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This article owes everything to the ideas of Wiles, and the arguments pre-
sented here are fundamentally his [W3], though they include both the work
[TW] and several simplifications to the original arguments, most notably that
of Faltings. In the hope of increasing clarity, we have not always stated
theorems in the greatest known generality, concentrating instead on what is
needed for the proof of the Shimura-Taniyama conjecture for semi-stable ellip-
tic curves. This article can serve as an introduction to the fundamental papers
[W3] and [TW], which the reader is encouraged to consult for a different, and
often more in-depth, perspective on the topics considered. Another useful
more advanced reference is the article [Di2] which strengthens the methods of
[W3] and [TW] to prove that every elliptic curve that is semistable at 3 and 5
is modular.
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Introduction

Fermat’s Last Theorem

Fermat’s Last Theorem states that the equation

xn + yn = zn, xyz 6= 0

has no integer solutions when n is greater than or equal to 3. Around 1630,
Pierre de Fermat claimed that he had found a “truly wonderful” proof of this
theorem, but that the margin of his copy of Diophantus’ Arithmetica was too
small to contain it:

“Cubum autem in duos cubos, aut quadrato quadratum in duos
quadrato quadratos, et generaliter nullam in infinitum ultra qua-
dratum potestatem in duos ejusdem nominis fas est dividere; cujus
rei demonstrationem mirabile sane detexi. Hanc marginis exiguitas
non caperet.”

Among the many challenges that Fermat left for posterity, this was to prove
the most vexing. A tantalizingly simple problem about whole numbers, it
stood unsolved for more than 350 years, until in 1994 Andrew Wiles finally
laid it to rest.

Prehistory: The only case of Fermat’s Last Theorem for which Fermat actu-
ally wrote down a proof is for the case n = 4. To do this, Fermat introduced
the idea of infinite descent which is still one the main tools in the study of
Diophantine equations, and was to play a central role in the proof of Fermat’s
Last Theorem 350 years later. To prove his Last Theorem for exponent 4, Fer-
mat showed something slightly stronger, namely that the equation x4+y4 = z2

has no solutions in relatively prime integers with xyz 6= 0. Solutions to such
an equation correspond to rational points on the elliptic curve v2 = u3 − 4u.
Since every integer n ≥ 3 is divisible either by an odd prime or by 4, the result
of Fermat allowed one to reduce the study of Fermat’s equation to the case
where n = ` is an odd prime.

In 1753, Leonhard Euler wrote down a proof of Fermat’s Last Theorem for
the exponent ` = 3, by performing what in modern language we would call
a 3-descent on the curve x3 + y3 = 1 which is also an elliptic curve. Euler’s
argument (which seems to have contained a gap) is explained in [Edw], ch. 2,
and [Dic1], p. 545.

It took mathematicians almost 100 years after Euler’s achievement to han-
dle the case ` = 5; this was settled, more or less simultaneously, by Gustav
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Peter Lejeune Dirichlet [Dir] and Adrien Marie Legendre [Leg] in 1825. Their
elementary arguments are quite involved. (Cf. [Edw], sec. 3.3.)

In 1839, Fermat’s equation for exponent 7 also yielded to elementary meth-
ods, through the heroic efforts of Gabriel Lamé. Lamé’s proof was even more
intricate than the proof for exponent 5, and suggested that to go further, new
theoretical insights would be needed.

The work of Sophie Germain: Around 1820, in a letter to Gauss, Sophie
Germain proved that if ` is a prime and q = 2`+1 is also prime, then Fermat’s
equation x` + y` = z` with exponent ` has no solutions (x, y, z) with xyz 6= 0
(mod `). Germain’s theorem was the first really general proposition on Fer-
mat’s Last Theorem, unlike the previous results which considered the Fermat
equation one exponent at a time.

The case where the solution (x, y, z) to x` + y` = z` satisfies xyz 6= 0 (mod
`) was called the first case of Fermat’s Last Theorem, and the case where `
divides xyz, the second case. It was realized at that time that the first case
was generally easier to handle: Germain’s theorem was extended, using similar
ideas, to cases where k`+1 is prime and k is small, and this led to a proof that
there were no first case solutions to Fermat’s equation with prime exponents
` ≤ 100, which in 1830 represented a significant advance. The division between
first and second case remained fundamental in much of the later work on the
subject. In 1977, Terjanian [Te] proved that if the equation x2`+y2` = z2` has
a solution (x, y, z), then 2` divides either x or y, i.e., “the first case of Fermat’s
Last Theorem is true for even exponents”. His simple and elegant proof used
only techniques that were available to Germain and her contemporaries.

The work of Kummer: The work of Ernst Eduard Kummer marked the
beginning of a new era in the study of Fermat’s Last Theorem. For the first
time, sophisticated concepts of algebraic number theory and the theory of
L-functions were brought to bear on a question that had until then been
addressed only with elementary methods. While he fell short of providing
a complete solution, Kummer made substantial progress. He showed how
Fermat’s Last Theorem is intimately tied to deep questions on class numbers
of cyclotomic fields which are still an active subject of research. Kummer’s
approach relied on the factorization

(x+ y)(x+ ζ`y) · · · (x+ ζ`−1
` y) = z`

of Fermat’s equation over the ring Z[ζ`] generated by the `th roots of unity.
One observes that the greatest common divisor of any two factors in the prod-
uct on the left divides the element (1 − ζ`), which is an element of norm `.
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Since the product of these numbers is a perfect `-th power, one is tempted to
conclude that (x+y), . . . , (x+ ζ`−1

` y) are each `-th powers in the ring Z[ζ`] up
to units in this ring, and up to powers of (1− ζ`). Such an inference would be
valid if one were to replace Z[ζ`] by Z, and is a direct consequence of unique
factorization of integers into products of primes. We say that a ring R has
property UF if every non-zero element of R is uniquely a product of primes,
up to units. Mathematicians such as Lamé made attempts at proving Fer-
mat’s Last Theorem based on the mistaken assumption that the rings Z[ζ`]
had property UF . Legend even has it that Kummer fell into this trap, al-
though this story now has been discredited; see for example [Edw], sec. 4.1. In
fact, property UF is far from being satisfied in general: one now knows that
the rings Z[ζ`] have property UF only for ` < 23 (cf. [Wa], ch. 1).

It turns out that the full force of property UF is not really needed in the
applications to Fermat’s Last Theorem. Say that a ring R has property UF`
if the following inference is valid:

ab = z`, and gcd(a, b) = 1⇒ a and b are `th powers up to units of R.

If a ring R has property UF , then it also has property UF`, but the converse
need not be true. Kummer showed that Fermat’s last theorem was true for
exponent ` if Z[ζ`] satisfied the property UF` (cf. [Wa]). The proof is far from
trivial, because of difficulties arising from the units in Z[ζ`] as well as from
the possible failure of property UF . (A number of Kummer’s contemporaries,
such as Cauchy and Lamé, seem to have overlooked both of these difficulties
in their attempts to prove Fermat’s Last Theorem.)

Kummer then launched a systematic study of the property UF` for the
rings Z[ζ`]. He showed that even if Z[ζ`] failed to have unique factorization,
it still possessed unique factorization into prime ideals. He defined the ideal
class group as the quotient of the group of fractional ideals by its subgroup
consisting of principal ideals, and was able to establish the finiteness of this
class group. The order of the class group of Z[ζ`], denoted h`, could be taken
as a measure of the failure of the ring Z[ζ`] to satisfy UF . It was rather
straightforward to show that if ` did not divide h`, then Z[ζ`] satisfied the
property UF`. In this case, one called ` a regular prime. Kummer thus showed
that Fermat’s last theorem is true for exponent ` if ` is a regular prime.

He did not stop here. For it remained to give an efficient means of com-
puting h`, or at least an efficient way of checking when ` divides h`. The class
number h` can be factorized as a product

h` = h+
` h
−
` ,
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where h+
` is the class number of the real subfield Q(ζ`)

+, and h−` is defined as
h`/h

+
` . Essentially because of the units in Q(ζ`)

+, the factor h+
` is somewhat

difficult to compute, while, because the units in Q(ζ`)
+ generate the group of

units in Q(ζ`) up to finite index, the term h−` can be expressed in a simple
closed form. Kummer showed that if ` divides h+

` , then ` divides h−` . Hence, `
divides h` if and only if ` divides h−` . This allowed one to avoid the difficulties
inherent in the calculation of h+

` . Kummer then gave an elegant formula for h−`
by considering the Bernoulli numbers Bn, which are rational numbers defined
by the formula

x

ex − 1
=
∑ Bn

n!
xn.

He produced an explicit formula for the class number h−` , and concluded that
if ` does not divide the numerator of B2i, for 1 ≤ i ≤ (` − 3)/2, then ` is
regular, and conversely.

The conceptual explanation for Kummer’s formula for h−` lies in the work
of Dirichlet on the analytic class number formula, where it is shown that h−`
can be expressed as a product of special values of certain (abelian) L-series

L(s, χ) =
∞∑
n=1

χ(n)n−s

associated to odd Dirichlet characters. Such special values in turn can be
expressed in terms of certain generalized Bernoulli numbers B1,χ, which are
related to the Bernoulli numbers Bi via congruences mod `. (For more details,
see [Wa].)

These considerations led Kummer to initiate a deep study relating congru-
ence properties of special values of L-functions and of class numbers, which
was to emerge as a central concern of modern algebraic number theory, and
was to reappear – in a surprisingly different guise – at the heart of Wiles’
strategy for proving the Shimura-Taniyama conjecture.

Later developments: Kummer’s work had multiple ramifications, and led
to a very active line of enquiry pursued by many people. His formulae re-
lating Bernoulli numbers to class numbers of cyclotomic fields were refined
by Kenneth Ribet [R1], Barry Mazur and Andrew Wiles [MW], using new
methods from the theory of modular curves which also play a central role in
Wiles’ more recent work. (Later Francisco Thaine [Th] reproved some of the
results of Mazur and Wiles using techniques inspired directly from a reading
of Kummer.) In a development more directly related to Fermat’s Last Theo-
rem, Wieferich proved that if `2 does not divide 2`−1 − 1, then the first case
of Fermat’s Last Theorem is true for exponent `. (Cf. [Ri], lecture VIII.)
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There were many other refinements of similar criteria for Fermat’s Last
theorem to be true. Computer calculations based on these criteria led to a
verification that Fermat’s Last theorem is true for all odd prime exponents less
than four million [BCEM], and that the first case is true for all ` ≤ 8.858 ·1020

[Su].
The condition that ` is a regular prime seems to hold heuristically for about

61% of the primes. (See the discussion on p. 63, and also p. 108, of [Wa], for
example.) In spite of the convincing numerical evidence, it is still not known
if there are infinitely many regular primes. Ironically, it is not too difficult to
show that there are infinitely many irregular primes. (Cf. [Wa].)

Thus the methods introduced by Kummer, after leading to very strong
results in the direction of Fermat’s Last theorem, seemed to become mired in
difficulties, and ultimately fell short of solving Fermat’s conundrum1.

Faltings’ proof of the Mordell conjecture: In 1985, Gerd Faltings [Fa]
proved the very general statement (which had previously been conjectured
by Mordell) that any equation in two variables corresponding to a curve of
genus strictly greater than one had (at most) finitely many rational solutions.
In the context of Fermat’s Last Theorem, this led to the proof that for each
exponent n ≥ 3, the Fermat equation xn + yn = zn has at most finitely many
integer solutions (up to the obvious rescaling). Andrew Granville [Gra] and
Roger Heath-Brown [HB] remarked that Faltings’ result implies Fermat’s Last
Theorem for a set of exponents of density one.

However, Fermat’s Last Theorem was still not known to be true for an
infinite set of prime exponents. In fact, the theorem of Faltings seemed ill-
equipped for dealing with the finer questions raised by Fermat in his margin,
namely of finding a complete list of rational points on all of the Fermat curves
xn + yn = 1 simultaneously, and showing that there are no solutions on these
curves when n ≥ 3 except the obvious ones.

Mazur’s work on Diophantine properties of modular curves: Although
it was not realized at the time, the chain of ideas that was to lead to a proof
of Fermat’s Last theorem had already been set in motion by Barry Mazur
in the mid seventies. The modular curves X0(`) and X1(`) introduced in
section 1.2 and 1.5 give rise to another naturally occurring infinite family
of Diophantine equations. These equations have certain systematic rational
solutions corresponding to the cusps that are defined over Q, and are analogous

1However, W. McCallum has recently introduced a technique, based on the method
of Chabauty and Coleman, which suggests new directions for approaching Fermat’s Last
Theorem via the cyclotomic theory. An application of McCallum’s method to showing the
second case of Fermat’s Last Theorem for regular primes is explained in [Mc].
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to the so-called “trivial solutions” of Fermat’s equation. Replacing Fermat
curves by modular curves, one could ask for a complete list of all the rational
points on the curves X0(`) and X1(`). This problem is perhaps even more
compelling than Fermat’s Last Theorem: rational points on modular curves
correspond to objects with natural geometric and arithmetic interest, namely,
elliptic curves with cyclic subgroups or points of order `. In [Maz1] and [Maz2],
B. Mazur gave essentially a complete answer to the analogue of Fermat’s Last
Theorem for modular curves. More precisely, he showed that if ` 6= 2, 3, 5
and 7, (i.e., X1(`) has genus > 0) then the curve X1(`) has no rational points
other than the “trivial” ones, namely cusps. He proved analogous results for
the curves X0(`) in [Maz2], which implied, in particular, that an elliptic curve
over Q with square-free conductor has no rational cyclic subgroup of order `
over Q if ` is a prime which is strictly greater than 7. This result appeared a
full ten years before Faltings’ proof of the Mordell conjecture.

Frey’s strategy: In 1986, Gerhard Frey had the insight that these construc-
tions might provide a precise link between Fermat’s Last Theorem and deep
questions in the theory of elliptic curves, most notably the Shimura Taniyama
conjecture. Given a solution a` + b` = c` to the Fermat equation of prime
degree `, we may assume without loss of generality that a` ≡ −1 (mod 4) and
that b` ≡ 0 (mod 32). Frey considered (following Hellegouarch, [He], p. 262;
cf. also Kubert-Lang [KL], ch. 8, §2) the elliptic curve

E : y2 = x(x− a`)(x+ b`).

This curve is semistable, i.e., it has square-free conductor. Let E[`] denote the
group of points of order ` on E defined over some (fixed) algebraic closure Q̄
of Q, and let L denote the smallest number field over which these points are
defined. This extension appears as a natural generalization of the cyclotomic
fields Q(ζ`) studied by Kummer. What singles out the field L for special
attention is that it has very little ramification: using Tate’s analytic description
of E at the primes dividing abc, it could be shown that L was ramified only at 2
and `, and that the ramification of L at these two primes was rather restricted.
(See theorem 2.15 of section 2.2 for a precise statement.) Moreover, the results
of Mazur on the curve X0(`) could be used to show that L is large, in the
following precise sense. The space E[`] is a vector space of dimension 2 over the
finite field F` with ` elements, and the absolute Galois group GQ = Gal (Q̄/Q)
acts F`-linearly on E[`]. Choosing an F`-basis for E[`], the action is described
by a representation

ρ̄E,` : Gal (L/Q) ↪→ GL2(F`).
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Mazur’s results in [Maz1] and [Maz2] imply that ρ̄E,` is irreducible if ` > 7
(using the fact that E is semi-stable). In fact, combined with earlier results
of Serre [Se6], Mazur’s results imply that for ` > 7, the representation ρ̄E,` is
surjective, so that Gal (L/Q) is actually isomorphic to GL2(F`) in this case.

Serre’s conjectures: In [Se7], Jean-Pierre Serre made a careful study of mod
` Galois representations ρ̄ : GQ −→ GL2(F`) (and, more generally, of repre-
sentations into GL2(k), where k is any finite field). He was able to make very
precise conjectures (see section 3.2) relating these representations to modular
forms mod `. In the context of the representations ρ̄E,` that occur in Frey’s
construction, Serre’s conjecture predicted that they arose from modular forms
(mod `) of weight two and level two. Such modular forms, which correspond to
differentials on the modular curve X0(2), do not exist because X0(2) has genus
0. Thus Serre’s conjecture implied Fermat’s Last Theorem. The link between
fields with Galois groups contained in GL2(F`) and modular forms mod ` still
appears to be very deep, and Serre’s conjecture remains a tantalizing open
problem.

Ribet’s work: lowering the level: The conjecture of Shimura and Taniya-
ma (cf. section 1.8) provides a direct link between elliptic curves and modular
forms. It predicts that the representation ρ̄E,` obtained from the `-division
points of the Frey curve arises from a modular form of weight 2, albeit a form
whose level is quite large. (It is the product of all the primes dividing abc,
where a` + b` = c` is the putative solution to Fermat’s equation.) Ribet [R5]
proved that, if this were the case, then ρ̄E,` would also be associated with a
modular form mod ` of weight 2 and level 2, in the way predicted by Serre’s
conjecture. This deep result allowed him to reduce Fermat’s Last Theorem to
the Shimura-Taniyama conjecture.

Wiles’ work: proof of the Shimura-Taniyama conjecture: In [W3]
Wiles proves the Shimura-Taniyama conjecture for semi-stable elliptic curves,
providing the final missing step and proving Fermat’s Last Theorem. After
more than 350 years, the saga of Fermat’s Last theorem has come to a spec-
tacular end.

The relation between Wiles’ work and Fermat’s Last Theorem has been
very well documented (see, for example, [R8], and the references contained
therein). Hence this article will focus primarily on the breakthrough of Wiles
[W3] and Taylor-Wiles [TW] which leads to the proof of the Shimura-Taniyama
conjecture for semi-stable elliptic curves.

From elliptic curves to `-adic representations: Wiles’ opening gambit
for proving the Shimura-Taniyama conjecture is to view it as part of the more
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general problem of relating two-dimensional Galois representations and mod-
ular forms. The Shimura-Taniyama conjecture states that if E is an elliptic
curve over Q, then E is modular. One of several equivalent definitions of mod-
ularity is that for some integer N there is an eigenform f =

∑
anq

n of weight
two on Γ0(N) such that

#E(Fp) = p+ 1− ap

for all but finitely primes p. (By an eigenform, here we mean a cusp form
which is a normalized eigenform for the Hecke operators; see section 1 for
definitions.)

This conjecture acquires a more Galois theoretic flavour when one considers
the two dimensional `-adic representation

ρE,` : GQ −→ GL2(Z`)

obtained from the action of GQ on the `-adic Tate module of E: T`E =
lim
←
E[ln](Q̄). An `-adic representation ρ of GQ is said to arise from an eigen-

form f =
∑
anq

n with integer coefficients an if

tr (ρ(Frob p)) = ap,

for all but finitely many primes p at which ρ is unramified. Here Frob p is a
Frobenius element at p (see section 2), and its image under ρ is a well-defined
conjugacy class.

A direct computation shows that #E(Fp) = p + 1 − tr (ρE,`(Frob p)) for
all primes p at which ρE,` is unramified, so that E is modular (in the sense
defined above) if and only if for some `, ρE,` arises from an eigenform. In
fact the Shimura-Taniyama conjecture can be generalized to a conjecture that
every `-adic representation, satisfying suitable local conditions, arises from a
modular form. Such a conjecture was proposed by Fontaine and Mazur [FM].

Galois groups and modular forms

Viewed in this way, the Shimura-Taniyama conjecture becomes part of a much
larger picture: the emerging, partly conjectural and partly proven correspon-
dence between certain modular forms and two dimensional representations
of GQ. This correspondence, which encompasses the Serre conjectures, the
Fontaine-Mazur conjecture, and the Langlands program for GL2, represents a
first step toward a higher dimensional, non-abelian generalization of class field
theory.
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Two-dimensional representations of GQ: In the first part of this century,
class field theory gave a complete description of Gab

Q , the maximal (continu-
ous) abelian quotient of GQ. In fact the Kronecker-Weber theorem asserts that
Gab

Q
∼=
∏

p Z×p , and one obtains a complete description of all one-dimensional
representations of GQ. In the second half of this century much attention has
focused on attempts to understand the whole group GQ, or more precisely to
describe all its representations. Although there has been a fair degree of suc-
cess in using modular forms to construct representations of GQ, less is known
about how exhaustive these constructions are. The major results in the lat-
ter direction along these lines are the work of Langlands [Ll2] and the recent
work of Wiles ([W3] completed by [TW]). Both concern two-dimensional rep-
resentations of GQ and give significant evidence that these representations are
parametrised (in a very precise sense) by certain modular forms. The purpose
of this article is to describe both the proven and conjectural parts of this the-
ory, give a fairly detailed exposition of Wiles’ recent contribution and explain
the application to Fermat’s Last theorem. To make this description somewhat
more precise let us distinguish three types of representation.

Artin representations and the Langlands-Tunnell theorem: Contin-
uous representations ρ : GQ → GL2(C) are called (two-dimensional) Artin
representations. Such representations necessarily have finite image, and are
therefore semi-simple. We restrict our attention to those which are irreducible.
They are conjectured to be in bijection (in a precise way) with certain new-
forms (a special class of eigenforms). Those ρ which are odd (i.e. the deter-
minant of complex conjugation is −1), should correspond to weight 1 holo-
morphic newforms. Those which are even should correspond to certain non-
holomorphic (Maass) newforms. Two partial but deep results are known.

(a) (Deligne-Serre) If f is a holomorphic weight one newform then the cor-
responding Artin representation can be constructed ([DS]).

(b) (Langlands-Tunnell) If ρ is a two dimensional Artin representation with
soluble image then the corresponding modular form exists ([Ll2] and
[Tu]).

The proof of the latter result is analytic in nature, invoking the trace formula
and the theory of L-functions.

`-adic representations and the Fontaine-Mazur conjecture: By an `-
adic representation we shall mean any continuous representation ρ : GQ →
GL2(K) which is unramified outside a finite set of primes and where K is a
finite extension of Q` (generalizing slightly the notion of `-adic representation
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that was introduced before). Given a holomorphic newform f one can attach
to f a system of `-adic representations, following Eichler, Shimura, Deligne and
Serre. These `-adic representations are called modular. The Fontaine-Mazur
conjecture (see [FM]) predicts if ρ is an odd, irreducible, `-adic representation
whose restriction to the decomposition group at ` is well enough behaved,
then ρ is modular. (The restriction on the behaviour of the representation
on the decomposition group at ` is essential in this conjecture; it is not true
that all odd, irreducible two dimensional `-adic representation are modular.)
Before Wiles’ work almost nothing was known about this conjecture, except
that certain very special cases could be deduced from the work of Hecke,
Langlands and Tunnell.

Mod ` representations and Serre’s conjecture: A mod ` representation
is a continuous representation ρ̄ : GQ −→ GL2(F̄`). For example if E/Q is an
elliptic curve then the action of GQ on the `-division points of E gives rise to a
mod ` representation ρ̄E,` which is just the reduction modulo ` of ρE,`. One can
use the work of Eichler, Shimura, Deligne and Serre to associate to each mod
` eigenform a mod ` representation of GQ. The mod ` representations which
arise in this way are called modular. Serre has conjectured [Se7] that every
odd (absolutely) irreducible mod ` representation is modular and should arise
from a mod ` eigenform with certain very specific properties. This conjecture
can be thought of as having two parts.

The first asserts that every odd irreducible mod ` representation is modular.
About this very little is known. It is known for ρ̄ : GQ → GL2(F2) by work
of Hecke. It is also known for ρ̄ : GQ → GL2(F3). This latter result is an
application of the Langlands-Tunnell theorem using the two accidents that
there is a section to the homomorphism GL2(Z[

√
−2]) →→ GL2(F3) and that

GL2(F3) is soluble. Partial results for ρ̄ : GQ → GL2(F5) follow from Wiles’
work.

Given a mod ` representation arising from a mod ` eigenform, the second
part of Serre’s conjecture predicts the minimal weight and level for that mod
` eigenform. Here the situation is much better. There has been a lot of work
over the last decade (including ideas from Mazur, Ribet, Carayol and Gross)
and the problem is nearly completely resolved (see [Di1]). As was pointed
out earlier, Ribet’s contribution [R5] implies that, if one can show that the
Galois representation ρ̄E,` arising from the (semi-stable) Frey curve attached
to a solution of Fermat’s equation with exponent ` is modular, then one can
show that this representation does not exist—because it would be modular of
weight two and level two— and hence one can deduce Fermat’s Last Theorem.

However we have seen that to show ρ̄E,` is modular it suffices to show that
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for some `0, the `0-adic representation ρE,`0 is modular. In particular it suffices
to verify that either ρE,3 or ρE,5 is modular. Hence the Shimura-Taniyama
conjecture can be reduced to (part of) the Fontaine-Mazur conjecture for ` = 3
and 5. We have seen that for these primes part of Serre’s conjecture is known,
so it turns out it suffices to prove results of the form “Serre’s conjecture for `
implies the Fontaine-Mazur conjecture for `”. This is the direction of Wiles’
work, although nothing quite this general has been proven yet.

Deformation theory: Thus the problem Wiles faces is to show that if ρ is
an odd `-adic representation which has irreducible modular reduction ρ̄ and
which is sufficiently well behaved when restricted to the decomposition group
at `, then ρ is modular. In fact he only proves a weakened version of such a
result, but one which is sufficient to conclude that all semistable elliptic curves
are modular.

Wiles approaches the problem by putting it in a more general setting. On
the one hand he considers lifts of ρ̄ to representations over complete noetherian
local Z`-algebras R. For each finite set of primes Σ, one can consider lifts of
type Σ; these are lifts which are well-behaved on a decomposition group at `,
and whose ramification at primes not in Σ is rather restricted. In particular,
such a lift is unramified outside Σ ∪ S where S is the set of ramified primes
of ρ̄. A method of Mazur (see [Maz3]) can then be used to show that if ρ̄ is
absolutely irreducible, then there is a representation

ρuniv
Σ : GQ −→ GL2(RΣ)

which is universal in the following sense. If ρ : GQ → GL2(R) is a lift of ρ̄ of
type Σ, then there is a unique local homomorphism RΣ −→ R such that ρ is
equivalent to the pushforward of ρuniv

Σ . Thus the equivalence classes of type Σ
lifts to GL2(R) can be identified with Hom(RΣ, R). The local ring RΣ is called
the universal deformation ring for representations of type Σ.

On the other hand Wiles constructs a candidate for a universal modular
lifting of type Σ

ρmod
Σ : GQ −→ GL2(TΣ).

The ring TΣ is constructed from the algebra of Hecke operators acting on
a certain space of modular forms. The universal property of RΣ gives a
map RΣ → TΣ. The problem thus becomes: to show that this map is an
isomorphism2. In fact, it can be shown to be a surjection without great dif-

2Maps of this kind were already considered in [Maz3] and [BM], and it is conjectured in
[MT] that these maps are isomorphisms in certain cases, though not in exactly the situations
considered by Wiles.
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ficulty, and the real challenge is to prove injectivity, i.e., to show, in essence,
that RΣ is not larger than TΣ.

By an ingenious piece of commutative algebra, Wiles found a numerical
criterion for this map to be an isomorphism, and for the ring TΣ to be a
local complete intersection. This numerical criterion seems to be very close
to a special case of the Bloch-Kato conjecture [BK]. Wiles further showed
(by combining arguments from Galois cohomology and from the theory of
congruences between modular forms) that this numerical criterion was satisfied
if the minimal version T∅ of this Hecke algebra (obtained by taking Σ = ∅, i.e.,
allowing the least possible amount of ramification in the deformations) was a
complete intersection. Finally in [TW] it was proved that T∅ is a complete
intersection.

Outline of the paper

Chapter 1 recalls some basic notions from the classical theory of elliptic curves
and modular forms, such as modular forms and modular curves over C and Q,
Hecke operators and q-expansions, and Eichler-Shimura theory. The Shimura-
Taniyama conjecture is stated precisely in section 1.8.

Chapter 2 introduces the basic theory of representations ofGQ. We describe
Mazur’s deformation theory and begin our study of the universal deformation
rings using techniques from Galois cohomology and from the theory of finite
flat group schemes. We also recall some basic properties of elliptic curves,
both to explain Frey’s argument precisely and illustrate the uses of `-adic
representations.

Chapter 3 explains how to associate Galois representations to modular
forms. We then describe what was known and conjectured about associating
modular forms to Galois representations before Wiles’ work. After introducing
the universal modular lifts of certain mod ` representations, we give the proof
of Wiles’ main theorems, taking for granted certain results of a more technical
nature that are proved in the last two chapters.

Chapter 4 explains how to prove the necessary results concerning the struc-
ture of Hecke algebras: the generalization by Taylor and Wiles of a result of
de Shalit, and the generalization by Wiles of a result of Ribet.

Chapter 5 establishes the fundamental results from commutative algebra
discovered by Wiles, following modifications of the approach of Wiles and
Taylor-Wiles proposed by Faltings and Lenstra.
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1 Elliptic curves and modular forms

1.1 Elliptic curves

We begin with a brief review of elliptic curves. A general reference for the
results discussed in this section is [Si1] and [Si2].

An elliptic curve E over a field F is a proper smooth curve over F of genus
one with a distinguished F -rational point. If E/F is an elliptic curve and if ω
is a non-zero holomorphic differential on E/F then E can be realised in the
projective plane by an equation (called a Weierstrass equation) of the form

(W ) Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

such that the distinguished point is (0 : 1 : 0) (sometimes denoted ∞ because
it corresponds to the “point at infinity” in the affine model obtained by setting
Z = 1) and ω = dx

2y+a1x+a3
. We also define the following quantities associated

to (W ):
b2 = a2

1 + 4a2 b4 = 2a4 + a1a3 b6 = a2
3 + 4a6

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4

∆ = 9b2b4b6 − b22b8 − 8b34 − 27b26
j = (b22 − 24b4)

3/∆.

One can check that the equation (W ) defines an elliptic curve if and only if
∆ is nonzero. One can also check that such equations define elliptic curves
which are isomorphic over F̄ if and only if they give the same quantity j. Thus
j only depends on E so we will denote it jE. The quantity ∆ depends only
on the pair (E, ω) so we shall denote it ∆(E, ω). If u belongs to F× then
u12∆(E, uω) = ∆(E, ω).

An elliptic curve E/F has a natural structure of a commutative algebraic
group with the distinguished F -rational point as the identity element.

An algebraic map between two elliptic curves which sends the distinguished
point of one to the distinguished point of the other is automatically a morphism
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of algebraic groups. A map between elliptic curves which has finite kernel (and
hence, is generically surjective) is called an isogeny.

Elliptic curves over C: If F = C, then the curve E is isomorphic as a
complex analytic manifold to the complex torus C/Λ, where Λ is a lattice
in C, i.e., a discrete Z-submodule of C of rank 2. The group law on E(C)
corresponds to the usual addition in C/Λ. In terms of Λ, an affine equation
for E in A2(C) is given by

y2 = 4x3 + g2x+ g3,

where

g2 = −60
∑

λ∈Λ−{0}

1

z4
, g3 = −140

∑
λ∈Λ−{0}

1

z6
.

In terms of this equation, the map from C/Λ to E(C) sends z to (x, y) =
(℘(z), ℘′(z)), where ℘(z) is the Weierstrass ℘-function associated to the lattice
Λ. (Cf. [Si1], ch. VI.) The inverse map is given by integrating the holomorphic
differential ω, i.e., sending P ∈ E(C) to the image of

∫
γ
ω in C/Λ, where γ is

any path on E(C) from ∞ to P , and Λ is the lattice of periods
∫
γ
ω, where γ

ranges over the integral homology H1(E(C),Z). Replacing ω by uω changes
Λ to uΛ, so that Λ is determined by E only up to homotheties. We scale Λ so
that one of its Z-generators is 1, and another, τ , has strictly positive imaginary
part. This gives the analytic isomorphism:

E(C) ' C/〈1, τ〉.

The complex number τ in the complex upper half plane H is well defined,
modulo the natural action of SL2(Z) on H by Möbius transformations. (Thus
the set of isomorphism classes of elliptic curves over C can be identified with
the quotient H/SL2(Z).)

The map z 7→ e2πiz identifies C/〈1, τ〉 with C×/qZ, where q = e2πiτ is the
multiplicative Tate period. The analytic isomorphism

E(C) ' C×/qZ

has the virtue of generalizing to the p-adic setting in certain cases, as we will
see shortly.

Note that |q| < 1. The invariant j can be expressed in terms of q by a
convergent power series with integer coefficients:

j = q−1 + 744 + 196884q + · · · . (1.1.1)

The following basic facts are a direct consequence of the analytic theory:
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Proposition 1.1 The subgroup E[n](C) of points of order n on E(C) is iso-
morphic (non-canonically) to Z/nZ×Z/nZ. More generally, if F is any field
of characteristic zero, the subgroup E[n](F ) is contained in Z/nZ× Z/nZ.

Proof: The analytic theory shows that E(C) is isomorphic as an abstract group
to a product of two circle groups, and the first statement follows. The second
statement follows from the Lefschetz principle (cf. [Si1], ch. VI, §6). 2

Proposition 1.2 The endomorphism ring End C(E) of an elliptic curve over
C is isomorphic either to Z or to an order in a quadratic imaginary field. The
same is true if one replaces C by any field of characteristic 0.

Proof: An endomorphism of E(C) ' C/Λ induces multiplication by complex
number α on the tangent space. Hence End C(E) is isomorphic to the ring
of α ∈ C satisfying αΛ ⊂ Λ. Such a ring is isomorphic either to Z or to a
quadratic imaginary order. The corresponding statement for fields of charac-
teristic 0 follows as in the proof of proposition 1.1. 2

If End C(E)⊗Q is a quadratic imaginary field, we say that E has complex
multiplication.

Remark 1.3 It follows from the arithmetic theory of complex multiplication
(cf. [Si2], ch. 1) that any elliptic curve E with complex multiplication is defined
over an abelian extension of the quadratic imaginary field K = End C(E)⊗Q.
If E is defined over Q, then K has class number one. There are only finitely
many elliptic curves over Q with complex multiplication, up to “twists” (i.e.,
C-isomorphism).

Elliptic curves over Qp: Now suppose that E is an elliptic curve defined
over the p-adic field Qp. There is an equation

(Wmin) Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

for E with the property ai ∈ Zp for all i and |∆| is minimal amongst all such
equations for E. Although (Wmin) is not unique, the associated discriminant
depends only on E and is denoted ∆min

E . Moreover the reduction of (Wmin)
modulo the uniformizer p defines a projective curve Ē, which is independent
of the particular minimal equation chosen. If (W ) is any equation for E with
coefficients in Zp and with discriminant ∆, then ∆min

E divides ∆.
If Ē is a smooth curve we say that E has good reduction at p. If Ē has a

unique singular point which is a node we say that E has multiplicative reduction
at p. Otherwise Ē has a unique singular point which is a cusp and we say that
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E has additive reduction at p. If E has good or multiplicative reduction we
say that it has semi-stable reduction at p, or simply that E is semi-stable.

If (W ) defines a smooth curve mod p then E has good reduction at p
and (W ) is a minimal equation. If ∆ ≡ 0 mod p but b22 6= 24b4 mod p, then
modulo p the equation (W ) defines a curve with a node. In this case E has
multiplicative reduction at p and (W ) is a minimal equation.

Curves with good reduction: In that case p does not divide ∆min
E , and the

reduction Ē is an elliptic curve over Fp.
If q is any power of p, and Fq is the field with q elements, we define the

integer Nq to be the number of solutions to the equation (Wmin) in the projec-
tive plane P2(Fq). Thus Nq is the order of the finite group Ē(Fq). We define
the integer aq by the formula

aq = q + 1−Nq.

The integers aq are completely determined by ap: more precisely, we have

(1− app−s + p1−2s)−1 = 1 + app
−s + ap2p

−2s + ap3p
−3s + · · · .

(1.1.2)

We call the expression on the left the (local) L-function associated to E
over Qp, and denote it by L(E/Qp, s). Concerning the size of ap we have the
following fundamental result of Hasse, whose proof can be found in [Si1], ch.
V, §1:

Theorem 1.4 |ap| ≤ 2
√
p.

A further division among curves of good reduction plays a significant role
in our later discussion. We say that E has (good) ordinary reduction if p does
not divide ap, and that it has supersingular reduction if p divides ap.

When E has good reduction at p, we define its local conductor at p to be
mp(E) = 0.

Curves of multiplicative reduction: Elliptic curves over Qp which have multi-
plicative reduction at p can be understood by using the p-adic analytic de-
scription discovered by Tate. More precisely, we can formally invert the power
series (1.1.1) expressing j in terms of q, to obtain to a power series for q in
j−1, having integer coefficients:

q = j−1 + 744j−2 + 750420j−3 + 872769632j−4 + · · · .
(1.1.3)
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If E has multiplicative reduction, then j ∈ Qp is non-integral, and hence the
power series (1.1.3) converges, yielding a well-defined value of q in pZp. This
is called Tate’s p-adic period associated to E over Qp. Note that we have
vp(q) = −vp(j) = vp(∆

min
E ).

We say that E has split (resp. non-split) multiplicative reduction at p if
the two tangent lines to the node on Ē(Fp) have slopes defined over Fp (resp.
Fp2).

Proposition 1.5 (Tate) There is a p-adic analytic isomorphism

Φ : Q̄×p /qZ −→ E(Q̄p),

which has the property that

σ(Φ(x)) = Φ(σxδ(σ)), ∀σ ∈ GQp ,

where δ : GQp −→ ±1 is

• the trivial character, if E has split multiplicative reduction;

• the unique unramified quadratic character of GQp, if E has non-split
multiplicative reduction.

The proof of this proposition is explained in [Si2], ch. V, for example.
We define the L-function L(E/Qp, s) to be

L(E/Qp, s) =

{
(1− p−s)−1 if E has split reduction,
(1 + p−s)−1 if E has non-split reduction.

(1.1.4)

In both cases the conductor mp(E) is defined to be 1.

Curves of additive reduction: If E has additive reduction at p, we simply define

L(E/Qp, s) = 1. (1.1.5)

The conductor mp(E) is defined to be 2, if p > 3. When p = 2 or 3, it is
determined by a somewhat more complicated recipe, given in [Ta].

Elliptic curves over Q: Let E be an elliptic curve defined over Q. In
particular E may be viewed as a curve over Qp for every p, and we define its
(global) conductor by

NE =
∏
p

pmp(E).
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The curve E is said to be semi-stable if it is semi-stable over all p-adic fields
Qp. Note that E is semi-stable if and only if its conductor NE is square-free.

Using the fact that Q has class number 1, one can show that E has a global
minimal Weierstrass model (Wmin) which gives the equation of a minimal
Weierstrass model over each Qp. The associated discriminant, denoted ∆min

E ,
depends only on E. The associated differential, denoted ωNeron

E , is called the
Néron differential. It is well-defined up to sign.

The following, known as the Mordell-Weil theorem, is the fundamental
result about the structure of the group of rational points E(Q). (Cf. For
example [Si1].)

Theorem 1.6 The group E(Q) is a finitely generated abelian group. Hence

E(Q) ' T ⊕ Zr,

where T is the (finite) torsion subgroup of E(Q), and r ≥ 0 is the rank of E
over Q.

Concerning the possible structure of T , there is the following deep result of
Mazur, a variant of which also plays a crucial role in the proof of Fermat’s
Last Theorem:

Theorem 1.7 If E/Q is an elliptic curve, then its torsion subgroup is iso-
morphic to one of the following possibilities:

Z/nZ, 1 ≤ n ≤ 10, n = 12, Z/2nZ× Z/2Z, 1 ≤ n ≤ 4.

The proof is given in [Maz1] (see also [Maz2]). Thanks to this result, the
structure of the torsion subgroup T is well understood. (Recently, the tech-
niques of Mazur have been extended by Kamienny [Kam] and Merel [Mer] to
prove uniform boundedness results on the torsion of elliptic curves over general
number fields.)

Much more mysterious is the behaviour of the rank r. It is not known if r
can be arbitrarily large, although results of Mestre [Mes] and Nagao [Na] show
that it is greater or equal to 13 for infinitely many elliptic curves over Q. It
turns out that many of the deep results on E(Q) and on r are based on the
relation with L-functions.

