number
fields. An abelian variety is a projective (commutative) algebraic group; it is a natural
higher dimensional generalization of elliptic curves. For this reason Mordell’s theorem is
often referred to as the Mordell-Weil theorem, and E(Q) is called the Mordell-Weil group
attached to E.

5It is expected that it can get arbitrarily large, although this is not proved. The record
so far is an elliptic curve of rank ≥ 22 [Fe].
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What is desired is a deterministic recipe which, given a and b in equation (1)
(say) yields a description of E(Q). The torsion subgroup T can be calculated
without difficulty; the key challenge arises in computing the rank r and a
system of generators for E(Q).

The Birch and Swinnerton-Dyer conjecture. Further insights about
E(Q) may be gleaned by studying E over other fields, such as the finite
field Fp with p elements consisting of the residue classes modulo a prime
p. The set E(Fp) is finite. A simple heuristic argument suggests that its
cardinality Np is roughly p + 1. Indeed Hasse proved that the “error term”
ap := p + 1−Np satisfies

|ap| ≤ 2
√

p.

Reduction of solutions modulo p gives a natural map E(Q) −→ E(Fp). One
might expect the presence of a large supply of rational points in E(Q) to
have an impact on the size of E(Fp) on average. Compelled by this insight,
Birch and Swinnerton-Dyer studied the asymptotic behaviour of

∏
p<X Np/p

as X gets large. On the basis of numerical experiments, they were led to
conjecture that ∏

p<X

Np/p ' CE(log X)r, (5)

where CE is a constant depending only on E. This striking conjecture asserts
that the rank r - an a priori subtle global invariant of the arithmetic of E
over Q - can be read off from the asymptotic behaviour of the Np, reflecting
information about E of a “local” nature.

Subsequently, following a suggestion of Davenport, Birch and Swinnerton-
Dyer gave a more sophisticated formulation of the conjecture in terms of the
Hasse-Weil L-function L(E, s) attached to E. Let s be a complex variable,
and for p 6 |∆ let

L(E, p, s) := (1− app
−s + p1−2s)−1 (6)

be the local L-function attached to E at p. There is also a simple definition
of L(E, p, s) for the finite set of primes dividing ∆, whose precise nature need
not concern us here. (See for example [Si].) The L-function L(E, s) of E over
Q is then defined by the “Euler product”

L(E, s) :=
∏
p

L(E, p, s), (7)
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where the product is taken over all the primes. The Hasse bound |ap| ≤ 2
√

p
implies that it converges absolutely in the right half-plane Re(s) > 3/2. In
particular, the point s = 1 is outside the domain of absolute convergence.
However, the fundamental Shimura-Taniyama conjecture, which will be dis-
cussed further below, implies that L(E, s) has an analytic continuation to all
of C.

Noting the identity (for p 6 |∆)

L(E, p, 1) =
p

Np

,

and comparing it with the quantity occuring in (5), Birch and Swinnerton–
Dyer were led to conjecture that the rank r should be reflected in the order
of vanishing of L(E, s) at s = 1.

Conjecture BSD: The function L(E, s) satisfies

ords=1L(E, s) = r.

A more precise version of this conjecture expresses L(r)(E, 1), the rth deriva-
tive of L(E, s) at s = 1, in terms of various quantities associated to E over
Q, most notably a “regulator term” measuring the arithmetic complexity
of a system of generators for E(Q), and the order of a conjecturally finite
group known as the Shafarevich-Tate group of E, and denoted by the Cyril-
lic letter III. The precise definition of this group would take the reader too
far afield; suffice it to say that III(E) measures the difficulty of computing
E(Q) by Fermat’s descent method. In particular, its finiteness implies that
Fermat’s descent terminates when applied to E. It is for this reason that
the Shafarevich–Tate conjecture, which predicts the finiteness of III(E) for
all E, is widely viewed as the most important outstanding question in the
arithmetic of elliptic curves.

Concerning the Birch-Swinnerton Dyer conjecture, Tate wrote [Ta1]

“This remarkable conjecture relates the behaviour of a function
L, at a point where it is not at present known to be defined, to
the order of a group III, which is not known to be finite.”
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This quote accurately summarized the state of knowledge (or perhaps, igno-
rance) on the question, until around 1987, when the results of Gross-Zagier
and Kolyvagin, and then Wiles, led to dramatic breakthroughs6.