We define the global L-function of the complex variable s by:

L(E/Q, s) =
∏
p

L(E/Qp, s). (1.1.6)
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Exercise 1.8 Using theorem 1.4, show that the infinite product defining the
L-function L(E/Q, s) converges absolutely on the right half plane Real(s) >
3/2.

Conjecture 1.9 (Birch-Swinnerton-Dyer) The L-function L(E/Q, s) has
an analytic continuation to the entire complex plane,and in particular is ana-
lytic at s = 1. Furthermore:

ords=1L(E/Q, s) = r.

There is also a more precise form of this conjecture, which expresses the leading
coefficient of L(E/Q, s) at s = 1 in terms of certain arithmetic invariants of
E/Q. For more details, see [Si1], conj. 16.5.

As we will explain in more detail in section 1.8, the analytic continuation
of L(E/Q, s) now follows from the work of Wiles and Taylor-Wiles and a
strengthening by Diamond [Di2], for a very large class of elliptic curves over
Q, which includes all the semi-stable ones.

Abelian varieties: Elliptic curves admit higher-dimensional analogues, called
abelian varieties, which also play a role in our discussion. Analytically, the set
of complex points on an abelian variety is isomorphic to a quotient Cg/Λ,
where Λ is a lattice in Cg of rank 2g, satisfying the so-called Riemann period
relations. A good introduction to the basic theory of abelian varieties can be
found in [CS] and [We1].

1.2 Modular curves and modular forms over C
Modular curves: The group SL2(Z) of two by two integer matrices of deter-
minant one acts by fractional linear (Möbius) transformations on the complex
upper half plane

H = {z ∈ C | Im (z) > 0},

equipped with its standard complex analytic structure. The principal con-
gruence group Γ(N) of level N is the subgroup of matrices in SL2(Z) which
reduce to the identity matrix modulo the positive integer N . A subgroup Γ of
SL2(Z) is called a congruence group if it contains Γ(N) for some N . The level
of Γ is the smallest N for which this is true. The most important examples of
congruence groups are:

• The group Γ0(N) consisting of all matrices that reduce modulo N to an
upper triangular matrix.
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• The group Γ1(N) consisting of all matrices that reduce modulo N to a

matrix of the form

(
1 ∗
0 1

)
.

• The principal congruence group Γ(N) of level N consisting of all matrices
that reduce modulo N to the identity.

Notice the natural inclusions of normal subgroups Γ(N) ⊂ Γ1(N) ⊂ Γ0(N).
The quotient Γ0(N)/Γ1(N) is canonically isomorphic to (Z/NZ)× via(

a b
c d

)
7→ d mod N.

For any subgroup H of (Z/NZ)×, we denote by ΓH(N) the group of matrices
in Γ0(N) whose image in Γ0(N)/Γ1(N) belongs to H.

If Γ is a congruence subgroup of SL2(Z), define YΓ to be the quotient of
the upper half plane H by the action of Γ. One equips YΓ with the analytic
structure coming from the projection map π : H −→ YΓ. (More precisely, if
y = π(τ), and Gτ ⊂ Γ is the stabilizer of τ in Γ, then the local ring OYΓ,y is
identified with the local ring of germs of holomorphic functions at τ which are
invariant under the action of Gτ .) This makes YΓ into a connected complex
analytic manifold of dimension one, i.e., a Riemann surface. If Γ is Γ0(N) (resp.
Γ1(N), or Γ(N)), we will also denote YΓ by Y0(N) (resp. Y1(N), or Y (N)). One
compactifies YΓ by adjoining a finite set of cusps which correspond to orbits
of P1(Q) = Q ∪ {∞} under Γ. Call XΓ the corresponding compact Riemann
surface. (For more details, notably on the definition of the analytic structure
on XΓ at the cusps, see for example [Kn], p. 311, or [Shi2], ch. 1.) It follows
from the definition of this analytic structure that the field KΓ of meromorphic
functions on XΓ is equal to the set of meromorphic functions on H satisfying

• (Transformation property): f(γτ) = f(τ), for all γ ∈ Γ;

• (Behaviour at the cusps): For all γ ∈ SL2(Z), the function f(γτ) has a
Puiseux series expansion

∑∞
−m anq

n/h in fractional powers of q = e2πiτ .

Riemann’s existence theorem (cf. for example [For], ch. 2) asserts that the
analytic structure on XΓ comes from an algebraic one, i.e., the field KΓ is a
finitely generated extension of C of transcendence degree 1. Thus we can, and
will, view XΓ as a complex algebraic curve over C. If Γ is Γ0(N) (resp. Γ1(N),
or Γ(N)), we will also denote XΓ by X0(N) (resp. X1(N), or X(N)).

Examples and exercises:
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1. For N = 1, the curve X0(N) = X1(N) = X(N) is a curve of genus 0, and
its field of functions is the ring C(j), where j is the classical modular function,

j(τ) = q−1 + 744 + 196884q + · · · , q = e2πiτ .

(Cf., for example, [Se4], ch. 7.)

2. For τ ∈ H ∪ P1(Q) = H̄, define Gτ to be the stabilizer of τ in PSL2(Z),
and let eτ = #(Gτ/(Gτ ∩ Γ)). Show that eτ depends only on the Γ-orbit
of τ in H̄, and that eτ = 1 for all but finitely many τ in H̄/Γ. Using the
Riemann-Hurwitz formula (cf. [Ki], sec. 4.3) show that the genus of XΓ is
given by

g(Γ) = 1− [PSL2(Z) : Γ] +
1

2

∑
τ∈H̄/Γ

(eτ − 1).

Use this to compute the genus of X0(p), X1(p), and X(p) for p prime. For
details, see [Shi2], sec. 1.6 or [Ogg].

3. For Γ = Γ(2), show that XΓ is isomorphic to P1, and that YΓ is isomorphic
to P1 − {0, 1,∞}. Show that Γ/〈±1〉 is the free group on the two generators

g1 =
(

1 2
0 1

)
and g2 =

(
1 0
2 1

)
.

4. Define a homomorphism Γ(2) −→ Z/nZ × Z/nZ, by sending g1 to (1, 0)
and g2 to (0, 1), and let Γ denote its kernel. Show that Γ is not in general a
congruence subgroup and that the curve YΓ := H/Γ is birationally isomorphic
to the Fermat curve of degree n with affine equation xn + yn = 1.

Moduli interpretations: The points in YΓ = H/Γ can be interpreted as
elliptic curves over C with some extra “level N” structure. More precisely,

• If Γ = Γ0(N), then the Γ-orbit of τ ∈ H corresponds to the complex
torus E = C/〈1, τ〉 with the distinguished cyclic subgroup of order N
generated by 1

N
. Thus, points on Y0(N) parametrize isomorphism classes

of pairs (E,C) where E is an elliptic curve over C and C is a cyclic
subgroup of E of order N .

• If Γ = Γ1(N), then the Γ-orbit of τ corresponds to the complex torus
E = C/〈1, τ〉 with the distinguished point of order N given by 1

N
. Hence,

points on Y1(N) parametrize isomorphism classes of pairs (E,P ) where
now P is a point on E of exact order N .

Remark 1.10 One checks that the above rules set up a bijection between
points on YΓ and elliptic curves with the appropriate structures, and that the
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projection Y1(N) −→ Y0(N) sending Γ1(N)τ to Γ0(N)τ becomes the “forget-
ful” map sending (E,P ) to (E, 〈P 〉).

Remark 1.11 (This remark will be used in section 1.3 when discussing Hecke
operators.) Define an n-isogeny of Γ-structures to be an n-isogeny of the
underlying elliptic curves which sends one Γ-structure to the other. If p is a
prime not dividing N , then there are exactly p + 1 distinct p-isogenies from
(C/〈τ, 1〉, 1

N
), whose images are the pairs:(

C/
〈
τ + i

p
, 1

〉
,

1

N

)
(i = 0, . . . , p− 1),

(
C/〈pτ, 1〉, p

N

)
.

If p divides N , then there are only p distinct p-isogenies from (C/〈τ, 1〉, 1
N

),
since (C/〈pτ, 1〉, p

N
) is not a Γ1(N)-structure (the point p/N not being of exact

order N on the complex torus C/〈pτ, 1〉).

Modular forms: Let k be an even positive integer. A modular form of weight
k on Γ is a holomorphic function f on H satisfying:

• (Transformation property): f(γτ) = (cτ +d)kf(τ), for all γ =
(
a b
c d

)
∈

Γ.

• (Behaviour at the cusps): For all γ ∈ PSL2(Z), the function (cτ +
d)−kf(γτ) has a Puiseux series expansion

∑∞
0 anq

n/h in fractional powers
of q = e2πiτ . We call

∑
anq

n/h the Fourier expansion of f at the cusp
γ−1(i∞).

A modular form which satisfies the stronger property that the constant
coefficient of its Fourier expansion at each cusp vanishes is called a cusp form.
We denote by Mk(Γ) the complex vector space of modular forms of weight k
on Γ, and by Sk(Γ) the space of cusp forms on Γ. (For examples, see [DI],
sec. 2.2 and the references therein, especially, [Shi2], ch. 2.)

This article is mainly concerned with modular forms of weight 2, and hence
we will focus our attention on these from now on. A pleasant feature of the case
k = 2 is that the cusp forms in S2(Γ) admit a direct geometric interpretation
as holomorphic differentials on the curve XΓ.

Lemma 1.12 The map f(τ) 7→ ωf := 2πif(τ)dτ is an isomorphism between
the space S2(Γ) and the space Ω1(XΓ) of holomorphic differentials on the curve
XΓ.
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Sketch of proof: One checks that the transformation property satisfied by f(τ)
under Γ causes the expression f(τ)dτ to be Γ-invariant, and that the condition
of vanishing at the cusps translates into holomorphicity of f(τ)dτ . (Note, for
example, that 2πidτ = dq/q, so that ωf is holomorphic at i∞ precisely when
f(q) vanishes at q = 0.) 2

As a corollary, we find:

Corollary 1.13 The space S2(Γ) is finite-dimensional, and its dimension is
equal to the genus g of XΓ.

Proof: This follows directly from the Riemann-Roch theorem, cf. [Ki], sec. 6.3.
2

To narrow still further the focus of our interest, we will be mostly concerned
with the cases Γ = Γ0(N) and Γ1(N). A slightly more general framework is
sometimes convenient, so we suppose from now on that Γ satisfies

Γ1(N) ⊂ Γ ⊂ Γ0(N).

Such a group Γ is necessarily of the form ΓH(N) for some subgroup H of
(Z/NZ)×. Because the transformation τ 7→ τ + 1 belongs to Γ the forms
in S2(Γ) are periodic functions on H of period 1, and hence their Fourier
expansions at i∞ are of the form

f(τ) =
∑
n>0

anq
n, q = e2πiτ , an ∈ C.

The Petersson inner product: The spaces S2(Γ) are also equipped with a
natural Hermitian inner product given by

〈f, g〉 =
i

8π2

∫
XΓ

ωf ∧ ω̄g =

∫
H/Γ

f(τ)ḡ(τ)dxdy,

where τ = x+ iy. This is called the Petersson inner product.

The diamond operators: Suppose now that Γ = Γ1(N) and let d be an ele-
ment of (Z/NZ)×. The map 〈d〉 which sends an elliptic curve with Γ-structure
(E,P ) to the pair (E, dP ) gives an automorphism of YΓ which extends to XΓ.

It is called the diamond operator. For τ in H and γ =
(
a b
c d

)
in Γ0(N), we

have
〈d〉(Γτ) = Γ(γτ).
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Hence 〈d〉 acts on S2(Γ), identified with the holomorphic differentials on XΓ,
by the rule

〈d〉f(τ) = (cτ + d)−2f

(
aτ + b

cτ + d

)
.

In geometric terms, the diamond operators are the Galois automorphisms of
the natural (branched) covering X1(N) −→ X0(N) whose Galois group is
isomorphic to Γ0(N)/〈±Γ1(N)〉 = (Z/NZ)×/〈±1〉. Given an even Dirichlet
character χ : (Z/NZ)× −→ C×, say that f is a modular form of level N and
character χ if it belongs to the χ-eigenspace in S2(Γ1(N)) under this action.
Let S2(N,χ) denote the space of all such forms. Thus a function f in S2(N,χ)
is a cusp form on Γ1(N) which satisfies the stronger transformation property:

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)2f(τ), for all

(
a b
c d

)
∈ Γ0(N).

Note that if 1 is the trivial character, then S2(N,1) is canonically identified
with S2(Γ0(N)), which we will also denote by S2(N). Finally note the direct
sum decomposition:

S2(Γ1(N)) = ⊕χS2(N,χ),

where the sum ranges over all the even Dirichlet characters modulo N .

Exercise 1.14 Show that if f(τ) belongs to S2(N), then f(aτ) belongs to
S2(mN), for each integer a dividing m.

Jacobians of modular curves: Let V be the dual space

V = S2(Γ)∨ := Hom(S2(Γ),C).

It is a complex vector space of dimension g = genus(XΓ). The integral ho-
mology Λ = H1(XΓ,Z) maps naturally to V by sending a homology cycle c
to the functional φc defined by φc(f) =

∫
c
ωf . The image of Λ is a lattice in

V , i.e., a Z-module of rank 2g which is discrete (cf. [Mu1], cor. 3.8). Fix a
base point τ0 ∈ H, and define the Abel-Jacobi map ΦAJ : XΓ(C) −→ V/Λ by

ΦAJ(P )(f) =
∫ P
τ0
ωf . Note that this is well-defined, i.e., it does not depend on

the choice of path on XΓ from τ0 to P , up to elements in Λ.
We extend the map ΦAJ by linearity to the group Div (XΓ) of divisors on

XΓ, and observe that the restriction of ΦAJ to the group Div 0(XΓ) of degree
0 divisors does not depend on the choice of base-point τ0. Moreover we have
the Abel-Jacobi theorem:
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Theorem 1.15 The map

ΦAJ : Div 0(XΓ) −→ V/Λ

has a kernel consisting precisely of the group P (XΓ) of principal divisors on
XΓ. Hence ΦAJ induces an isomorphism from Pic 0(XΓ) := Div 0(XΓ)/P (XΓ)
to V/Λ.

For the proof, see [Mu1], ch. 3. The quotient V/Λ is a complex torus, and is
equal to the group of complex points of an abelian variety. We denote this
abelian variety by JΓ, the Jacobian variety of XΓ over C. If Γ = Γ0(N) or
Γ1(N), we will also write J0(N) or J1(N) respectively for the Jacobian JΓ.

1.3 Hecke operators and Hecke theory

We maintain our running assumption that Γ satisfies

Γ1(N) ⊂ Γ ⊂ Γ0(N).

If p is a prime not dividing the level N , we define the Hecke operator Tp on
S2(Γ) by the formula

Tp(f) =
1

p

p−1∑
i=0

f

(
τ + i

p

)
+ p〈p〉f(pτ).

We give a more conceptual description of Tp in terms of remark 1.11 in the
case Γ = Γ1(N). We have

ωTp(f) =
∑

φ∗i (ωf ),

where φi(τ) = τ+i
p

, and φ∞(τ) = 〈p〉pτ represent the p + 1 curves with Γ-

structure that are images of (C/〈τ, 1〉, 1
N

) by a p-isogeny, and the φ∗i are the
pull-back maps on differential forms on H. (An isogeny of elliptic curves with
Γ-structure is simply an isogeny between the underlying curves which sends
one Γ-structure to the other.) Such a description makes it evident that Tp(f)
belongs to S2(Γ), if f does. In terms of the Fourier expansion of f =

∑
anq

n,
the formula for the operator Tp on S2(N,χ) is given by:

Tp(f) =
∑
p|n

anq
n/p + pχ(p)

∑
anq

pn.
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If p divides N , then we define the Hecke operator Up analogously, by summing
again over all the cyclic p-isogenies of Γ-structures. Since there are only p of
them, the formula becomes simpler:

Up(f) =
1

p

p−1∑
i=0

f

(
τ + i

p

)
=
∑
p|n

anq
n/p.

The reader is invited to check that the Hecke operators of the form Tp or
Uq commute with each other, and also that they commute with the diamond
operators introduced in the previous section.

We extend the definition of the Hecke operators to operators Tpn , with
n > 1, by the inductive formulae

Tpn+1 = TpTpn − 〈p〉pTpn−1 , if (p,N) = 1,

and Tpn = Un
p otherwise. We then define the operator Tn, where n =

∏
pei
i is

written as a product of powers of distinct primes pi, by

Tn =
∏
i

Tpei
i
.

This definition makes the Hecke operators multiplicative, i.e., TmTn = Tmn if
(m,n) = 1. (A more conceptual definition of the Hecke operator Tn is that
Tn(f) is obtained by summing the pullback of ωf over the maps describing
all the cyclic n-isogenies of Γ-structures.) The relations among the different
Hecke operators can be stated succinctly by saying that they obey the following
(formal) identity:∏

p6 |N
(1− Tpp−s + 〈p〉p1−2s)−1

∏
p|N

(1− Upp−s)−1 =
∑
n

Tnn
−s.

(1.3.1)

The reader can consult [DI], sec. 3 and the references therein (especially [Shi2],
ch. 3 or [Kn]) for more details and different points of view on Hecke opera-
tors. Let T be the subring of EndC(S2(Γ)) generated over C by all the Hecke
operators Tp for p 6 |N , Uq for q|N , and 〈d〉 acting on S2(Γ).

Definition 1.16 A modular form f is an eigenform if it is a simultaneous
eigenvector for all the Hecke operators in T, i.e., if there exists a C-algebra
homomorphism λ : T −→ C such that Tf = λ(T )f , for all T ∈ T.

A direct calculation shows that the coefficients an of an eigenform f can be
recovered from the homomorphism λ by the formula:

an(f) = a1(f)λ(Tn).
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It follows that the first Fourier coefficient a1 of a non-zero eigenform is always
non-zero, and that the non-trivial eigenspaces for T are all one-dimensional:

Proposition 1.17 Given a non-zero algebra homomorphism λ : T −→ C,
there is exactly one eigenform f up to scaling, which satisfies Tf = λ(T )f ,
for all T ∈ T.

Sketch of proof: The proof of the existence of f is an exercise in commutative
algebra (localize S2(Γ) at the kernel of λ), and the uniqueness is clear from
the formula above. 2

We call an eigenform satisfying a1 = 1 a normalized eigenform.

Atkin-Lehner theory: It is natural to ask whether S2(Γ) can be decomposed
into a basis consisting of distinct normalized eigenforms. Unfortunately, this
is not always possible, as the following exercise illustrates.

Exercise 1.18 Suppose that p3 divides N exactly. Let T′ be the algebra of
Hecke operators (generated by the operators Tq with q 6 |N/p3, and Uq with
q|N/p3) acting on S2(N/p

3). Let f =
∑∞

n=1 anq
n be a T′-eigenform of level

N/p3 in S2(N/p
3). Show that the space Sf spanned by the forms f(τ), f(pτ),

f(p2τ), and f(p3τ) is contained in S2(N), and is stable for the action of the
Hecke operators Tq, q 6 |N , and Uq, q|N . Show that Sf has no basis of simulta-
neous eigenforms for the Hecke algebra T of level N , so that the action of T
on Sf is not semi-simple.

Let T0 denote the subalgebra of T generated only by the “good” Hecke oper-
ators Tq with q 6 |N , and 〈d〉.

Proposition 1.19 If q does not divide N , the adjoint of the Hecke operator
Tq with respect to the Petersson scalar product is the operator 〈q〉−1Tq, and the
adjoint of 〈q〉 is 〈q〉−1. In particular, the Hecke operators commute with their
adjoints.

Proof: See [Kn], th. 9.18 and 8.22, or [Ogg]. 2

Proposition 1.19 implies, by the spectral theorem for commuting operators
that commute with their adjoints:

Proposition 1.20 The algebra T0 is semi-simple (i.e, it is isomorphic to a
product C × · · · × C of a certain number of copies of C), and there is a basis
of S2(Γ) consisting of simultaneous eigenvectors for the operators Tq.
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Thus, T0 has the merit of being semi-simple, while T is not in general. The
cost of replacing T by T0, however, is that one loses “multiplicity one”, i.e.,
the eigenspaces for T0 need not be one-dimensional. For example, the space
Sf defined in the previous exercise is contained in a single eigenspace for T0.

The theory of Atkin-Lehner [AL] gives essentially a complete understanding
of the structure of the algebra T, and the structure of the space of eigenforms.
To motivate the main result, observe that the problem in the exercise above
seems to be caused by forms of level N that are coming from forms of lower
level N/p3 by a straightforward operation, and are therefore not “genuinely”
of level N . They are the analogues, in the context of modular forms, of non-
primitive Dirichlet characters.

Definition 1.21 We define the old subspace of S2(Γ) to be the space spanned
by those functions which are of the form g(az), where g is in S2(Γ1(M)) for
some M < N and aM divides N . We define the new subspace of S2(Γ)
to be the orthogonal complement of the old subspace with respect to the
Petersson scalar product. A normalized eigenform in the new subspace is
called a newform of level N .

The following result is the main consequence of the theory of Atkin-Lehner. It
gives a complete answer to the question of what is the structure of the algebra
T acting on S2(Γ).

Theorem 1.22 If f is in the new subspace of S2(Γ) and is an eigenvector for
all the operators in T0, then it is also an eigenform for T, and hence is unique
up to scaling. More generally, if f is a newform of level Nf |N , then the space
Sf defined by

Sf = {g ∈ S2(Γ) such that Tg = λf (T )g, for all T ∈ T0}

is stable under the action of all the Hecke operators in T. It is spanned by the
linearly independent forms f(az) where a ranges over the divisors of N/Nf .
Furthermore, we have

S2(Γ) = ⊕fSf ,
where the sum is taken over all newforms f of some level Nf dividing N .

See [AL] for the proof in the case Γ = Γ0(N), and [La2], ch. VIII for the
general case. (See also [DI], sec. 6 for an overview.)

Exercise 1.23 Consider the case where Γ = Γ0(22). Show that X0(22) is of
genus 2, and hence that S2(22) has dimension 2. Show that S2(22) is equal
to Sf , where f = (η(τ)η(11τ))2 is a newform of level 11, so that in particular
there are no newforms of level 22 on Γ. Show that T0 is isomorphic to C in
this case, and that T is isomorphic to the semisimple algebra C× C.

31



Action on homology and Jacobians: Note that the Hecke operators act
on V = S2(Γ)∨ by duality. One checks (cf. [Kn], props. 11.23, 11.24) that the
sublattice Λ of V is stable under the action of all the Hecke operators Tn, and
of the diamond operators 〈d〉. Therefore the operators Tn and 〈d〉 give rise
to endomorphisms of the torus V/Λ, and hence the Jacobian variety JΓ, in
a natural way. The involution τ 7→ −τ̄ gives rise to an involution on XΓ(C)
(which is complex conjugation on the model of XΓ over R deduced from the
Q- model defined in section 1.5). Since complex conjugation is continuous it
also acts on the integral homology Λ = H1(XΓ(C),Z). Let Λ+ and Λ− be the
sublattices of Λ on which complex conjugation acts by +1 and −1. These are
sublattices of Λ of rank g which are stable under the Hecke operators, since
complex conjugation commutes with the Hecke action.

A more algebraic description of the action of Tp on JΓ is given via the
notion of an algebraic correspondence. A correspondence on a curve X is a
divisor C on X ×X which is taken modulo divisors of the form {P} ×X and
X × {Q}. Let π1 and π2 denote the projections of X × X onto each factor.
Then the correspondence C induces a map on divisors of X, by setting

C(D) = π2(π
−1
1 (D) · C).

(For the definition of the intersection D1 ·D2 of two divisors, see [We1].) The
map C preserves divisors of degree 0, and sends principal divisors on X to
principal divisors. It gives a well defined algebraic endomorphism of the Jaco-
bian variety Jac (X). Given a correspondence C, its transpose C∨ is defined to
be the divisor of X ×X obtained by interchanging the two factors of X ×X.
One can define a natural notion of composition for correspondences, and the
set of correspondences forms a ring. The general theory of correspondences
and the proofs of the above facts are given in [We1], particularly the second
chapter.

The Hecke correspondence Tn is defined as the closure in XΓ ×XΓ of the
locus of points (A,B) in YΓ×YΓ such that there is a degree n cyclic isogeny of
elliptic curves with Γ-structure from A to B. For example, if p is a prime not
dividing N , then Tp is an algebraic curve in X1(N)×X1(N) which is birational
to XΓ1(N)∩Γ0(p). The induced map on divisors in this case satisfies

Tp((E,P )) =
∑

(E/C, P mod C)

where the sum runs over the subgroups C of E having order p. Note also that
if (A,B) belongs to Tp, then the isogeny dual to A −→ B gives a p-isogeny
from B to 〈p〉A, so that

T∨p = 〈p〉−1Tp.
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1.4 The L-function associated to a cusp form

For this section, let f in S2(Γ1(N)) be a cusp form with Fourier expansion
at i∞ given by

∑
n anq

n. One has the following estimate for the size of the
Fourier coefficients an:

Theorem 1.24 The coefficients an ∈ C satisfy the inequality

|an| ≤ c(f)σ0(n)
√
n,

where c(f) is a constant depending only on f , and σ0(n) denotes the number
of positive divisors of n.

Sketch of proof: This follows from proposition 1.51 of section 1.7 which relates
the p-th Fourier coefficients of eigenforms, for p a prime not dividing the level
of Γ, to the number of points on certain abelian varieties over the finite field
Fp. The estimates of Hasse and Weil for the number of points on abelian
varieties over finite fields (stated in theorem 1.4 of section 1.1 for the special
case of elliptic curves; see [We1], §IV for the general case) thus translate into
asymptotic bounds for the Fourier coefficients of these eigenforms. We note
that the cruder estimate |an| = O(n), which is enough for the purposes of this
section, can be derived by a more elementary, purely analytic argument; cf.
[Ogg], ch. IV, prop. 16. 2

The L-function associated to f is defined by the formula:

L(f, s) =
∑

ann
−s.

As in exercise 1.8, one can show that the infinite sum defining L(f, s) converges
absolutely in the right half-plane Re (s) > 3

2
. A much better insight is gained

into the function L(f, s) by noting that it is essentially the Mellin transform of
the modular form f . More precisely, if we set Λ(f, s) = N s/2(2π)−sΓ(s)L(f, s),
then we have

Λ(f, s) = N s/2

∫ ∞
0

f(iy)ysdy/y (1.4.1)

Exercise 1.25 Check the formula above.

This integral representation for L(f, s) gives the analytic continuation of
L(f, s) to the entire complex plane. The modular invariance of f translates
into a functional equation for L(f, s): more precisely, let wN be the Atkin-
Lehner involution defined by wN(τ) = −1/Nτ . The reader may check that
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wN induces an involution of XΓ, and hence of Ω1(XΓ) = S2(Γ). One finds that
L(f, s) satisfies the functional equation:

Λ(f, s) = −Λ(wN(f), 2− s).

For a proof of this, see [Ogg], ch. V, lemma 1. Eigenforms for T in S2(N,χ)
have a great importance in the theory because their associated L-functions
have an Euler product expansion, in addition to an analytic continuation and
functional equation:

Theorem 1.26 If f =
∑
anq

n is a normalized eigenform in S2(N,χ) for all
the Hecke operators, then the L-function L(f, s) =

∑
ann

−s has the Euler
product expansion∏

p6 |N
(1− app−s + χ(p)p1−2s)−1

∏
p|N

(1− app−s)−1.

Proof: This follows directly from equation (1.3.1) of section 1.3. 2

If f is a newform of level N , then it is also an eigenform for wN , so that the
functional equation may be viewed as relating L(f, s) and L(f, 2− s). We can
also state the following more precise version of theorem 1.24 (see lemma 3.2
of [Hi2] for example for parts (b), (c) and (d)).

Theorem 1.27 Suppose that f is a newform of level Nf and let Nχ denote
the conductor of its character χ.

(a) If p does not divide Nf then |ap| ≤ 2
√
p.

(b) If p||Nf and p does not divide Nχ then a2
p = χ0(p) where χ0 is the

primitive character associated to χ.

(c) If p divides Nf and p does not divide Nf/Nχ then |ap| =
√
p.

(d) If p2 divides Nf and p divides Nf/Nχ then ap = 0.

1.5 Modular curves and modular forms over Q
Modular curves: For Γ between Γ0(N) and Γ1(N), the modular curve XΓ

has a model over Q. We describe such a model in the case of Γ = Γ0(N); the
construction for general Γ follows from similar considerations.

The key remark here is that, as was noted in section 1.2, the complex
points on the curve Y0(N) have a natural interpretation as moduli of elliptic
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curves together with a cyclic subgroup of order N , given by sending the point
τ ∈ H/Γ0(N) to the pair (C/〈1, τ〉, 〈1/N〉).

Consider the “universal elliptic curve”

Ej : y2 + xy = x3 − 36

j − 1728
x− 1

j − 1728
.

It is an elliptic curve over the function field Q(j), with j-invariant j. Let d be
the order of P1(Z/NZ), and let C1, . . . , Cd denote the set of all cyclic subgroups
of Ej of order N , defined over Q(j), an algebraic closure of Q(j). Fix one of

these subgroups, C. The Galois group Gal (Q(j)/Q(j)) permutes the Ci in a
natural way. Let FN be the smallest extension of Q(j) (viewed as embedded in
Q(j)) with the property that σ(C) = C, for all σ ∈ Gal (Q(j)/FN). It can be
seen (cf. [Shi2], thm. 6.6) that the Galois action on the Ci is transitive so that
FN/Q(j) is of degree d, and that it is a regular extension, i.e., FN ∩ Q̄ = Q.
Geometrically, FN can be viewed as the function field of a curve X/Q over Q,
with the inclusion of Q(j) corresponding to a map from X/Q to the projective
“j-line” over Q. The pair (Ej, C) is an elliptic curve over Q(j) with a subgroup
of order N defined over FN . Using (Ej, C), each complex point of X gives an
elliptic curve over C with a subgroup of order N , provided the point does
not lie over j = 0, 1728 or ∞. The resulting map to X0(N) extends to an
isomorphism from X to X0(N). The curve X thus constructed, together with
this identification, is the desired model of X0(N) over Q.

More concretely, the functions j = j(τ) and jN = j(Nτ) are related by a
polynomial equation ΦN(j, jN) = 0 with coefficients in Q, of bidegree d. The
field FN is the function field of the affine curve ΦN(X,Y ) = 0, and the mapping
τ 7→ (j(τ), j(Nτ)) gives a birational equivalence between H/Γ0(N) and the
complex curve defined by the equation ΦN . In practice it is not feasible to
write down the polynomial ΦN , except for certain very small values of N . To
study the models over Q of X0(N), more indirect methods are needed, which
rely crucially on the moduli interpretation of X0(N). Similar remarks hold for
X1(N).

Models over Z: The work of Igusa [Ig], Deligne-Rapoport [DR], Drinfeld [Dr],
and Katz-Mazur [KM] uses the moduli-theoretic interpretation to describe a
canonical proper model for XΓ over Spec Z. These models allow us to talk
about the reduction of XΓ over finite fields Fp, for p prime. The curve has
good reduction at primes p not dividing N , with the “non-cuspidal” points of
XΓ/Fp corresponding to elliptic curves over F̄p with Γ-structure. The singular
fibers at primes p dividing N can also be described precisely; an important
special case (see [DR]) is that of Γ0(N) with p exactly dividing N . For further
discussion and references, see [DI], sec. 8, 9.
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From now on, when we write XΓ, X0(N), or X1(N), we will mean the curve
over Q which are the models described above for the complex curves defined
in section 1.2.

Remark 1.28 When considering q-expansions, it is more convenient to use
a different set of models over Z for these complex curves. We define Xµ

1 (N)
in the case of Γ1(N) as a model over Z which parametrizes pairs (E, i) where
i is an embedding of µN in the (generalized) elliptic curve E. (So Xµ

1 (N) is
the model denoted Xµ(N) in [DI], sec. 9.3, assuming N > 4.) For Γ between
Γ0(N) and Γ1(N), we define Xµ

Γ as the corresponding quotient of Xµ
1 (N). This

model has good reduction at primes p not dividing N , but unlike the models
mentioned above, its fibers at primes p dividing N are smooth and irreducible,
but not proper. In the case of Γ = Γ0(N), the curve Xµ

Γ,Q can be identified
with X0(N). However, this is not the case in general: the cusp∞ is a rational
point of Xµ

Γ,Q but not necessarily of XΓ.

Jacobians: Weil’s theory [We1] of the Jacobian shows that the Jacobians JΓ

defined in section 1.2 as complex tori also admit models over Q. When we
speak of JΓ, J0(N) and J1(N) from now on, we will refer to these as abelian
varieties defined over Q. Thus, the points in JΓ(K), for any Q-algebra K, are
identified with the divisor classes on XΓ of degree 0, defined over K.

We let JΓ/Z, denote the Néron model of the Jacobian JΓ over Spec (Z).
Using this model we define JΓ/A for arbitrary rings A. In particular we can
consider JΓ/Fp , the reduction of the Jacobian in characteristic p, which is closely
related to the reduction of the integral model of the curveXΓ mentioned above.
In particular, if p does not divide the level of Γ, then JΓ/Fp can be identified
with the Jacobian of XΓ/Fp . For a treatment of the case Γ = Γ0(N) with p
exactly dividing N , see the appendix of [Maz1]; for more general discussion
and references, see [DI], sec. 10, especially sec. 10.3.

Hecke operators: The Hecke operators have a natural moduli interpretation,
which was already touched upon in section 1.3. In particular, one finds that
the operator Tn arises from a correspondence which is defined over Q, and
gives rise to an endomorphism of the Jacobian JΓ which is defined over Q.
This in turn gives rise to an endomorphism of the Néron model JΓ/Z, and we
can then consider the endomorphism Tn on the reduction of the Jacobian in
characteristic p. Recall that if p is a prime not dividing N , we may identify
this reduction with the Jacobian of XΓ/Fp . (Cf. [MW], ch. 2, sec. 1, prop. 2.)
Furthermore, one can show that the moduli-theoretic interpretation of the
Hecke operator remains valid in characteristic p; i.e., the endomorphism Tn of
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JΓ/Fp is induced by a map on divisors satisfying, for all ordinary elliptic curves
A with Γ-structure:

Tn(A) =
∑
i

i(A),

where the sum is taken over all cyclic isogenies of degree n. (See [DI], sec. 10.2
for further discussion and references.)

This description allows one to analyse, for example, the Hecke operator
Tp over Fp, when (p,N) = 1. Let us work with Γ = Γ1(N), to illustrate
the idea. For a variety X over F̄p, let φX be the Frobenius morphism on X
defined by raising coordinates to the pth power. Thus if (E,P ) corresponds
to a point of X1(N)/Fp , then φE is an isogeny of degree p from (E,P ) to the
pair (E∞, P∞) = φX1(N)(E,P ). The graph of φX1(N) in (X1(N)×X1(N))/Fp is
a correspondence of degree p, which we call F . Let F ′ be the transpose of this
correspondence. The endomorphism F of JΓ induced by F is the Frobenius
endomorphism φJΓ

, and the endomorphism F ′ is the dual endomorphism (in
the sense of duality of abelian varieties). Now consider the divisor

F ′((E,P )) = (E1, P1) + · · ·+ (Ep, Pp),

where the (Ei, Pi) are elliptic curves with Γ-structure in characteristic p. Since
φEi

is an isogeny of degree p from (Ei, Pi) to (E,P ), we also have the dual
isogeny from (E,P ) to (Ei, pPi). If E is ordinary at p, then the points
(E∞, P∞), (E1, pP1), . . . , (Ep, pPp) are a complete list of the distinct curves
with Γ-structure which are p-isogenous to (E,P ). Hence one has the equality
of divisors on X1(N)/Fp :

Tp((E,P )) = (E∞, P∞) + (E1, pP1) + · · ·+ (Ep, pPp) = (F + 〈p〉F ′)((E,P )).

Since the ordinary points are dense on X1(N)/Fp , we deduce that Tp = (F +
〈p〉F ′) as endomorphisms of J1(N)/Fp . This equation, known as Eichler-
Shimura congruence relation, plays a central role in the theory. (For more
details, see [DI], sec. 10.2, 10.3.)

Theorem 1.29 If p 6 |N then the endomorphism Tp of JΓ/Fp satisfies

Tp = F + 〈p〉F ′.

Remark 1.30 This was proved by Eichler [Ei] to hold for all but finitely many
p in the case of Γ0(N), and by Shimura ([Shi1], see also [Shi2], ch. 7) in the
case of Γ1(N). The fact that it holds for all p not dividing N follows from
work of Igusa [Ig].
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Modular forms: In the same way that modular curves have models over
Q and over Z, the Fourier coefficients of modular forms also have natural
rationality and integrality properties. We start by sketching the proof of:

Theorem 1.31 The space S2(Γ) has a basis consisting of modular forms with
integer Fourier coefficients.

Proof: The Hecke operators act on the integral homology Λ+ in a way that
is compatible with the action on S2(Γ) and respects the natural (Poincaré)
duality between these two spaces. Hence, if {λn}n∈N is a system of eigenvalues
for the Tn, then the λn are algebraic integers in some finite extension K of Q,
and the system {λσn}n∈N is a system of eigenvalues for the Tn for any Galois
automorphism σ of Q̄/Q. Hence, we have shown:

Proposition 1.32 If f ∈ S2(M,χ) is a newform of some level M dividing
N , then its Fourier coefficients lie in a finite extension K of Q. Moreover,
if σ ∈ Gal (Q̄/Q) is any Galois automorphism, then the Fourier series fσ

obtained by applying σ to the Fourier coefficients is a newform in S2(M,χσ).

The explicit description of S2(Γ) given in section 1.3 implies that S2(Γ) is
spanned by forms having Fourier coefficients which are algebraic integers in
some finite (Galois) extension K of Q, and that the space of forms with Fourier
coefficients in K is stable under the natural action of Gal (K/Q) on Fourier
expansions. An application of Hilbert’s theorem 90 shows that S2(Γ) has a
basis consisting of forms with rational Fourier expansions, and the integrality
of the Fourier coefficients of eigenforms yields the integrality statement of
theorem 1.31. 2

We define S2(Γ,Z) to be the space of modular forms with integral Fourier
coefficients in S2(Γ). Theorem 1.31 states that S2(Γ,Z) ⊗ C = S2(Γ). Given
any ring A, we define

S2(Γ, A) = S2(Γ,Z)⊗ A,

and define S2(N,A) and S2(N,χ,A) (where χ now is a character with values
in A×) in the obvious way. If A is contained in C, the q-expansion principle
below allows us to identify S2(Γ, A) with the set of modular forms in S2(Γ)
with Fourier coefficients in A.

The q-expansion principle: Because the modular curve X0(N) has a model
over Q, the space of modular forms S2(N) = Ω1(X0(N)) has a natural rational
structure, given by considering the differential forms on X0(N) defined over
Q. The fundamental q-expansion principle (see [DR], ch. 7, or [Kat], sec. 1.6)
says that these algebraic structures are the same as those obtained analytically
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by considering q-expansions at ∞. More generally, using the model Xµ
Γ , we

obtain the q-expansion principle over Z for cusp forms on Γ (cf. [DI], sec. 12.3).

Theorem 1.33 The map S2(Γ) −→ Ω1(XΓ) defined by f 7→ ωf induces an
isomorphism from S2(Γ,Z) to Ω1(Xµ

Γ). Furthermore, if A is flat over Z or N is
invertible in A, then the induced map S2(Γ, A)→ Ω1(Xµ

Γ,A) is an isomorphism.
Furthermore, if A is a subring of C, then this isomorphism identifies S2(Γ, A)
with set of modular forms in S2(Γ) having coefficients in A.

1.6 The Hecke algebra

It follows directly from the formulas for the Hecke operators acting on q-
expansions that the Tn leave S2(Γ0(N),Z) stable, as well as the subspace
of S2(N,χ) with coefficients in Z[χ]. Using the q-expansion principle (the-
orem 1.33), one can also show ([DI], sec. 12.4) that the diamond operators
preserve the spaces of cusp forms on Γ with integral Fourier expansions, and
hence that the space S2(Γ,Z) is preserved by all the Hecke operators.