The Shimura-Taniyama conjecture and Wiles’ theorem. The fact
that a priori L(E, s) is not even known to be defined at s = 1 presents an
obvious obstacle to tackling the Birch and Swinnerton-Dyer conjecture. In
1993, Wiles established the analytic continuation of L(E, s) for a large class
of elliptic curves by relating E (and its L-function) to modular forms.

Given an integer N , let Γ0(N) be the group of matrices in SL2(Z) which
are upper triangular modulo N . It acts as a discrete group of Mobius trans-
formations on the Poincaré upper half-plane

H := {z ∈ C|Im(z) > 0}.

A cusp form of weight 2 for Γ0(N) is an analytic function f on H satisfying
the relation

f

(
az + b

cz + d

)
= (cz + d)2f(z), for all

(
a b
c d

)
∈ Γ0(N), (8)

together with suitable growth conditions on the boundary ofH. For example,
the invariance in equation (8) implies that f is periodic of period 1, and one
requires that it can be written as a power series in q = e2πiz with no constant
term:

f(z) =
∞∑

n=1

λnq
n.

The Dirichlet series
L(f, s) =

∑
λnn

−s

is called the L-function attached to f . A direct calculation reveals that
L(f, s) is essentially the Mellin transform of f :

Λ(f, s) := Γ(s)L(f, s) = (2π)s
∫ ∞

0
f(iy)ys−1dy. (9)

6Prior to this one should also mention the work of Coates and Wiles establishing partial
results towards the Birch and Swinnerton-Dyer conjecture for elliptic curves with complex
multiplication – a restricted class, but one which has played an important role in the
development of the theory.
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The space of cusp forms of weight 2 on Γ0(N) is a finite-dimensional vector
space and is preserved by the involution WN defined by

WN(f)(z) = Nz2f(
−1

Nz
).

Hecke showed that if f lies in one of the two eigenspaces for this involution
(with eigenvalue w = ±1) then L(f, s) satisfies the functional equation:

Λ(f, s) = −wΛ(f, 2− s). (10)

In particular, L(f, s) has an analytic continuation to all of C.
The curve E is said to be modular if there exists a cusp form f of weight

2 on Γ0(N) for some N such that

L(E, s) = L(f, s).

Taniyama and Shimura conjectured in the fifties that every elliptic curve
over Q is modular. This important conjecture gives a framework for proving
the analytic continuation and functional equation for L(E, s), and illustrates
a deep relationship between objects arising in arithmetic, such as E, and
objects, such as f , which are part of an ostensibly different circle of ideas –
related to Fourier analysis on groups, and the (infinite-dimensional) repre-
sentation theory of adelic groups, as described in the ambitious Langlands
program.

The conjecture of Shimura-Taniyama, as refined by Weil, predicts that
the integer N is equal to the so-called arithmetic conductor of E. This
integer can be computed effectively in terms of an equation defining E, and
is divisible only by the primes dividing ∆, but with different exponents in
general. From now on, the letter N will be used to denote the conductor of
E.

Thanks to the work of Wiles [Wi], Taylor-Wiles [TW] and its extensions
[Di], [CDT], one now knows that E is modular, at least provided that E
satisfies a mild technical restriction.

Theorem STW. If 27 does not divide N , then E is modular.

Complex uniformisation. The modularity of E can also be formulated as
a statement about the complex uniformisation of the Riemann surface E(C).
(Cf. [Ma2]).
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Theorem STW∞: If 27 does not divide N , then there is a complex analytic
uniformisation

ϕ∞ : H/Γ0(N) −→ E(C).

The classical uniformisation theorem of complex analysis states that every
Riemann surface is expressible as a quotient of H by the action of some dis-
crete subgroup Γ of SL2(R). The above statement lies deeper. Its arithmetic
content comes from the fact that it makes a precise statement about the na-
ture of Γ, and relates it to the arithmetic of E over Q. Groups like Γ0(N)
which are defined by simple congruence conditions on the matrix entries, are
examples of what are called called arithmetic subgroups of SL2(Z).

Evidence for the Birch–Swinnerton-Dyer conjecture. As Mazur writes
in [Ma1],

“ It has been abundantly clear for years that one has a much
more tenacious hold on the arithmetic of an elliptic curve E/Q if
one supposes that it is [. . .] parametrized [by a modular curve].”