We define TZ to be the ring generated over Z by the Hecke operators Tn
and 〈d〉 acting on the space S2(Γ,Z). More generally, if A is any ring, we define
TA to be the A-algebra TZ ⊗ A. This Hecke ring acts on the space S2(Γ, A)
in a natural way. Before studying the structure of the Hecke rings TA as we
vary the rings A, we note the following general result (Cf. [Shi2], ch. 3.):

Lemma 1.34 The space S2(Γ, A)∨ = HomA(S2(Γ, A), A) is a free TA-module
of rank one.

Sketch of proof: One checks that the pairing TZ × S2(Γ,Z) −→ Z defined by
(T, f) 7→ a1(Tf) sets up a perfect, TZ-equivariant duality between TZ and
S2(Γ,Z). The result for arbitrary A follows. 2

Hecke rings over C: If A = C, then the structure of the ring T = TC
is completely described by theorem 1.22. More precisely, if TC,f denotes the
image of the Hecke algebra acting on the space Sf defined in section 1.3, then

TC = ⊕fTC,f ,

where the direct sum ranges over all distinct newforms f of some level Nf

dividing N . Furthermore, the algebra TC,f can be described explicitly. In
particular, if f is a newform of level N then TC,f is isomorphic to C, but if Nf

is not equal to N then the ring TC,f need not be a semi-simple algebra over C.
Lemma 1.34 in the case A = C says that V = S2(Γ)∨ is a free TC-module

of rank one, but we also have:
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Lemma 1.35 The module S2(Γ) is a free TC-module of rank one.

Proof: Let g1, . . . , gt be a complete system of newforms of levels N1, . . . , Nt

dividing N . One can check that the form

g = g1(N/N1τ) + · · ·+ gt(N/Ntτ)

generates S2(Γ) as a TC-module. The map TC −→ S2(Γ) defined by T 7→ Tg
gives an isomorphism from TC to S2(Γ), as TC-modules. 2

Remark 1.36 Lemmas 1.34 and 1.35 imply that TC is a Gorenstein C-algebra
(of finite rank), i.e., HomC(TC,C) is isomorphic to TC as a TC-module.

Hecke rings over Q: Let [f ] be the Galois orbit (under the action of GQ =
Gal (Q̄/Q)) of a normalized newform f of some level Nf dividing N , and let
Kf be the field extension of Q generated by the Fourier coefficients of f . The
space ⊕g∈[f ]Sg is a vector space of dimension [Kf : Q]σ0(N/Nf ), which is
spanned by modular forms with rational Fourier coefficients. Let S[f ] be the
Q-subspace of forms in ⊕g∈[f ]Sg with rational Fourier coefficients. The space
S[f ] is stable under the action of TQ, and letting TQ,[f ] be the image of TQ
acting on S[f ], we obtain the direct sum decomposition

TQ = ⊕[f ]TQ,[f ],

where the sum is taken over the distinct GQ-orbits of normalized newforms
f of some level Nf dividing N . If Nf is equal to N , then the algebra TQ,[f ]

is isomorphic to the field Kf . If Nf is a proper divisor of N , then, as in the
complex case, the algebra TQ,[f ] is a (not necessarily semi-simple) algebra over
Q of rank σ0(N/Nf )[Kf : Q]. The nature of the fields Kf , and in general the
structure of TQ, is very poorly understood at this stage; for example, one does
not know how to characterize the number fields that occur as a Kf for some
f (but they are all known to be totally real or CM fields).

The ring TQ acts naturally on the rational homology H1(XΓ,Q) = Λ⊗Q,
and we have

Lemma 1.37 The module Λ⊗Q is free of rank two over TQ.

Sketch of proof: The modules Λ+ ⊗ C ' V and Λ− ⊗ C ' V are free of rank
one over TC, by lemma 1.34. This implies that Λ+ ⊗Q and Λ− ⊗Q are both
free of rank one over TQ. 2
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Hecke rings over Z: The ring TZ is a certain (not necessarily maximal) order
in TQ. One still has an injection

TZ ↪→ ⊕[f ]TZ,[f ],

where now TZ,[f ] denotes the ring generated over Z by the Hecke operators
acting on S[f ]. Of course the structure of TZ is even more mysterious than
that of TQ! The ring TZ acts naturally on Λ, but it is not the case in general
that Λ is free of rank two over TZ, i.e., that the integral analogue of lemma 1.37
is true. (See remark 1.42 below.)

Hecke rings over Q`: The study of the algebras TZ`
and TQ`

arises naturally
because of the Hecke action on the Tate module T`(JΓ),

T`(JΓ) := lim
←

(JΓ)[`n],

where the inverse limit is taken with respect to the multiplication by ` maps.
The action of TZ`

on T`(JΓ) is compatible with that of GQ, and it is this pair of
actions on the Tate module which is used to associate two-dimensional Galois
representations to modular forms.

It will sometimes be more convenient to consider the ring TQ`
and its action

on
V = T`(JΓ)⊗Z`

Q`.

We first record a useful duality property enjoyed by the Tate modules. The
Weil pairings on the groups JΓ[`n] for n ≥ 1 induce a perfect pairing

〈 , 〉 : T`(JΓ)× T`(JΓ)→ Z`.

Since each Hecke operator T is adjoint to wTw where w = wN is the Atkin-
Lehner involution, we have the following lemma.

Lemma 1.38 The map x 7→ φx where φx(y) = 〈x,wy〉 defines an isomor-
phism of TZ`

-modules,

T`(JΓ) ∼= T`(JΓ)∨ = HomZ`
(T`(JΓ),Z`),

and hence an isomorphism of TQ`
-modules

V ∼= V∨ = HomQ`
(V ,Q`).

The following lemma allows us to regard TQ`
as a coefficient ring for a

two-dimensional Galois representation

Gal (Q̄/Q)→ Aut TQ`
(V) ∼= GL2(TQ`

).
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Lemma 1.39 The module V is free of rank 2 over TQ`
.

Proof: Lemma 1.37 implies directly that the module V = Λ⊗Q` is free of rank
two over TQ`

. 2

Corollary 1.40 The ring TQ`
is a Gorenstein Q`-algebra; i.e.,

T∨Q`
= HomQ`

(TQ`
,Q`)

is free of rank one over TQ`
.

Proof: Choosing a basis for V over TQ`
, we obtain an isomorphism

TQ`
⊕ TQ`

∼= T∨Q`
⊕ T∨Q`

.

Decomposing TQ`
as
∏

iRi where each factor Ri is a finite-dimensional local
Q`-algebra, we obtain an isomorphism

Ri ⊕Ri
∼= R∨i ⊕R∨i

for each i. At least one of the four maps R∨i −→ Ri deduced from this
isomorphism must be surjective, and by counting dimensions, we see that it
must be injective as well. It follows that TQ`

is isomorphic to T∨Q`
. 2

Recall that for primes p not dividingN , the Jacobian JΓ has good reduction
mod p, and the Eichler-Shimura relation, theorem 1.29, states that on JΓ/Fp ,
we have

Tp = F + 〈p〉F ′.
For primes p not dividing N`, we may identify T`(JΓ) with the `-adic Tate
module of the reduction (see [ST]) and consider the Frobenius endomorphism
F on the free rank two TQ`

-module V . As a consequence of the Eichler-Shimura
relation, we find:

Theorem 1.41 For p not dividing N`, the characteristic polynomial of F on
the TQ`

-module V is
X2 − TpX + 〈p〉p.

Proof: (We are grateful to Brian Conrad for showing us this argument.) Since
FF ′ = p, it follows from the Eichler-Shimura relation that

F 2 − TpF + 〈p〉p = 0.

To conclude that this is in fact the characteristic polynomial, it suffices to
compute the trace of F . To do so, we use the TQ`

isomorphism

V → V∨

42



defined by the modified pairing 〈·, w·〉. Under this modified pairing, F is
adjoint to wF ′w = 〈p〉F ′, so the trace of F on V is the same as that of
φ 7→ φ ◦ (〈p〉F ′) on V∨. Choosing bases for V and T∨Q`

, one sees that this is
the same as the trace of 〈p〉F ′. Hence

2 trF = trF + tr (〈p〉F ′) = tr (Tp) = 2Tp.

2

Hecke rings over Z`: The ring TZ`
is free of finite rank over Z`. It therefore

decomposes as

TZ`
=
∏

Tm,

where the product runs over the maximal ideals m of TZ`
, and Tm is the

localization of TZ`
at m. For each m, Tm is a complete local Z`-algebra, free

of finite rank as a Z`-module.

Remark 1.42 While the analogue of lemma 1.39 does not always hold for
TZ`

(see [MRi], sec. 13) we shall see that it holds for certain localizations Tm.
Results of this type are much deeper than lemma 1.39 and were first obtained
by Mazur [Maz1], sec. 14, 15. We shall return in chapter 4 to explain Mazur’s
result and its generalizations, which play a role in the arguments of [W3] and
[TW].

Example 1.43 The curve X0(19) has genus 1, and X0(57) has genus 5. By
consulting the tables in the Antwerp volume [Ant4] or Cremona’s book [Cr],
one finds that there is exactly one newform of level 19, and that there are
three newforms of level 57, which all have rational Fourier coefficients. Their
Fourier coefficients ap, for the first few primes p, are listed in the following
table:

2 3 5 7 11 13 17 19 23 29 31
19A 0 −2 3 −1 3 −4 −3 1 0 6 −4
57A −2 −1 −3 −5 1 2 −1 −1 −4 −2 −6
57B 1 1 −2 0 0 6 −6 −1 4 2 8
57C −2 1 1 3 −3 −6 3 −1 4 −10 2

Setting f = 19A, we find that a basis of simultaneous eigenforms in S2(57,C)
for the Hecke operators Tp, l 6= 3, 19, and U3, U19 is:

f(τ) + (1 +
√
−2)f(3τ), f(τ) + (1−

√
−2)f(3τ), 57A, 57B, 57C.

It appears from the table that the Fourier coefficients corresponding to the
forms 57B and 57C are congruent modulo 3. This is in fact the case. One
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finds that the Hecke ring TZ3 generated over Z3 by the Hecke operators acting
on S2(57,Z3) is isomorphic to the subalgebra of Z5

3:

{(x, y, z, t, w) such that t ≡ w (mod 3)}.

The isomorphism sends Tp (for p 6= 3, 19) to the element

(ap(19A), ap(19A), ap(57A), ap(57B), ap(57C)).

It sends U3 to (−1 +
√
−2,−1 −

√
−2,−1, 1, 1) and U19 to (1, 1,−1,−1,−1).

Thus there are exactly 4 distinct maximal ideals of TZ3 , and the localizations
at these maximal ideals are the rings Z3, Z3, Z3, and

Tm = {(t, w) such that t ≡ w (mod 3)},

where m is the ideal generated by 3 and Tn − an(57B) for all n.

1.7 The Shimura construction

Let f =
∑
anq

n be an eigenform on Γ with (not necessarily rational) Fourier
coefficients, corresponding to a surjective algebra homomorphism λf : TQ −→
Kf , where Kf is the field generated over Q by the Fourier coefficients of f . We
briefly review in this section a construction of Shimura ([Shi2], ch. 7) which
associates to f (or rather, to the orbit [f ] of f under GQ) an abelian variety
Af defined over Q and of dimension [Kf : Q].

Let If ⊂ TZ be the ideal ker (λf ) ∩ TZ. The image If (JΓ) is a (connected)
subabelian variety of JΓ which is stable under TZ and is defined over Q.

Definition 1.44 The abelian variety Af associated to f is the quotient

Af = JΓ/IfJΓ

From this definition one sees that Af is defined over Q and depends only on
[f ], and that its endomorphism ring contains TZ/If which is isomorphic to an
order in Kf .

Remark 1.45 Using theorem 1.22, one can show that J0(N) is isogenous to∏
[f ]A

σ0(N/Nf )

[f ] .

We now describe the abelian variety Af as a complex torus. Let Vf be the
subspace of V = S2(Γ)∨ on which T acts by λf . Theorem 1.22 and lemma 1.34
show that Vf is a one-dimensional complex vector space. Let πf be the or-
thogonal projection of V to Vf , relative to the Petersson scalar product. The
projector πf belongs naturally to TKf

.
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Let [f ] be the set of all eigenforms whose Fourier coefficients are Galois
conjugate to those of f . The number of forms in [f ] is equal to the degree d
of Kf over Q. Now, we set

V[f ] = ⊕g∈[f ]Vg, π[f ] =
∑
g∈[f ]

πg.

Note that π[f ] is simply the orthogonal projection of V to V[f ]. Note also that
π[f ] belongs to the Hecke algebra TQ.

Lemma 1.46 The abelian variety Af is isomorphic over C to the complex
torus V[f ]/π[f ](Λ), with the map π[f ] : V/Λ −→ V[f ]/π[f ](Λ) corresponding to
the natural projection from JΓ to Af .

In particular, one sees that Af is an abelian variety of dimension d = [Kf : Q].
Hence if f has rational Fourier coefficients, then the abelian variety Af is an
elliptic curve. This elliptic curve is called the strong modular elliptic curve
associated to f if also f is a newform of level N and Γ = Γ0(N).

Example 1.47 If Γ = Γ0(26), one checks that the genus of XΓ is two, and
that there are two distinct normalized eigenforms f1 and f2 in S2(26). From
the tables in [Ant4] or [Cr], one sees that f1 and f2 have integral Fourier
coefficients, whose values for the primes ≤ 31 are:

2 3 5 7 11 13 17 19 23 29 31
f1 −1 1 −3 −1 6 1 −3 2 0 6 −4
f2 1 −3 −1 1 −2 −1 −3 6 −4 2 4

Hence the abelian varieties Af1 and Af2 are elliptic curves. The above table
suggests (and this can be checked directly by looking at the equations for these
curves given in [Ant4] or [Cr], or by using the discussion in [DO], lemma 2.1)
that the Fourier coefficients of f1 and f2 are congruent modulo 2. The natural
projection J0(26) −→ Af1 ⊕ Af2 is an isogeny whose kernel is isomorphic to
Z/2Z×Z/2Z, and J0(26) is not isomorphic to Af1 ⊕Af2 . More generally, one
knows that a Jacobian can never decompose as a non-trivial direct product of
two principally polarized abelian varieties, cf. [Maz1], prop. 10.6. (There are
no non-zero homomorphisms from Af1 to Af2 , and so a non-trivial product
decomposition of JΓ would have to induce a decomposition as a product of
principally polarized abelian varieties.)

Let T`(Af ) be the Tate module of the abelian variety Af ,

T`(Af ) := lim
←

(Af )[`
n],
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where the inverse limit is taken with respect to the multiplication by ` maps.
This module is naturally a module for Tf ⊗ Z` , and T`(Af )⊗Q` is a module
for Kf ⊗Q` as well.

Lemma 1.48 The module T`(Af )⊗Q` is a free module of rank 2 over Kf⊗Q`.

Proof: This follows directly from lemma 1.39. 2

Proposition 1.49 The algebra End Q(Af ) ⊗ Q is isomorphic to Kf . In par-
ticular Af is simple over Q.

The proof is given in [R2], cor. 4.2. The main ingredient is the irreducibility of
the Galois representation attached to Af as in section 3.1. (Cf. theorem 3.1.)

Properties of Af : good reduction:

Theorem 1.50 If f is an eigenform of level N , and p is a prime that does
not divide N , then the abelian variety Af has good reduction at p.

Proof: This follows from the fact that JΓ has good reduction at such primes,
which in turn is a consequence of the good reduction of XΓ. 2

If p is a prime not dividing N , it then becomes natural to study the number
Nf,p of points on the abelian variety Af over the finite field Fp. It is given by
the following formula:

Proposition 1.51 The number of points Nf,p is given by the formula

Nf,p = NormKf/Q(λf (1− ap(f) + 〈p〉p)),

where af (p) ∈ Kf is the p-th Fourier coefficient of f .

Proof: By Weil’s theory [We1], this number is given by the determinant

Nf,p = det(1− F ),

where F is the Frobenius endomorphism acting on the `-adic Tate module
T`(Af ). So theorem 1.41 implies

det(1− F ) = NormKf/Q(λf (1− Tp + 〈p〉p)),

and proposition 1.51 follows. 2

Defining the local Hasse-Weil L-function of Af over Fp by the formula

L(Af/Fp, s) = det(1− Fp−s)−1,
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the proof above gives the formula:

L(Af/Fp, s) =
∏
σ

Lp(f
σ, s),

where the product is taken over all complex embeddings σ : Kf ↪→ C, and
Lp(f

σ, s) is the Euler factor at p in the L-function that was associated to fσ

in section 1.4.
In particular, if Af = E is an elliptic curve, i.e., f has rational Fourier

coefficients and f is on Γ0(N), then the number of points on E over Fp is
given by the formula

#E(Fp) = p+ 1− ap(f). (1.7.1)

Properties of Af : bad reduction: A fundamental quantity associated to
any abelian variety A over Q is its arithmetic conductor, which measures the
amount of bad reduction of A. If we factor this conductor as a product of
prime powers,

∏
p p

mp , then the exponents mp are equal to 0 precisely when
A has good reduction at p. The definition of mp(A) was already given in
section 1.1 when A is an abelian variety of dimension 1, i.e., an elliptic curve.
In general, the exponent mp coincides with mp(ρA,`) (see section 2.1 below),
where ρA,` is the Galois representation on the `-adic Tate module of A.

Regarding the bad reduction of the abelian variety Af , one has the following
consequence of the results of Langlands, Deligne and Carayol [Ca3] discussed
below in section 3.1.

Theorem 1.52 If f is a newform of level N , then the conductor of the abelian
variety Af is equal to N g.

1.8 The Shimura-Taniyama conjecture

Let E be any elliptic curve defined over Q, and let N denote its arithmetic
conductor, defined as in section 1.1. Then we have:

Proposition 1.53 The following are equivalent:

(a) The curve E is isogenous over Q to Af , for some newform f on some
congruence group Γ.

(b) The curve E is isogenous over Q to Af , for a newform f on Γ0(N).

(c) There is a non-constant morphism defined over Q, from X0(N) to E.
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Sketch of proof: The implication (b)⇒ (a) is immediate, and (a)⇒ (b) follows
from the work of Carayol [Ca3] (cf. proposition 3.20 below). If (b) holds, then
there is a surjective map J0(N) −→ E. Composing with the Abel-Jacobi map
X0(N) −→ J0(N) gives a map to E which is not constant, by the definition of
the Jacobian, and hence (c) holds. Conversely, a non-constant map of curves
π : X0(N) −→ E induces, by Albanese (covariant) functoriality, a surjective
map of Jacobians π∗ : J0(N) −→ E, where we have identified E with its own
Jacobian in the natural way. Since J0(N) is isogenous to a product (possibly
with multiplicities) of abelian varieties Af where f run over newforms of level
Nf dividing N (cf. remark 1.45), it follows that there is a surjective map
Af −→ E for some Af . Since Af is simple (proposition 1.49), this map is an
isogeny, and part (b) follows. 2

We call an elliptic curve over Q satisfying the equivalent properties above
a modular elliptic curve. A startling conjecture that was first proposed by
Taniyama in the 1950’s and made more precise by Shimura predicts that the
Shimura construction explained in the previous section is surjective:

Conjecture 1.54 All elliptic curves defined over Q are modular.

This conjecture is now known to be true for a very wide class of elliptic curves.
The results of Wiles [W3] and Taylor-Wiles [TW] imply it is true for all semi-
stable elliptic curves, and a strengthening of the method, [Di2], implies the
conjecture for all elliptic curves which have semi-stable reduction at 3 and 5.

Remark 1.55 See [DI], sec. 13 for a more thorough list of equivalent forms
of the conjecture.

Relation with L-functions: Define numbers ap = ap(E) as in section 1.1.
Recall the (global) Hasse-Weil L-function defined in section 1.1 by equations
(1.1.2), (1.1.4), (1.1.5), and (1.1.6). The following proposition reveals some of
the importance of the Shimura-Taniyama conjecture:

Proposition 1.56 If E is modular, i.e., is associated to a newform f by the
Shimura construction, then

L(E/Q, s) = L(f, s).

In particular, L(E/Q, s) has an analytic continuation to the entire complex
plane, and a functional equation.
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Sketch of proof: If E is isogenous to an elliptic curve Af associated to a
newform f on Γ0(N) by the Shimura construction, then the two L-functions
L(Af/Q, s) and L(E/Q, s) are equal. On the other hand, formula (1.7.1)
directly implies that L(Af/Q, s) is equal to L(f, s), at least up to finitely
many Euler factors (corresponding precisely, by the work of Igusa, to the
primes dividing N). The equality of all the Euler factors follows from the
work of Deligne, Langlands, and Carayol (cf. [Ca1]). 2

Knowing the analytic continuation and functional equation of the Hasse-
Weil L-function of an elliptic curve is of great importance in the theory. For
example, the conjecture of Birch and Swinnerton-Dyer (which was stated in
a weak form in section 1.1, conjecture 1.9) relates arithmetic invariants of E
such as the rank of its Mordell-Weil group and the order of its Shafarevich-
Tate group to the behaviour at s = 1 of L(E/Q, s). (Note that s = 1 is
outside the domain of absolute convergence of the infinite product used to
define L(E/Q, s).)

One consequence of this conjecture is that E(Q) is finite if L(E/Q, 1) is
non-zero. This was proved by Coates and Wiles in [CW] for elliptic curves with
complex multiplication, and by Kolyvagin [Kol] for modular elliptic curves.
(Recently, a different proof for modular elliptic curves has been announced by
K. Kato.) Thanks to the breakthroughs of [W3], [TW], and [Di2], the results
of Kolyvagin and Kato are now unconditional for a very large class of elliptic
curves.

The Shimura-Taniyama conjecture for abelian varieties: We may view
conjecture 1.54 as asserting that the map{

Newforms of weight 2 on X0(N)
with rational Fourier coefficients

}
−→

{
Isogeny classes of elliptic curves

over Q of conductor N

}
provided by the Shimura construction is a bijection. It is natural to extend
this result to all eigenforms, not just those having rational Fourier expansions.
We say that an abelian variety defined over Q is modular if it is isogenous to
an abelian variety of the form Af for some newform f on Γ1(N). It would
not be reasonable to expect that all abelian varieties over Q are modular: the
abelian varieties arising from the Shimura construction are very special, in
many respects. Most importantly, they have a very large ring of endomor-
phisms. Following Ribet [R7], we make the definition:

Definition 1.57 An abelian variety over Q of dimension g is said to be of
GL2-type if its endomorphism ring over Q contains an order in a field of
degree g over Q.

Then we have the following generalized Shimura-Taniyama conjecture:
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Conjecture 1.58 Every simple abelian variety A over Q which is of GL2-type
is modular.

This generalization of the Shimura-Taniyama conjecture is far from being
proved, and tackling it still seems to require some major new ideas, even
after the ideas introduced by Wiles.

2 Galois theory

2.1 Galois representations

If F is a perfect field, we will let F̄ denote an algebraic closure of F and
GF = Gal (F̄ /F ) its absolute Galois group. Recall that GF is a profinite group:
more precisely, GF = lim

←
Gal (L/F ) as L runs over finite Galois extensions of

F contained in F̄ . Hence GF carries a natural topology. If ` is a prime
different from the characteristic of F we will let ε` : GF → Z×` denote the
`-adic cyclotomic character, i.e. if ζ is an `-power root of unity in F̄ then
σ(ζ) = ζε`(σ) for all σ ∈ GF . We will simply write ε if the choice of ` is clear
from the context.

The finite fields Fp: The group GFp is isomorphic to Ẑ, the profinite com-
pletion of Z. A natural topological generator is provided by the Frobenius
element Frob p, the automorphism of F̄p which raises elements of F̄p to their
pth power. If ` is different from p, then ε`(Frob p) = p.

The p-adic fields Qp: The p-adic valuation vp : Q×p →→ Z extends uniquely
to a valuation vp : Q̄×p →→ Q. Let OQ̄p

denote the ring of integers of Q̄p and
mQ̄p

its maximal ideal. The residue field OQ̄p
/mQ̄p

is an algebraic closure of

Fp, which we will identify with F̄p. The valuation vp is compatible with the
action of GQp , and hence OQ̄p

and mQ̄p
are stable under GQp . In particular

GQp acts on OQ̄p
/mQ̄p

and we obtain a map % : GQp → GFp , which is in fact
a surjection. We call the kernel the inertia group and denote it Ip. It has a
unique maximal pro-p subgroup: the wild inertia group, denoted Pp. There is
a canonical isomorphism

Ip/Pp ∼=
∏
` 6=p

Z`(1),

where the (1) indicates that if f ∈ GQp/Pp is a lifting of Frobenius and if
σ ∈ Ip/Pp then fσf−1 = σp.

The inertia group Ip is filtered by a series of subgroups called the higher
ramification groups. More precisely, there are closed normal subgroups Iup in
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GQp for any u ∈ [−1,∞], with the following properties:

• If u ≤ v then Iup ⊃ Ivp , i.e., the Iup form a decreasing filtration.

• For u ≤ 0, Iup = Ip while I∞p = {1}.

• Pp =
⋃
u>0 I

u
p .

• Iup =
⋂
v<u I

v
p .

These groups are defined in section 3 of chapter IV of [Se2], where they are
denoted Gu

Qp
(except that there, G−1

Qp
= GQp whereas we have I−1

p = Ip).
The local Kronecker-Weber theorem ([Se2], ch. 14, sec. 7, for example)

asserts that the map
%× εp : Gab

Qp
−→ GFp × Z×p .

is an isomorphism. (We will use Gab to denote the abelianisation of a profinite
group G, i.e. the unique maximal abelian continuous image.) Under it Ip goes
to Z×p and for u > 0, Iup goes to (1+pdueZp) ⊂ Z×p , where due denotes the least
integer greater than or equal to u. If ` 6= p then ε` is trivial on Ip and takes
Frob p to p ∈ Z×` .

The field Q: If p is a rational prime, the usual p-adic valuation vp : Q× → Z
extends to a valuation v : Q̄× → Q. This extension is not unique, but all
extensions are permuted transitively by GQ. Fix one such extension vp and
let Gp denote its stabiliser in GQ. Then Gp acts on the completion (Q̄)vp

and preserves the subfield of elements algebraic over Qp. This field is an
algebraic closure of Qp, which we shall identify with Q̄p. One can check that
the resulting map Gp → GQp is an isomorphism. Thus we obtain subgroups
Gp ⊃ Ip ⊃ Iup for u ∈ [−1,∞] and a distinguished element Frob p ∈ Gp/Ip.
These objects depend on the choice of vp and vary by conjugation in GQ as
this choice is varied. We call an algebraic extension F/Q unramified at p if
all conjugates of Ip lie in GF ⊂ GQ; otherwise we say that F/Q is ramified.
If F/Q is Galois and unramified at p, then there is a well-defined conjugacy
class [Frob p] ⊂ Gal (F/Q).

By replacing the p-adic completion by an Archimedean completion, one
has a well-defined conjugacy class [c] in GQ consisting of those elements that
arise as complex conjugation for some embedding Q̄ ↪→ C. We will denote by
G∞ the subgroup {1, c} for one such element c.

We have the following fundamental results concerning the structure of GQ
(see for instance [La1]).
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Theorem 2.1 If F/Q is a finite extension then F is only ramified at finitely
many primes (those dividing the discriminant of F/Q).

Theorem 2.2 (Hermite-Minkowski) If S is a finite set of primes and if
d ∈ Z>0 then there are only finitely many extensions F/Q of degree d which
are unramified outside S (contained in a fixed algebraic closure Q̄).

Theorem 2.3 (Chebotarev) If F/Q is a Galois extension unramified out-
side a finite set S of primes then

⋃
p6∈S[Frob p] is dense in Gal (F/Q).

Theorem 2.4 (Kronecker-Weber) The product of the p-adic cyclotomic
characters gives an isomorphism∏

p

εp : Gab
Q
∼→
∏
p

Z×p .

We remark that the Chebotarev density theorem (theorem 2.3) applied
to the extension of Q generated by the mth roots of unity implies Dirichlet’s
theorem that if n and m are coprime integers then there are infinitely many
primes p with p ≡ n mod m. We also remark that the Kronecker-Weber
theorem is equivalent to the fact that the maximal abelian extension of Q is
obtained by adjoining all roots of unity to Q.

Representations: A d-dimensional representation of GQ is a homomorphism

GQ −→ GLd(K),

where K is any field. (In our later discussion, we will also consider repre-
sentations with coefficients in a ring.) Often K (and hence GLd(K)) comes
equipped with a natural topology, and it is then customary to restrict one’s
attention to continuous homomorphisms GQ −→ GLd(K).

Since any one-dimensional representation has abelian image, theorem 2.4
allows one to give a complete description of the one-dimensional representa-
tions of GQ together with the behaviour of these representations on the de-
composition groups at all primes. The aim of this article is to discuss attempts
to give a similar theory for the two-dimensional representations of GQ.

We will call a representation ρ of GQ unramified at p if it is trivial on the
inertia group Ip. Otherwise we say that it is ramified at p. If ρ is unramified
at p, then ρ(Frob p) is well-defined (and its conjugacy class is independent of
the choice of vp).

If ρ is a representation of a group G and i is a non-negative integer, then
we let ∧iρ denote the representation of G on the ith exterior power of the
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underlying module of ρ. If H is a subgroup of G, we will let ρH (resp. ρH)
denote the H-invariants (resp. H-coinvariants) of the underlying module of
ρ. If H is normal in G, then we shall also use ρH and ρH to denote the
corresponding representation of G/H. In particular if p is a prime and ρ is a
representation of GQ or GQp , then ρIp(Frob p) and ρIp(Frob p) are well-defined.

We will be primarily interested in three types of representation of GQ.

• Artin representations, i.e. continuous representations GQ → GLd(C).
Since all compact totally disconnected subgroups of GLd(C) are finite,
Artin representations have finite image. Hence they are semi-simple and
are unramified at all but finitely many primes, by theorem 2.1.

• Mod ` representations, i.e. continuous representations GQ → GLd(k),
where k is a finite field of characteristic `. These always have finite image
and hence, like Artin representations, are unramified at all but finitely
many primes.

• `-adic representations, i.e. continuous representationsGQ → GLd(K),
where K is a finite extension of Q`. We require that an `-adic represen-
tation be unramified at all but finitely many primes.

Remark 2.5 (a) Continuous representations GQ → GLd(K), unlike those
to GLd(C) or GLd(k), may be ramified at infinitely many primes. We
shall not need to consider such representations. (One rarely if ever does.)
However, the term “`-adic representation” is often used in the more
general sense elsewhere in the literature.

(b) Note that the image of an `-adic representation can very well be infi-
nite. For instance this is the case if d = 1 and the representation is the
cyclotomic character.

(c) Note that in the case of mod ` and `-adic representations, the represen-
tations need not be semi-simple.

Proposition 2.6 Let S be any finite set of primes.

(a) An Artin representation ρ : GQ → GLd(C) is determined by the values
of tr ρ(Frob p) on the primes p /∈ S at which ρ is unramified.

(b) A semi-simple mod ` representation ρ : GQ → GLd(k) is determined by
the values of tr ∧i ρ(Frob p) (i = 1, ..., d) on the primes p /∈ S at which
ρ is unramified. If ` > d then it is determined by tr ρ(Frob p) on the
primes p /∈ S at which ρ is unramified.
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(c) A semi-simple `-adic representation ρ : GQ → GLd(K) is determined by
the values of tr ρ(Frob p) on the primes p /∈ S at which ρ is unramified.

Proof: Combining the Chebotarev density theorem (theorem 2.3) with the
continuity of ρ we see that we must show that tr ρ (resp. tr ∧i ρ) determines ρ
up to conjugacy in the various settings. For the characteristic zero represen-
tations, see [Bour], ch. 8, sec. 12.1, prop. 3; for mod ` representations, this is
the Brauer-Nesbitt theorem ([CR], (30.16)). 2

Let K denote a finite extension of Q`, let O be its ring of integers, λ the
maximal ideal of O and k the residue field. If ρ : GQ → GLd(K) is an `-adic
representation, then the image of ρ is compact, and hence ρ can be conju-
gated to a homomorphism GQ → GLd(O). Reducing modulo the maximal
ideal λ gives a residual representation ρ̄ : GQ → GLd(k). This representation
may depend on the particular GLd(K)-conjugate of ρ chosen, but its semi-
simplification ρ̄ss (i.e. the unique semi-simple representation with the same
Jordan-Hölder factors) is uniquely determined by ρ, by proposition 2.6 (b).

Note that the kernel of the reduction map GLd(O) → GLd(k) is a pro-
`-group. In particular we see that if p 6= ` then ρ(Pp) is finite and ρ(Pp) is
isomorphic to ρ̄(Pp).

Suppose ρ is a representation of GQ of one of the three sorts above. If p 6= `
then we define the conductor, mp(ρ), of ρ at p by

mp(ρ) =

∫ ∞
−1

codimρI
u
p du = codimρIp +

∫ ∞
0

codimρI
u
p du.

This is well-defined as ρ(Pp) is a finite group. If ρ is an Artin representation
this makes sense also for p = `. (It would even make sense for a mod `
representation if p = `, but in this case it does not seem to be a useful notion.)
It is known that mp(ρ) is an integer (see chapter VI of [Se2]). Moreover it is
easily seen that mp(ρ) = 0 if and only if ρ is unramified at p. We define the
conductor N(ρ) of ρ to be ∏

p

pmp(ρ),

where the product is over all primes p 6= ` in the case of an `-adic or mod `
representation and over all primes in the case of an Artin representation. This
makes sense because ρ is unramified almost everywhere.

The following lemma is an exercise.

Lemma 2.7 Suppose that ρ : GQ → GLd(K) is an `-adic representation and
that ρ̄ : GQ → GLd(k) is a reduction of ρ. Then for each prime p 6= ` we have
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∫∞
0

codimρI
u
p du =

∫∞
0

codimρ̄I
u
p du. Thus

N(ρ) = N(ρ̄)
∏
p6=`

p(dim ρ̄Ip−dim ρIp ),

and in particular N(ρ̄) divides N(ρ).

We take this opportunity to introduce some important notation. Let G
denote a group and R a ring. If ρ : G → GLd(R) is a representation we
shall let Mρ denote the underlying R[G]-module (so that Mρ

∼= Rd as an R-
module). If M is an R[G]-module we shall let End (M) denote the module of
R-linear endomorphisms of M . It is also an R[G]-module with the G-action
being defined by

(g(φ))(m) = g(φ(g−1m)).

If M is a finitely generated free R-module we will let End 0(M) denote the
sub-R[G]-module of End (M) consisting of endomorphisms of trace zero. We
will use adρ to denote End (Mρ) and ad0ρ to denote End 0(Mρ). Note that if
d is invertible in R then adρ ∼= ad0ρ ⊕ R as R[G]-modules, where R has the
trivial action of G. Note also then that the kernel of ad0ρ is the same as the
kernel of the composite map G

ρ→ GLd(R)→ PGLd(R).
We also remark that if R is an algebraically closed field of characteristic

other than 2 and ρ : G→ GL2(R) is irreducible, then either ad0ρ is irreducible
or there is a subgroup H ⊂ G of index 2 and a character χ : H → R× such that
ρ ∼= Ind G

Hχ. In the latter case ad0ρ ∼= δ⊕Ind G
H(χ/χ′), where δ is the nontrivial

character of G/H and χ′ is the composite of χ and conjugation by an element
of G −H. Moreover, either Ind G

H(χ/χ′) is irreducible or ad0ρ ∼= δ1 ⊕ δ2 ⊕ δ3
where the δi are distinct characters of G of order 2. In the latter case, ρ is
induced from a character from each of the subgroups Hi = ker δi of index 2 in
G. We leave the verification of these facts as an exercise to the reader.

2.2 Representations associated to elliptic curves

Perhaps the simplest examples of non-abelian `-adic representations arise from
elliptic curves defined over Q.

We will let E[n](Q̄) denote the group of n-torsion points on E(Q̄). By
proposition 1.1 there is a non-canonical isomorphism E[n](Q̄) ∼= (Z/nZ)2.
Furthermore, E[n](Q̄) carries a natural action of GQ and so we get a represen-
tation (defined up to conjugation)

ρ̄E,n : GQ → GL2(Z/nZ).
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If ` is a prime different from the characteristic of Q then we set T`E =
lim
←
E[`n](Q̄), which is non-canonically isomorphic to Z2

` . Again it has a nat-

ural continuous action of GQ, and so we get a representation (defined up to
conjugation)

ρE,` : GQ → GL2(Z`).

Note that ρ̄E,`n ∼= (ρE,` mod `n).

Global properties: We have the following basic properties of the represen-
tations ρ̄E,`n and ρE,`:

Proposition 2.8 (a) The determinant of ρE,` is ε`.

(b) The representation ρE,` is absolutely irreducible for all `. For fixed E,
ρ̄E,` is absolutely irreducible for all but finitely many `.

(c) If E does not have complex multiplication then ρE,` (and hence ρ̄E,`) is
surjective for all but finitely many `.

Proof: Part (a) follows from the existence of the non-degenerate alternating
Galois-equivariant Weil pairing

T`E × T`E −→ Z`(1) := lim
←
µ`n .

Part (b) is proved in [Se5], ch. IV. Part (c) is the main result of [Se6]. 2

The following deep result, which is stronger than the second assertion of
part (b) of proposition 2.8, is due to Mazur [Maz2], thms. 1 and 2. (Parts (b)
and (c) can actually be deduced directly from theorem 1.7, using the fact that
a semi-stable curve with a rational subgroup of order ` is necessarily isogenous
to a curve with a rational point of order `.)

Theorem 2.9 Suppose that E/Q is an elliptic curve.

(a) If ` > 163 is a prime then ρ̄E,` is irreducible.

(b) If E is semistable then ρ̄E,` is irreducible for ` > 7.

(c) If E is semistable and ρ̄E,2 is trivial then ρ̄E,` is irreducible for ` > 3.

Remark 2.10 Combined with the results of Serre [Se6], Mazur’s results imply
that if E is semistable everywhere then ρ̄E,` is surjective for ` > 7 ([Maz2],
thm. 4).

Local behaviour of ρE,` and ρ̄E,`:
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Proposition 2.11 Suppose E has good reduction at p.

(a) If ` 6= p, then ρE,` is unramified at p, and we have the formula

tr ρE,`(Frob p) = p+ 1−#Ēp(Fp).

In particular tr ρE,`(Frob p) belongs to Z and is independent of ` 6= p.

(b) For all n ≥ 1 there is a finite flat group scheme Fn/Zp such that

E[pn](Q̄p) ∼= Fn(Q̄p)

as Gp-modules.

(c) • If E has good ordinary reduction at p (i.e., ap is not divisible by p)
then Ēp[p](F̄p) has order p and

ρE,p|Ip ∼
(
εp ∗
0 1

)
;

• If E has supersingular reduction at p, then Ēp[p](F̄p) is trivial and
ρ̄E,p|Gp is irreducible.

Proofs: The proof of part (a) can be found in chapters V and VII of [Si1].
For part (b) one considers the finite flat group scheme Fn = E [pn], where E
is the model for E over Zp defined by (Wmin). (See [Sha] for an introduction
to theory of finite flat group schemes.) Part (c) follows from the results in
chapters V and VII of [Si1] together with basic results on finite flat group
schemes.

Proposition 2.12 Suppose that E has multiplicative reduction at p. Let q =
qE,p ∈ pZp be the multiplicative Tate period attached to E, defined as in sec-
tion 1.1. Let δ : Gp/Ip → {±1} be the unique non-trivial unramified quadratic
character of Gp if E has non-split multiplicative reduction, and let δ be the
trivial character if E has split multiplicative reduction. Then

(a)

ρE,`|Gp ∼
(
ε` ∗
0 1

)
⊗ δ,

and if ` 6= p then mp(ρE,`) = 1.

(b)

ρ̄E,`|Gp ∼
(
ε` Ψ
0 1

)
⊗ δ,

and Ψ ∈ H1(GQp ,Z/`Z(1)) ∼= Q×p /(Q×p )` corresponds to the Tate period
qE,p ∈ Q×p /(Q×p )`.
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(c) If ` 6= p then mp(ρ̄E,`) = 0 (i.e., ρ̄E,` is unramified at p) if and only if
`|vp(∆min

E ) = −vp(jE).

(d) There is a finite flat group scheme F/Zp such that E[p](Q̄p) ∼= F(Q̄p) if
and only if p|vp(∆min

E ) = −vp(jE).

Sketch of proof: By Tate’s proposition 1.5 of section 1.1, we have

E(Q̄p) ∼= (Q̄×p /qZ)(δ)

as Gp-modules. (The (δ) indicates that Gp acts on (Q̄×p /qZ)(δ) by σ : x 7→
σ(x)δ(σ).) The proposition follows directly from this, together with [Edi], prop.
8.2. for the last part. (For further details, see ch. VII, prop. 5.1 of [Si1], ch.
IV, thm. 10.2. and ch. V of [Si2], and sec. 2.9 of [Se7].) 2

Proposition 2.13 Suppose that E has additive reduction at p. Then for any
` 6= p the conductor of ρE,`|Gp is at least 2, and if p > 3 then it is equal to 2.

Remark 2.14 For an elliptic curve E with any type of reduction at p, the
conductor of ρE,`|Gp (for ` 6= p) coincides with the local conductor of E at p
given by a formula of Ogg (proved by Saito [Sa] in the case p = 2). In particular
the conductor of ρE,`|Gp is independent of ` 6= p. For further discussion and
references, see ch. IV, secs. 10 and 11 of [Si2].

The Frey curve: We now consider the elliptic curve

EA,B : Y 2Z = X(X − AZ)(X +BZ),

where A and B are non-zero coprime integers with A + B 6= 0. Set C =
A + B. This equation has discriminant ∆ = 16(ABC)2. If p is an odd prime
then this curve has good reduction at p if p 6 |(ABC) and has multiplicative
reduction at p if p|ABC. Thus ∆min

EA,B
= 24−12n(ABC)2 for some n ∈ Z≥0.

If for instance A ≡ −1 mod 4 and B ≡ 0 mod 16 then EA,B has a minimal
Weierstrass equation

Y 2Z +XY Z = X3 +
B − A− 1

4
X2Z − (AB/16)XZ2.

In this special case EA,B has semi-stable reduction everywhere and ∆min
EA,B

=

2−8(ABC)2.
The connection with Fermat’s Last Theorem is provided by the elliptic

curve
E : Y 2Z = X(X − a`Z)(x+ b`Z)
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considered by Hellegouarch [He] and Frey [Fr], where a` + b` = c` is a hy-
pothetical non-trivial solution to Fermat’s Last theorem, and where we have
supposed without loss of generality that a, b and c are pairwise coprime, that
b is even and that a ≡ −1 mod 4. Frey suggested that properties of this hy-
pothetical elliptic curve E could lead to a contradiction if the curve were also
known to be modular. This suggestion was made precise by Serre [Se7], who
observed that the following list of properties would yield the desired contradic-
tion, when combined with his conjectures on Galois representations associated
to modular forms (to be discussed in section 3.2).

Theorem 2.15 Suppose that ` > 3 is prime. The representation ρ̄E,` has the
following properties.

(a) ρ̄E,` is irreducible.

(b) ρ̄E,` is unramified outside ` and 2.

(c) There is a finite flat group scheme F/Z` such that F(Q̄`) ∼= E[`](Q̄`) as
G`-modules.

(d) #ρ̄E,`(I2) = `.

Proof: Part (a) follows from Mazur’s theorem (theorem 2.9, (c)). To prove (b),
(c), and (d), we note the key fact that ∆min

E = 2−8(abc)2` is a perfect `-th power,
up to powers of 2. The fact that ρ̄E,` is unramified at p 6= `, 2 (part (b)) follows
from this, from proposition 2.11, (a) (for primes p 6= ` of good reduction for E)
and from proposition 2.12 (c) (for primes p 6= `, 2 of multiplicative reduction
for E). Part (c) is a consequence of proposition 2.12 (d), and part (d) follows
from proposition 2.12 (c). 2

Remark 2.16 Part (a) implies that the image of ρ̄E,` is large, while parts (b)
and (c) state that the image has very limited ramification. We remark that
the conclusion of the theorem ensures that mp(ρ̄E,`) = 0 for p 6= 2, ` and that
m2(ρ̄E,`) = 1.

2.3 Galois cohomology

In this section M will denote a continuous discrete GQ-module of finite cardi-
nality. If M and N are two such modules we will endow the space Hom(M,N)
of homomorphisms of abelian groups with an action of GQ via the formula

(g(φ))(m) = g(φ(g−1m)).
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We will use M∗ to denote Hom(M,µn(Q̄)), where n is an integer such that
nM = (0) and where µn(Q̄) denotes the group of nth roots of unity in Q̄.
We will use ∨ to denote Pontryagin duals. All cohomology groups of profi-
nite groups will mean continuous cohomology. The general references for this
section are Milne [Mi] and Serre [Se1].

We start by recalling Tate’s local duality theorem (see chapter 1, section 2
of [Mi]).

Theorem 2.17 Let v be a place of Q (i.e. either a prime number or ∞).

(a) H i(Gv,M) is finite for all i.

(b) For all integers n there are compatible embeddings H2(Gv, µn(Q̄)) ↪→
Q/Z (i.e. compatible with the maps coming from µn(Q̄) ↪→ µm(Q̄) if
n|m).

(c) For v 6=∞ and i = 0, 1, 2 the cup product and the above embeddings give
rise to a perfect pairing

H i(Gv,M)×H2−i(Gv,M
∗)→ H2(Gv, µn(Q̄)) ↪→ Q/Z.

(This also holds when v =∞, if one replaces H0(Gv,M) = H0(R,M) by
Tate’s modified cohomology group: Ĥ0(R,M) := M τ=1/(1 + τ)M , where
τ is complex conjugation.)

(d) If v 6=∞ is a prime, then H i(Gv,M) = (0) for i > 2 and

#H1(Gv,M) = #H0(Gv,M)#H2(Gv,M)#(M ⊗ Zv).

(e) If v 6= ∞ and M ⊗ Zv = 0 then H1(Gv/Iv,M
Iv) and H1(Gv/Iv,M

∗Iv)
are the annihilators of each other under the pairing

H1(Gv,M)×H1(Gv,M
∗)→ Q/Z.

By a collection of local conditions for M we shall mean a collection L =
{Lv} of subgroups Lv ⊂ H1(Gv,M) as v runs over all places of Q, such that
Lv = H1(Gv/Iv,M

Iv) for all but finitely many v. Note that if L is a collection
of local conditions for M then L∗ = {L⊥v } is a collection of local conditions for
M∗. If L is a collection of local conditions for M we define the corresponding
Selmer group, H1

L(Q,M), to be the subgroup of x ∈ H1(GQ,M) such that for
all places v of Q we have

resvx ∈ Lv ⊂ H1(Gv,M).
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Suppose that v is a finite place of Q. We have an exact sequence

(0)→ H0(Gv,M)→M Iv Frob v−1−→ M Iv → H1(Gv/Iv,M
Iv)→ (0),

and hence we see that #H1(Gv/Iv,M
Iv) = #H0(Gv,M).

We have the following important observation of Wiles [W3], inspired by a
formula of Greenberg [Gre]. An important theme in number theory has been
the calculation of Selmer groups. This result, although it does not allow the
absolute calculation of Selmer groups, allows the comparison of two (dual)
Selmer groups. In the applications in this paper we shall apply the theorem
where the various data have been chosen to make one of the Selmer groups
trivial. In such a situation it allows the exact calculation of the order of the
non-trivial Selmer group.

Theorem 2.18 If L is a collection of local conditions for M then the Selmer
group H1

L(Q,M) is finite. Moreover we have the formula

#H1
L(Q,M)

#H1
L∗(Q,M∗)

=
#H0(GQ,M)

#H0(GQ,M∗)

∏
v

#Lv
#H0(Gv,M)

.

We note that all but finitely many terms in the product are 1 so that it makes
sense.
Proof of theorem 2.18: Choose a finite set, S, of places of Q, which contains∞,
all the places whose residue characteristic divides the order of M , all places
at which M is ramified and all places at which Lv 6= H1(Gv/Iv,M

Iv). Let
QS denote the maximal extension of Q unramified outside S and let GS =
Gal (QS/Q). Then we have an exact sequence

(0)→ H1
L(Q,M)→ H1(GS,M)→

⊕
v∈S

H1(Gv,M)/Lv.

Because H1(GS,M) is finite (see cor. 4.15 of ch. 1 of [Mi]), we see that
H1
L(Q,M) is finite.

Dualising this sequence for M∗ and using theorem 2.17, we see that we
have an exact sequence⊕

v∈S

Lv → H1(GS,M
∗)∨ → H1

L∗(Q,M∗)∨ → (0).

On the other hand we have the following part of the Poitou-Tate nine term
sequence (see thm. 4.10 of ch. 1 of [Mi]):

(0)→ H0(GS,M) →
(⊕

v∈S H
0(Gv,M)

)
/(1 + c)M →H2(GS,M

∗)∨

↓
H1(GS,M

∗)∨←
⊕

v∈S H
1(Gv,M) ← H1(GS,M),
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where we regard (1 + c)M as contained in H0(G∞,M). Replacing H1(Gv,M)
by Lv for v ∈ S and combining this with the previous exact sequence we get

(0) → H0(GS,M) →
(⊕

v∈S H
0(Gv,M)

)
/(1 + c)M

↓⊕
v∈S Lv ← H1

L(Q,M) ← H2(GS,M
∗)∨

↓
H1(GS,M

∗)∨→H1
L∗(Q,M∗)∨→ (0).

Theorem 2.18 follows from this and the global Euler characteristic formula
(see thm. 5.1 of ch. 1 of [Mi]):

#H1(GS,M
∗)

#H0(GS,M∗)#H2(GS,M∗)
=

(#M∗)

#H0(G∞,M∗)
= #(1 + c)M.

2

We remark, but will not use elsewhere in this article, that the above argu-
ment works over any number field:

Theorem 2.19 Let F be a number field and M a discrete GF module of finite
cardinality. For each place v of F let Gv denote a decomposition group at v
and if v is finite let Iv ⊂ Gv denote the inertia group. Fix subgroups Lv ⊂
H1(Gv,M), and such that for all but finitely many v, Lv = H1(Gv/Iv,M

Iv).
Let H1

L(F,M) (respectively, H1
L∗(F,M

∗)) denote the inverse image of
∏

v Lv
(respectively,

∏
v L
⊥
v ) under the map H1(GF ,M) →

∏
vH

1(Gv,M) (respec-
tively, H1(GF ,M

∗) →
∏

vH
1(Gv,M

∗)). Then H1
L(G,M) and H1

L∗(G,M
∗)

are finite and we have the formula

#H1
L(F,M)

#H1
L∗(F,M

∗)
=

#H0(GF ,M)

#H0(GF ,M∗)

∏
v

#Lv
#H0(Gv,M)

.

2.4 Representations of GQ`

In this section we assume that ` is an odd prime. If G is any topological
group then by a finite O[G]-module we shall mean a discrete O-module of
finite cardinality with a continuous action of G. By a profinite O[G]-module
we shall mean an inverse limit of finite O[G]-modules.

If M is a profinite O[G`]-module then we will call M

• good if for every discrete quotient M ′ of M there is a finite flat group
scheme F/Z` such that M ′ ∼= F (Q̄`) as Z`[G`]-modules;
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• ordinary if there is an exact sequence

(0)→M (−1) →M →M (0) → (0)

of profinite O[G`]-modules such that I` acts trivially on M (0) and by ε
on M (−1) (equivalently, if for all σ, τ ∈ I` we have (σ − ε(σ))(τ − 1) = 0
on M);

• semi-stable if M is either good or ordinary.

Suppose that R is a complete Noetherian local O-algebra with residue field k.
We will call a continuous representation ρ : G` → GL2(R) good, ordinary or
semistable, if

det ρ|I` = ε (2.4.1)

and if the underlying profinite O[G`]-module, Mρ is good, ordinary or semi-
stable. We write ρ̄ for ρ mod mR. We record the following consequence of
Nakayama’s lemma.

Lemma 2.20 If Mρ and ρ̄ are ordinary, then M
(−1)
ρ and M

(0)
ρ are each free

of rank one over R and ρ is ordinary.

Remark 2.21 (a) These definitions are somewhat ad hoc, but at the mo-
ment that is all that seems to be available (though the work of Fontaine
and Laffaille [FL] and its generalisations may well provide a more sys-
tematic setting).

(b) For part of the motivation for our definitions, see proposition 2.23 and
remark 2.24. For further motivation, we shall see in the next chapter
that representations arising from certain modular forms are semistable.
Moreover the Fontaine-Mazur conjecture predicts that, conversely, any
representation of GQ with semistable restriction to G` arises from such
a modular form. We shall state a weak form of the Fontaine-Mazur
conjecture below (conjecture 3.17).

(c) The terminology in [W3] to describe representations of G` is slightly
different. In particular, we impose the condition (2.4.1) in our definitions
of good and ordinary, as this is all we shall need here. Assuming ρ
satisfies this condition, the notion of ordinary in [W3] coincides with the
one here, and ρ is flat in the sense of [W3] if and only if it is good but not
ordinary. (Note that a representation may be both good and ordinary,
for instance ρE,` for an elliptic curve with good, ordinary reduction; see
proposition 2.23.)
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The following assertions, in the good case, are consequences of results of
Raynaud [Ray] (in particular, see sec. 2.1, prop. 2.3.1 and cor. 3.3.6 of [Ray]).
In the ordinary case they are elementary.

Lemma 2.22 (a) Stable profinite O[G`]-modules are closed under taking
sub-objects, quotients and direct products. The same is true for ordi-
nary profinite O[G`]-modules.

(b) Suppose that M is a profinite O[G`]-module and that {Mi} is a family of
sub-objects with trivial intersection, such that each M/Mi is good (resp.
ordinary). Then M is good (resp. ordinary).

(c) If M is a finite O[G`]-module then M is good if and only if there is a
finite flat group scheme F/Z` such that M ∼= F(Q̄`) as Z`[G`]-modules.

(d) If M and M ′ are profinite O[G`]-modules with M ′ ∼= M as Z`[I`]-modules
then M is good (resp. ordinary) if and only if M ′ is good (resp. ordinary).

(e) Suppose that M is a profinite O[G`]-module which is finite and free over
O. Then M is good if and only if there exists an `-divisible group F/Z`

such that M is isomorphic to the Tate module of F as a Z`[G`]-module.

Together with results stated in section 2.2, we have the following.

Proposition 2.23 Suppose that E is an elliptic curve over Q and O = Z`.

• if E has good (resp. semistable) reduction at `, then ρE,` and ρ̄E,` are
good (resp. semistable);

• if E has semistable reduction at `, then ρE,` is ordinary if and only if
ρ̄E,` is ordinary if and only if either E has multiplicative reduction or E
has good ordinary reduction.

Remark 2.24 It is also true that if ρE,` is good (resp. semistable), then E
has good (resp. semistable) reduction at `, but the result is more difficult and
we shall not need it.

We will need a few more definitions. We will let ψ : I` → F̄×` denote

the character σ 7→ (σ$)/$ mod $ where $ = `2−1
√
`. If F is a field of

characteristic other than ` and if M is a profinite Z`[G`]-module then we
set M(1) = lim

←
M ⊗Z`

µ`n(F̄ ). If ρ : G` → GL2(R) is ordinary the extension

(0)→ R(1)→Mρ → R→ (0)
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of R[I`]-modules gives rise to a class cρ ∈ H1(I`, R(1)). Kummer theory and
the valuation on (Q̄I`

` )× give rise to a map v : H1(I`, R(1)) → H ⊗Z`
R → R,

where H denotes the `-adic completion of (Q̄I`
` )×. Then we also have the

following lemma.

Lemma 2.25 (a) If ρ̄ : G` → GL2(k) is good then either ρ̄ is ordinary or
ρ̄|I` ⊗ k̄ = ψ ⊕ ψ`.

(b) If ρ : G` → GL2(R) is such that Mρ is good and ρ̄ is ordinary, then ρ is
good and ordinary.

(c) If ρ : G` → GL2(R) is ordinary then ρ is good if and only if v(cρ) = 0.

Note that we need only consider the case that R has finite cardinality to
prove the lemma. Parts (a) and (b) again follow from Raynaud’s results [Ray]
(for part (b) consider the connected-étale sequences for Mρ and Mρ̄).

We sketch the proof of part (c) using an argument suggested to us by
Edixhoven. As in [Edi], prop. 8.2 it suffices to determine which extensions

(0) −→ R(1) −→M −→ R −→ (0) (2.4.2)

of R[I`]-modules arise from finite flat group schemes over Znr
` , the ring of

integers of the maximal unramified extension of Z`. By prop. 17.4 of [Oo],
the extension (2.4.2) arises from a finite flat group scheme if and only if it
corresponds to an extension of sheaves of R-modules in the fpqc topology over
Znr
` . Therefore we must compute the image of

Ext1
R−mod/fpqc(R,R(1))→ Ext1

R[I`]
(R,R(1)).

Since the sheaf Ext1 of R by R(1) vanishes, this is equivalent to computing
the image of

H1
fpqc(Znr

` , R(1))→ H1(I`, R(1)).

Part (c) follows from the fact this is precisely the kernel of v.

Remark 2.26 The authors expect that the theory of Fontaine and Laffaille
[FL] discussed in the next section could be used to prove that if ρ : G` →
GL2(R) is such that Mρ is good and ρ̄ is good, then det ρ|I` is cyclotomic, i.e.,
ρ is good.

For semistable representations ρ : G` → GL2(O/λn) we shall define O-
submodules

H1
f (G`, adρ) ⊂ H1

ss(G`, adρ) ⊂ H1(G`, adρ).
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Before doing so, let us consider more generally a continuous representation ρ
of a profinite group G with values in GLd(O/λn). For each continuous cocycle
ξ : G→ adρ, we define a representation

ρξ : G→ GL2(Rn)
g 7→ (1 + εξ(g))ρ(g)

where Rn = (O/λn)[ε]/(ε2). We find that the map ξ → ρξ induces a bijec-
tion between H1(G, adρ) and equivalence classes of representations ρ′ : G →
GL2(Rn) such that ρ = ρ′ mod εRn, where ρ′1 and ρ′2 are deemed equivalent
if they are conjugate by an element of 1 + εM2(Rn). Now let Mρ denote the
(O/λn)[G]-module corresponding to ρ, and for each continuous cocycle ξ, let
Eξ denote the Rn[G]-module corresponding to ρξ. Note that multiplication by
ε defines an isomorphism from Mρ = Eξ/εEξ to εEξ of (O/λn)[G]-modules.
We thus obtain an extension

0→Mρ → Eξ →Mρ → 0

and hence a class in Ext1(Mρ,Mρ) in the category of profinite (O/λn)[G]-
modules. Moreover if ρξ1 and ρξ2 are equivalent, then Eξ1 and Eξ2 define the
same extension class. We thus obtain a map

H1(G, adρ)→ Ext1(Mρ,Mρ),

which the reader can check is an (O/λn)-linear isomorphism. Classes in
H1(G, ad0ρ) correspond to the equivalence classes of representations ρ′ sat-
isfying det ρ′ = det ρ, and φ in Hom(G,O/λn) corresponds to the twist of ρ by
the character g 7→ 1+εφ(g). In the case 6̀ |d where we have the decomposition

H1(G, adρ) = H1(G, ad0ρ)⊕ Hom(G,O/λn),

we see that if ρ′ corresponds to a class in H1(G, adρ), then the projection to
Hom(G,O/λn) is the homomorphism φ such that det ρ′ = (1 + εdφ) det ρ.

We now return to the case of a semistable representation

ρ : G` → GL2(O/λn)

and define the cohomology groups H1
f (G`, adρ) and H1

ss(G`, adρ) as follows.
Let H1

ss(G`, adρ) denote the natural image in H1(G`, adρ) of Ext1(Mρ,Mρ)
taken in the category of semi-stable profinite O/λn[G`]-modules. If ρ is not
good then H1

f (G`, adρ) is defined to be H1
ss(G`, adρ). If, however, ρ is good

then H1
f (G`, adρ) will denote the natural image in H1(G`, adρ) of the group
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Ext1(Mρ,Mρ) taken in the category of good profinite O/λn[G`]-modules. We
define H1

f (G`, ad0ρ) (resp. H1
ss(G`, ad0ρ)) as the intersection of H1

f (G`, adρ)
(resp. H1

ss(G`, adρ)) and H1(G`, ad0ρ). Note that if ρ is good (resp. semistable)
and ξ : G` → adρ is a cocycle, then Eξ is good (resp. semistable) if and only
if ρξ is.

Suppose that ρ : G` → GL2(O/λn) is ordinary. Consider the exact se-
quence

0→M (−1)
ρ →Mρ →M (0)

ρ → 0,

where M
(−1)
ρ denote the maximal submodule of Mρ where I` acts by ε. Let

ad(−1)ρ denote the submodule Hom(M
(0)
ρ ,M

(−1)
ρ ) of ad0ρ. Then

H1
ss(G`, adρ) = ker (H1(G`, adρ)→ H1(I`, adρ/ad(−1)ρ)).

The same is true with ad0 replacing ad.
If ρ : G` → GL2(O) is semi-stable then we set

H1
f (G`, adρ⊗K/O) = lim

→
H1

f (G`, adρ⊗ (λ−n/O)) ⊂ H1(G`, adρ⊗K/O).

We define H1
f (G`, ad0ρ⊗K/O) as

H1
f (G`, adρ⊗K/O) ∩H1(G`, ad0ρ⊗K/O).

We make similar definitions for H1
ss(G`, adρ⊗K/O) and H1

ss(G`, ad0ρ⊗K/O).
We will need the following calculations.

Proposition 2.27 (a) Suppose that ρ̄ : G` → GL2(k) is semi-stable. Then

#H1
f (G`, ad0ρ̄) ≤ #H0(G`, ad0ρ̄)#k

and equality holds if ρ̄ is ordinary3.

(b) Suppose that ρ : G` → GL2(O) is both good and ordinary. Let χ1 and χ2

be the unramified characters such that ρ ∼
(
χ1ε ∗
0 χ2

)
. Let

c` = (χ1/χ2)(Frob `)− 1.

If c` 6= 0, then

H1
ss(G`, ad0ρ⊗K/O)/H1

f (G`, ad0ρ⊗K/O)

is finite of order #(O/c`O).

3The authors expect equality to hold without this hypothesis; cf. remark 2.26.
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(c) If ρ mod λ is either not good or not ordinary, then

H1
ss(G`, ad0ρ⊗K/O) = H1

f (G`, ad0ρ⊗K/O).

Proof: Part (c) is clear, and for parts (a) and (b) it suffices to prove the
following two results.

Proposition 2.28 Suppose that ρ : G` → GL2(O/λn) is good. Then

#H1
f (G`, adρ) = #H0(G`, ad0ρ)(#O/λn)2.

Lemma 2.29 Suppose that ρ : G` → GL2(O/λn) is ordinary, so that we have

ρ ∼
(
χ1ε ∗
0 χ2

)
, for some unramified characters χ1 and χ2.

(a) We have

#H1
ss(G`, ad0ρ) ≤ #H0(G`, ad0ρ)#(O/λn)#(O/(λn, c`))

where c` = (χ1/χ2)(Frob `)−1. Moreover if ρ is good, then equality holds.

(b) If n = 1 and ρ is not good then #H1
ss(G`, ad0ρ) = #k.

End of proof of proposition 2.27: To deduce proposition 2.27 (in the good case)
from proposition 2.28 and lemma 2.29, note that if ρ : G` → GL2(O/λn) is
good, then

H1(G`/I`,O/λn) ⊂ H1
f (G`, adρ) ∩H1(G`,O/λn)

by lemma 2.22 (d), and this gives the inequality in proposition 2.27(a). Fur-
thermore if ρ is also ordinary, then the above group is contained in

Im (H1
f (G`, adρ)→ H1(G`,O/λn)) ⊂ H1(G`/I`,O/λn)

where the last inclusion comes from lemma 2.25 (b). Therefore

#H1
f (G`, ad0ρ) = #H0(G`, ad0ρ)#(O/λn).

2

We will prove proposition 2.28 in the next section using the theory of
Fontaine and Laffaille. The proof of lemma 2.29 is a somewhat technical
exercise in the Galois cohomology of local fields, for which we refer the reader
to ch. 1 of [W3], prop. 1.9, parts (iii) and (iv). We remark that for our
purposes, inequalities would suffice in part (b) of proposition 2.27 and part (a)
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of lemma 2.29 (and this is all that is proved in [W3]). We have included the
precise formulas for the sake of completeness, since they are not much more
difficult to obtain. The only additional observation required is that if ρ is
good, then the composite of the natural maps

H1(G`/I`, (ad0ρ/ad(−1)ρ)I`)→ H1(G`, ad0ρ/ad(−1)ρ)→ H2(G`, ad(−1)ρ)

is trivial. To prove this, rewrite the composite as

H1(G`/I`,O/λn)→ H1(G`,O/λn)→ H2(G`, ad(−1)ρ)

with the second map given by ∪cρ where cρ is the class in H1(G`, ad(−1)ρ)
defining the extension Mρ and apply lemma 2.25 (c). (In fact, one only needs
the easier half of lemma 2.25 (c): if ρ is good then v(cρ) = 0.)

2.5 The theory of Fontaine and Laffaille

In this section we again assume that ` is an odd prime. We mentioned in
the last section the importance of understanding good representations of G`.
However the definition of good is somewhat indirect, and this makes computa-
tions difficult. The key result we use to address the problem is an equivalence
between the category FFO of good finite O[G`]-modules and a categoryMFO
which we define below following Fontaine and Laffaille [FL]. The beauty and
utility of the result stems from the elementary algebraic nature of the def-
inition of MFO; we can convert questions about good representations into
questions in linear algebra.

Remark 2.30 Let GFO denote the category of finite flat commutative group
schemes over Z` with an action of O. By results of Raynaud [Ray], taking
Q̄` points defines an equivalence between the categories GFO and FFO. The
equivalence between GFO and a category closely related to MFO was first
established by Fontaine [Fo2] and [Fo1]. While Fontaine’s results would suffice
for our purposes here, our formulation will be closer to that in [FL], where
an equivalence between MFO and FFO is defined as part of a more general
construction of representations of G` from linear-algebraic data. We caution
however that our formulation is not exactly the same as that of [FL] since we
wish to work with covariant functors.

We now turn to the definition of MFO. The objects are O-modules D
of finite cardinality together with a distinguished submodule D0 and O-linear
maps φ−1 : D → D and φ0 : D0 → D which satisfy:
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• φ−1|D0 = `φ0,

• Imφ−1 + Imφ0 = D.

The morphisms are O-linear maps compatible with the additional data of the
distinguished submodules and maps φ.

It is useful to note that if D is an object ofMFO, then there is a surjection

φ−1 ⊕ φ0 : D/D0 ⊕D0/`D0 →→ D/`φ0(D
0),

and on counting orders we see that this is in fact an isomorphism. Thus there
is an isomorphism

D/(D0 + λD)⊕D0/λD0 ∼→ D/λD.

It follows that D0/λD0 → D/λD is injective, and hence that D0 is (non-
canonically) a direct summand of D as an O-module. Note also that φ0 is
injective, and if D = D0 ⊕D′ as O-modules, then also D = φ0(D

0)⊕ φ−1(D
′)

as O-modules.
It is then straightforward to check that there is a contravariant functor ·∗

fromMFO to itself defined by:

• D∗ = Hom(D,Q`/Z`);

• (D∗)0 = Hom(D/D0,Q`/Z`);

• φ∗−1(f)(z) = f(`x+ y), where z = φ−1(x) + φ0(y);

• φ∗0(f)(z) = f(x mod D0), where z ≡ φ−1(x) mod (φ0D
0).

Moreover the canonical isomorphism D ∼= (D∗)∗ of O-modules defines a natu-
ral isomorphism inMFO.

We leave it as an exercise for the reader to use the above observations to
define cokernels and then kernels of morphisms in MFO and verify that it is
an abelian category (or see [FL], sec. 1).

Theorem 2.31 There is a covariant functor D : FFO →MFO which defines
an O-additive equivalence of categories. Moreover if M is an object of FFO,
then we have

(a) M and D(M) have the same cardinality;

(b) D(M) = D(M)0 if and only if M is unramified.
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Remark 2.32 (a) It follows on applying part (a) to M/λiM for each i that
M and D(M) are in fact (non-canonically) isomorphic as O-modules.

(b) As mentioned above, our formulation differs from that of Fontaine and
Laffaille in that we are using covariant functors. To deduce theorem 2.31
from the results in [FL], sec. 9, we define D as a quasi-inverse of the
functor US(·∗[1]), where US is defined in [FL] and [1] indicates a shift
by 1 in filtration degrees. In particular, if F is a finite flat group scheme
over Z` with an action of O, then the underlying O-module of D(F(Q̄`))
can be identified with the covariant Dieudonné module of F/F`

, and φ−1

with F .

Suppose now that ρ : G` → GL2(O/λn) is a good continuous repre-
sentation. Let Dρ = D(Mρ) be the corresponding object of MFO. Then
Dρ
∼= (O/λn)2 as an O-module while D0

ρ
∼= O/λn.

Lemma 2.33 The following are isomorphic.

(a) The group of extensions of Mρ by itself in the category of good finite
O/λn[G`]-modules.

(b) The group of extensions of Dρ by itself in the full subcategory of MFO
consisting of objects which are O/λn-modules.

(c) Pairs (α−1, α0) where α−1 ∈ HomO(Dρ, Dρ), α0 ∈ HomO(D0
ρ, Dρ) and

`α0 = α−1|D0
ρ
, modulo pairs of the form (aφρ,−1−φρ,−1a, aφρ,0−φρ,0a|D0)

where a ∈ HomO(Dρ, Dρ) and aD0
ρ ⊂ D0

ρ.

Proof: The first two groups of extensions are isomorphic by the Fontaine-
Laffaille theorem. Following Ramakrishna [Ram] we explain how to calculate
the second group of extensions. We will write D for Dρ. If

(0)→ D → E → D → (0)

is an extension then we have as O-modules that E ∼= D2 by an isomorphism
such that E0 ∼→ (D0)2. Then E is determined by giving elements αE,−1 ∈
Hom(D,D) and αE,0 ∈ Hom(D0, D) with `αE,0 = αE,−1|D0 . Explicitly

φE,−1 =
(
φ−1 αE,−1
0 φ−1

)
and φE,0 =

(
φ0 αE,0
0 φ0

)
.

Two such extensions E and E ′ are isomorphic if there is an element a ∈
End (D) such that aD0 ⊂ D0,(

1 a
0 1

)(
φ−1 αE,−1
0 φ−1

)
=
(
φ−1 αE′,−1
0 φ−1

)(
1 a
0 1

)
,
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and (
1 a
0 1

)(
φ0 αE,0
0 φ0

)
=
(
φ0 αE′,0
0 φ0

)(
1 a|D0

0 1

)
;

or equivalently if aD0 ⊂ D0, αE,−1− αE′,−1 = φ−1a− aφ−1 and αE,0− αE′,0 =
φ0a|D0 − aφ0. The lemma follows. 2

Corollary 2.34 The group, H1
f (G`, adρ), of extensions of Mρ by itself in the

category of good, finite O/λn[G`]-modules is (non-canonically) isomorphic to
(O/λn)2 ⊕H0(I`,Mρ).

Proof: Choose generators e0, e−1 of D, such that e0 is a generator of D0. With

respect to this basis let φ0 have matrix
(x
z
)

and φ−1 have matrix
(
`x y
`z w

)
. If

a has matrix
(
a1 a2
0 a3

)
then a direct calculation shows that

(aφ−1 − φ−1a, aφ0 − φ0a|D0) =((
`a2z (a1 − a3)y + a2(w − `x)

(a3 − a1)`z −`za2

)
,
( a2z

(a3 − a1)z

))
.

Thus the Ext group we want is the quotient of the set of pairs of matrices
(α−1, α0) as above by the submodule generated by((

`z w − `x
0 −`z

)
,
(
z
0

)
) and (

(
0 −y
`z 0

)
,
(

0
z

))
.

Note that either z or w is a unit in O/λ from which it follows that the Ext
group we want is isomorphic to (O/λn)2 ⊕ O/(z, λn). On the other hand
H0(I`,Mρ) corresponds to the largest submodule C ⊂ D0 such that φ0C = C,
i.e. C = {d ∈ D0 : zd = 0} ∼= O/(z, λn). 2

Corollary 2.35 Suppose that ρ : G` → GL2(O/λn) is a continuous good
representation. Then H1

f (G`, adρ) is isomorphic to (O/λn)2 ⊕H0(G`, ad0ρ).

Proof: If ρ is not ordinary then H0(G`, ad0ρ) and H0(I`,Mρ) are both triv-
ial, so suppose that ρ is ordinary. In this case, let ρ′ denote the ordinary
representation defined by

Mρ′ = Hom(M (0)
ρ ,Mρ) ⊂ ad0(ρ)

and let M
(−1)
ρ′ = ad0(ρ)(−1). Then

H0(G`, ad0ρ) = H0(G`,Mρ′) ⊂ H0(I`,Mρ′) ∼= H0(I`,Mρ).
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Since H0(I`,M
(−1)
ρ′ ) is trivial, the restriction homomorphism

H1(G`,M
(−1)
ρ′ )→ H1(I`,M

(−1)
ρ′ )

is injective. We deduce from the long exact sequences associated to

(0)→M
(−1)
ρ′ →Mρ′ → O/λn → 0

that H0(G`,Mρ′) = H0(I`,Mρ′). 2

2.6 Deformations of representations

In this section we shall review Mazur’s theory of deformations of representa-
tions of profinite groups (see [Maz3]).

Let CO denote the category whose objects are complete noetherian local
O-algebras with residue field k and whose morphisms are O-algebra homomor-
phisms which are local (i.e. take maximal ideals into maximal ideals). (The
structure maps from O to every object of CO are also assumed to be local.) Let
G denote a topologically finitely generated profinite group and let ρ̄ denote an
absolutely irreducible representation of G into GLd(k). (In fact all we shall
use in the sequel is that k is the centraliser in Md(k) of the image of ρ̄.) Let
D0 denote the category of profinite O[G]-modules with continuous morphisms.
We will let D denote a full subcategory of D0 which is closed under taking sub-
objects, quotients and direct products and which contains Mρ̄. Note that if
M is an object of D0 and Mi is a collection of subobjects which have trivial
intersection and such that each M/Mi is an object of D, then M is an object
of D, since M ⊂

∏
iM/Mi.

Let χ : G→ O× be a continuous character such that det ρ̄ = χ mod λ. By
a lifting of ρ̄ of type D = (O, χ,D) we shall mean an object R of CO and a
continuous representation ρ : G→ GLd(R) such that:

(a) ρ mod mR = ρ̄,

(b) det ρ = χ,

(c) Mρ is an object of D.

Note that if φ : R→ R′ and ρ : G→ GLd(R) is of type D so is φ ◦ ρ.

Theorem 2.36 There is a lifting ρuniv
D : G → GLd(RD) of ρ̄ of type D such

that if ρ : G → GLd(R) is any lifting of ρ̄ of type D then there is a unique
homomorphism of O-algebras φ : RD → R such that ρ is conjugate to φ◦ρuniv

D .
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The representation ρuniv
D is referred to as the universal deformation of type

D. Mazur [Maz3] proved this theorem for D0 and certain other categories D.
Ramakrishna [Ram] observed that the arguments work with any category D
satisfying the above hypotheses. We will sketch a proof which was suggested
by Faltings. (We remark that another explicit construction of the deformation
ring has been given by de Smit and Lenstra in [dSL].)
Proof of theorem 2.36: Choose a sequence g1, ..., gr of topological generators
of G and liftings A1, ..., Ar of ρ̄(g1), ..., ρ̄(gr) to Md(O). Define a mapping
ι : Md(O) → Md(O)r which sends x to (xA1 − A1x, ..., xAr − Arx). Since ι
has torsion-free cokernel, so we can decompose

Md(O)r = ι(Md(O))⊕ V,

for some submodule V ⊂ Md(O)r. If ρ : G→ GLd(R) is a lifting of ρ̄ of type
D set vρ = (ρ(g1) − A1, ..., ρ(gr) − Ar) ∈ Md(R)r. Note that vρ ≡ 0 mod mR

and that vρ completely determines ρ. We call the lifting ρ well-placed if vρ
belongs to V ⊗O R ⊂Md(R)r. The crucial observation is the following result.

Lemma 2.37 If ρ : G → GLd(R) is a lifting of ρ̄ of type D then there is a
unique conjugate ρ′ of ρ which is well-placed.

The lemma is first proved for algebras R such that mn
R = (0) by induction on

n, and then one deduces the general case.
In virtue of the lemma it suffices to find a universal well-placed lifting of

typeD. Let e1, ..., es be a basis of V as anO-module. If ρ is a well-placed lifting
of ρ̄ of type D then we can write vρ =

∑s
i=1 vρ,iei for unique elements vρ,i ∈ mR

and we can define a homomorphism θρ : O[[T1, ..., Ts]]→ R sending Ti to vρ,i.
Note that ρ is completely determined by θρ (ρ(gi) = Ai+

∑s
j=1 θρ(Tj)eji, where

ej = (ej1, ..., ejr)). Let I denote the intersection of all ideals J of O[[T1, ..., Ts]]
such that there is a representation ρJ : G → GLd(O[[T1, ..., Ts]]/J) of type
D with ρJ(gi) = Ai +

∑s
j=1 Tjeji for all i. Let RD denote the quotient of

O[[T1, ..., Ts]] by I. Then one can check that there is a representation ρuniv :
G → GLd(RD) with ρuniv(gi) = Ai +

∑s
j=1 Tjeji for all i, and that this is the

desired universal representation. 2

We will need a few elementary properties of these universal deformations.
More precisely we will need to know how these universal rings change when
we change the base field, we will need to know how to calculate the equi-
characteristic tangent space of these rings and more generally how to calculate
℘/℘2 for certain prime ideals ℘. The first of these lemmas is a remark of
Faltings, the second is due to Mazur [Maz3] and the third to Wiles [W3].

74



Lemma 2.38 Let K ′/K be a finite extension with ring of integers O′ and
residue field k′. Let D′ denote the full sub-category of the category of profinite
O′[G]-modules such that the underlying object of D0 is actually an object of D.
Let D′ = (O′, χ,D′). Then RD′ = RD ⊗O O′ and ρuniv

D′ = ρuniv
D ⊗ 1.

Proof: Let R̃D′ denote the subring of RD′ consisting of elements which reduce
modulo the maximal ideal to an element of k ⊂ k′. Similarly let R̃D denote the
subring of RD⊗OO′ consisting of elements which reduce modulo the maximal
ideal to an element of k ⊂ k′. Then ρuniv

D′ is in fact valued in GLd(R̃D′) and
ρuniv
D ⊗ 1 is in fact valued in GLd(R̃D). The universal properties give natural

maps α : RD → R̃D′ and β : RD′ → RD ⊗O O′. Moreover they show that the
composite (α ⊗ 1) ◦ β : RD′ → RD′ is the identity and that β ◦ α : RD → R̃D

is the natural embedding. Thus β is an isomorphism. 2

We will let D(n) denote the full subcategory of D whose objects are killed
by λn. Suppose that M is an object of D0 which is finite and free over
O/λn. Recall from section 2.4 that H1(G,End (M)) may be identified with
Ext1

D(n)
0

(M,M). If M is an object of D(n) which is finite and free over O/λn,
then we have a natural inclusion

Ext1
D(n)(M,M) ⊂ Ext1

D(n)
0

(M,M) ∼= H1(G,End (M)).

We define H1
D(G,End (M)) to be the image of Ext1

D(n)(M,M) in the group
H1(G,End (M)), and H1

D(G,End 0(M)) to be the intersection

H1(G,End 0(M)) ∩H1
D(G,End (M)).

Lemma 2.39 There is a canonical isomorphism of k-vector spaces

Homk(mRD
/(λ,m2

RD
), k) ∼= H1

D(G, ad0ρ̄).