This sentiment is supported by the following result, following from the work
of Kolyvagin [Ko] and earlier work of Gross and Zagier [GZ].

Theorem GZK. Let E be an elliptic curve over Q of rank r. Suppose that
E is modular, and that ords=1L(E, s) ≤ 1. Then

ords=1L(E, s) = r,

and the Shafarevich-Tate conjecture is true for E.

The theorem (or rather, its proof) even supplies a procedure for computing
E(Q), based on the theory of complex multiplication, which relies on the
modularity of E and is more efficient that the descent method of Fermat.

Higher order zeroes. The following question remains as the ultimate chal-
lenge concerning the Birch and Swinnerton-Dyer conjecture.

Question: What if ords=1L(E, s) > 1?
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In this case the relation between r and the order of vanishing of L(E, s) at
s = 1 remains mysterious. It appears that the inequality

ords=1L(E, s) ≥ r (11)

ought to be easier to prove than the reverse inequality7. However, even this
“easy half” of the Birch Swinnerton-Dyer conjecture seems out of reach for
now. The process whereby the presence of “many” rational points in E(Q)
forces higher vanishing of L(E, s) at s = 1 is simply not understood.

There are elliptic curves E for which the sign −w in the functional equa-
tion (10) is −1, and for which r ≥ 3, such as the elliptic curve

y2 = 4x3 − 28x + 25 (12)

of conductor N = 5077. In this case L(E, s) vanishes to odd order, and
theorem GZK implies that L′(E, 1) = 0. Hence

ords=1L(E, s) ≥ 3. (13)

But this is basically as far as one can go! Indeed the following question
remains open:

Question: Is there an elliptic curve E over Q with ords=1L(E, s) > 3?

In his undergraduate summer project [Gh], Alexandru Ghitza evaluated the
first few derivatives of L(E, s) at s = 1 for the curve of rank 6 given by equa-
tion (4). In this case L(E, 1) = 0 and the sign −w in the functional equation
for L(E, s) is 1, so that L(E, s) vanishes to even order ≥ 2. Ghitza’s numer-
ical calculations (performed on a high-speed computer with an accuracy of
around four significant digits after the decimal point) produced

L′′(E, 1) ' −0.0000195,

L(4)(E, 1) ' −0.00000027,

L(6)(E, 1) ' 717.6663612.

7For example, it is known to hold in the function field case, by work of Tate[Ta2]. The
reverse inequality seems inextricably linked with questions related to the Shafarevich–Tate
conjecture.

9



This strongly suggests that L(E, s) vanishes to order 6 at s = 1, as predicted
by the Birch and Swinnerton-Dyer conjecture, but it appears to be an ex-
tremely difficult theoretical problem to prove that L′′(E, 1) = 0, even for this
specific curve!

Using the known elliptic curves with r ≥ 22, note that a proof of (11)
would imply the existence of L-functions for which ords=1L(E, s) ≥ 22.

The work of Goldfeld. Producing L-functions L(E, s) with high or-
der zeroes at s = 1 has a number of applications. For example, Goldfeld
[Go] showed that the existence of a suitable8 elliptic curve E for which
ords=1L(E, s) ≥ r implies the following asymptotic lower bounds on the
growth of the class number h(D) of the imaginary quadratic field of discrim-
inant D:

h(D) ≥ c(log |D|)r−2−ε.

The importance of this estimate lies in the fact that the constant c is effective,
and can be calculated in terms of the elliptic curve E. Goldfeld’s work, using
the elliptic curve of equation (12), led to the unconditional estimate

h(D) ≥ 1

55
(log |D|)1−ε,

and thus to a solution of the celebrated class number problem of Gauss. Note
the key role played in this estimate by equation (13), which is based in turn
on theorem GZK.

More recently, Ram Murty has informed me that an analogue of a conjec-
ture of Polya about the Riemann zeta-function ζ(s), which was subsequently
shown to be false, ought to be true after replacing ζ(s) by L-functions L(E, s)
admitting a high-order zero at s = 1. (Cf. [Mu].)

p-adic analysis. In the face of the difficulties associated with understanding
the complex L-function, it has proved fruitful to replace the complex vari-
able s by a p-adic one, and the classical Hasse-Weil L-function by a p-adic
analogue.