Proof: There is a natural bijection between Homk(mRD
/(λ,m2

RD
), k) and the

set ofO-algebra homomorphisms from RD to the algebra k[ε] where ε2 = 0 (the
correspondence associates φ : RD → k[ε] to φ|mRD

). Hence there is a bijection
to the set of liftings ρ : G→ GLd(k[ε]) of ρ̄ of type D, modulo conjugation by
elements of 1 + εMd(k). On the other hand, recall from section 2.4 that there
is a natural bijection between Ext1

D(1)
0

(Mρ̄,Mρ̄) and the set of of all continuous

liftings ρ : G→ GLd(k[ε]) of ρ̄ modulo conjugation by elements of 1+εMd(k).
Moreover a lifting ρ is type D if and only if det ρ = det ρ̄ and the corresponding
extension Mρ is an object of D. The lemma follows on checking linearity. 2

Now suppose that θ : RD → O is an O-algebra homomorphism. Let ℘
denote the kernel of θ and let ρ = θ ◦ ρuniv

D . We set

H1
D(G, ad0ρ⊗K/O) = lim

→
H1
D(G, ad0ρ⊗ λ−n/O) ⊂ H1(G, ad0ρ⊗K/O).
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Lemma 2.40 There is a canonical O-linear isomorphism

HomO(℘/℘2, K/O) ∼= H1
D(G, ad0ρ⊗K/O).

Proof: One shows in a very similar manner to the proof of lemma 2.39 that
for all n there is a natural isomorphism.

HomO(℘/℘2,O/λn) ∼= H1
D(G, ad0ρ⊗O/λn).

2

2.7 Deformations of Galois representations

Again in this section we assume that ` is an odd prime. Let ρ̄ : GQ → GL2(k)
denote a continuous absolutely irreducible representation. Suppose moreover
that det ρ̄ = ε and that ρ̄ is semi-stable in the sense that

• ρ̄|G`
is semi-stable,

• and if p 6= ` then #ρ̄(Ip)|`.

Note that if E/Q is a semistable elliptic curve then ρ̄E,` : GQ → GL2(F`), sat-
isfies these conditions if it is irreducible. By a theorem of Mazur (theorem 2.9)
this will be the case if ` > 7.

Let Σ denote a finite set of prime numbers. If R is an object of CO then
we say that a continuous lifting ρ : GQ → GL2(R) of ρ̄ is of type Σ if the
following hold.

• det ρ = ε.

• ρ|G`
is semi-stable.

• If ` 6∈ Σ and ρ̄|G`
is good then ρ|G`

is good.

• If p 6∈ Σ ∪ {`} and ρ̄ is unramified at p then ρ is unramified at p.

• If p 6∈ Σ ∪ {`} then ρ|Ip ∼
(

1 ∗
0 1

)
.

Roughly speaking we require that at primes p 6∈ Σ, ρ is as unramified as could
be hoped for and we require that ρ|G`

is semi-stable. Note that if Σ ⊂ Σ′ and
ρ is a lifting of type Σ then it is also a lifting of type Σ′. Note also that if E/Q
is an elliptic curve which is semi-stable at ` and for which ρ̄E,` is irreducible
and semi-stable, then ρE,` : GQ → GL2(Z`) is a lifting of type Σ if Σ contains
all the primes for which E has bad reduction.

Now suppose that ρ : GQ → GL2(O/λn) is a lifting of ρ̄ of type Σ. We will
write H1

Σ(Q, ad0ρ) for H1
LΣ

(Q, ad0ρ), where
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• LΣ,p = H1(Gp/Ip, (ad0ρ)Ip) if p 6∈ Σ ∪ {`};

• LΣ,p = H1(Gp, (ad0ρ)) if p ∈ Σ and p 6= `;

• LΣ,` = H1
f (G`, (ad0ρ)) if ` 6∈ Σ;

• LΣ,` = H1
ss(G`, (ad0ρ)) if ` ∈ Σ.

Note that the pairing ad0ρ× ad0ρ→ O/λn given by (a, b) 7→ tr (ab) is perfect
and respects the action of GQ (i.e. tr ((ad0ρ)(g)a, (ad0ρ)(g)b) = tr (ab) for all
g ∈ GQ). Choosing a generator for the O-module Hom(O/λn,Q`/Z`), we
obtain an isomorphism of O[GQ]-modules

ad0ρ(1) ∼= HomO(ad0ρ,O/λn)(1) ∼−→ Hom(ad0ρ,Q`/Z`)(1) = (ad0ρ)∗.

The O-submodule of H1(Q, ad0ρ(1)) corresponding to H1
L∗Σ

(Q, (ad0ρ)∗) is in-

dependent of the choice of generator and we denote it H1
Σ(Q, ad0ρ(1)). Thus

H1
Σ(Q, ad0ρ(1)) is defined by the local conditions {L⊥Σ,v} where the orthogo-

nality is with respect to the pairing

H1(Gv, ad0ρ)×H1(Gv, ad0ρ(1))→ Q`/Z`

arising from the above isomorphism. We may equivalently regard the orthog-
onality as being with respect to the natural perfect O-bilinear pairing defined
by the composition

H1(Gv, ad0ρ)×H1(Gv, ad0ρ(1))→ H2(Gv, ad0ρ⊗O ad0ρ(1))
→ H2(Gv,O/λn(1)) ∼= O/λn.

Note that if p 6= ` we have that

• L⊥Σ,p = H1(Gp/Ip, (ad0ρ)(1)Ip) if p 6∈ Σ;

• L⊥Σ,p = (0) if p ∈ Σ.

If ρ : GQ → GL2(O) is a lifting of ρ̄ of type Σ, we will write H1
Σ(Q, ad0ρ⊗

K/O) for the direct limit lim
→
H1

Σ(Q, ad0ρ⊗λ−n/O), andH1
Σ(Q, ad0ρ(1)⊗K/O)

for the direct limit lim
→
H1

Σ(Q, ad0ρ(1)⊗ λ−n/O).

The main result we need about deformations of ρ̄ is the following.

Theorem 2.41 There is a universal lifting ρuniv
Σ : GQ → GL2(RΣ) of ρ̄ of

type Σ, i.e. ρuniv
Σ is a lifting of type Σ and if ρ : GQ → GL2(R) is any lifting

of type Σ then there is a unique O-algebra homomorphism φ : RΣ → R such
that ρ ∼ φ ◦ ρuniv

Σ . Moreover we have the following.
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(a) If K ′/K is a finite extension and R′Σ is the corresponding deformation
ring then R′Σ = RΣ ⊗O O′ and (ρuniv

Σ )′ = ρuniv
Σ ⊗ 1.

(b) RΣ can be topologically generated as an O-algebra by dimkH
1
Σ(Q, ad0ρ̄)

elements.

(c) If φ : RΣ →→ O is a O-algebra homomorphism, if ρ = φ ◦ ρΣ and if
℘ = kerφ then Hom(℘/℘2, K/O) ∼= H1

Σ(Q, ad0ρ⊗K/O).

Proof: Let L0 denote the fixed field of ρ̄. Let Ln (for n ∈ Z>0) denote the
maximal elementary abelian `-extension of Ln−1 unramified outside Σ, {`}
and the primes where ρ̄ ramifies. Let L∞ =

⋃
n Ln and let G = Gal (L∞/Q).

Note that any lifting of ρ̄ of type Σ factors through G. Gal (L∞/L0) is a pro-
`-group and its maximal elementary abelian quotient, Gal (L1/L0), is finite
by theorem 2.2. We deduce from the following lemma that Gal (L∞/L0) and
hence G are topologically finitely generated. (See for instance [Koc] Satz 4.10
for a proof of this lemma.)

Lemma 2.42 Let H be a pro-`-group and H̄ its maximal elementary abelian
quotient. Suppose h1, ..., hr ∈ H map to a set of generators of H̄, then h1, ..., hr
topologically generate H.

Let D denote the category of profinite O[G]-modules M for which

• M is semi-stable as an O[G`]-module,

• if ` 6∈ Σ and if ρ̄ is good then M is good as an O[G`]-module,

• if p 6∈ Σ∪{`} and if ρ̄ is ramified at p then there is an exact sequence of
O[Ip]-modules

(0)→M (−1) →M →M (0) → (0),

such that Ip acts trivially on M (−1) and M (0).

Then we see that a lifting ρ : GQ → GL2(R) of ρ̄ is of type Σ if and only if

• ρ factors through G,

• det ρ = ε,

• Mρ is an object of D.
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The existence part of theorem 2.41 now follows from theorem 2.36 and part (a)
follows from lemma 2.38. Parts (b) and (c) follow from lemmas 2.39 and 2.40,
and the following observation:
If ρ : GQ → GL2(O/λn) is a lifting of type Σ and if p 6∈ Σ ∪ {l} is a prime
where ρ̄ ramifies then

ker (H1(Gp, ad0ρ)→ H1(Ip, ad0ρ/(ad0ρ)Ip)) = H1(Gp/Ip, (ad
0ρ)Ip).

(2.7.1)

Equation (2.7.1) follows from the fact that the natural map H1(Ip, ad0ρ) →
H1(Ip, ad0ρ/(ad0ρ)Ip) is an injection (in fact an isomorphism). It is nothing
other than the map (ad0ρ)Ip → (ad0ρ/(ad0ρ)Ip)Ip . This completes the proof
of theorem 2.41. 2

Corollary 2.43 Suppose that if ` = 3 then ρ̄|GQ(
√
−3)

is absolutely irreducible.
Then RΣ can be topologically generated as an O-algebra by

dimkH
1
Σ(Q, ad0ρ̄(1)) + d` +

∑
p∈Σ−{`}

dimkH
0(Qp, ad0ρ̄(1))

elements, where d` = dimkH
1
ss(Q`, ad0ρ̄) − dimkH

1
f (Q`, ad0ρ̄) if ` ∈ Σ, while

d` = 0 if ` 6∈ Σ.

Proof: Note that H0(Q, ad0ρ̄(1)) = 0 unless ` = 3 and ρ̄|GQ(
√
−3)

is not abso-

lutely irreducible. Thus according to theorem 2.18, dimkH
1
Σ(Q, ad0ρ̄) is the

sum of the following terms.

• dimkH
1
Σ(Q, ad0ρ̄(1)).

• dimkH
1
f (Q`, ad0ρ̄)−dimkH

0(Q`, ad0ρ̄)−dimkH
0(R, ad0ρ̄) ≤ 0 by propo-

sition 2.27.

• d`.

• For each p ∈ Σ− {l}, dimkH
1(Qp, ad0ρ̄)− dimkH

0(Qp, ad0ρ̄) =
dimkH

0(Qp, ad0ρ̄(1)) by the local Euler characteristic formula (see the-
orem 2.17).

2
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2.8 Special cases

In this section we will restrict attention to the deformation problems associated
with sets Q of certain special primes q. These sets Q are chosen so that the
associated deformation ring RQ enjoys a number of special properties which
will be crucial in the sequel. In particular we will only consider sets Q of
primes q which satisfy the following two properties

• q ≡ 1 mod `,

• ρ̄ is unramified at q and ρ̄(Frob q) has distinct k-rational eigenvalues.

For such primes q we will let ∆q denote the maximal quotient of (Z/qZ)×

of `-power order. Then ∆q is naturally a quotient of both Gq and GQ via the
map

χq : GQ →→ Gal (Q(ζq)/Q) ∼= (Z/qZ)× →→ ∆q.

We will let ∆Q =
∏

q∈Q ∆q, χQ =
∏

q∈Q χq : GQ →→ ∆Q and aQ denote the
augmentation ideal of O[∆Q]. Note that there is an isomorphism O[∆Q] ∼=
O[[Sq : q ∈ Q]]/((1 + Sq)

#∆q − 1 : q ∈ Q) under which aQ corresponds to
(Sq : q ∈ Q).

For each q ∈ Q, we choose an eigenvalue αq of ρ̄(Frob q) and denote the
other βq.

Lemma 2.44 If q ∈ Q then ρuniv
Q |Gq is conjugate to

(
ξ 0
0 εξ−1

)
for some char-

acter ξ such that ξ̄(Frob q) = αq.

Proof: Choose a lifting f ∈ Gq of Frob q. As ρ̄(f) has distinct k-rational
eigenvalues it is a simple application of Hensel’s lemma to see that we can

choose a basis such that ρuniv
Q (f) =

(
α̃q 0
0 β̃q

)
where α̃q and β̃q reduce to αq

and βq in k. It suffices to show that for any σ ∈ Iq, ρuniv
Q (σ) is diagonal in this

basis. Suppose ρuniv
Q (σ) = 12 +

(
a b
c d

)
with a, b, c, d ∈ mRQ

. Because ρuniv
Q is

tamely ramified at q we see that ρuniv
Q (f)ρuniv

Q (σ)ρuniv
Q (f)−1 = ρuniv

Q (σ)q. Thus

(α̃q/β̃q − q)b and (β̃q/α̃q − q)c lie in mRQ
(b, c) so that (b, c) = mRQ

(b, c) and
(by Nakayama’s lemma) b = c = 0. 2

We let ξq,Q denote the character ξ : Gq → R×Q in the conclusion of the
lemma. The restriction of ξq,Q to Iq factors through χq. We let ξQ denote the
character GQ → R×Q which is unramified outside the primes of Q and whose
restriction to Iq is ξq,Q for each q in Q. Thus ξQ factors through χQ. We wish
to regard RQ as an O[∆Q]-algebra, and it will be most convenient to do so
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via the map which gives rise to ξ−2
Q . Note the following consequence of the

lemma 2.44.

Corollary 2.45 The natural map RQ → R∅ gives rise to an isomorphism
RQ/aQRQ

∼→ R∅.

Lemma 2.46 (a) If q ∈ Q then H0(Fq, ad0ρ̄) = H0(Fq, ad0ρ̄(1)) = k and
H1(Fq, ad0ρ̄) = H1(Fq, ad0ρ̄(1)) = k.

(b) RQ can be topologically generated as an O-algebra by

#Q+ dimkH
1
Q(Q, ad0ρ̄(1))

elements.

(c) If

H1
∅ (Q, ad0ρ̄(1))

∼→
⊕
q∈Q

H1(Fq, ad0ρ̄(1))

then #Q = dimkH
1
∅ (Q, ad0ρ̄(1)) and RQ can be topologically generated

as an O-algebra by #Q elements.

Proof: The first part is a direct calculation using the fact that Frob q acts
semi-simply on ad0ρ̄ with eigenvalues x, 1, x−1 for some x ∈ k̄\{0, 1}. The
same is true for ad0ρ̄(1) as q ≡ 1 mod `. The second and third parts follow
from this and corollary 2.43. 2

For the proof of the last theorem of the chapter, we shall need two results
on finite groups.

Theorem 2.47 (a) If H is a finite subgroup of PGL2(C) then H is iso-
morphic to one of the following groups: the cyclic group Cn of order n
(n ∈ Z>0), the dihedral group D2n of order 2n (n ∈ Z>1), A4, S4 or A5.

(b) If H is a finite subgroup of PGL2(F̄`) then one of the following holds:

• H is conjugate to a subgroup of the upper triangular matrices;

• H is conjugate to PSL2(F`r) or PGL2(F`r) for some r ∈ Z>0;

• H is isomorphic to A4, S4, A5 or the dihedral group D2r of order
2r for some r ∈ Z>1 not divisible by `.

In fact we shall only need part (b) which is due to Dickson [Dic2], secs. 255,
260 (see also [Hu] II.8.27), but we have included part (a) for later reference.
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Lemma 2.48 Let F be a finite field of odd characteristic `. If #F 6= 5, then

H1(SL2(F),End 0(F2)) = 0.

Proof: This is a special case of results of [CPS], table 4.5 (assuming #F 6= 3).
In fact we shall only need it in the case ` = 3, but the proof in the general
case is no more difficult, and we sketch it here for the reader’s convenience.

We let B (resp. U) denote the group of upper-triangular (resp. unipotent)
matrices in G = SL2(F). Since ` does not divide the index of B in G, the
restriction homomorphism

H1(G,End 0(F2))→ H1(B,End 0(F2))

is injective, so it suffices to prove the latter group vanishes. Since ` does not
divide the index of U in B, we have

H i(B,M) ∼= H i(U,M)B/U

all integers i ≥ 0 and F[B]-modules M . If #F = 3, then one checks directly
that for M = End 0(F2

3),

H1(U,M) ∼= kerN/(σ − 1)M = 0

where σ generates U and N = 1+σ+σ2 on M . If #F > 5, then one proceeds
by writing

(0) = M0 ⊂M1 ⊂M2 ⊂M3 = End 0(F2)

as F[B]-modules where the successive quotients Mi/Mi−1, (for i = 1, 2, 3) are
one-dimensional over F. The calculation is then straightforward using long
exact sequences of cohomology, except in the case #F = 9 where one must
also check that the one-dimensional space of classes in H1(U,M3/M2) fixed by
B/U maps injectively to H2(U,M2/M1) via the connecting homomorphism.
2

Theorem 2.49 Keep the assumptions of the last section and suppose more-
over that if L = Q(

√
(−1)(`−1)/2`) then ρ̄|GL

is absolutely irreducible. Then
there exists a non-negative integer r such that for any n ∈ Z>0 we can find a
finite set of primes Qn with the following properties.

(a) If q ∈ Qn then q ≡ 1 mod `n.

(b) If q ∈ Qn then ρ̄ is unramified at q and ρ̄(Frob q) has distinct eigenvalues.

(c) #Qn = r.
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(d) RQn can be topologically generated by r elements as a O-algebra.

Proof: Take r = dimkH
1
∅ (Q, ad0ρ̄(1)). It suffices to find a set Qn with the

following properties.

(a) If q ∈ Qn then q ≡ 1 mod `n.

(b) If q ∈ Qn then ρ̄ is unramified at q and ρ̄(Frob q) has distinct eigenvalues.

(c) H1
∅ (Q, ad0ρ̄(1))

∼→
⊕

q∈Qn
H1(Fq, ad0ρ̄(1)).

As each H1(Fq, ad0ρ̄(1)) is one dimensional we may replace the last condition
with

H1
∅ (Q, ad0ρ̄(1)) ↪→

⊕
q∈Qn

H1(Fq, ad0ρ̄(1)).

Thus what we need show is that for each non-zero class [ψ] ∈ H1
∅ (Q, ad0ρ̄(1))

there is a prime q (depending on [ψ]) such that

(a) q ≡ 1 mod `n,

(b) ρ̄ is unramified at q and ρ̄(Frob q) has distinct eigenvalues,

(c) resq[ψ] ∈ H1(Fq, ad0ρ̄(1)) is nontrivial.

Using the Chebotarev density theorem we see that it will do to find σ ∈ GQ
such that

(a) σ|Q(ζ`n ) = 1,

(b) ad0ρ̄(σ) has an eigenvalue other than 1,

(c) ψ(σ) 6∈ (σ − 1)ad0ρ̄(1).

For m ≥ 0, let Fm denote the extension of Q(ζ`m) cut out by ad0ρ̄; i.e.,
the field fixed by the kernel of the representation ad0ρ̄ restricted to GQ(ζ`m ).
We will show that ψ(GFn) is non-trivial. For this it suffices to prove that
H1(Gal (Fn/Q), ad0ρ̄(1)) = (0). Consider the inflation-restriction exact se-
quence

(0)→ H1(Gal (F0/Q), (ad0ρ̄(1))GF0 )→ H1(Gal (Fn/Q), ad0ρ̄(1))

→ H1(Gal (Fn/F0), ad0ρ̄(1))GQ .
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Since F1/F0 is an extension of degree prime to `, and since GQ acts trivially
on Gal (Fn/F1), we have:

H1(Gal (Fn/F0), ad0ρ̄(1))GQ ' Hom(Gal (Fn/F1), ad0ρ̄(1)GQ).
(2.8.1)

Since ρ̄|GL
is absolutely irreducible, the cohomology group in equation (2.8.1)

vanishes. On the other hand, GF0 acts trivially on ad0ρ̄ so the first term van-
ishes as well unless Gal (F0/Q) has order divisible by ` and has Gal (Q(ζ`)/Q)
as a quotient. Recall that Gal (F0/Q) is isomorphic to the projective image of
ρ̄, so by theorem 2.47 we are reduced to the case ` = 3 and the map

Gal (F0/Q(ζ3))→ PSL2(k̄)

has image conjugate to PSL2(F3r) for some r ≥ 1. It suffices to prove that in
this case

H1(Gal (F0/Q(ζ3)), ad0ρ̄⊗k k̄)) = (0),

but this follows directly from lemma 2.48.
Now note that since ρ̄|GL

is absolutely irreducible, so is ρ̄|GQ(ζ`n )
. Regarding

ψ(GFn) as a Gal (Fn/Q(ζ`n))-submodule of ad0(ρ̄), we find that some g ∈
Gal (Fn/Q(ζ`n)) of order not dividing ` fixes a non-zero element of ψ(GFn).
Let σ0 be a lifting of g to GQ(ζ`n ). We will look for σ = τσ0 with τ ∈ GFn . We
only need choose τ so that ψ(τσ0) = ψ(τ) + ψ(σ0) 6∈ (σ0 − 1)ad0ρ̄(1). This is
possible because ψ(GF ) 6⊂ (g − 1)ad0ρ̄(1). 2

3 Modular forms and Galois representations

3.1 From modular forms to Galois representations

We suppose in this section that f =
∑
an(f)qn is a newform of weight two and

level Nf (see definition 1.21). Let Kf denote the number field in C generated
by the Fourier coefficients an(f). Let ψf denote the character of f , i.e., the
homomorphism (Z/NfZ)× → K×f defined by mapping d to the eigenvalue of
〈d〉 on f .

Recall that a construction of Shimura (section 1.7) associates to f an
abelian variety Af of dimension [Kf : Q]. This abelian variety is a certain
quotient of J1(Nf ), and the action of the Hecke algebra on J1(Nf ) provides an
embedding

Kf ↪→ End Q(Af )⊗Q.
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We saw also that for each prime ` the Tate module T`(Af )⊗Z`
Q` becomes a

free module of rank two over Kf ⊗Q` (lemma 1.48). The action of the Galois
group GQ on the Tate module commutes with that of Kf , so that a choice of
basis for the Tate module provides a representation

GQ → GL2(Kf ⊗Q`). (3.1.1)

As Kf ⊗Q` can be identified with the product of the completions of Kf at its
primes over `, we obtain from f certain 2-dimensional `-adic representations
of GQ.

`-adic representations: In this discussion, we fix a prime ` and a finite
extension K of Q`. We let O denote the ring of integers of K, λ the maximal
ideal and k the residue field. We shall consider `-adic representations with
coefficients in finite extensions of our fixed field K. We regard K as a subfield
of Q̄` and fix embeddings Q̄ ↪→ Q̄` and Q̄ ↪→ C̄. If K ′ is a finite extension of
K with ring of integers O′, then we say that an `-adic representation G` →
GL2(K

′) is good (respectively, ordinary, semistable) if it is conjugate over
K ′ to a representation G` → GL2(O′) which is good (respectively, ordinary,
semistable) in the sense of section 2.4.

Let K ′f denote the K-algebra in Q̄` generated by the Fourier coefficients of
f . Thus K ′f is a finite extension of K, and it contains the completion of Kf at
the prime over ` determined by our choice of embeddings. We let O′f denote
the ring of integers of K ′f and write kf for its residue field. We define

ρf : GQ → GL2(K
′
f )

as the pushforward of (3.1.1) by the natural map Kf ⊗Q` → K ′f . We assume
the basis is chosen so that ρf factors through GL2(O′f ). We also let ψ′f denote
the finite order `-adic character

GQ →→ Gal (Q(ζNf
)/Q)→ (K ′f )

×

obtained from ψf .
The following theorem lists several fundamental properties of the `-adic

representations ρf obtained from Shimura’s construction. The result is a com-
bination of the work of many mathematicians. We discuss some of the proofs
and provide references below. In the statement we fix f as above and write
simply N , an, ρ, ψ, ψ′ and K ′ for Nf , an(f), ρf , ψf , ψ

′
f and K ′f respectively.

Theorem 3.1 The `-adic representation

ρ : GQ → GL2(K
′)

has the following properties.
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(a) If p 6 |N` then ρ is unramified at p and ρ(Frob p) has characteristic poly-
nomial

X2 − apX + pψ(p).

(b) det(ρ) is the product of ψ′ with the `-adic cyclotomic character ε, and

ρ(c) is conjugate to
(

1 0
0 −1

)
.

(c) ρ is absolutely irreducible.

(d) The conductor N(ρ) is the prime-to-`-part of N .

(e) Suppose that p 6= ` and p||N . Let χ denote the unramified character
Gp → (K ′)× satisfying χ(Frob p) = ap. If p does not divide the conductor
of ψ, then ρ|Gp is of the form (

χε ∗
0 χ

)
.

If p divides the conductor of ψ, then ρ|Gp is of the form

χ−1εψ′|Gp ⊕ χ.

(f) If 6̀ |2N , then ρ|G`
is good. Moreover ρ|G`

is ordinary if and only if a` is
a unit in the ring of integers of K ′, in which case ρI`(Frob `) is the unit
root of the polynomial X2 − a`X + `ψ(`).

(g) If ` is odd and `||N , but the conductor of ψ is not divisible by `, then
ρ|G`

is ordinary and ρI`(Frob `) = a`.

Proof: Part (a) was established by Shimura ([Shi2], [Shi3]). The key ingredi-
ent is the Eichler-Shimura congruence relation, theorem 1.29. Recall that
J1(N) has good reduction at primes p not dividing N . So the action of
Gp on T`(Af ) ⊗Z`

Q` is unramified and is in fact described by the action of
Frob p ∈ GFp on the Tate module of the reduction. But this is given by the
Frobenius endomorphism F whose characteristic polynomial is computed in
corollary 1.41.

The first assertion of (b) follows from (a) on applying the Chebotarev
density theorem. The second assertion then follows on noting that ψ(−1) = 1.

Part (c) was proved by Ribet (see section 2 of [R3]). Assuming reducibility
of the representation, he applies algebraicity results of Lang and Serre to
obtain a contradiction to the estimate on the Fourier coefficients stated in
theorem 1.24.
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Parts (d) and (e) follow from a deep result of Carayol [Ca1], Thm. (A),
building on the work of Langlands [Ll1], Deligne and others. In fact, this
result and the local Langlands correspondence characterize ρ|Gp in terms of
ψ|Gp and the L- and ε-factors at p of twists of f . The descriptions in the case
of p||N are based on the analysis of Deligne-Rapoport of the reduction mod p
of J1(N) (see [DR], [Ll1]).

The first assertion of (f) follows from the fact that Af has good reduction
at ` if ` does not divide N . The second assertion of (f) (respectively, all of (g))
follows from the Eichler-Shimura congruence relation (respectively, the work of
Deligne-Rapoport), and general results on `-divisible groups and the reduction
of abelian varieties; see thm. 2.2 of [W2], lemma 2.1.5 of [W1], §12 of [Gro]
and thms. 2.5 and 2.6 of [Edi]. The restriction to odd ` in (f) and (g) is made
primarily out of lack of suitable definitions. 2

Mod ` representations: We maintain the notation used in the discussion of
`-adic representations. Define

ρ̄f : GQ → GL2(kf )

to be the semi-simplification of the reduction of ρf . (See the discussion fol-
lowing proposition 2.6.) Assertions analogous to those in theorem 3.1 hold for
ρ̄ = ρ̄f , except that

• The representation need not be absolutely irreducible (as in (c)). How-
ever if ` is odd, one checks using (b) that ρ̄ is irreducible if and only if
it is absolutely irreducible.

• In (d) one only has divisibility of the prime-to-` part of Nf by N(ρ̄) in
general.

The various possibilities for mp(ρ̄) to be strictly less than the exponent of
p in N (where p 6= `) were classified independently by Carayol [Ca2] and Livné
[Liv]. We record the following consequence of their results (cf. the introduction
of [DT1]):

Proposition 3.2 Suppose that p is a prime such that p|Nf , p 6≡ 1 mod ` and
ρ̄f is unramified at p. Then tr (ρ̄f (Frob p))

2 = (p+ 1)2 in kf .

Artin representations: The theory of Hecke operators and newforms (see
section 1.3) extends to modular forms on Γ1(N) of arbitrary weight. The
construction of `-adic representations associated to newforms was generalized
to weight greater than 1 by Deligne [De] using étale cohomology. There are
also Galois representations associated to newforms of weight 1 by Deligne and
Serre [DS], but an essential difference is that these are Artin representations.
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Theorem 3.3 If g =
∑
an(g)q

n is a newform of weight one, level Ng and
character ψg, then there is an irreducible Artin representation

ρg : GQ −→ GL2(C)

of conductor Ng with the following property: If p 6 |Ng, then the characteristic
polynomial of ρg(Frob p) is

X2 − ap(g)X + ψg(p).

Remark 3.4 Note that det(ρg) is the character of GQ corresponding to ψ and

ρg(c) is conjugate to
(

1 0
0 −1

)
(see theorem 3.1).

Remark 3.5 A basis can be chosen so that the representation ρg takes values
in GL2(Kg) (where Kg is the number field generated by the an(g)). Moreover
suppose that K is a finite extension of Q` in Q̄` and we have fixed embeddings
of Q̄ in C and Q̄`). If Kg is contained in K, then we can view ρg as giving rise
to an `-adic representation GQ → GL2(K) and hence a mod ` representation
GQ → GL2(k).

Remark 3.6 A key idea in the construction of ρg is to first construct the mod
` representations using those already associated to newforms of higher weight.
More precisely, suppose that Kg ↪→ K as in remark 3.5. One can show that
for some newform f of weight 2 and level Nf dividing N` we have

ap(g) ≡ ap(f), ψg(p)) ≡ pψf (p)

for all p 6 |N`, the congruence being modulo the maximal ideal of the ring
of integers of K ′f . Thus ρ̄f is the semisimplification of the desired mod `
representation (with scalars extended to kf ).

3.2 From Galois representations to modular forms

It is conjectured that certain types of two-dimensional representations of GQ
always arise from the constructions described in section 3.1. We now state
some of the conjectures and the results known prior to [W3] and [TW].

Artin representations:

Conjecture 3.7 Let ρ : GQ → GL2(C) be a continuous irreducible represen-
tation with det(ρ(c)) = −1. Then ρ is equivalent to ρg for some newform g of
weight one.
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Recall that ρg is the Artin representation associated to g by the Deligne-Serre
construction (theorem 3.3).

Remark 3.8 Conjecture 3.7 is equivalent to the statement that the Artin
L-functions attached to ρ and to all its twists by one-dimensional characters
are entire. (The Artin conjecture predicts that the Artin L-function L(s, ρ) is
entire, for an arbitrary irreducible, non-trivial Artin representation ρ : GQ −→
GLd(C).)

A large part of conjecture 3.7 was proved by Langlands in [Ll2], and the
results were extended by Tunnell [Tu].

Theorem 3.9 Let ρ : GQ → GL2(C) be a continuous irreducible representa-
tion such that ρ(GQ) is solvable and det(ρ(c)) = −1. Then ρ is equivalent to
ρg for some newform g of weight one.

Remark 3.10 Note that by theorem 2.47, part (a), the solvability hypothesis
excludes only the case where the projective image of ρ is isomorphic to A5.

Remark 3.11 If the projective image of ρ is dihedral, then ρ is induced from
a character of a quadratic extension of Q. In this case the result can already
be deduced from work of Hecke.

Mod ` representations: We fix notation as in the discussion of `-adic and
mod ` representations in section 3.1.

Definition 3.12 We say that a representation ρ̄ : GQ → GL2(k) is modular
(of level N) if for some newform f of weight 2 (and level N), ρ̄ is equivalent
over kf to ρ̄f .

By proposition 1.32 the notion is independent of the choices in section 3.1
of embeddings K ↪→ Q̄`, Q̄ ↪→ Q̄` and Q̄ ↪→ C. Moreover if K ′ is a finite
extension of K with residue field k′, then ρ̄ is modular if and only if ρ̄⊗k k′ is
modular.

The following was conjectured by Serre [Se7], (3.2.3). (See also [Da1] for
further discussion and references.)

Conjecture 3.13 Let ρ̄ : GQ → GL2(k) be a continuous absolutely irreducible
representation with det(ρ̄(c)) = −1. Then ρ̄ is modular.

Some cases of Serre’s conjecture can be deduced from theorem 3.9.
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Theorem 3.14 Let ρ̄ : GQ → GL2(k) be a continuous absolutely irreducible
representation with det(ρ̄(c)) = −1. Suppose that one of the following holds:

(a) k = F3;

(b) the projective image of ρ̄ is dihedral.

Then ρ̄ is modular.

Sketch of proof: For case (a), we consider the surjection

GL2(Z[
√
−2])→ GL2(F3)

defined by reduction mod (1 +
√
−2). One checks that there is a section

s : GL2(F3) → GL2(Z[
√
−2]) and applies theorem 3.9 to s ◦ ρ̄. The resulting

representation arises from a weight one newform, and hence its reduction ρ̄ is
equivalent to ρ̄f for some f (see remark 3.6).

In case (b), ρ̄ is equivalent to a representation of the form Ind
GQ
GF
ξ̄ where

F is a quadratic extension of Q and ξ̄ is a character GF → k×. (We have
here enlarged K if necessary.) Let n be the order of ξ̄, choose an embedding
Q(e2πi/n) ↪→ K and lift ξ̄ to a character ξ : GF → Z[e2πi/n]×. We may

always choose ξ so that the Artin representation ρ = Ind
GQ
GF
ξ is odd, i.e.,

det(ρ(c)) = −1. (In the case ` = 2 and F real quadratic, we may have to
multiply ξ by a suitable quadratic character ofGF .) We then apply theorem 3.9
to ρ and deduce as in case (a) that ρ̄ is modular. 2

Serre also proposed a refinement ([Se7], (3.2.4)) of the conjecture which
predicts that ρ̄ is associated to a newform of specified weight, level and char-
acter. Through work of Mazur, Ribet [R5], Carayol [Ca2], Gross [Gro] and
others, this refinement is now known to be equivalent to conjecture 3.13 if ` is
odd. (One also needs to impose a mild restriction in the case ` = 3.) See [R6]
and [Di1] for statements of the results and further references; here we give a
variant which applies to newforms of weight two. Before doing so, we assume
` is odd and define an integer δ(ρ̄) as follows:

• δ(ρ̄) = 0 if ρ̄|G`
is good;

• δ(ρ̄) = 1 if ρ̄|G`
is not good and ρ̄|I` ⊗k k̄ is of the form(

εa ∗
0 1

)
,

(
ε ∗
0 εa

)
or

(
ψa 0
0 ψ`a

)
for some positive integer a < `. (Recall that ε is the cyclotomic character
and ψ is the character of I` defined after lemma 2.22.)
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• δ(ρ̄) = 2 otherwise.

Theorem 3.15 Suppose that ` is odd and ρ̄ is absolutely irreducible and mod-
ular. If ` = 3, then suppose also that ρ̄|GQ(

√
−3)

is absolutely irreducible. Then
there exists a newform f of weight two such that

• ρ̄ is equivalent over kf to ρ̄f ;

• Nf = N(ρ̄)`δ(ρ̄);

• the order of ψf is not divisible by `.

Proof: The existence of such an f follows from [Di1] thm. 1.1, thm. 5.1 and
lemma 2.1, but with Nf dividing N(ρ̄)`δ(ρ̄). By lemma 2.7 above, we see that
Nf is divisible by N(ρ̄). The divisibility of Nf by δ(ρ̄) follows from results in
sec. 8 of [Gro] and sec. 2.4 of [Edi]. 2

`-adic representations: We again use the notation of section 3.1. Let ρ :
GQ → GL2(K) be an `-adic representation.

Definition 3.16 We say that ρ is modular if for some weight 2 newform f , ρ
is equivalent over K ′f to ρf .

The notion is independent of the choices of embeddings and well-behaved under
extension of scalars by proposition 1.32 (cf. definition 3.12).

The following is a special case of a conjecture of Fontaine and Mazur [FM].

Conjecture 3.17 If ρ : GQ → GL2(K) is an absolutely irreducible `-adic
representation and ρ|G`

is semistable (in the sense of section 2.4), then ρ is
modular.

(Recall that for us `-adic representations are defined to be unramified at all but
finitely many primes. Recall also that if ρ|G`

is semistable, then by definition
det ρ|I` is the cyclotomic character ε.)

Remark 3.18 Relatively little was known about this conjecture before Wiles’
work [W3]. Wiles proves that under suitable hypotheses, the modularity of ρ̄
implies that of ρ.

Remark 3.19 The conjecture stated in [FM] is stronger than the one here;
in particular, the semistability hypothesis could be replaced with a suitable
notion of potential semistability. On the other hand, one expects that if ρ|G`

is
semistable, then it is equivalent to ρf (over K ′f ) for some f on Γ1(N(ρ))∩Γ0(`)
(and on Γ1(N(ρ)) if ρ|G`

is good).
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The Shimura-Taniyama conjecture: Conjecture 1.54 can be viewed in the
framework of the problem of associating modular forms to Galois representa-
tions. Let E be an elliptic curve defined over Q. For each prime `, we let ρE,`
denote the `-adic representation GQ → GL2(Q`) defined by the action of GQ
on the Tate module of E (see section 2.2).

Proposition 3.20 The following are equivalent:

(a) E is modular.

(b) ρE,` is modular for all primes `.

(c) ρE,` is modular for some prime `.

Proof: If E is modular, then E is isogenous to Af for some weight two newform
f with Kf = Q (see section 1.8). It follows that for each prime `, ρE,` is
equivalent to the `-adic representation ρf . Hence (a) ⇒ (b) ⇒ (c).

To show (c)⇒ (b), suppose that for some ` and some f , the representations
ρE,` and ρf are equivalent. First observe that for all but finitely primes p, we
have

tr (ρf (Frob p)) = tr (ρE,`(Frob p)).

We deduce from proposition 2.11 and theorem 3.1, part (a) that for all but
finitely many primes p

ap(f) = p+ 1−#Ēp(Fp) ∈ Z. (3.2.1)

Applying proposition 2.6, we find that for each prime `, ρE,` is equivalent to
ρf and is therefore modular.

We finally show that (b) ⇒ (a). The equality (3.2.1) holds for all primes
p not dividing Nf , which by theorem 3.1, part (d), is the conductor of E.
Since det(ρf ) = det(ρE,`) = ε, we see by 3.1, Part (b) that ψf is trivial. By
theorem 1.27 parts (b) and (d) (or [AL] thm. 3), ap is in {0,±1} for primes
p dividing Nf . Thus Kf = Q and Af is an elliptic curve. Faltings’ isogeny
theorem (see [CS], sec. II.5) now tells us that E and Af are isogenous and we
conclude that E is modular. 2

Remark 3.21 Note that the equivalence (b)⇔ (c) does not require Faltings’
isogeny theorem.

Proposition 3.22 If the Fontaine-Mazur conjecture (conjecture 3.17) holds
for some prime `, then the Shimura-Taniyama conjecture (conjecture 1.54)
holds. If Serre’s conjecture (conjecture 3.13) holds for infinitely many `, then
conjecture 1.54 holds.
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Proof: The first assertion is immediate from proposition 3.20 and the irre-
ducibility of ρE,`. See [Se7], sec. 4.6 for a proof of the second. (We have
implicitly chosen the field K to be Q` in the statements of conjectures 3.17
and 3.13, but it may be replaced by a finite extension.) 2

Remark 3.23 Note that to prove a given elliptic curve E is modular, it suf-
fices to prove that conjecture 3.17 holds for a single ` at which E has semistable
reduction. Wiles’ approach is to show that certain cases of conjecture 3.13 im-
ply cases of conjecture 3.17 and hence cases of conjecture 1.54.

3.3 Hecke algebras

In this section fix the following notation. Let ` be an odd prime, let K be a
finite extension of Q`, let O denote the ring of integers of K, let λ denote its
maximal ideal and k its residue field. Fix embeddings K ↪→ Q̄`, Q̄ ↪→ Q̄` and
Q̄ ↪→ C. Let ρ̄ : GQ → GL2(k) denote a continuous representation with the
following properties

(a) ρ̄ is irreducible,

(b) ρ̄ is modular,

(c) det ρ̄ = ε,

(d) ρ̄|G`
is semi-stable,

(e) and if p 6= ` then #ρ̄(Ip)|`.

Let us first record the following lemma.

Lemma 3.24 The representation ρ̄|GL
is absolutely irreducible where L =

Q(
√

(−1)(`−1)/2`).