In addition to the usual “archimedean” distance d∞(x, y) = |x − y|, the
rational numbers are equipped (for each prime p) with the p-adic distance

8by “suitable” it is meant that the number of primes dividing N to odd order should
be odd, if w = 1, and even, if w = −1.
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dp(x, y) = p−ordp(x−y), according to which two rational numbers are declared
to be close to each other if (the numerator of) their difference is divisible
by a high power of p. Ostrowski’s theorem asserts that the usual absolute
value and the p-adic ones, as p ranges over the primes, give a complete list
of metrics (up to a suitable equivalence) which are compatible with the field
structure on Q.

Just as R is the completion of Q with respect to the usual metric, the
field Qp is the completion of Q with respect to dp. It has a greater arithmetic
complexity that R, in the sense that its algebraic closure Q̄p is of infinite
degree over Qp, unlike C over R. As a consequence, Q̄p is not a complete
field9. The role of C is played by a larger field, denoted Cp, the completion
of Q̄p with respect to the p-adic metric.

The p-adic upper half plane Hp is defined as

Hp := P1(Cp)−P1(Qp) = Cp −Qp.

Note that replacing Cp by C, and Qp by R, yields two copies of the usual
Poincaré upper half plane. In the p-adic setting, Cp − Qp does not split
naturally into two disjoint connected pieces, so that it is more natural to
work with Hp in its entirety.

The space Hp is endowed with a rich theory of “p-adic analytic functions”
which mirrors the complex-analytic theory. By analogy with the complex
case, it could be tempting to define an “analytic” function on Hp as a Cp-
valued function which admits a power series expansion in each open disk.
In the p-adic setting, however, two open discs are either disjoint or one is
contained in the other! The space of “analytic functions” according to this
definition turns out to be too large and not “rigid” enough to yield a useful
theory: for example, the principle of analytic continuation fails.

A fruitful function theory, obeying many of the principles of classical
complex analysis, is obtained by replacing open discs by so-called affinoid
sets, which are made up of a closed p-adic disc with a number of open disks
deleted. The affinoids cover Hp and can be used to define a sheaf of rigid
analytic functions which enjoys many of the same formal properties as the
sheaf of complex analytic functions on H.

9for example, if ζn is a primitive pnth root of unity, then
∑∞

n=1 ζnpn does not have a
limit in Q̄p even though its partial sums form a Cauchy sequence.
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The group SL2(Qp) acts on Hp by fractional linear transformations, just
as SL2(R) acts on H. If Γ is a discrete subgroup of SL2(Qp), the quotient
XΓ := Hp/Γ inherits a p-adic topology and becomes a rigid analytic curve:
it is the analogue, in the p-adic realm, of a Riemann surface.

The p-adic uniformisation theory of Mumford addresses the question of
which curves X/Cp can be be written as a quotient Hp/Γ, for Γ ⊂ SL2(Qp).
Unlike the complex case, not every curve over Cp can be so uniformized.
Mumford identifies a simple necessary and sufficient condition10 for X to
admit a p-adic uniformisation. Curves over Cp with this property are called
Mumford curves. An elliptic curve over Q is a Mumford curve precisely when
its conductor is exactly divisible by p. The p-adic uniformisation theory of
elliptic curves with p||N was developped by Tate, and later generalized by
Mumford to curves of higher genus.

Rigid analytic Shimura-Taniyama. Let E be an elliptic curve over Q
with 27 6 |N , so that E is modular in the sense of theorem STW. The following
result is a p-adic analogue of theorem STW∞, and follows by combining
the result of Wiles with earlier work of Eichler-Shimizu-Jacquet-Langlands,
Shimura, and Cerednik-Drinfeld. (Cf. for example the work of Jordan-Livné
[JL].)

Theorem STWp. Suppose that p||N , so that E is Mumford curve over Qp.
Then there exists a discrete arithmetic subgroup Γ of SL2(Qp) and a rigid
analytic uniformisation of E(Cp):

ϕp : Hp/Γ −→ E(Cp).