Proof: If it were not then we see that 6̀ |#ρ̄(GQ) and so ρ̄ is unramified at

all p 6= `. Moreover we can check that ρ̄|I` ∼
(
ε 0
0 1

)
. If ` > 3 we can use

theorem 3.15 to deduce that ρ̄ is modular of weight 2 and level 1 and hence
obtain a contradiction. If ` = 3 we see that the splitting field of ρ̄ is everywhere
unramified over Q(

√
−3) and hence must equal Q(

√
−3), a contradiction. 2

Let Σ denote a finite set of primes. For the application to modularity of
semistable elliptic curves, it suffices to consider sets Σ contained in Σρ̄ where
Σρ̄ is defined as follows
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Definition 3.25 For a representation ρ̄ as above, we let Σρ̄ denote the set of
primes p satisfying

• p = ` and ρ̄|G`
is good and ordinary; or

• p 6= ` and ρ̄ is unramified at p.

We shall sometimes assume that Σ ⊂ Σρ̄ in order to simplify statements and
proofs. Let NΣ denote the set of newforms f such that

ρf : GQ → GL2(O′f )

is equivalent to a lifting of ρ̄⊗k kf of type Σ and `2 6 |Nf (the last condition is
presumably not necessary, cf. remark 3.19). From theorem 3.1 and lemma 2.7
one deduces the following description of NΣ.

Lemma 3.26 The set NΣ consists of newforms f such that

• ρ̄f ∼= ρ̄⊗k kf ,

• ψf is trivial,

• Nf divides `δN(ρ̄)
∏

p∈Σ−{`}
pdim ρ̄Ip

, where δ = 0 if ρ̄ is good and ` 6∈ Σ and

δ = 1 otherwise.

As ρ̄ is modular it follows from theorem 3.15 that for all Σ, NΣ 6= ∅. Set
T̃Σ =

∏
f∈NΣ

O′f . If p is a prime not in Σ and not dividing `N(ρ̄), we let Tp

denote the element (ap(f))f in T̃Σ. Then define TΣ to be the O-subalgebra of
T̃Σ generated by the elements Tp for such primes p. Then TΣ is a complete
noetherian local O-algebra with residue field k. Moreover it is reduced and it
is a finitely generated free O-module.

Lemma 3.27 There is a continuous representation

ρmod
Σ : GQ → GL2(TΣ)

such that if p 6 |`N(ρ̄) and p 6∈ Σ then ρmod
Σ is unramified at p and we have

tr ρmod
Σ (Frob p) = Tp. Moreover we have the following.

(a) ρmod
Σ is a lift of ρ̄ of type Σ and there is a unique surjection φΣ : RΣ →→ TΣ

such that ρmod
Σ ∼ φΣ ◦ ρuniv

Σ .

(b) If Σ′ ⊃ Σ then there is a unique surjection TΣ′ →→ TΣ such that ρmod
Σ′

pushes forward to ρmod
Σ and Tp maps to Tp for p 6 |`N(ρ̄) and p 6∈ Σ′.
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(c) If K ′ is a finite extension of K and T′Σ is constructed in the same way
as TΣ but with K ′ replacing K then T′Σ ∼= TΣ ⊗O OK′.

Proof: Consider ρ̃mod
Σ =

∏
ρf : GQ → GL2(T̃Σ). Choose some complex con-

jugation, c, and conjugate ρ̄ so that ρ̄(c) =
(

1 0
0 −1

)
. By conjugating ρ̃mod

Σ

we may assume that modulo every maximal ideal it reduces to ρ̄ and that

ρ̃mod
Σ (c) =

(
1 0
0 −1

)
. Call the corresponding basis {e+, e−}. Note that by con-

tinuity and the Chebotarev density theorem tr ρ̃mod
Σ is valued in TΣ. Thus for

any g ∈ GQ the diagonal entries of ρ̃mod
Σ (g) lie in TΣ, because tr ρ̃mod

Σ (g) and
tr ρ̃mod

Σ (cg) both do.

By irreducibility of ρ̄ we can find some σ ∈ GQ such that ρ̄(σ) =
(
∗ b∗ ∗
)

where b 6= 0. Rescaling e+ we may assume that ρ̃mod
Σ (σ) =

(
a 1
c d

)
. Then for all

g ∈ GQ the lower left entry of ρ̃mod
Σ (g) lies in TΣ (look at the upper left entry

of ρ̃mod
Σ (σg)). Again using the irreducibility of ρ̄ we can find τ ∈ GQ such that

ρ̃mod
Σ (τ) =

(∗ ∗
e ∗
)

where e ∈ T×Σ. Looking at the lower right entry of ρ̃mod
Σ (τg)

we see that for any g ∈ GQ the upper right entry of ρ̃mod
Σ (g) lies in TΣ. Thus

ρ̃mod
Σ is now in fact valued in GL2(TΣ) and will be our candidate for ρmod

Σ . We
leave the verification of the other properties of ρmod

Σ as an exercise. 2

Example 3.28 Let ρ̄ = ρ̄f57B ,3 where f57B is the newform of level 57 discussed
in the example of section 1.6. As f57B is not congruent modulo 3 to any form of
level 19 or 3 we see by theorem 3.15 that ρ̄ is ramified at 19 and ρ̄|G3 is not good.
On the other hand ρ̄ is semi-stable. The facts that ρ̄(Frob 2) has order 8 (see the
table below) and 3|#ρ̄(I19) (from the discussion above) imply that ρ̄ : GQ →→
GL2(F3). The table below also shows that T∅ ∼= {(x, y) ∈ Z2

3 : x ≡ y mod 3}.
There is a unique continuous representation ρmod

∅ : GQ → GL2(T∅) such that
if p 6 |57 then ρmod

∅ is unramified at p and tr ρmod
∅ (Frob p) = Tp. We have an

isomorphism T∅/3T∅
∼→ F3[ε] (where ε2 = 0) given by (x, y) 7→ x+ y−x

3
ε. Thus

we get a representation ρ : GQ → GL2(F3[ε]). The following table lists the
traces of Frobenius elements for the first few unramified primes under these
representations:

p 2 5 7 11 13 17 23 29
ρ̄ 1 1 0 0 0 0 1 −1

ρmod
∅ (1,−2) (−2, 1) (0, 3) (0,−3) (6,−6) (−6, 3) (4, 4) (2,−10)
ρ 1− ε 1 + ε ε −ε −ε 0 1 −1− ε

Exercise 3.29 Show that there are three algebra homomorphisms T∅ →
Z/9Z and hence show that there are at least three liftings of ρ̄ of type ∅
to Z/9Z.
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Exercise 3.30 What is the image of ρ?

We will need two deeper properties of the Hecke algebras TΣ (theorem 3.31
and theorem 3.36 below). These results will be proved in the next chapter
(sections 4.3 and 4.4).

Theorem 3.31 Let Q be a finite set of primes as in section 2.8. Then TQ

is a free O[∆Q]-module, where TQ inherits the structure of an O[∆Q]-module
from RQ via the homomorphism φQ : RQ →→ TQ.

Corollary 3.32 T∅ = TQ/aQ.

Proof: From the definitions and corollary 2.45 we have that

T∅ ⊗O K = (TQ ⊗O K)/aQ,

and from the theorem we have that TQ/aQ is torsion free. The corollary
follows. 2

For the second of these results we will need some additional notation and
we restrict our attention to sets of primes contained in Σρ̄. Suppose that
Σ ⊂ Σρ̄ and that f is an element of NΣ whose Fourier coefficients are in O.
Then O′f = O and projection to the component corresponding to f gives rise
to an O-algebra homomorphism

π = πf : TΣ → O.

The pushforward of ρmod
Σ by π is equivalent to

ρf : GQ → GL2(O).

Remark 3.33 Most of the objects considered in the rest of the section will
depend on the choice of newform f . We also remark that to give an O-algebra
homomorphism TΣ → O is equivalent to giving a newform f in NΣ with
coefficients in O. Indeed given such a homomorphism, there exists a newform
f in NΣ such that the homomorphism is defined by Tp 7→ ap(f) for all p /∈ Σ
with p not dividing `N(ρ̄). The fact that ap(f) ∈ O for such p implies (using
for example parts (b) and (d) of theorem 1.27 and lemma 4.1 below) that all
the Fourier coefficients of f are in O. The uniqueness of f is a consequence of
the theory of newforms, theorem 1.22.
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For Σ′ satisfying
Σ ⊂ Σ′ ⊂ Σρ̄,

let πΣ′ denote the composite TΣ′ → TΣ → O. Let

ηΣ′ = πΣ′(Ann TΣ′
(kerπΣ′)). (3.3.1)

Note that because TΣ′ is reduced, ηΣ′ 6= (0). Also let ℘Σ′ denote the kernel of
φΣ′ ◦ πΣ′ . Recall that

#℘Σ′/℘
2
Σ′ = #H1

Σ′(Q, ad0ρf ⊗O K/O).

Remark 3.34 We have not yet shown that these groups are finite, but if
either is finite, then so is the other and their cardinality is the same.

Note that if ` is in Σρ̄ − Σ then T` := (a`(g))g ∈ T̃Σ is actually in TΣ.
This follows from theorem 3.1(f), which shows that T` = α` + `α−1

` where α`
is the eigenvalue of Frob ` on the free rank one TΣ-module M (0) where M is
the module underlying ρmod

Σ (see lemma 2.20). Now that we have shown that
T` ∈ TΣ, we may characterize α` as the unit root in TΣ of

X2 − T`X + ` = 0. (3.3.2)

For primes p in Σρ̄ − Σ we define an element cp ∈ TΣ by

cp = (p− 1)(T 2
p − (p+ 1)2).

Note that π(cp) = (p − 1)(ap(f)2 − (p + 1)2), which is non-zero by theo-
rem 1.27(a). A calculation using theorem 2.17 and theorem 3.1(a) shows that
if p is in Σρ̄ − (Σ ∪ `) then

#H1(Gp, ad0ρf ⊗O K/O)/H1(Gp/Ip, ad0ρf ⊗O K/O)
= #H0(Gp, ad0ρf ⊗O K/O(1)) = #O/π(cp).

If ` is in Σρ̄ − Σ then we see from proposition 2.27 and theorem 3.1(f) that

#H1
ss(G`, ad0ρf ⊗O K/O)/H1

f (G`, ad0ρf ⊗O K/O) = #O/π(c`).

For the next proposition define groups Hp for p ∈ Σρ̄ − Σ by

• Hp = H1(Gp, ad0ρf ⊗O K/O)/H1(Gp/Ip, ad0ρf ⊗O K/O) if p 6= `

• and H` = H1
ss(G`, ad0ρf ⊗O K/O)/H1

f (G`, ad0ρf ⊗O K/O).

Then we have the following result.
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Proposition 3.35 If Σ ⊂ Σ′ ⊂ Σρ̄, then

#H1
Σ′(Q, ad0ρf ⊗O K/O)/H1

Σ(Q, ad0ρf ⊗O K/O) ≤ #(O/π(
∏

p∈Σ′−Σ

cp)).

Moreover if we have equality then the sequence

(0)→ H1
Σ(Q, ad0ρf ⊗O K/O)→ H1

Σ′(Q, ad0ρf ⊗O K/O)→
⊕

p∈Σ′−Σ

Hp → (0)

is exact.

Finally we state the second theorem on Hecke algebras which shall be
proved in section 4.4.

Theorem 3.36 If Σ ⊂ Σ′ ⊂ Σρ̄ and f is a newform in NΣ with coefficients
in O, then we have

ηΣ′ ⊂ π(
∏

p∈Σ′−Σ

cp)ηΣ.

Corollary 3.37 With the above notation

#H1
Σ′(Q, ad0ρf ⊗O K/O)/H1

Σ(Q, ad0ρf ⊗O K/O) ≤ #(ηΣ/η
′
Σ).

3.4 Isomorphism criteria

The main thrust of Wiles’ approach is to prove that in many circumstances the
map φΣ : RΣ → TΣ is an isomorphism. For this we will need two criteria from
commutative algebra. The first was found by Wiles [W3] (but is presented here
in a slightly stronger form due to Lenstra [Len]); the second was developed by
Faltings, from the original arguments of [TW]. In both criteria the notion of
complete intersection plays a vital part.

Proofs of all the results in this section, together with some background,
references and examples, is given in chapter 5.

Definition 3.38 Suppose that A is an object of CO which is finitely generated
and free as an O-module. Then we call A a complete intersection if and only
if for some r ∈ Z≥0 and some f1, ..., fr ∈ O[[X1, ..., Xr]] we have

A ∼= O[[X1, ..., Xr]]/(f1, ..., fr)

(i.e. there are the same number of generators as relations).

98



We first record a lemma about complete intersections.

Lemma 3.39 Suppose that K ′/K is a finite extension with ring of integers
O′ and that A is an object of CO which is finitely generated and free as an
O-module. Then A is a complete intersection if and only if A⊗O O′ is.

For the proof, see chapter 5, lemma 5.30.
Now fix objects R and T of CO and a surjection of O-algebras φ : R→→ T .

Also assume that T is a finitely generated, free O-module. The first criterion
is as follows.

Theorem 3.40 Suppose that π : T →→ O. Let ℘ = ker (π ◦ φ) � R and let
η = π(Ann T (kerπ)) � O. Suppose also that η 6= (0). Then the following are
equivalent.

(a) The inequality #℘/℘2 ≤ #O/η is satisfied.

(b) The equality #℘/℘2 = #O/η is satisfied.

(c) The rings R and T are complete intersections, and the map φ : R −→ T
is an isomorphism.

The proof is explained in chapter 5, sections 5.1 to 5.8. (See theorem 5.3.)
For the second criterion let us also fix a non-negative integer r. If J �

O[[S1, ..., Sr]] is an ideal contained in (S1, ..., Sr), then by a J-structure we
mean a commutative diagram in CO

O[[S1, ..., Sr]]
↓

O[[X1, ..., Xr]]→→ R′ →→ T ′

↓ ↓
R →→ T,

such that

(a) T ′/(S1, ..., Sr)
∼→ T and R′/(S1, ..., Sr)→→ R,

(b) for each ideal I ⊃ J , I = ker (O[[S1, ..., Sr]]→ T ′/I).

Theorem 3.41 Suppose there exist a sequence of ideals Jn � O[[S1, ..., Sr]]
such that J0 = (S1, ..., Sr), Jn ⊃ Jn+1,

⋂
n Jn = (0) and for each n there exists

a Jn-structure. Then the map R −→ T is an isomorphism and these rings are
complete intersections.

The proof of this statement is explained in sections 5.9 and 5.10.
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3.5 The main theorem

We are now in a position to deduce the main theorems. We will keep the
notation and assumptions from the start of section 3.3.

Theorem 3.42 Keep the notation and assumptions of section 3.3. Then, for
all finite sets Σ ⊂ Σρ̄, φΣ : RΣ −→ TΣ is an isomorphism and these rings are
complete intersections.

Remark 3.43 There seems to be a deep link between the fact that φΣ is an
isomorphism and the fact that TΣ is a complete intersection. The proof of the
theorem divides into two parts. One first proves it in the minimal case where
Σ = ∅. One then deduces the full theorem from this special case by a different
argument. In both these steps the facts that φΣ is an isomorphism and that
TΣ is a complete intersection are proved simultaneously.

Proof of theorem 3.42: Note that to prove the theorem we may extend scalars
if necessary (by lemma 3.39) and hence assume that both of the following hold:

• The eigenvalues of all elements of the image of ρ are rational over k.

• There is a newform f in N∅ with coefficients in O, hence an O-algebra
homomorphism T∅ → O.

We first prove that φ∅ : R∅ −→ T∅ is an isomorphism and that the rings
R∅ and T∅ are complete intersections.

Note that according to theorem 2.49 and lemma 3.24 we can find an integer
r ≥ 0 and for each n ∈ Z>0 we can find a set Qn of r primes such that

• if q ∈ Qn then q ≡ 1 mod `n;

• if q ∈ Qn then ρ̄ is unramified at q and ρ̄(Frob q) has distinct eigenvalues;

• RQn can be topologically generated by r elements as a O-algebra.

Let J ′n = ((Si + 1)`
ni − 1 : i = 1, . . . , r) � O[[S1, . . . , Sr]], where the ni are

chosen such that O[[S1, . . . , Sr]]/Jn ∼= O[∆Qn ]. Then for each n we have a
diagram

O[[S1, . . . , Sr]]
↓

O[[X1, . . . , Xr]]→→ RQn →→ TQn

↓ ↓
R∅ →→ T∅,

where
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(a) RQn/(S1, . . . , Sr)
∼→ R∅ (see corollary 2.45),

(b) TQn is finite and free over O[[S1, . . . , Sr]]/J
′
n (see theorem 3.31),

(c) TQn/(S1, . . . , Sr)
∼→ T∅ (see corollary 3.32).

Let Jn = ((Si + 1)`
n − 1 : i = 1, . . . , r). Replacing TQn and RQn by TQn/Jn

and RQn/Jn we see that we have a Jn-structure for every n. Theorem 3.42 for
Σ = ∅ now follows from the criterion of theorem 3.41.

We now turn to the proof of theorem 3.42 in the general case. By theo-
rem 2.41 and theorem 3.40 we see that

#H1
∅ (Q, ad0ρf ⊗O K/O) = #O/η∅, (3.5.1)

and so applying corollary 3.37 we see that for any Σ ⊂ Σρ̄

#H1
Σ(Q, ad0ρf ⊗O K/O) ≤ #O/ηΣ. (3.5.2)

A second application of theorems 2.41 and 3.40 allows us to deduce theo-
rem 3.42. 2

Remark 3.44 In certain cases where η∅ = (1), the bound (3.5.1) on the order
of the Selmer group H1

∅ (Q, ad0ρf⊗OK/O) also follows from the previous work
of Flach, by a different method. See [Fl1] for details.

Corollary 3.45 Keep the notation of theorem 3.42 and suppose that f is a
newform in NΣ with coefficients in O.

(a) We have
#H1

Σ(Q, ad0ρf ⊗O K/O) = #O/ηΣ <∞,

where ηΣ was defined in equation (3.3.1) after remark 3.33.

(b) If Σ ⊂ Σ′ ⊂ Σρ̄ then

(0)→ H1
Σ(Q, ad0ρf ⊗O K/O)→ H1

Σ′(Q, ad0ρf ⊗O K/O)
→
⊕

p∈Σ′−ΣHp → (0)

is exact, where the groups Hp and H` were defined before proposition 3.35.

Proof: The first part now follows as a direct consequence of theorem 3.42 and
another application of theorems 2.41 and 3.40. The second part follows from
the first, together with proposition 3.35 and theorem 3.36. 2
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Corollary 3.46 Suppose ρ : GQ → GL2(K) is a continuous representation
and let ρ̄ denote its reduction. Suppose also that

(a) ρ̄ is irreducible and modular,

(b) if p 6= ` then ρ|Ip ∼
(

1 ∗
0 1

)
,

(c) ρ|G`
is semi-stable,

(d) det ρ = ε.

Then ρ is modular.

Proof: We let Σ denote the set of primes in Σρ̄ at which ρ is ramified. Then
ρ : GQ → GL2(O) is a deformation of ρ̄ of type Σ, so there is an O-algebra
homomorphism RΣ → O such that ρ = ρuniv

Σ ⊗RΣ
O. Since φΣ : RΣ → TΣ is an

isomorphism by theorem 3.42, it follows that there is a homomorphism TΣ →
O sending Tp to tr (ρ(Frob p)). Since such a homomorphism is necessarily of
the form Tp 7→ ap(f) for some newform f , it follows that ρ is equivalent to ρf
and hence is modular. 2

Corollary 3.47 Suppose that E/Q is a semi-stable elliptic curve such that
ρ̄E,3 is irreducible. Then E is modular.

Proof: One need only apply the last corollary with ` = 3 and theorem 3.14. 2

3.6 Applications

The Shimura-Taniyama conjecture for semi-stable elliptic curves:

Theorem 3.48 If E/Q is a semistable elliptic curve, then E is modular.

Proof: By corollary 3.47, it is enough to show that E is modular when its
associated mod 3 representation ρ̄E,3 is reducible, i.e., when E has a subgroup
of order 3 defined over Q. Consider the group E[5] of 5-division points of E.
The mod 5 Galois representation ρ̄E,5 associated to E[5] is irreducible: for
otherwise, E would have a subgroup of order 15 defined over Q, and would
give rise to a (non-cuspidal) rational point on the modular curve X0(15). This
curve is of genus one, and is known to have only 4 non-cuspidal rational points,
which do not correspond to semi-stable elliptic curves (and, at any rate, are
known to correspond to modular elliptic curves). Hence we know that ρ̄E,5
satisfies all the assumptions of corollary 3.46, except the (crucial!) modularity
property. To show that ρ̄E,5 is modular, one starts with
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Lemma 3.49 There is an auxiliary (semi-stable) elliptic curve A/Q which
satisfies

(a) A[5] ' E[5] as GQ-modules.

(b) A[3] is an irreducible GQ-module.

Proof: Let Y ′(5) be the curve over Q which classifies elliptic curves A together
with an isomorphism E[5] ' A[5] compatible with Weil pairings. Elliptic
curves over Q satisfying (a) correspond to rational points in Y ′(5)(Q). Ad-
joining a finite set of points to Y ′(5) yields its compactification X ′(5) which
is a twist of the modular curve X(5) with full level 5 structure. (I.e., it be-
comes isomorphic to this curve, over Q̄.) As was shown by Klein, the modular
curve X(5) over C has genus 0. Since X ′(5) has a point x0 defined over Q
corresponding to E, it is isomorphic over Q to P1. The rational points of Y ′(5)
therefore give a plentiful supply of elliptic curves satisfying condition (a). Now
consider the curve Y ′(5, 3) classifying elliptic curves A with an isomorphism
E[5] ' A[5] (respecting Weil pairings) and a subgroup of A of order 3. One
checks that the compactification of Y ′(5, 3) has genus greater than 1, hence
has only finitely many rational points by Faltings’ theorem (the Mordell con-
jecture). It follows that only finitely many points Y ′(5)(Q) are in the image of
Y ′(5, 3)(Q) under the natural map Y ′(5, 3)→ Y ′(5). Hence for all but finitely
many points x in Y ′(5)(Q), the corresponding elliptic curve A satisfies (b)
since it has no rational subgroup of order 3. Choosing x arbitrarily close in
the 5-adic topology to x0, we find that the elliptic curve A associated to x is
semistable and satisfies the two conditions in the lemma. 2

We can now finish the proof of theorem 3.48. Applying corollary 3.47 to
the curve A, we find that A is modular. Hence so is the mod 5 representation
ρ̄A,5 ' ρ̄E,5. Now applying corollary 3.46 with ` = 5 and ρ the representation
of GQ acting on the 5-adic Tate module of E, we find that ρE,5 is modular,
and hence, so is E, as was to be shown.

Remark 3.50 Wiles’ original argument uses Hilbert’s irreducibility theorem
where we have used Faltings’ theorem. The alternative presented here is based
on a remark of Karl Rubin.

Remark 3.51 The results of [W3] and [TW] actually apply to a larger class
of elliptic curves than those which are semistable. In [Di2], their methods are
further strengthened to prove that all elliptic curves which have semi-stable
reduction at 3 and 5 are modular.
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Remark 3.52 Rubin and Silverberg observed that an elliptic curve of the
form y2 = x(x − a)(x + b) has a twist with semi-stable reduction at all odd
primes, hence is modular by [Di2]. In fact it is shown in [DK] that their
observation together with the general results of [W3] and [TW] already imply
modularity.

Fermat’s Last Theorem: As was already mentioned in the introduction,
the Shimura-Taniyama conjecture for semi-stable elliptic curves (and, more
precisely, for the elliptic curves that arise in Frey’s construction explained in
section 2.2) implies Fermat’s Last Theorem.

More precisely, suppose that there is a non-trivial solution to the Fermat
equation x`+y` = z`, with ` > 3. By theorem 2.15 the Frey curve constructed
from this solution (cf. section 2.2) is a semistable elliptic curve E/Q whose
associated mod ` representation ρ̄E,` is irreducible, unramified outside 2` and is
good at `. Serre’s conjecture predicts that ρ̄E,` arises from a newform of weight
2 and level 2; the “lowering the level” result of Ribet [R5] (cf. theorem 3.15)
actually proves this, once we know that E is modular, i.e., ρ̄E,` arises from a
modular form of weight 2 and some level. But this is a contradiction, since
there are no modular forms of weight two and level two: such forms would
correspond to holomorphic differentials on the modular curve X0(2) which is
of genus 0. This contradiction completes the proof.

Values of L-functions: Also mentioned in the introduction was the relation-
ship between the calculation of the Selmer group (3.5.1) and certain cases of
a conjecture of Bloch-Kato [BK], called the Tamagawa number conjecture. It
was in this context that partial results were obtained by Flach in [Fl1] (cf.
remark 3.44).

If f is a newform of weight 2, then one can associate to f a certain “sym-
metric square” L-function L(Symm 2f, s). We shall recall the definition in sec-
tion 4.4 and explain how a method of Hida establishes a relationship between
L(Symm 2f, 2) and O/ηΣ in the setting of corollary 3.45. We may therefore
regard part (a) of that corollary as a relationship between L(Symm 2f, 2) and
the size of a Selmer group. While the result is in the spirit of the Tamagawa
number conjecture of [BK], we have not verified that the relevant cases of the
conjecture can be deduced from it. We shall however state a partial result
in the context of semistable elliptic curves. The reader can consult [Fl1] and
[Fl2] for a discussion of the relation to the Tamagawa number conjecture.
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Suppose that E is a semistable elliptic curve over Q of conductor NE and
(minimal) discriminant

∆E =
∏
p|NE

pdp .

The symmetric square L-function associated to E is defined by

L(Symm 2E, s) =
∏
p

Lp(Symm 2E, s)

where the Euler factors Lp(Symm 2E, s) are defined as follows:

• If p - NE, then

Lp(Symm 2E, s) = ((1− α2
pp
−s)(1− p1−s)(1− β2

pp
−s))−1

where αp and βp are the roots roots of X2−apX+p with ap = p+1−Np

as in section 1.1).

• If p|NE, then Lp(Symm 2E, s) = (1− p−s)−1.

Let

ΩE =

∫
E(C)

ωNeron
E ∧ ω̄Neron

E

where ωNeron
E is the Néron differential defined in section 1.1. Since E is modular

by theorem 3.48, a method of Shimura (see [Shi4] and the introduction of [St])
establishes the analytic continuation of L(Symm 2E, s) to an entire function
and shows that L(Symm 2E, 2) is a non-zero rational multiple of iπΩE. We
now explain how to deduce the following theorem from Wiles’ results and a
formula of Hida, corollary 4.21.

Theorem 3.53 Suppose that E is a semistable elliptic curve and ` is a prime
such that

• ρ̄E,` is irreducible, and

• ` does not divide 2
∏
p|NE

dp.

Then the `-part of
NEL(Symm 2E, 2)

πiΩE

is the order of
H1
∅ (Q, ad0ρE,` ⊗Z`

Q`/Z`).
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Sketch of proof: Since E is semistable, it is modular by theorem 3.48. Letting
f denote the associated newform, we have Nf = NE and L(Symm 2E, s) =
L(Symm 2f, s). Furthermore the representations ρE,` and

ρf : GQ → GL2(Z`)

are equivalent, since they are equivalent over Q` and ρ̄ = ρ̄E,` is irreducible.
The conditions on E and ` ensure that ρ̄ and f satisfy the hypotheses of
corollary 3.45 with Σ = ∅, so that

#H1
∅ (Q, ad0ρE,` ⊗Z`

Q`/Z`) = #(Z`/η∅).

To apply Hida’s formula, corollary 4.21, it remains to relate detA and ΩE

where the matrix A ∈ GL2(C) is defined in section 4.4. Using that E is
semistable, ` is odd and ρ̄E,` is irreducible, one obtains a modular parametriza-
tion π : X0(NE)→ E such that

• π∗ : H1(E,Z`)→ H1(X0(NE),Z`) has torsion-free cokernel;

• the Manin constant for π is not divisible by ` ([Maz2], sec. 4(a)).

One can then verify that Ω−1
E detA is an `-adic unit and theorem 3.53 follows

from corollary 4.21. 2

4 Hecke algebras

4.1 Full Hecke algebras

Suppose that K is a finite extension of Q` for some prime `. Let O denote
its ring of integers and let k = O/λ where λ is the maximal ideal of O. Fix
embeddings K ↪→ Q̄`, Q̄ ↪→ Q̄` and Q̄ ↪→ C. Recall that we defined “Hecke
algebras” over O in two different contexts:

• In section 1.6 as an algebra TO generated by the full set of Hecke oper-
ators acting on a space of modular forms;

• In section 3.3 as a certain subring TΣ of a product of fields of Fourier
coefficients of newforms giving rise to the same mod ` representation.

The first of these provides a concrete geometric description useful for establish-
ing properties of the fine structure of the algebra; the second yields a reduced
ring which is more easily interpreted as the coefficient ring of a Galois repre-
sentation. In the next section we shall relate the two notions by identifying
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the “reduced Hecke algebras” of the form TΣ as localizations of the “full Hecke
algebras” of the form TO. Before doing so we need to recall some fundamental
properties of the algebras TK , TO and Tk.

Let Γ = ΓH(N) for some positive integer N and subgroup H of (Z/NZ)×

(see section 1.2). We let TZ denote the subring of End (S2(Γ)) generated by
the operators Tn for all positive integers n and 〈d〉 for all d ∈ (Z/NZ)×. If R
is a ring, then TR denotes the R-algebra TZ⊗R. Recall that TR acts faithfully
on S2(Γ, R) and is finitely generated and free as an R-module. (This holds for
R = Z, hence for arbitrary R.)

We first record the following lemma:

Lemma 4.1 (a) TR is generated as an R-algebra by either of the following
sets of elements:

• Tn for all positive integers n.

• Tp for all primes p and 〈d〉 for all d in (Z/NZ)×.

(b) Suppose that D is a positive integer relatively prime to N . If either D
is odd or 2 is invertible in R, then TR is generated as an R-algebra by
either of the following sets of elements:

• Tn for all positive integers n relatively prime to D.

• Tp for all primes p not dividing D, and 〈d〉 for all d in (Z/NZ)×.

For a proof of (a), see [DI], prop. 3.5.1; for (b), see p. 491 of [W3].

The spectrum of TO: First note that TK and Tk are Artinian, hence have
only a finite number of prime ideals, all of which are maximal. Since TO is
finitely generated and free as an O-module, its maximal (resp. minimal) prime
ideals are those lying over the prime λ (resp. (0)) of O. (This follows from the
going-up and going-down theorems, [Mat] thms. 9.4 and 9.5, for example.) It
follows that the natural maps

TO ↪→ TO ⊗O K ∼= TK ; and TO →→ TO ⊗O k ∼= Tk

induce bijections

{maximal ideals of TK } ↔ {minimal primes of TO } and
{maximal ideals of Tk } ↔ {maximal primes of TO }.

Moreover, since O is complete we have (by [Mat] thms. 8.7 and 8.15, for
example) that the natural map

TO →
∏
m

Tm
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is an isomorphism, where the product is over the finite set of maximal ideals m

of TO and Tm denotes the localization of TO at m. Furthermore each Tm is a
complete local O-algebra which is finitely generated and free as an O-module,
and each minimal prime P of TO is contained in a unique m.

Now suppose that f =
∑
anq

n is a normalized eigenform in S2(Γ, K̄) for
the operators Tn for all n ≥ 1. Then Tn 7→ an defines a map TZ → K̄ and
induces a K-algebra homomorphism θf : TK → K̄. The image is the finite
extension of K generated by the an, and the kernel is a maximal ideal of TK

which depends only on the GK-conjugacy class of f . Similarly a Gk-conjugacy
class of normalized eigenforms in S2(Γ, k̄) gives rise to a maximal ideal of Tk.

Recall also that a normalized eigenform f in S2(Γ, K̄) has coefficients in
OK̄ , hence gives rise by reduction to a normalized eigenform f̄ in S2(Γ, k̄).
Furthermore if f and g are GK-conjugate, then f̄ and ḡ are Gk-conjugate.

We have thus constructed a diagram of maps of finite sets whose commu-
tativity is easily verified.{

normalized eigenforms in
S2(Γ, K̄) modulo GK-conjugacy

}
→
{

normalized eigenforms in
S2(Γ, k̄) modulo Gk-conjugacy

}
↓ ↓

{maximal ideals of TK } {maximal ideals of Tk }
l l

{minimal primes of TO } →→ {maximal primes of TO }.
(4.1.1)

Proposition 4.2 The vertical maps are bijective, and the horizontal maps are
surjective.

Proof: For the injectivity of the upper-left vertical arrow, note that if p is
a maximal ideal of TK , then all K-algebra homomorphisms TK/p ↪→ K̄ are
obtained from a single one by composing with an element of GK . For the
surjectivity, let K ′ = TK/p and p′ denote the kernel of the natural K ′-algebra
homomorphism TK′ →→ K ′. Since TK′ acts faithfully on S2(Γ, K

′), the local-
ization S2(Γ, K

′)p is non-zero, hence so is S2(Γ, K
′)[p′]. (For an R-module M

and an ideal I of R, we write M [I] for the intersection over the elements r in I
of the kernels of r : M →M .) It follows that there is a normalized eigenform
f in S2(Γ, K

′) so that p′ is the kernel of the θ′f : TK′ → K ′, and therefore p is
the kernel of θf . To prove that the upper-right vertical arrow is bijective, note
that the above arguments carry over with K replaced by k. 2

Remark 4.3 The surjectivity of the top arrow is called the Deligne-Serre
lifting lemma ([DS], lemma 6.11).
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Suppose that m is a maximal ideal of TO. Note that the maximal ideals
of TK mapping to m are precisely those p for which p ∩ TO is contained in m.
Note also that the natural map

αm : Tm ⊗O K →
∏

p

Tp

is an isomorphism, where the product is over such p.
It is straightforward to check that the above constructions are well-behaved

with respect to replacing the field K by an extension K ′. More precisely,
for each set S in the above diagram, there is a natural surjective map from
$ : S ′ → S where S ′ is defined by replacing K with K ′, and these maps are
compatible with the maps in the diagram. Furthermore the maps

Tp ⊗K K ′ →
∏

p′∈$−1(p)

Tp′ and Tm ⊗O O′ →
∏

m′∈$−1(m)

Tm′

are isomorphisms by which αm ⊗K K ′ can be identified with
∏

m′∈$−1(m)

αm′ .

Associated Galois representations: Suppose that p is a maximal ideal of
TK and m is the associated maximal ideal of TO. By lemma 1.39,

T`(JH(N))⊗Z`
K

is free of rank two over TK , so reduction mod p yields a two-dimensional vector
space over the field TK/p endowed with an action of GQ. The resulting Galois
representation

ρp : GQ → GL2(TK/p)

is unramified at all primes p not dividing N`, and for such p the characteristic
polynomial of ρp(Frob p) is

X2 − TpX + p〈p〉 mod p.

If ` is odd, then ρ̄p is defined over TO/m and we write ρm for its semisimplifi-
cation

ρm : GQ → GL2(TO/m).

Thus ρm is unramified at primes p not dividing N` and the characteristic
polynomial of Frob p is

X2 − TpX + p〈p〉 mod m.
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Suppose that g is in the GK-conjugacy class of eigenforms in S2(Γ) corre-
sponding to p. If g is a newform then TK/p is isomorphic to the field denoted
K ′g in section 3.1 and ρp can be identified with the representation

ρg : GQ → GL2(K
′
g)

considered in theorem 3.1. If also ` is odd then ρ̄g is obtained from ρm by
extending scalars. More generally suppose that g is not necessarily a newform
and consider the associated newform f . LetD denote the product of the primes
which divideN but notNf . Let T(D)

K denote theK-subalgebra of TK generated
by the operators Tn for n relatively prime to D and 〈d〉 for d in (Z/NZ)×. Let
Γ′ = ΓH′(Nf ) where H ′ is the image of H in (Z/NfZ)×, and let T′K = T′Z⊗K
where T′Z is the Hecke algebra acting on S2(Γ

′). Restriction of operators defines

a natural homomorphism T(D)
K → T′K which is surjective by lemma 4.1. The

composite with T′K →→ K ′f factors through the field T(D)
K /(p∩T(D)

K ), so we may
identify K ′f with a subfield of TK/p and ρp is then equivalent to the extension
of scalars of ρf . If ` is odd, then ρm and ρ̄f are defined and equivalent over a
common subfield of TO/m and kf .

The structure of TK : We now give an explicit description of TK in the case
that K contains the coefficients of all eigenforms of level dividing N . Let NΓ

denote the set of newforms in S2(Γ), i.e., the set of newforms f of level Nf

dividing N such that H is contained in the kernel of the character

(Z/NZ)× → (Z/NfZ)×
ψf→ K×.

By theorem 1.22

S2(Γ, K) =
⊕
f∈NΓ

SK,f ,

where SK,f is spanned by the linear independent elements

{ f(aτ) | a divides N/Nf }.

For each f =
∑
an(f)qn in NΓ, let

• TK,f denote the image of TK in EndKSK,f ;

• AK,f denote the polynomial ring over K in the variables uf,p indexed by
the prime divisors of N/Nf ;

• IK,f denote the ideal in AK,f generated by the polynomials

Pf,p(uf,p) = u
vp(N/Nf )−1

f,p (u2
f,p − ap(f)uf,p + ψf (p)p),

for primes p dividing N/Nf (setting ψf (p) = 0 if p divides Nf ).
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Consider the K-algebra homomorphism AK,f →→ TK,f defined by mapping uf,p
to the operator Tp. Since Pf,p is the characteristic polynomial of Tp on the span
of { f(apiτ) | i = 1, . . . , vp(N/Nf ) } for each a dividing N/(Nfp

vp(N/Nf )), we see
that IK,f is contained in the kernel of AK,f →→ TK,f . Taking the product over
f in NΓ, we have a surjective K-algebra homomorphism∏

f

AK,f/IK,f →→
∏
f

TK,f .

Since the natural map TK →
∏
f

TK,f is injective and

dimK TK = dimC S2(Γ,C) =
∑
f

σ0(N/Nf ) =
∑
f

dimK AK,f/IK,f ,

we conclude

Lemma 4.4 There is an isomorphism of K-algebras:

α : TK →
∏
f∈NΓ

AK,f/IK,f

defined by

• α(Tp)f = ap(f) if p is a prime not dividing N/Nf ;

• α(Tp)f = uf,p mod IK,f if p is a prime dividing N/Nf ;

• α(〈d〉)f = ψf (d) if d is relatively prime to N .

Remark 4.5 It follows that the algebra TK is a “complete intersection” over
K in the sense that it is a finite-dimensional K-algebra of the form

K[X1, . . . , Xr]/(P1, . . . , Pr)

for some r.

4.2 Reduced Hecke algebras

As in section 4.1, we suppose K is a finite extension of Q` with ring of integers
O and residue field k, and fix embeddings K ↪→ Q̄`, Q̄ ↪→ Q̄` and Q̄ ↪→ C. We
assume in this section that ` is odd and we fix a representation

ρ̄ : GQ → GL2(k)
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which is modular (definition 3.12). Thus ρ̄ is equivalent to ρm (over TO/m) for
some Γ = ΓH(N) and maximal ideal m of TO.

We suppose also that ρ̄ has the properties listed at the beginning of sec-
tion 3.3 and that Σ is a finite set of primes contained in Σρ̄ (definition 3.25).
We shall show that Γ and m can be chosen so that the reduced Hecke alge-
bra TΣ can be identified with a localization Tm of the full Hecke algebra TO.
The main result is due to Wiles ([W3], prop. 2.15), but we also explain an
important variant ([TW], lemma 1) which arises when considering special sets
of primes Q as in section 2.8 above.

TΣ and the full Hecke algebra: Let Γ = Γ0(NΣ) where

NΣ = `δN(ρ̄)
∏

p∈Σ−{`}

pdim ρ̄Ip
= `δ

∏
p|N(ρ̄)

p
∏

p∈Σ−{`}

p2 (4.2.1)

with δ = 0 if ρ̄ is good and ` /∈ Σ and δ = 1 otherwise.
Suppose that f is a newform in NΣ. Recall that NΣ, defined in section 3.3,

is the set of newforms f in S2(Γ) such that ρ̄ is equivalent to ρ̄f over kf
(lemma 3.26). Note that these representations are equivalent if and only if

ap(f) mod λ′ = tr (ρ̄(Frob p)) for all p - NΣ`,

where λ′ is maximal ideal of the ring of integers of K ′f . There is then a
normalized eigenform g in S2(Γ, K

′
f ) characterized by

• ap(g) = ap(f) if p does not divide NΣ/Nf ;

• ap(g) = 0 if p 6= ` and p divides NΣ/Nf ;

• a`(g) is the unit root of X2 − a`(f)X + ` if ` divides NΣ/Nf .