The key word in this theorem is the word arithmetic. It means that the
groups involved in the uniformisation are analogous to Γ0(N). The definition
of these groups is somewhat more involved. Rather than provide a complete
definition, here is an example which gives the flavour of the general case. Let

B := Q + Qi + Qj + Qk

10X should have a model over O (the ring of integers of Cp) whose special fiber is a
union of projective lines intersecting transversally at ordinary double points.
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be the ring of Hamilton quaternions with coefficients in Q, and let

R = Z[i, j, k,
1 + i + j + k

2
]

be Hurwitz’s maximal order. If p is an odd prime, then B⊗Qp is isomorphic
to the ring M2(Qp) of two by two matrices with entries in Qp; after choosing
such an isomorphism, the group

Γ = R[1/p]×1 (14)

of elements of norm 1 in R[1/p] can be viewed as a subgroup of SL2(Qp).
This Γ is an example of a p-adic arithmetic subgroup of SL2(Qp); in fact, if
E is an elliptic curve of conductor 2p, then E(Cp) is uniformized by Hp/Γ.

The pull-back to Hp of a suitable invariant differential ω on E yields a Γ-
invariant differential f(z)dz onHp. The function f is a rigid analytic modular
form of weight two on Hp, i.e., a rigid analytic function on Hp satisfying the
transformation property analogous to (8)

f

(
az + b

cz + d

)
= (cz + d)2f(z), for all

(
a b
c d

)
∈ Γ. (15)

Schneider’s p-adic L-functions. By analogy with the construction of
L(f, s), the following goal seems natural.

Goal. Attach to a rigid analytic modular form f a p-adic L-function Lp(f, s),
by a process of p-adic Mellin transform.

What is desired here is a Cp-valued function of the variable s ∈ Cp which
is rigid analytic, at least in a neighbourhood of s = 1. A definition along
those lines was proposed by Schneider [Sch], by associating to f a p-adic
measure µf on P1(Qp), the p-adic boundary of Hp. This measure behaves
like the boundary measure attached to f , and indeed it satisfies the following
analogue of the Poisson inversion formula [Te] which allows f to be recovered
from µf :

f(z) =
∫
P1(Qp)

dµf (t)

z − t
.
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By analogy with formula (9) for the complex L-function, Schneider proposed
defining

Lp(f, s) :=
∫
Z×p
〈x〉s−1dµf (x), (16)

where Z×p ⊂ P1(Qp) is the group of p-adic units and 〈x〉 = x/(limn→∞ xpn
).

This definition does not lead to a satisfactory theory of p-adic L-functions,
because the definition of Lp(f, s) is sensitive to the identification of Bp with
M2(Qp) used to make Γ act onHp and P1(Qp). It appears that even the order
of vanishing of Lp(f, s) depends on these choices, and so it is doubtful that
a conjecture analogous to conjecture BSD can be formulated for Schneider’s
Lp(f, s).

The Iovita-Spiess construction. A definition of a p-adic L-function which
is modelled on Schneider’s approach, but does lead to a fruitful theory, was
proposed by Adrian Iovita in a graduate course at McGill University, and
independently by Michael Spiess. The Iovita-Spiess construction is best ex-
plained in the special case of the group Γ of equation (14). (The full details
are given in [BDIS].) Let K be a maximal commutative subalgebra of the
quaternion algebra B. It is isomorphic to a quadratic imaginary field in
which the prime 2 is either inert or ramified. Let O be the ring of integers
of K. Replacing K by a conjugate subalgebra, one may assume that

K ∩ Γ = (OK [1/p])×.

In fact, if the p-class group Pic(O[1/p]) is trivial, the subalgebra K with
this property is unique up to conjugation by elements of Γ. Assume for
simplicity that this is the case. The identification Bp = M2(Qp) yields an
action of K×

p := (K ⊗Qp)
× on the boundary P1(Qp) of Hp, having at most

two fixed points and acting transitively on the complement Ω. A choice of
base point in Ω thus yields a continuous map

η : K×
p /Q×

p −→ Ω ⊂ P1(Qp).

Let µf,K := η∗(µf ) be the pullback of Schneider’s measure µf to a mea-
sure on K×

p /Q×
p , and let µ̄f,K be the measure obtained by composing µf,K

with complex conjugation on K×
p . The invariance of µf under Γ translates

into the invariance of µf,K and µ̄f,K under the action of O[1/p]×, and hence
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yields measures on the compact p-adic group G∞ := K×
p /(Q×

p O[1/p]×). Let-

ting µ
(2)
f,K be the convolution measure µf,K ∗ µ̄f,K , define, in analogy with

Schneider’s definition (16):

Lp(f, K, s) :=
∫

G∞
〈x
x̄
〉s−1dµ

(2)
f,K(x).