Note that if ` divides NΣ/Nf , then δ = 1 and ρ̄ is flat, hence ρ̄ is ordinary and
a`(f) is a unit by theorem 3.1 (f).

Lemma 4.6 For f and g as above, the reduction ḡ is the normalized eigenform
in S2(Γ, k

′) characterized by:

• ap(ḡ) = tr ρ̄Ip(Frob p) if p = ` or p is not in Σ (recall that ρ̄Ip denotes
the representation on Ip-coinvariants);

• ap(ḡ) = 0 otherwise.

Furthermore, if K is as in lemma 4.4, then g is the unique normalized eigen-
form in SK,f with this reduction.
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Proof: If p is not in Σ ∪ {`} then the formula for ap(ḡ) = ap(f̄) follows from
theorem 3.1, parts (a) and (e). If p = `, then we use parts (f) and (g) of
theorem 3.1. Otherwise, we have ap(ḡ) = 0 by theorem 1.27(d) (if p2|Nf and
f has trivial character, then ap(f) = 0). The uniqueness follows from the fact
that if p||Nf , then ap(f) = ±1 (by theorem 1.27(b)). 2

Note in particular that ḡ has coefficients in k and is independent of the
choice of f in NΣ. We let m denote the corresponding maximal ideal of TO.

Proposition 4.7 There is an isomorphism TΣ
∼−→ Tm of O-algebras such

that Tp 7→ Tp for all primes p not dividing NΣ`.

Proof: ReplacingK by a larger fieldK ′, we have TΣ⊗OO′
∼−→ T′Σ (lemma 3.27)

and Tm ⊗O O′
∼−→ T′m′ (since there is a unique maximal ideal m′ of TO′ over

m). We are therefore reduced to the case where K is as in lemma 4.4. Note
that NΣ is the set of newforms f in NΓ such that

ap(f̄) = tr (ρ̄(Frob p)) for all p - NΣ`.

(We have K = K ′f and write f̄ for f mod λ.)
We now define an isomorphism of K-algebras

κ : Tm ⊗K
∼−→

∏
f∈NΣ

K,

such that for each f ∈ NΣ:

• κ(Tp)f = ap(f) if p is not in Σ;

• κ(Tp)f = 0 if p is in Σ− {`};

• κ(T`)f is the unit root of X2 − a`(f)X + ψf (`)` if ` is in Σ.

Recall that Tm ⊗ K ∼=
∏

p Tp where p runs over the primes of TK whose
preimage in TO is contained in m. Thus according to lemma 4.4 we have

Tm ⊗K
∼−→

∏
f∈NΓ

∏
p∈Mf

(AK,f/IK,f )p,

where Mf is the set of prime ideals in AK,f/IK,f whose preimage in TO is
contained in m. If f is not in NΣ, then Mf is empty. If f is in NΣ, then
Mf consists only of the kernel pf of the map defined by up,f 7→ ap(g) where
g is the eigenform of lemma 4.6. Furthermore the maps up,f 7→ ap(g) induce
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isomorphisms (AK,f/IK,f )pf

∼−→ K, and taking the product over f ∈ NΣ, we
obtain the desired isomorphism κ.

Identifying TΣ with the O-subalgebra of
∏

f∈NΣ
K generated by the ele-

ments Tp = (ap(f))f for all p not dividing NΣ`, it suffices to prove that TΣ

contains κ(Tp) for all p dividing N(ρ̄)`. Now observe that for each f in NΣ

the representation ρf is isomorphic to

GQ → GL2(TΣ)→ GL2(K)

obtained by composing ρmod
Σ with the projection TΣ → K. It follows that for p

dividing N(ρ̄)`δ, the image of (ρmod
Σ )Ip(Frob p) in K is (ρf )Ip(Frob p) = ap(f)f

and therefore
(ρmod

Σ )Ip(Frob p) = κ(Tp).

Finally if δ = 0, then we conclude from lemma 4.1 that TΣ contains κ(T`). 2

A twisted variant: Suppose now that Σ is a finite set of primes contained
in Σρ̄ − {`} such that if p is in Σ then ρ̄(Frob p) has eigenvalues αp and βp in
k satisfying

αp/βp 6= p±1. (4.2.2)

Note that (4.2.2) is equivalent to

tr (ρ̄(Frob p))
2 6= (p+ 1)2. (4.2.3)

Let Q denote the set of primes in Σ such that q ≡ 1 mod `. The set of primes Q
is therefore as in section 2.8. Choosing an eigenvalue αq of ρ̄(Frob q) for each
q ∈ Q as in section 2.8, we regard RQ and hence TQ as an O[∆Q]-algebra.
(Recall that ∆Q is the the maximal quotient of (Z/(

∏
q∈Q q)Z)× of `-power

order.)
Instead of working with Γ0(NΣ) as in proposition 4.7, we shall now work

with the group

Γ = Γ0(N∅) ∩ Γ1(M), (4.2.4)

where
M =

∏
p∈Σ−Q

p2
∏
q∈Q

q.

Remark 4.8 We are about to relate TQ to a localization of TO, where TO
is now defined using the Hecke operators on S2(Γ), with Γ defined by (4.2.4).
Recall that TQ is defined using modular forms with trivial character, but note
that the modular forms involved in the definition of TO may have non-trivial
character. The purpose of establishing this relationship is to give a concrete
realization of the image of ∆Q in TQ for the purpose of proving theorem 3.31.
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Suppose that f is a newform pair in N∅. For each q in Q, let α̃q(f) be the
root of X2− aq(f)X + q = 0 (in K ′f ) whose image in kf is αq. We let g denote
the unique normalized eigenform in S2(Γ, K

′
f ) of trivial character such that

• ap(g) = ap(f) if p is not in Σ;

• ap(g) = α̃p(f) if p is in Q;

• ap(g) = 0 otherwise.

The reduction ḡ is the unique normalized eigenform in S2(Γ, k
′) of trivial char-

acter such that

• ap(ḡ) = tr ρ̄Ip(Frob p) if p is not in Σ;

• ap(ḡ) = αp if p is in Q;

• ap(ḡ) = 0 otherwise.

Thus ḡ has coefficients in k and is independent of the choice of f in N∅. We
let m denote the corresponding maximal ideal of TO.

Suppose for the moment that K contains the coefficients of all eigenforms
of level dividing NΣ. Let N ′ denote the set of newforms g in NΓ such that

• ρ̄g ∼ ρ̄;

• ap(ḡ) = αp for all p dividing Ng/N∅.

Suppose we are given a newform g ∈ N ′. Let ψg denote its character and
write Qg for the conductor of ψg. Note that ψg has trivial reduction and
hence `-power order, and that Qg divides Q. By proposition 3.2 we see that
if p ∈ Σ − Q, then ρg is unramified at p and hence Ng is not divisible by
p. Furthermore, by theorem 3.1 (e) and (4.2.2), Ng = N∅Qg. Let ξg denote
the character of (Z/QgZ)× of `-power order such that ξ−2

g is the primitive
character associated to ψg. Then

g ⊗ ξg =
∑

ξg(n)an(g)q
n

is in NQg ⊂ NQ.

Lemma 4.9 The map g 7→ g ⊗ ξg defines a bijection between N ′ and NQ.
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Proof: Suppose we are given a newform f in NQ; i.e., f is in NΓ0(Q) and ρ̄f ∼ ρ̄.
For q ∈ Q, we have (by lemma 2.44 for example) that

ρf |Gq ∼
(
ξf,q 0
0 εξ−1

f,q

)
,

where ξf,q : Gq → K× is a character whose reduction is the unramified charac-
ter sending Frob q to αq. Note that the characters ξf,q|Iq have `-power order. In
particular Nf/N∅ is Q2

f where Qf is the product of the primes q ∈ Q such that
ξf,q is ramified (theorem 3.1 (d)). Note also that there is a unique character

ξf : (Z/QfZ)× → K×

such that

Iq → GQ →→ Gal (Q(ζQf
)/Q)

ξf→ K×

coincides with the restriction of ξf,q to Iq for each q|Qf . (We have written ξf
for the character of GQ as well as the corresponding Dirichlet character. We
shall also write ξf for the corresponding character of ∆Q.) Let g denote the
newform associated to the eigenform∑

ξ−1
f (n)an(f)qn ∈ S2(Γ0(N∅) ∩ Γ1(Q

2
f ), K).

By proposition 2.6 and theorem 3.1 we have

• ρg ∼ ρf ⊗ ξ−1
f ,

• ψg = ξ−2
f ,

• Ng = N∅Qf and

• aq(g) = (ξf |−1
Gq
ξf,q)(Frob q) has reduction ξ̄f,q(Frob q) = αq for all q divid-

ing Qf .

Therefore g is in N ′ and f = g⊗ ξg. In particular g 7→ g⊗ ξg is surjective and
ξg = ξg⊗ξg . Injectivity follows as well on noting that if g ⊗ ξg = g′ ⊗ ξg′ then
ξg = ξg′ , hence g = g′. 2

Recall that TO contains the operators 〈d〉 for d in (Z/MZ)×, and note that
〈d〉 − 1 ∈ m for all d. Let H ′ denote the kernel of

(Z/MZ)× →→ (Z/(
∏
q∈Q

q)Z)× →→ ∆Q.
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Since the order of H ′ is not divisible by `, we find that
∑

d∈H′ 〈d〉 /∈ m. It
follows that if d ∈ H ′ then 〈d〉 = 1 in Tm. We may therefore regard Tm

as an O[∆Q]-algebra via the map d 7→ 〈d〉. Recall that TQ is considered an
O[∆Q]-algebra via the map

O[∆Q]→ RQ → TQ.

If p is a prime not in Q, let xp denote the unique element of ∆Q such that
x−2
p = p̄.

Proposition 4.10 There is an isomorphism TQ
∼−→ Tm of O[∆Q]-algebras

such that Tp 7→ xpTp for all primes p /∈ Σ with p - `N(ρ̄).

Proof: We may enlarge K so that we are in the setting of lemma 4.9. We then
define an isomorphism of K-algebras

κ : Tm ⊗K
∼−→

∏
g∈N ′

K

such that for each g ∈ N ′:

• κ(Tp)g = ap(g) if p is not in Σ or if p divides Qg,

• κ(Tp)g = 0 if p is in Σ−Q,

• κ(Tp)g is the root of X2 − ap(g) + ψg(p)p with reduction αp if p is in Q
but does not divide Qg, and

• κ(d)g = ψg(d) for all d ∈ ∆Q.

The existence of such an isomorphism follows from lemma 4.4 which gives

Tm ⊗K
∼−→

∏
g∈NΓ

∏
p∈Mg

(AK,g/IK,g)p,

where Mg is the set of prime ideals in AK,g/IK,g whose preimage in TO is
contained in m. If g is not in N ′, then Mg is empty. If g is in N ′, then Mg

consists of the prime ideal corresponding to the eigenform whose eigenvalues
are prescribed as above, and one checks that (AK,g/IK,g)p = K.

Viewing TQ as a subalgebra of
∏

f∈NQ

K and matching indices via the bijec-

tion f = g⊗ ξg ↔ g, we obtain an injective homomorphism of O[∆Q]-algebras

κ′ : TQ −→
∏
g∈N ′

K
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such that
κ′(Tp) = (ξg(p)ap(g))g = κ(xpTp)

for primes p /∈ Σ such that p - `N∅. Since TQ is generated over O by the set
of such Tp, we see that κ′(TQ) is contained in κ(Tm). On the other hand, the
image of κ′ contains the image of ∆Q, hence contains κ(〈d〉) for d in (Z/MZ)×

as well as κ(Tp) for p /∈ Σ with p - N∅`.
It remains to prove that κ(Tp) is in the image of κ′(TQ) for p dividing

N∅`
∏

q∈Q q. Consider the composite

RQ

φQ−→ TQ
κ′−→

∏
g∈N ′

K.

The pushforward of ρuniv
Q is equivalent to

∏
ρg ⊗ ξg and therefore

∏
ρg is

equivalent to the pushforward of

ρuniv
Q ⊗ ξ−1

Q

(where ξQ was defined in section 2.8). For primes p dividing N∅, we recover
κ(Tp) as the image of Frob p on the Ip-coinvariants, hence κ(Tp) is in κ′(TQ).
For q ∈ Q and g ∈ N ′, the pushforward of ξQ|−1

Gq
·ξq,Q to the g-component is an

unramified summand of ρg|Gq whose reduction sends Frob q to αq. It follows
that this character maps Frob q to κ(Tq) and we conclude that κ(Tq) ∈ κ′(TQ).
Finally in the case that ` does not divide N∅, we appeal to lemma 4.1 to
conclude that κ(T`) ∈ κ′(TQ). 2

Auxiliary primes: For Σ as in proposition 4.10, i.e. a set of primes satisfying
(4.2.2), a somewhat simpler argument provides a similar a description of T∅
with Γ replaced by

Γ′ = Γ0(N∅) ∩ ΓH(M) (4.2.5)

where H is the `-Sylow subgroup of (Z/MZ)×. While we shall make no direct
use of this, the group Γ′ will play a role in the proof of theorem 3.31 and
we shall need to choose Σ so that Γ′ has no elliptic elements; i.e., non-trivial
elements of finite order. This is the case for example if Σ contains a prime
p 6≡ 1 mod ` with p > 3. The group Γ′ is then contained in Γ1(N) for some

integer N > 3, and therefore has no elliptic elements. Indeed if
(
a b
c d

)
∈ Γ

has finite order then the roots of X2− (a+ d)X + 1 are roots of unity and we
deduce that this matrix is the identity.

In order to show that Σ can be so chosen, we appeal to the following lemma
(cf. [DT2], lemma 3).
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Lemma 4.11 Suppose that G is a finite group, χ : G→ k̄× is a character of
order d and ρ̄ : G→ GL2(k̄) is a representation. Suppose that for all g 6∈ kerχ
we have

(tr ρ̄(g))2/ det ρ̄(g) = (1 + χ(g))2/χ(g). (4.2.6)

• If d > 3, then ρ̄ is reducible.

• If d = 3, then ρ̄ is reducible or has projective image isomorphic to A4.

• If d = 2, then ρ̄|kerχ is reducible.

Proof: Note that if ρ̄(g) is a scalar then χ(G) = 1. Hence χ induces induces
a surjective homomorphism χ′ : G′ → Cd where G′ is the projective image of
ρ̄ and Cd is cyclic of order d. Furthermore if d = 2, then every element of
G′ − kerχ′ has order 2. The lemma then follows from theorem 2.47(b). 2

4.3 Proof of theorem 3.31

We shall give a proof of theorem 3.31 which is based on the q-expansion princi-
ple rather than the method of de Shalit [dS] employed in [TW]. It will be more
convenient to consider the action of the Hecke operators on the full space of
modular forms M2(Γ). The Riemann-Roch theorem shows that the dimension
of M2(Γ) is g+ s− 1 where g is the genus of the modular curve XΓ associated
to Γ and s is the number of cusps on XΓ (see for example [Shi2] thm. 2.23 or
[DI] (12.1.5)).

Eisenstein maximal ideals: One can give an explicit description of a space
of Eisenstein series G2(Γ) so that

M2(Γ) = S2(Γ)⊕G2(Γ).

(See for example [Hi3], lemma 5.2.)
There is a natural action on M2(Γ) by the Hecke operators 〈d〉 for all d ∈

(Z/NZ)× and Tp for all primes p. We shall only need to use the operators 〈d〉
and Tp for p not dividing N , and we let T̃Z denote the subring of End (M2(Γ))
these generate. The ring T̃Z is commutative and is finitely generated and free
as a Z-module. That T̃Z is finitely generated is proved for example by showing
that M2(Γ,Z), the set of forms with integer Fourier coefficients at∞, is stable
under the Hecke operators and contains a basis forM2(Γ) (see [DI], cor. 12.3.12
and prop. 12.4.1). Alternatively, one can show that T̃Z acts faithfully on the
cohomology of the non-compact modular curve YΓ (cf. section 1.3).
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For any ring A, we write M2(Γ, A) for M2(Γ,Z) ⊗ A and regard this as a
module for T̃A := T̃Z ⊗ A. If n is a maximal ideal of T̃O we write T̃n for the
localization. If m is a maximal ideal of TO then we let m̃ denote its preimage
in T̃O.

We say that a maximal ideal n of T̃O is Eisenstein if

Tp ≡ p+ 1 mod n for all p ≡ 1 mod N .

One sees from the explicit description of the Eisenstein series that Tp = p+1 on
G2(Γ) if p ≡ 1 mod N . We shall be interested in the non-Eisenstein maximal
ideals because of the following lemma (see [R5], thm. 5.2(c)).

Lemma 4.12 Suppose that ` is odd. The representation

ρm : GQ → GL2(TO/m)

is absolutely irreducible if and only if m̃ is not Eisenstein.

Proof: If ρm is not absolutely irreducible then ρm ∼ χ1⊕χ2 with N divisible by
the product of the conductors of χ1 and χ2. Furthermore if ` does not divide
N , then one of the characters is unramified at ` while the other coincides with
the cyclotomic character ε on I`. Therefore m̃ is Eisenstein. Conversely if m̃ is
Eisenstein then proposition 2.6 implies that ρm restricted to GQ(ζN`) has trivial
semisimplification from which it follows that ρm is also reducible. 2

Differentials: Suppose now that Σ is a finite set of primes satisfying (4.2.2)
Moreover we assume that Σ contains a prime p > 3 with p 6≡ 1 mod `. Let Γ
and Γ′ be defined as in (4.2.4) and (4.2.5); i.e.

Γ = Γ0(N∅) ∩ Γ1(M)
Γ′ = Γ0(N∅) ∩ ΓH(M)

where H is the `-Sylow subgroup of (Z/MZ)×. Let X and X ′ denote the
modular curves associated to Γ and Γ′.

We first consider the case where ` - N∅. The curve X has a smooth proper
model X over Z[1/N∅M ] such that the complement of the cusps parametrizes
cyclic isogenies (E1, i1) → (E2, i2) of degree N∅ where Ej is an elliptic curve
and ij is an embedding µM ↪→ Ej. (See [DR] or [Kat] for example.) The action
of H on X extends to X and the quotient X ′ = X/H is a smooth model over
Z[1/N∅M ] for X ′. The natural projection X → X ′ is étale. (The fact that it is
étale on the complement of the cusps follows from the natural moduli-theoretic
description of X ′ using the fact that ΓH(M) ⊂ Γ1(p) for some p > 3. One
then need only verify that X → X ′ is unramified at the cusps.)

For a Z[1/N∅M ]-algebra A, we define
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• ΩA = H0(XA,Ω1
XA/A

),

• Ω′A = H0(X ′A,Ω1
X ′A/A

),

• Ω̃A = H0(XA,Ω1
XA/A

(D)),

• Ω̃′A = H0(X ′A,Ω1
X ′A/A

(D′)),

where D (resp. D′) denotes the reduced divisor defined by the cusps of X (resp.
X ′). The q-expansion principle and standard base-change arguments allow us
to identify these with S2(Γ, A), S2(Γ

′, A), M2(Γ, A) and M2(Γ
′, A) (see [Kat],

sec. 1.6, 1.7). We may therefore regard the first two of these as modules for
TA and all of them as modules for T̃A.

Lemma 4.13 Suppose that A = k or K.

(a) Ω̃O ⊗O A ∼= Ω̃A and Ω̃′O ⊗O A ∼= Ω̃′A.

(b) The natural map X → X ′ induces an isomorphism

Ω̃′A
∼−→ Ω̃H

A .

(c) If n is a non-Eisenstein maximal ideal of T̃O, then the localization at n

of ΩO → Ω̃O is an isomorphism.

(d) If m is a maximal ideal of TA then ΩA[m] is one-dimensional over TA/m.

Sketch of proof:

(a) In the case A = K this follows from the fact that K is flat over O, so
suppose A = k. Identify Ω̃O/λΩ̃O with the direct image of Ω̃k under
Xk → XO and use that H1(Xk,Ω1

Xk/k
(D)) vanishes by Serre duality. The

case of Ω̃′ is similar. (See [Maz1] sec. II.3.)

(b) Using the fact that X → X ′ is étale one identifies the pull-back of Ω1
X ′A/A

with Ω1
XA/A

and that of D′ with D.

(c) The map is injective and one proves that its cokernel is free and annihi-
lated by the operators Tp− (p+1) for all p ≡ 1 mod N∅M . To prove the
latter assertion, first observe that it holds with O replaced by C, then
by Z[1/N∅M ].
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(d) This follows from

ΩA[m] ∼= S2(Γ, A)[m] ∼= HomA(TA, A)[m] ∼= HomA(TA/m, A),

where the middle isomorphism is that of proposition 1.34, but let us
reformulate the argument in a way more easily generalized to the case
of ` dividing N∅ discussed below. Note that ΩA[m] is non-zero since
Tm acts faithfully on Ωm. To prove that the dimension is at most one
we can enlarge the field A and assume TA/m ∼= A. One then shows
that an eigenform f in ΩA (for all the Hecke operators Tp and 〈d〉) is
determined by its eigenvalues and the first coefficient of its q-expansion.
This follows from the fact that f is determined by its q-expansion and
for all n, an(f) = a1(Tnf) and Tn can be expressed in terms of the Tp
and 〈d〉. (See [Maz1], sec. II.9.) 2

We now explain how the situation changes if ` divides N∅. In that case
X has a regular model X over Z[`/N∅M ] with the same moduli-theoretic de-
scription as above. This model is smooth over Z[1/N∅M ], but XF`

has two
smooth irreducible components crossing at ordinary double points as in [DR]
sec. V.1. The quotient X ′ = X/H is a regular model for X ′ over Z[`/N∅M ]
and X → X ′ is étale. For a Z[`/N∅M ]-algebra A we define ΩA, Ω′A, Ω̃A and
Ω̃′A as before, except that Ω1 is replaced by the sheaf of regular differentials
(see [DR] sec. I.2, [Maz1] sec. II.6 or [MRi] sec. 7). Formation of these mod-
ules again commutes with change of the base A, but we can no longer identify
them with S2(Γ, A), S2(Γ

′, A), M2(Γ, A) and M2(Γ
′, A) if ` is not invertible

in A. For every A, there is a natural action of TA (resp. T̃A) on ΩA and Ω′A
(resp. Ω̃A and Ω̃′A). In the case of TA this is proved by identifying ΩA (resp.
Ω′A) with the cotangent space at the origin for the Néron model over A for
the Jacobian of X (resp. X ′). In the case of T̃A the action is defined using
Grothendieck-Serre duality (as in [Maz1] sec. II.6 or [MRi] sec. 7).

Lemma 4.14 If ` divides N∅ then lemma 4.13 carries over with the above
notation and the additional hypothesis T` /∈ m for part (d).

The proof is essentially the same except that part (d) is more delicate in the
case A = k. For the proof in that case we refer the reader to [W3], lemma 2.2
(from which the result stated here is immediate). We remark however that we
shall only use lemma 4.14 if ρm is not good. In that case one can also deduce
the statement here from the argument used in the proof of [MRi] prop. 20,
which shows instead that dimk Ωk[m

′] = 1 where m′ is a certain maximal ideal
corresponding to m, but contained in an algebra defined using the operators
〈d〉, Tp for p 6= ` and w`.
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Remark 4.15 The approach in [TW] to proving theorem 3.31 is based on the
result that under certain hypotheses (T`(J) ⊗Z`

O)m is free of rank two over
Tm (see [W3], thm. 2.1 and its corollaries). This result generalizes work of
Mazur Ribet, and Edixhoven (see secs. 14 and 15 of ch. II of [Maz1], thm. 5.2
of [R5], [MRi] and sec. 9 of [Edi]), and the key to its proof is lemmas 4.13(d)
and 4.14. We shall instead give a proof of theorem 3.31 which is based directly
on lemma 4.13, (d).

The fact that (T`(J)⊗Z`
O)m is free of rank two over Tm actually underlies

Wiles’ approach to many intermediate results along the way to proving the
Shimura-Taniyama conjecture for semistable elliptic curves. We shall appeal
to a special case in the course of proving theorem 3.36 below.

Proof of the theorem: Suppose we are given a representation ρ̄ as in sec-
tion 3.3 and a set of primes Q as in the statement of theorem 3.31. We apply
lemma 4.11 with G = GQ and χ = ε to choose an auxiliary prime p not dividing
6N∅`

∏
q∈Q q such that

• p 6≡ 1 mod `

• tr (ρ̄(Frob p))
2 6= (p+ 1)2.

To prove theorem 3.31 we may replace K by a larger field and assume that k
contains the eigenvalues of ρ̄(Frob p).

Let Σ = Q ∪ {p}. Thus Σ is a set of primes as in proposition 4.10 and Σ
contains a prime p > 3 such that p 6≡ 1 mod `. We let Γ be as in (4.2.4); thus

Γ = Γ0(N∅) ∩ Γ1(M)

where M = p2
∏

q∈Q q, and we choose the maximal ideal m of TO as in propo-
sition 4.10. Let H denote the `-Sylow subgroup of (Z/MZ)× and regard TO
and hence Tm as an O[H]-algebra via d 7→ 〈d〉. In view of proposition 4.10,
theorem 3.31 is equivalent to the following:

Theorem 4.16 Tm is free over O[H].

Proof: Consider the T̃O-module

L̃ = HomO(Ω̃O,O)

and the TO-module
L = HomO(ΩO,O).
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Since X → X ′ is unramified, the Riemann-Hurwitz formula implies that

dimM2(Γ) = g + s− 1 = #H(g′ + s′ − 1) = #H dimM2(Γ
′),

where g (resp. g′) is the genus and s (resp. s′) is the number of cusps of X
(resp. X ′). It follows from lemma 4.13 (a) (and lemma 4.14) that

dimK(L̃⊗O K) = #H dimk Ω̃′k (4.3.1)

On the other hand, by (b) we have that

L̃/(a, λ)L̃ ∼= Homk(Ω̃
H
k , k)

∼= Homk(Ω̃
′
k, k) (4.3.2)

where a = ker (O[H]→ O) is the augmentation ideal. By Nakayama’s lemma
and (4.3.2), L̃ is generated as an O[H]-module by d elements where d =
dimk Ω̃′k. By (4.3.1) any surjective homomorphism

O[H]d → L̃

is in fact an isomorphism. Hence L̃ is free over O[H], as is

Ln = HomO(Ωn,O) ∼= HomO(Ω̃n,O)

for each non-Eisenstein maximal ideal n of T̃O (by part (c) of lemmas 4.13
and 4.14).

Since ρm ∼ ρ̄ is absolutely irreducible, m̃ is not Eisenstein (by lemma 4.12),
and it follows that Lm is free over O[H].

Since L ⊗O K is free of rank one over TK (lemma 1.34), we have that
Lm ⊗O K is free of rank one over Tm ⊗O K. If ` - N∅ then lemma 4.13 implies
that

L/mL ∼= Homk(Ωk[m], k)

is one-dimensional over k. The same assertion holds if `|N∅ by lemma 4.14
(from the definition of m in this case, we see that it does not contain T`). It
follows from Nakayama’s lemma that Lm is free of rank one over Tm. Therefore
Tm is free over O[H]. 2

4.4 Proof of theorem 3.36

Our proof of theorem 3.36 is based on Wiles’ arguments in ch. 2 of [W3],
which in turn are based on a method of Ribet [R4]. We shall reformulate the
proof somewhat to underscore the relationship observed by Doi and Hida [Hi1]
between the size of O/η and the value of an L-function, but after doing so we
shall also sketch the more direct argument used by Wiles. Two important
ingredients appear in both versions of the argument, and we shall discuss their
proofs in section 4.5. These ingredients are
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• the generalization of a result of Ihara [Ih] used in Ribet’s argument;

• the generalization of a result of Mazur [Maz1] on the structure of the
Tate module T`(J0(N)) as a module for TZ`

.

Assume now that we are in the setting of theorem 3.36. In particular, ρ̄ is
a representation as in section 3.3, Σ is a finite set of primes contained in Σρ̄

and π is an O-algebra homomorphism TΣ → O arising from a newform f in
NΣ with coefficients in O.

The symmetric square L-function: For each prime p let αp(f) and βp(f)
denote the roots of the polynomial X2 − ap(f)X + δpp = 0, where δp = 0 or 1
according to whether p divides Nf . Thus we have

Lp(f, s) = (1− αp(f)p−s)−1(1− βp(f)p−s)−1.

If p = ` divides N/Nf , then we require that α`(f) be the root which is a unit
in O, i.e. a`(g). We define the symmetric square L-function associated to f as

L(Symm 2f, s) =
∏
p

Lp(Symm 2f, s),

where

Lp(Symm 2f, s) = (1− α2
p(f)p−s)−1(1− αp(f)βp(f)p−s)−1(1− β2

p(f)p−s)−1.

(We caution the reader we have defined the Euler factors rather naively at
primes p such that p2 divides Nf .) The product converges absolutely for real
part of s > 2 and can be analytically continued to an entire function.

The calculation of ηΣ: We write ℘ for the kernel of π and I for the annihilator
of ℘ in TΣ. Since TΣ is reduced, we have ℘ ∩ I = 0 and ℘⊕ I has finite index
in TΣ. Note that

O/ηΣ
∼= TΣ/(℘⊕ I).

Suppose that we are given a TΣ-module L which is finitely generated and free
over O, and such that L ⊗ K is free of rank d over TΣ ⊗O K. Suppose also
that L is endowed with a perfect O-bilinear pairing

L× L→ O
(x, y) 7→ 〈x, y〉

such that 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ L and T ∈ TΣ. Note that to give
such a pairing is equivalent to giving an isomorphism

L
∼−→ HomO(L,O)

x 7→ 〈x, ·〉
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of TΣ-modules. We shall refer to the module L together with the pairing 〈 , 〉
as a self-dual TΣ-module of rank d. We then can give a lower bound for the
size of O/ηΣ in terms of a basis {x1, x2, . . . , xd} for the free O-module L[℘]:

Lemma 4.17 We have

ηdΣ ⊂ O det(〈xi, xj〉)i,j,

and equality holds if L is free over TΣ.

Proof: The modules L[℘] and L/L[I] are free of rank d over O and the pairing
〈 , 〉 induces an isomorphism

L/L[I]
∼−→ HomO(L[℘],O). (4.4.1)

The O-module M = L/(L[℘]⊕ L[I]) is annihilated by ηΣ and is generated by
d elements. Furthermore M is isomorphic to (O/ηΣ)d if L is free over TΣ. It
follows that

#(O/ηΣ)d ≥ #M,

with equality if L is free. The cardinality of M is that of the cokernel of the
map

L[℘] ↪→ HomO(L[℘],O)

arising from the pairing 〈 , 〉, and this is precisely

O/ det(〈xi, xj〉)i,j.

2

Recall that proposition 4.7 establishes an isomorphism between TΣ and
Tm, the localization at a certain maximal ideal m of TO = TZ ⊗O, where

TZ ⊂ End (S2(Γ0(N))),

and where N = NΣ is defined in (4.2.1). Write X for X0(N) and J for J0(N).
Recall that H1(X,Z) is endowed with the structure of a TZ-module and

T`(J)⊗Z`
O ∼= H1(X,Z)⊗O

with that of a TO-module. We also regard

H1(X,O) ∼= Hom(H1(X,Z),O)

as a TO-module; as such it is naturally isomorphic to

HomO(T`(J)⊗Z`
O,O).
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The Weil pairing defines a perfect pairing

T`(J)× T`(J)→ Z`

(with (e2πi/`
n
)n as the chosen generator for lim

←
µ`n(C)). The composite

T`(J)
w∗→ T`(J)→ HomZ`

(T`(J),Z`) (4.4.2)

is an isomorphism of TZ`
-modules where w∗ is induced by the involution w =

wN of X (see section 1.4). Tensoring with O and localizing at m, we regard

LT = (T`(J)⊗Z`
O)m

as a self-dual TΣ-module of rank 2 via the isomorphism TΣ
∼= Tm of proposi-

tion 4.7. We shall write 〈, 〉T for the pairing obtained from (4.4.2). Similarly,
using w∗, the cup product and Poincaré duality, we regard

LH = H1(X,O)m

as a self-dual TΣ-module of rank 2, with 〈x, y〉H defined by the image of x ∪
w∗y under the canonical isomorphism of H2(X,O) with O. Note that LH is
canonically isomorphic as a TΣ-module to HomO(LT ,O). In the next section
we shall discuss the following generalization of a result of Mazur [Maz1].

Theorem 4.18 The TΣ-modules LT and LH are free.

Corollary 4.19 If {x, y} is a basis for LT [℘] (resp. LH [℘]), then ηΣ is gen-
erated by 〈x, y〉T (resp. 〈x, y〉H).

This follows from lemma 4.17, theorem 4.18 and skew-symmetry of the pair-
ings.

Hida’s formula: We now explain how the value of 〈x, y〉H in corollary 4.19
is related to L(Symm 2f, 2) by a formula of Hida (see [Hi1] sec. 5, [W3] sec.
4.1).

Recall that the homomorphism

TO → Tm
∼= TΣ

π→ O

arises as Tn 7→ an(g) for a normalized eigenform g in S2(Γ0(N), K) whose as-
sociated newform is f . We shall write P for the kernel of this homomorphism;
thus P is the preimage in TO of the ideal ℘ of TΣ. Note that Pm corresponds
to ℘ under the isomorphism Tm

∼= TΣ.
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Choose a number field K0 containing the Fourier coefficients of g and let
O0 denote the valuation ring O∩K0. We choose the basis {x, y} for LH [℘] in
the image of

H1(X,O0)[P0] ⊂ H1(X,O)[P ]
∼−→ H1(X,O)m[P ] = LH [℘],

where P0 = P ∩ TO0 . Let PC denote the kernel of the homomorphism

θg : TC → C

associated to the eigenform g. The two-dimensional complex vector space

(H1(X,O0)[P0])⊗O0 C = H1(X,C)[PC]

has a canonical basis
{ωg, ω̄gc},

where we view these differential forms as cohomology classes and the super-
script c indicates complex conjugation applied to the Fourier coefficients. (Re-
call that ωg is the holomorphic differential on X defined by

∑
an(g)q

n−1dq,
so ω̄gc is the antiholomorphic differential defined by

∑
an(g)q̄

n−1dq̄ where
q = e2πiτ .) Let A denote the matrix in GL2(C) such that

(ωg, ω̄gc) = (x, y)A.

Theorem 4.20 With the above notation we have (up to sign)

〈x, y〉 = (iπ detA)−1NfL(Symm 2f, 2)
∏

p|N/Nf

cp(f)),

where

cp(f) =

{
pδpLp(Symm 2f, 2)−1 if p 6= `

(α`(f)− β`(f))(1− α−2
` (f)) if p = `.

Proof: We have

〈x, y〉H detA =

∫
X

ωg ∧ ω̄wgc = 8π2i〈g, (wg)c〉

where the last 〈, 〉 denotes the Petersson inner product and we have used that
wgc = (wg)c for forms on Γ0(N). We then appeal to a formula of Shimura
(see [Shi5] (2.5) and [Hi1] (5.13)) to obtain

〈g, (wg)c〉 = (48π)−1[SL2(Z) : Γ0(N)]ress=2D(g, wg, s).
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By [Shi5] lemma 1, the Dirichlet seriesD(g, h, s) is defined by
∑
an(g)an(h)n

−s

and if g and h are normalized eigenforms then this has an Euler product
expression in which the factors are

(1− αp(g)βp(g)αp(h)βp(h)p−2s) (1− αp(g)αp(h)p−s)−1·
(1− αp(g)βp(h)p−s)−1 (1− βp(g)αp(h)p−s)−1(1− βp(g)βp(h)p−s)−1,

(where the αp’s and βp’s are defined as they were for f). Using the recipe for
obtaining g from f (see lemma 4.6) we find that if ` is not in Σ then

D(g, wg, s) = ±DΣ(f, f, s)
∏

p|N/Nf

p−1,

(where the subscript Σ indicates that the primes in Σ are removed from the
defining Euler product). If ` is in Σ, then we must also multiply by the factor

• (1− `−s)−1 if ` divides Nf ;

• (1− `1−s)−1(1− α2
`(f)`−s)−1(β`(f)− α2−s

` (f)) otherwise.

To obtain the formula in this last case, consider the eigenform

fα = f − β`(f)f(`τ)

on Γ0(Nf`). Since
wNf `fα = ±(`f(`τ)− α−1

` (f)f)

and
D(fα, `f(`τ), s) = α`(f)`1−sD(fα, f, s),

we get
D(fα, wNf `fα, s) = ±`−1(β`(f)− α`(f)`2−s)D(fα, f, s)

and use the Euler product. The Euler product expression also gives

DΣ(f, f, s) =
ζN(s− 1)LΣ(Symm 2f, s)

ζN(2s− 2)
,

where ζN(s) is the Riemann zeta function with the Euler factors removed at
primes dividing N . Thus

ress=2D(g, wg, s) = ± 6

π2

NLΣ(Symm 2f, 2)
∏

p|N/Nf
p

[SL2(Z) : Γ0(N)]
,

with the extra factor of (1− `−2)−1 or

(β`(f)− α`(f))(1− β−2
` (f))−1(1− `−1)−1

if ` is in Σ. The theorem follows. 2
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Corollary 4.21 With the above notation (in particular, Σ ⊂ Σρ̄), we have

`mNfLΣ(Symm 2f, 2)

iπ detA
∈ O0

is a generator of ηΣ, where

m =

{
0, if ` /∈ Σ,
2, if ` ∈ Σ and `|Nf ,
3, if ` ∈ Σ and ` - Nf .

Remark 4.22 Without theorem 4.18 we obtain instead that ηΣ is contained
in the ideal generated by the expression in the corollary.

Comparing ηΣ’s: Suppose that Σ′ ⊂ Σρ̄ is a finite set of primes containing Σ.
In view of corollary 4.21, theorem 3.36 reduces to a comparison of detA and
detA′ where A′ is defined using Σ′ instead of Σ. We shall make the desired
comparison using Wiles’ generalization of a result of Ihara.

Applying proposition 4.7 to Σ′, we have an isomorphism between TΣ′ and
T′m′ where m′ is a certain maximal ideal of T′O = T′Z ⊗ O with T′Z acting on
S2(Γ0(NΣ′)). We write P ′ for the preimage in T′O of ℘′. We let N ′ = NΣ′ ,
X ′ = X0(N

′), J ′ = J0(N
′) and define self-dual T′m′-modules L′T and L′H as

above.
We now define a homomorphism

φT : L′T → LT

of T′m′-modules in the case that Σ′ = Σ∪{p} for some prime p ∈ Σρ̄−Σ. We first
suppose that p 6= `, in which case N ′ = Np2 and the surjective homomorphism
of O-algebras T′m′ → Tm (corresponding to TΣ′ 7→ TΣ) is defined by Tr 7→ Tr
if r 6= p and Tp 7→ 0. The maps τ 7→ τ , τ 7→ pτ and τ 7→ p2τ on the upper
half-plane induce maps X ′ → X which we denote α, β and γ. These give rise
by functoriality to a map

J ′→ J × J × J
x 7→ (α∗x, β∗x, γ∗x)

which induces an O-linear homomorphism

T`(J ′)⊗Z`
O → (T`(J)⊗Z`

O)3.

We compose with the projection to

L3
T = (T`(J)⊗Z`

O)3
m
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followed by the map L3
T → LT defined by the matrix (1,−p−1Tp, p

−1). The
reason for this choice of matrix is that

g′ = (α∗ − p−1β∗Tp + p−1γ∗)g (4.4.3)

is the eigenform corresponding to P ′.

Lemma 4.23 The composite

T`(J ′)⊗Z`
O → LT (4.4.4)

is T′O-linear where LT is regarded as a T′O-module via the surjection

T′O → T′m′ → Tm.