Note the crucial role played by the quadratic imaginary field K in the def-
inition of Lp(f, K, s). In fact, the measure dµ

(2)
f,K interpolates special val-

ues of the complex L-function L(f/K, s) of f over K. More precisely, if
χ : G∞ −→ C×

p is a non-trivial character of finite order, interpreted as an
idèle class character in the usual way, there is the interpolation formula∫

G∞
χ(x)dµ

(2)
f,K(x) = Ωp

L(f/K, χ, 1)

Ω∞
, (17)

where Ωp ∈ Cp and Ω∞ ∈ C are suitable p-adic and complex periods, and
L(f/K, χ, s) is the complex L-function of f over K twisted by the character

χ. The complex number L(f/K,χ,1)
Ω∞

turns out to be algebraic and is viewed as

an element of Cp by choosing an embedding of Q̄ in Cp. This interpolation
formula follows from a generalization of a formula of Gross [Gr1] for special
values of L-series. See [BDIS] for details.

The p-adic Birch and Swinnerton-Dyer conjecture. If E is an elliptic
curve over Q satisfying the conclusion of theorem STWp, so that it is attached
to a rigid analytic modular form f on Hp, define

Lp(E, K, s) := Lp(f, K, s).

Even before the connection with Schneider’s approach was made explicit, the
p-adic L-function Lp(E, K, s) could be constructed from a different and more
general point of view, which does not rely on p-adic analysis and also allows
the definition of Lp(E, K, s) in the good reduction case, where p 6 |N . In this
level of generality, the p-adic Birch and Swinnerton-Dyer conjecture for the
function Lp(E, K, s) was formulated and studied in a series of articles [BD1],
[BD2], [BD3], [BD4] and [BD5].

Because of the presence of the field K in the interpolation formula (17),
it is natural to expect the order of vanishing of Lp(E, K, s) to be related to
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the rank rK of the Mordell–Weil group E(K). In [BD1], it was conjectured
that

ords=1Lp(E, K, s) ≥ rK .

This p-adic variant of the “easy half” (11) of the Birch Swinnerton–Dyer
conjecture has recently been proved in [BD6].

Theorem BD. The p-adic L-function Lp(E, K, s) vanishes to order at least
rK at s = 1.

The proof of theorem BD is based on two ingredients.

1. The theory of congruences between modular forms and the Jacquet-
Langlands correspondence. This circle of ideas plays a crucial role in
Wiles’ proof of theorem STW, and in Ribet’s earlier reduction [Ri] of
Fermat’s Last Theorem to the Shimura-Taniyama conjecture.

2. Kolyvagin’s theory of the “Euler systems” of Heegner points, the prin-
cipal ingredient in the proof of theorem GZK.

Thus, theorem BD relies crucially on the ideas of Gross-Zagier, Kolyvagin,
Ribet, and Wiles, which have revolutionized the theory of elliptic curves
through the proofs of theorems GZK and STW.

To conclude, here are two natural questions connected with the original
Birch and Swinnerton-Dyer conjecture.

1. Theorem BD can be used to exhibit elliptic curves whose p-adic L-
function Lp(E, K, s) satisfies

ords=1Lp(E, K, s) ≥ 22.

Does the existence of such p-adic analytic L-functions with high order
zeroes have independent applications to other questions of number the-
ory (or mathematics in general), as in Goldfeld’s solution of Gauss’s
class number problem?

2. Is it possible to replace the rigid analytic L-functions by classical ones in
the proof of theorem BD? The proof in [BD6] is based on congruences in
an essential way and breaks down entirely when the prime p is replaced
by the “place at ∞”. In this sense, it sheds no light on the original
Birch and Swinnerton–Dyer conjecture, even on the “easy inequality”.

16



As Mazur writes in [Ma3],

“A major theme in the development of number theory has been
to try to bring R somewhat more into line with the p-adic fields;
a major mystery is why R resists this attempt so strenuously. ”

An explanation of the mysterious analogy between the complex and p-adic
realms would surely lead to deep insights: it is an issue which lies at the
heart of the tantalizing and elusive Birch and Swinnerton–Dyer conjecture.
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