We leave the proof to the reader after pointing out that the map on Hecke
algebras can be rewritten as

T′O → TO[u]/(f(u))→ Tm[u]/(f(u))→ Tm
Tp 7→ u u 7→ 0,

where f(u) = u3 − Tpu2 + pu.
It follows that (4.4.4) factors through L′T and we thus obtain the desired

homomorphism
φT : L′T → LT

of T′m′-modules. Note that φT is also the composite of the canonical splitting

L′T ↪→ T`(J ′)⊗Z`
O

with (4.4.4).
The construction of φT is similar for p = ` except that we have only two

copies of J and the map L2
T → LT is given by the matrix (1,−α−1

` ) where α` is
the unit root of (3.3.2). For arbitrary Σ′ satisfying Σ ⊂ Σ′ ⊂ Σρ̄ we define φT
as a composite of the maps defined above. It is independent of the choice of
ordering of Σ′ − Σ. Recall that φ′T is used to denote the dual map LT → L′T .
We define φH : L′H → LH as the adjoint of the map φ′H which renders the
diagram

φ′H : H1(X,O)m → H1(X ′,O)m′

↓ ↓
HomO(LT ,O)→ HomO(L′T ,O)

commutative (where the vertical maps are the natural isomorphisms and the
bottom one is dual to φT ).

The second crucial result whose discussion we postpone until the next
section is the following generalization of a lemma of Ihara.
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Lemma 4.24 φT and φH are surjective.

Suppose again we are in the case Σ′ = Σ ∪ {p} with p 6= `. One need only
unravel the definition of φ′H to see that the diagram

H1(X,O0)[P0]→H1(X ′,O0)[P ′0]
↓ ↓
LH

φ′H→ L′H ,

commutes, where the top arrow is defined as

α∗ − p−1π(Tp)β
∗ + p−1γ∗.

Extending scalars to C, this map sends ωg to ωg′ and ω̄gc to ω̄g′c where g′ is
defined by (4.4.3). In the case Σ′ = Σ ∪ {`}, the same assertion holds if O0 is
chosen so that it contains π(α`) = a`(g

′) and the top arrow is defined as

α∗ − π(α`)
−1β∗.

We conclude that if {x, y} is a basis for H1(X,O0)[P0] and the matrices A
and A′ are defined using the bases {x, y} for H1(X,O0)[P0] and {φ′Hx, φ′Hy}
for H1(X ′,O0)[P ′0], then A′ = A. Theorem 3.36 is now immediate from corol-
lary 4.21. In fact, we have proved that

ηΣ′ = π(
∏

p∈Σ′−Σ

cp)ηΣ.

2

Remark 4.25 Note that to obtain the inclusion stated in theorem 3.36 it suf-
fices to apply theorem 4.18 for Σ, rather than both Σ and Σ′ (cf. remark 4.22).

Wiles’ argument: The method of [W3] sec. 2.2, like that of Ribet in [R4],
is more direct than the one given above but does not explicitly illustrate the
relation with values of L-functions. The approach is simply to compute the
composite φT φ

′
T . It suffices to consider the case Σ′ = Σ∪ {p} and we suppose

first that p 6= `. Let ∆ denote the endomorphism of J3 defined by the matrix

∆ =

(
α∗
β∗γ∗

)
w′∗(α

∗, β∗, γ∗)w∗.

Using the relations αw′ = wγ and βw′ = wβ, we find that

∆ =

(
α∗γ

∗ α∗β
∗ α∗α

∗

β∗γ
∗ β∗β

∗ β∗α
∗

γ∗γ
∗ γ∗β

∗ γ∗α
∗

)
,
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which can be computed for example by considering its effect on the cotangent
space S2(Γ0(N))3. The result is that

∆ =

T 2
p − (p+ 1) pTp p(p+ 1)

pTp p(p+ 1) pTp
p(p+ 1) pTp T 2

p − (p+ 1)

 ,

which we note commutes with the action of TZ on J3. One then checks that

φT φ
′
T = (1,−p−1Tp, p

−1) (T`(∆)⊗Z`
O)m

(
1

−p−1Tp
p−1

)
= −p−2(p− 1)(T 2

p − (p+ 1)2).

The case of p = ` is similar but simpler. One uses

∆ =
(
α∗
β∗

)
w′∗(α

∗, β∗)w∗ =
(

T` `+ 1
`+ 1 T`

)
and gets

φT φ
′
T = −(α` − `α−1

` )(1− α−2
` ).

Thus in either case we find that φT φ
′
T acts on L′T [P ] by an element of O =

Tm/P which is a unit times π(cp). Theorem 3.36 then follows from corol-
lary 4.19 and lemma 4.24.

4.5 Homological results

In this section we sketch the proofs of theorem 4.18 and lemma 4.24, but shall
often refer the reader to ch. 2 of [W3] for more details.

Multiplicities: We first consider theorem 4.18, generalizing a result proved
by Mazur in sections II.14 and II.15 of [Maz1]. Recall that LT (resp. LH)
is defined as (T`(J0(N))⊗O)m (resp. H1(X0(N),O)m) where m is a maximal
of the ideal of the Hecke algebra TO generated by the Hecke operators on
S2(Γ0(N)). We are assuming moreover that ρm is irreducible and that one of
the following holds:

• ` does not divide N ;

• `2 does not divide N and T` /∈ m.

We wish to prove that LT and LH are free over Tm.
Since LH and LT are isomorphic as Tm-modules, it suffices to prove that

LT is free. Furthermore, to prove that LT is free, it suffices to prove that the
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localization of T`(J0(N)) at m ∩ TZ`
is free; i.e., we may replace O by Z` and

m by its intersection with TZ`
and consider

T`(J0(N))m.

Since T`(J0(N))⊗Z`
Q` is free is free of rank two over TQ`

, it suffices to prove
that

dimT/m(LT /mLT ) = 2.

Since
T`(J0(N))/`T`(J0(N)) ∼= J0(N)[`] ∼= HomF`

(J0(N)[`],F`)
as TF`

-modules, it suffices to prove the following cases of [W3] thm. 2.1.

Theorem 4.26 Let m be a maximal ideal of TZ`
. Suppose that ρm is irre-

ducible and that either

(a) ` does not divide N , or

(b) `2 - N and T` /∈ m.

Then
dimTZ`

/m J0(N)[m] = dimTZ`
/m(J0(N)[`]/m) = 2.

The proof of theorem 4.26 in case (b) requires more of the theory of group
schemes and Néron models than we wish to delve into here. We shall therefore
only explain the proof in the case (a) (which is [R5] thm. 5.2(b), see Ribet’s
paper for more details) and refer to [W3] sec. 2.1 for the general case. We
remark however that the proof of theorem 3.42 appeals to theorem 3.36 only
in the case Σ = ∅ (cf. remarks 4.22 and remark 4.25). Recall that ` divides N∅
only if ρ̄ is not good. So for the purposes of proving the Shimura-Taniyama
conjecture for semistable elliptic curves, (b) can be replaced by the stronger
hypothesis

(b′) `2 - N and ρm|G`
is not good.

The result in this case is due to Mazur and Ribet (the main result of [MRi])
and the proof is slightly easier than in the case of (b).

Returning to case (a), we appeal to a general property of the functor D of
theorem 2.31 which follows from cor. 5.11 of [Oda].

Theorem 4.27 Suppose that A is an abelian variety over Z` (i.e., the Néron
model of an abelian variety over Q` with good reduction). There is a canonical
and functorial isomorphism of vector spaces over F`

D(A(Q̄`)[`]
∗)0 ∼= Cot 0(A/F`),

where Cot 0 denotes the cotangent space at the origin.
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In the case that A is the Jacobian of a smooth proper curve X over Z`, we
have also a canonical isomorphism

Cot 0(A/F`) ∼= H0(X,Ω1
X/F`

)

and in the case X = X0(N) with ` - N , this provides an isomorphism of
TF`

-modules

D(J0(N)(Q̄`)[`]
∗)0 ∼= S2(Γ0(N),F`). (4.5.1)

Consider now the action of GQ on the points of

V = J0(N)[`]∗[m] ∼= (J0(N)[`]/m)∗.

By the argument in [Maz1] prop. II.14.2 or by the main result of [BLR], we
know that every Jordan-Hölder constituent of the representation of GQ on this
T/m-vector space is isomorphic to ρ∗m

∼= ρm. It follows that

dimT/m D(V ) = 2 dimT/m D(V )0

where we now regard V as a good G`-module. On the other hand (4.5.1)
implies that

D(V )0 ∼= S2(Γ0(N),F`)[m],

which is one-dimensional over T/m by the q-expansion principle (lemma 1.34
for example). We have now shown that D(V ) is two-dimensional over T/m,
and it follows that so is V .

Ihara’s lemma: We now sketch the proof of lemma 4.24, which proceeds
by analyzing the behavior of the homology of modular curves under certain
degeneracy maps. Note that it suffices to prove the lemma for φT .

If N and M are positive integers, then we let Γ1(N,M) = Γ1(N) ∩ Γ0(M)
and write Y1(N,M) (resp. X1(N,M)) for the associated non-compactified
(resp. compactified) modular curve. The key intermediate result is the fol-
lowing:

Lemma 4.28 Suppose that N is a positive integer and p is a prime not di-
viding N .

(a) The map
H1(X1(N, p),Z)→H1(X1(N),Z)2

x 7→ (α∗x, β∗x)

is surjective, where α is defined by τ 7→ τ and β by τ 7→ pτ .
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(b) If N > 3 and ` is an odd prime different from p, then the sequence

H1(Y1(Np, p
2),Z`)→ H1(Y1(Np),Z`)

2 →H1(Y1(N),Z`)
x 7→ (α1∗x, β1∗x); (y, z) 7→ β2∗y − α2∗z

is exact, where the maps α1 and α2 are defined by τ 7→ τ and β1 and β2

by τ 7→ pτ .

To prove the lemma, one first translates the statement into one about the
homology (or cohomology) of the congruence subgroups involved. Part (a)
of the lemma is due to Ihara [Ih], but see also the proof of thm. 4.1 of [R4].
Part (b) due to Wiles is more elementary and is established in the course of
proving lemma 2.5 of [W3] (see the sequence (2.13)). The result stated there
is in terms of cohomology rather than homology, but the one given here is
immediate from it.

Remark 4.29 A method of Khare [Kh], sec. 2 using modular symbols yields
an alternate proof of part (b) (after localization at a non-Eisenstein maximal
ideal).

To deduce lemma 4.24 from lemma 4.28 we also need the following result:

Lemma 4.30 Suppose that O is the ring of integers of a finite extension of Q`.
Let M be a positive integer and H a subgroup of (Z/MZ)×. Let T̃O = T̃Z⊗O
where T̃Z is the subring of endomorphisms of M2(Γ1(M)) generated by the
operators 〈d〉 and Tr for primes r - M . If n is a non-Eisenstein maximal ideal
then the localization at n of the natural map

(a) H1(Y1(M),O)→ H1(X1(M),O) is an isomorphism;

(b) H1(X1(M),O)→ H1(XH(M),O) is surjective.

To prove part (a), one checks that

H1(Y1(M),Z)→ H1(X1(M),Z)

is surjective and that Tr = r + 1 on the kernel for primes r ≡ 1 mod M (cf.
proposition 4.13, part (c)).

Part (b) is most easily proved by showing that GQ acts trivially on the
cokernel of the natural map

T`(J1(M))→ T`(JH(M))

(using [LO], prop. 6 for example) and then applying lemma 4.12.
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Finally we explain how to use lemmas 4.28 and 4.30 to prove lemma 4.24.
It suffices to consider the case Σ′ = Σ∪{p}. We discuss only the more difficult
case of p 6= `. We define N = NΣ, N ′ = Np2, m and m′ as in the preceding
section. Thus m′ is a maximal ideal of T′O where T′Z acts on S2(Γ0(N

′)). All the
maps we consider in the argument below will respect the action of the Hecke
operators in T̃′′Z where T̃′′Z is the subring of endomorphisms of M2(Γ1(Np, p

2))
generated by the operators 〈d〉 and Tr for primes r not dividing Np. We let n

denote the preimage of m′ in T̃′′O = T̃′′Z ⊗O. We first apply lemma 4.28(b) to
show that

H1(Y1(Np, p
2),O)n → H1(Y1(Np),O)2

n → H1(Y1(N),O)n

is exact. Next we apply lemma 4.30(a) to obtain the exactness of

H1(X1(Np, p
2),O)n → H1(X1(Np),O)2

n → H1(X1(N),O)n.

Applying lemma 4.30(b) with M = Np, we find that

H1(X1(N, p
2),O)n → H1(X1(N, p),O)2

n → H1(X1(N),O)n

is exact. We then apply lemma 4.28(a) to conclude that the map

H1(X1(N, p
2),O)n→H1(X1(N),O)3

n
x 7→ (α∗x, β∗x, γ∗x)

is surjective where α, β and γ are defined respectively by τ 7→ τ , τ 7→ pτ and
τ 7→ p2τ . Finally, we use lemma 4.30(b) again (now with M = N) to get the
surjectivity of

H1(X0(Np
2),O)n → H1(X0(N),O)3

n,

hence that of (4.4.4) upon localizing at m′.

5 Commutative algebra

In this section we collect some basic facts of commutative algebra that are
used in the proof. We recall that O is the ring of integers in a finite extension
K of Q`, and that O has residue field k. Let CO denote as in section 2.6 the
category of complete noetherian local O-algebras with residue field k.
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5.1 Wiles’ numerical criterion

In this section we state a numerical criterion discovered by Wiles for a map
between two rings in CO to be an isomorphism.

Complete intersections: We say that a ring A in CO is finite flat if it is
finitely generated and torsion free as an O-module. A key ingredient in Wiles’
isomorphism criterion is played by the concept of complete intersection, for
which we give the following naive definition.

Definition 5.1 An object A in CO which is finite flat is called a complete
intersection if it can be expressed as a quotient

A ' O[[X1, . . . , Xn]]/(f1, . . . , fn),

where there are as many relations as there are variables.

Remark 5.2 It is also true that if an object O[[Y1, . . . , Yr]]/J in CO which is
finite flat is a complete intersection, then necessarily J can be generated by
r elements. See for example [Mat], thm. 21.2 (and lemma 5.11 below). We
will not use this fact in this chapter, although a special case is proved in the
course of establishing lemma 5.30.

The category C•O: The numerical criterion of Wiles is stated more naturally
in terms of rings A in the category CO which are endowed with some extra
structure: namely, a surjective O-algebra homomorphism πA : A −→ O. Let
C•O be the category whose objects are pairs (A, πA), where A is an object of
CO and πA : A −→ O is a surjective O-algebra homomorphism, also called the
augmentation map attached to A. Morphisms in C•O are local ring homomor-
phisms which are compatible in the obvious way with the augmentation maps.
By abuse of notation one often omits mentioning the augmentation map πA
when talking of objects in C•O, and simply uses A to denote (A, πA), when this
causes no confusion. Objects of C•O will also be called augmented rings.

The invariants ΦA and ηA: One associates to an augmented ring (A, πA)
two basic invariants:

ΦA = (ker πA)/(kerπA)2;
ηA = πA(AnnAkerπA).

Here AnnA(I) denotes the annihilator ideal of the ideal I in A.
The invariant ΦA can be thought of as a tangent space for the object A.

(More precisely, it is the cotangent space of the scheme spec(A) at the point
kerπA.) It is a finitely generated O-module.
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The invariant ηA seems less familiar at first sight. It is called the congruence
ideal. (The reason for this terminology should become clearer shortly.) We
are now ready to state Wiles’ numerical criterion:

Theorem 5.3 Let φ : R −→ T be a surjective morphism of augmented rings.
Assume that T is finitely generated and torsion-free as an O-module, and that
ηT 6= (0). (And hence, in particular, #(O/ηT ) < ∞.) Then the following are
equivalent:

(a) The inequality #ΦR ≤ #(O/ηT ) is satisfied.

(b) The equality #ΦR = #(O/ηT ) is satisfied.

(c) The rings R and T are complete intersections, and the map φ : R −→ T
is an isomorphism.

Remark 5.4 The above theorem is slightly different from the one that ap-
pears in [W3], where it is assumed from the outset that the ring T is Goren-
stein. In the form in which we state it above, the theorem is due to H. Lenstra
[Len]. Our presentation follows Lenstra’s very closely. For the original (and
slightly different) point of view, the reader should consult the appendix of
[W3].

Some examples: Before going further, it may be good to pause and consider
some examples of objects of C•O and the invariants associated to them. While
logically independent of the proof, the examples should help the reader develop
some intuition. (For a systematic way to compute the tangent spaces ΦA, see
the paragraph at the end of section 5.2.)

Example 1:

A = {(a, b) ∈ O ×O, a ≡ b (mod λn)}
' O[[T ]]/(T (T − λn)), with πA(a, b) := a.

ΦA ' O/λnO, ηA = (λn).

Example 2:

A = {(a, b, c) ∈ O ×O ×O, a ≡ b ≡ c (mod λ)}
' O[[X, Y ]]/(X(X − λ), Y (Y − λ), XY ), with πA(a, b, c) := a.

ΦA ' O/λO ×O/λO, ηA = (λ).
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Example 3:
A = O[[X]]/(X2), with πA(f) := f(0).

ΦA ' O, ηA = 0.

Example 4:

A =

{
(a, b, c, d) ∈ O × · · · × O, a ≡ b ≡ c ≡ d (mod λ),

a+ d ≡ b+ c (mod λ2)

}
' O[[X, Y ]]/(X(X − λ), Y (Y − λ)), with πA(a, b, c, d) := a.

ΦA ' O/λO ×O/λO, ηA = (λ2).

Example 5:

A = O[[X1, . . . , Xn]], with πA(f) := f(0).

ΦA ' On, ηA = (0).

Example 6: (λ = ` ≡ −1 (mod 4), O = Z`).

A = {(a, b+ ci) ∈ Z` × Z`[i], a ≡ b (mod `2), c ≡ 0 (mod `)}
' Z`[[X]]/(X(X2 + `2)), with πA(a, b+ ci) := a.

ΦA ' Z/`2Z, ηA = (`2).

Example 7:

A = O[[T ]]/(λT ) ' O ⊕ kT ⊕ kT 2 ⊕ · · · , with πA(f) = f(0).

ΦA ' k, ηA = (λ).

5.2 Basic properties of ΦA and ηA

In this section we collect some of the basic properties of the invariants ΦA and
ηA, and prove the equivalence of (a) and (b) in theorem 5.3.

Behaviour of ΦA under morphisms: The assignment A 7→ ΦA is a functor
from the category C•O to the category of O-modules; a morphism A −→ B in
C•O induces a homomorphism ΦA −→ ΦB of O-modules. Moreover, if A −→ B
is surjective, then so is the induced map on the tangent spaces. Therefore,
when A maps surjectively onto B we have

#ΦA ≥ #ΦB. (5.2.1)

There is also a converse to this, which will be useful later:
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Lemma 5.5 If the homomorphism ΦA −→ ΦB is surjective, then A −→ B is
also surjective.

Proof: This follows from Nakayama’s lemma. (Cf. [Ha], ch. II, sec. 7.4 and
[Mat], th. 8.4.) 2

Behaviour of ηA under (surjective) morphisms: Unlike the assignment
A 7→ ΦA, the assignment A −→ ηA is not functorial, but it does have a nice
behaviour under surjective morphisms: namely, if φ : A −→ B is surjective,
then

ηA ⊂ ηB, i.e., #(O/ηA) ≥ #(O/ηB). (5.2.2)

This is simply because in that case φ induces a map

AnnAkerπA −→ AnnBkerπB.

Relation between the invariants ΦA and ηA: In general, we have the
following inequality:

#ΦA ≥ #(O/ηA). (5.2.3)

The key behind proving this identity is to interpret #ΦA in terms of Fitting
ideals.

Digression on Fitting ideals: If R is a ring (in CO, say) and M is a finitely
generated R-module, we express M as a quotient of Rn for some n:

0 −→M ′ −→ Rn −→M −→ 0. (5.2.4)

The Fitting ideal of M , denoted Fitt R(M), is the ideal of R generated by the
determinants det(v1, . . . , vn), where the vectors vi ∈ Rn range over all possible
choices of elements of M ′ ⊂ Rn. One checks that this ideal does not depend on
the choice of exact sequence (5.2.4), and hence is an invariant of the R-module
M . For example, if M is a finitely generated O-module, we may write

M = Or ⊕O/(λn1)⊕O/(λn2)⊕ · · · ⊕ O/(λnk),

with n1 ≥ n2 ≥ · · · ≥ nk, and the sequence ni is completely determined by
M . The Fitting ideal FittO(M) is then the ideal of O generated by λn1+···+nk ,
if r = 0, and is the 0-ideal if r > 0. Note in particular that, if M is a finite
O-module, then

#M = #(O/FittO(M)). (5.2.5)
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Furthermore, if M is any R-module, it follows directly from the definition that

Fitt R(M) ⊂ AnnR(M). (5.2.6)

Fitting ideals behave well under tensor products: in particular, if M is a
finitely generated A-module, where A is an object in C•O, then:

πA(Fitt A(M)) = FittO(M ⊗A O), (5.2.7)

where the tensor product is taken with respect to the augmentation map πA.
For more details and references on the Fitting ideal, see [Len] for example.

Now we are ready to prove equation (5.2.3). For, noting that ΦA =
kerπA⊗AO, where the tensor product is taken with respect to πA, and applying
equation (5.2.7) with M = ker πA, we have:

FittO(ΦA) = πA(Fitt A(kerπA)) ⊂ πA(AnnAkerπA) = ηA,
(5.2.8)

where the containment follows from equation (5.2.6). Now the inequality
(5.2.3) follows by combining (5.2.5) and (5.2.8).

As a consequence, we have

Corollary 5.6 The statements (a) and (b) in theorem 5.3 are equivalent.

Proof: If R −→ T is a surjective map of augmented rings, then #ΦR ≥
#ΦT , by equation (5.2.1). But equation (5.2.3) gives the inequality #ΦT ≥
#(O/ηT ). Hence the inequality #ΦR ≥ #(O/ηT ) always holds, so that (a)
implies (b) in theorem 5.3. The reverse implication is clear. 2

Remark 5.7 (Computing the tangent spaces ΦA): Any object (A, πA) in C•O
can be expressed as a quotient of the object U = O[[X1, . . . , Xn]] of ex-
ample 5 with augmentation map given by πU(f) = f(0). Indeed, one can
take a1, . . . , an to be A-module generators of the finitely generated A-module
kerπA, and obtain the desired quotient map by sending Xi to ai.

The tangent space ΦU of U is a free O-module of rank n which can be
written down canonically as

OX1 ⊕OX2 ⊕ · · · ⊕ OXn,

the natural map from (kerπU) being simply the map which sends a power
series f ∈ U with no constant term to its degree 1 term, which we will denote
by f̄ .

If A is expressed as a quotient U/(f1, . . . , fr), then one has

ΦA = ΦU/(f̄1, . . . , f̄r). (5.2.9)
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5.3 Complete intersections and the Gorenstein condi-
tion

In this section we show that complete intersections satisfy a Gorenstein con-
dition, and that (c) implies (a) and (b) in the statement of Wiles isomorphism
criterion (theorem 5.3).

Definition 5.8 An object A in CO which is finite flat is said to be Gorenstein
if

HomO(A,O) ' A as A-modules.

Proposition 5.9 Suppose A in CO is finite flat. If A is a complete intersec-
tion, then A is Gorenstein.

The remainder of this section will be devoted to proving proposition 5.9. Since
the proof is a bit long and involved, and the concepts it uses are not used
elsewhere, the reader is advised on a first reading to take it on faith and skip
to the next section. A more direct proof of proposition 5.9 which bypasses the
arguments of this section is explained in [Len].

We let A be a ring which is finite flat, and is a complete intersection.
(Hence, A can be written as O[[X1, . . . , Xn]]/(f1, . . . , fn).) We assume that
the augmentation map for A is induced from the map on O[[X1, . . . , Xn]]
sending f to f(0). This implies that fi(0) = 0, i.e., the fi have no constant
term.

We recall some definitions from commutative algebra that we will need.
An ideal I of a local ring R is said to be primary if I 6= R and every zero
divisor in R/I is nilpotent. If (x1, . . . , xn) generates a primary ideal of R, and
n = dimR, then (x1, . . . , xn) is called a system of parameters for R.

Lemma 5.10 The sequence (f1, . . . , fn, λ) is a system of parameters for U =
O[[X1, . . . , Xn]].

Proof: The quotient ring U/(f1, . . . , fn, λ) is local and is finitely generated as
a k-vector space; therefore every element in its maximal ideal is nilpotent. 2

A sequence (x1, . . . , xn) in a ring R is said to be a regular sequence if xi is
not a zero-divisor in R/(x1, . . . , xi−1) for i = 1, . . . , n.

Lemma 5.11 The sequence (f1, . . . , fn) is a regular sequence for U .
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Proof: The ring U is Cohen Macaulay, since λ,X1, . . . , Xn is a system of
parameters of U which is also a regular sequence. Hence, by theorem 17.4 (iii)
of [Mat], (f1, . . . , fn, λ) is a regular sequence in U . A fortiori, the sequence
(f1, . . . , fn) is also a regular sequence. 2

The proofs of lemma 5.10 and 5.11 use only the fact that A is finitely
generated as an O-module, and not that A is flat. As a corollary of this proof,
we therefore have:

Corollary 5.12 If R is an object of C•O which is finitely generated as an O-
module, and R ' O[[X1, . . . , Xn]]/(f1, . . . , fn), then R is also flat, and hence
is a complete intersection.

To go further, we will introduce the Koszul complex

K(x,R) := ⊕np=0Kp(x,R)

associated to a local ring R and a sequence x = (x1, . . . , xn) of elements in
its maximal ideal. For more details on the Koszul complex and its relation
to regular sequences, the reader can consult [Mat], especially §16, or [Bour]
X, or [Se3]. This complex is defined to be the free graded differential algebra
generated by symbols u1, . . . , un:

Kp(x,R) := ⊕i1<i2<···<ipR · ui1 ∧ · · · ∧ uip ,

with differential d : Kp −→ Kp−1 defined by

d(ui1 ∧ · · · ∧ uip) =

p∑
t=1

(−1)txt · ui1 ∧ · · · ∧ uit−1 ∧ uit+1 ∧ · · · ∧ uip .

We denote by Hp(x;R) the homology groups of this complex. We record here
the main properties of this complex that we will use.

Proposition 5.13 (a) H0(x;R) = R/(x).

(b) There is a long exact homology sequence

· · · −→ Hp(x;R) −→ Hp(x, xn+1;R) −→ Hp−1(x;R)
±xn+1−→

Hp−1(x;R) −→ Hp−1(x, xn+1;R) −→ Hp−2(x;R) −→ · · ·

(c) Hp(x;R) is annihilated by the ideal (x), i.e., it has a natural R/(x)-
module structure.
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(d) If x is a regular sequence, then Hp(x;R) = 0 for all p > 0 (i.e., the
complex Kp(x;R) is a free resolution of R/(x).)

Proof: The first assertion follows directly from the definition. For (b) and (c),
see [Mat], th. 16.4. The assertion (d) can be proved by a direct induction
argument on n, using the long exact homology sequence: For p > 1, this
sequence becomes

0 −→ Hp(x, xn+1;R) −→ 0,

and for p = 1, it is

0 −→ H1(x, xn+1;R) −→ H0(x;R)
xn+1−→ H0(x;R).

But the assumption that x, xn+1 is a regular sequence means that multiplica-
tion by xn+1 is injective on H0(x;R) = R/(x). Hence, the assertion (d) follows.
2

Now, we turn to the proof of proposition 5.9, following a method of Tate
which is explained in the appendix of [MRo]. For any ring R, write R[[X]] :=
R[[X1, . . . , Xn]]. Let a1, . . . , an be the images in A of X1, . . . , Xn by the
natural map

α : O[[X]] −→ A = O[[X]]/(f1, . . . , fn),

and let
β : A[[X]] −→ A

be the natural map which sends Xi to ai. The sequence (gi) = (Xi − ai)
generates the kernel of β. Since the fi, viewed as polynomials in A[[X]], also
belong to ker β, we have:

(f1, . . . , fn) = (g1, . . . , gn)M, (5.3.1)

where M is an n× n matrix with coefficients in A[[X]]. Let

D = det(M) ∈ A[[X]].

Our goal is to construct an A-module isomorphism

HomO(A,O) −→ A.

We begin by constructing a surjective (O-linear) map

HomO[[X]](A[[X]],O[[X]]) −→ A.
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Lemma 5.14 (Tate): The function Φ(f) = α(f(D)) induces an isomorphism
of O[[X]]-modules

HomO[[X]](A[[X]],O[[X]])/(g1, . . . , gn) −→ A.

Proof: By lemma 5.11, the sequence (f) = (f1, . . . , fn) is a regular O[[X]]-
sequence. One can see directly from the definition that the sequence (g) =
(gi) = (Xi−ai) is a regular A[[X]]-sequence. Let K(f) and K(g) be the Koszul
complexes associated to these two sequences. It follows from proposition 5.13
that the Koszul complex K(f) is a resolution of A by free O[[X]]-modules,
and the Koszul complex K(g) is a resolution of A by free A[[X]]-modules, and
hence a fortiori, by free O[[X]]-modules. We define a map Φ : K(f) −→ K(g)
of complexes by letting

Φ0 : K0(f) −→ K0(g)

be the natural inclusion of O[[X]] into A[[X]], and letting

Φ1 : K1(f) −→ K1(g)

be the map defined by

(Φ1(u1), . . . ,Φ1(un)) = (v1, . . . , vn)M,

and extending it by skew-linearity to a map of exterior algebras. One can
check that the resulting map Φ is a morphism of complexes which induces the
identity map A −→ A, and satisfies

Φn(u1 ∧ · · · ∧ un) = D · v1 ∧ · · · ∧ vn.

Applying the functor HomO[[X]](−,O[[X]]) to these two free resolutions, and
taking the homology of the resulting complexes, we find that since Φ is a homo-
topy equivalence of complexes it induces an isomorphism on the cohomology,
and in particular, on the nth cohomology:

Φn : HomO[[X]](A[[X]],O[[X]])/(g1, . . . , gn)
'−→

HomO[[X]](O[[X]],O[[X]])/(f1, . . . , fn) ' A,

which is given explicitly by the formula:

Φn(f) = α(f(D)).

2

We finally come to the proof of proposition 5.9, which we can state in a
more precise form.
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Lemma 5.15 The map Ψ : HomO(A,O) −→ A defined by Ψ(f) = α(f̃(D)),
where f̃ : A[[X]] −→ O[[X]] is the base change of f , is an A-module isomor-
phism, and hence, A is Gorenstein.

Proof: The key point is to show that Ψ is A-linear. By definition, if

a = α(a′) ∈ A, with a′ ∈ O[[X]],

then
Ψ(af) = α(f̃(aD)) = α(f̃((a− a′)D)) + α(f̃(a′D)).

Since a − a′ ∈ ker β, it can be written as an A[[X]]-linear combination of the
gi. By multiplying the relation

(f1, . . . , fn) = (g1, . . . , gn)M

by the matrix D ·M−1 ∈Mn(A[[X]]), one sees that the Dgi can be written as
A[[X]]-linear combinations of the fi’s. Hence, so can the expression (a−a′)D.
By the O[[X]]-linearity of f̃ , and the fact that each fi belongs to kerα, it
follows that

α(f̃((a− a′)D)) = 0.

Therefore,
Ψ(af) = α(a′f̃(D)) = aΨ(f).

This shows that Ψ is A-linear. To show that Ψ is surjective, observe that if
f1, . . . , fr is a O-basis of HomO(A,O), then f̃1, . . . , f̃r is a O[[X]]-basis for
HomO[[X]](A[[X]],O[[X]]). Hence, for all a ∈ A, there exist p1, . . . , pr such
that

Φn(p1f̃1 + · · ·+ prf̃r) = a.

But this means that

Ψ(α(p1)f1 + · · ·+ α(pr)fr) = a,

so that Ψ is surjective. Finally, since HomO(A,O) and A are free O-modules
of the same finite rank, and Ψ is surjective, it must also be injective. Hence
Ψ is an isomorphism, as was to be shown. 2

Example 5.16 Let A ⊂ O×O be the ring of example 1 in section 5.1. Then,
f = T 2 − λnT , and g = T − (0, λn). Hence, f = (T − (λn, 0))g, so that
D = T − (λn, 0). It follows that

Φ(h) = α(h̃(T − (λn, 0))) = α(Th(1, 1)− h(λn, 0)) = (0, λn)h(1, 1)− h(λn, 0).

The reader can check directly that Φ is indeed an A-linear isomorphism from
the A-module HomO(A,O) to A.
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Example 5.17 Let A = O[ε]/(ε2) be the ring of example 3 in section 5.1.
Then, f = T 2, and g = T − ε. Hence, f = (T + ε)g, so that D = T + ε. It
follows that

Φ(f) = α(f̃(T + ε)) = α(Tf(1) + f(ε)) = εf(1) + f(ε).

Exercise 5.18 Write down explicitly an isomorphism A
∼→ HomO(A,O) for

the complete intersection A = O[[X, Y ]]/(X(X − λ), Y (Y − λ)) of example 4
of section 5.1.

5.4 The Congruence ideal for complete intersections

Let A be an object of C•O, which is finite flat and is a complete intersection as
in the previous section, so that A ' O[[X1, . . . , Xn]]/(f1, . . . , fn).

Using the result of the previous section, we will give an explicit formula
for computing ηA in this case, and prove that (c) implies (b) in theorem 5.3.

Let A∨ := HomO(A,O), and let π∨A : O∨ −→ A∨ be the dual map. From
the Gorenstein property of A, we may identify A∨ with A (as A-modules). Fix

any identification Ψ : A∨
'−→ A. (Any two such differ by a unit in A.) One

checks that
Ψπ∨A(O∨) = AnnAkerπA.

Hence, ηA is the image of the map πAΨπ∨A. By using the explicit construction
of Ψ given in lemma 5.15, we find:

πAΨπ∨A(O∨) = παπ̃(D),

whereD is the determinant defined in section 5.3. By a direct calculation using
equation (5.3.1), one sees that the right hand side is equal to det(∂fi/∂Xj(0)).
Hence we have shown:

Proposition 5.19 Suppose that A is an object of C•O which is finite flat. If
A = O[[X1, . . . , Xn]]/(f1, . . . , fn) is a complete intersection, then

ηA = (det(∂fi/∂Xj(0))).

This proposition implies:

Corollary 5.20 Let A in C•O be finite flat. If A is a complete intersection,
then #ΦA = #(O/ηA). Hence, the statement (c) implies statement (b) in
theorem 5.3.

Proof: The equation (5.2.9) of remark 5.7 implies that

#ΦA = #O/(det(∂fi/∂Xj(0))).

The result follows. 2
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5.5 Isomorphism theorems

The usefulness of the notion of complete intersections comes from the following
two (vaguely stated) principles:
1. Isomorphisms to complete intersections can often be recognized by looking
at their effects on the tangent spaces.
2. Isomorphisms from complete intersections can often be recognized by look-
ing at their effects on the invariants η.

These vague principles are made precise in theorems 5.21 and 5.24 respec-
tively.

Theorem 5.21 Let φ : A −→ B be a surjective morphism of augmented rings,
with B a (finite, flat) complete intersection. If φ induces an isomorphism from
ΦA to ΦB, and these modules are finite, then φ is an isomorphism.

Remark 5.22 Let A = O[[X, Y ]]/(X(X − λ), Y (Y − λ)) be the ring of ex-
ample 4, let B = O[[X, Y ]]/(X(X−λ), Y (Y −λ), XY ) be the ring of example
2, and let φ : A −→ B be the natural projection. The map φ induces an
isomorphism ΦA −→ ΦB, even though φ is not an isomorphism. The assump-
tion that B is a complete intersection is crucial for concluding that φ is an
isomorphism.

Remark 5.23 The natural map

O[[X]]/(X3) −→ O[[X]]/(X2)

is a surjective morphism inducing an isomorphism on tangent spaces, and the
target ring is a complete intersection. Yet this map is not an isomorphism.
This shows that the assumption on the finiteness of the tangent spaces cannot
be dispensed with.

Proof of theorem 5.21: Recall that U = O[[X1, . . . , Xn]] is the augmented ring
of example 5 of section 5.1. Let

νB : U −→ B

be a surjective morphism of augmented rings with ker νB = (f1, . . . , fn). Let
b1, . . . , bn ∈ kerπB denote the images ofX1, . . . , Xn by νB, and let a1, . . . , an ∈
kerπA denote inverse images of b1, . . . , bn by φ. Since φ is an isomorphism
on tangent spaces, the elements ai generate (ker πA)/(kerπA)2. Hence the
morphism

νA : O[[X1, . . . , Xn]] −→ A
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defined by νA(Xi) = ai induces a surjection ΦU −→ ΦA, and so it is surjective,
by lemma 5.5.

We claim that ker νB is contained in ker νA (and hence, ker νB = ker νA).
For, let g1, . . . , gn be elements of ker νA whose linear terms ḡ1, . . . , ḡn generate
the kernel of

ν̄A : ΦU −→ ΦA.

Since ker νA ⊂ ker νB, it follows that there exists an n×n matrix M ∈Mn(U)
with entries in U such that

(g1, . . . , gn) = (f1, . . . , fn)M.

Let M̄ be the matrix of constant terms of the matrix M . Then we have

(ḡ1, . . . , ḡn) = (f̄1, . . . , f̄n)M̄.

Since (ḡ1, . . . , ḡn) and (f̄1, . . . , f̄n) generate the same submodules of rank n
and finite index in ΦU , it follows that det M̄ is a unit in O. Hence, M is
invertible, and therefore the fi can be expressed as a U -linear combination of
the gj. This implies that ker νB ⊂ ker νA. Now we see that νAν

−1
B gives a

well-defined inverse to φ, so that φ is an isomorphism. 2

Theorem 5.24 Let φ : A −→ B be a surjective morphism of augmented rings.
Suppose that A and B are finite flat, and that A a complete intersection. If
ηA = ηB 6= 0, then φ is an isomorphism.

Remark 5.25 The torsion-freeness assumption on B is essential: if n is large
enough, then B = A/(kerπA)n satisfies ηA = ηB, although the natural map
A −→ B is not injective when A 6= O.

Proof: By proposition 5.9, A is Gorenstein, i.e., it satisfies

A∨ := HomO(A,O) ' A as A-modules.

Now, we observe that

kerπA ∩ AnnAkerπA = 0, (5.5.1)

and likewise for B. For, let x be a non-zero element of ηA, and let x′ ∈
AnnAkerπA satisfy πA(x′) = x. For all a ∈ kerπA ∩ AnnAkerπA, we have

0 = a(x− x′) = ax,
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the first equality because a belongs to AnnAkerπA and (x − x′) belongs to
kerπA, the second equality because a belongs to ker πA and x′ belongs to
AnnAkerπA. Hence a belongs to the O-torsion submodule of A, and therefore
is 0.

It follows from (5.5.1) that the homomorphism πA (resp. πB) induces an
isomorphism from AnnAkerπA (resp. AnnBkerπB) to ηA (resp. ηB). Since ηA
is isomorphic to ηB, it follows that φ induces an isomorphism from AnnAkerπA
to AnnBkerπB, i.e.,

φAnnAkerπA = AnnBkerπB.

From (5.5.1) it also follows a fortiori that

kerφ ∩ AnnAkerπA = 0,

hence there is an exact sequence of A-modules:

0 −→ kerφ⊕ AnnAkerπA −→ A. (5.5.2)

The cokernel of the last map is

A/(kerφ⊕ AnnAkerπA) ' B/(φAnnAkerπA) ' B/(AnnBkerπB),

which is torsion-free, since there is a natural injection

B/(AnnBkerπB) ↪→ EndO(kerπB).

Hence, the exact sequence (5.5.2) splits over O. Taking O duals in (5.5.2)
and using the Gorenstein condition for A, we thus get an exact sequence of
A-modules:

A −→ (kerφ)∨ ⊕ (AnnAkerπA)∨ −→ 0.

Applying the functor −⊗A k (relative to the map A −→ k), we find

1 = dimk(A⊗A k) ≥ dimk((kerφ)∨ ⊗A k) + dimk((AnnAkerπA)∨ ⊗A k).

Since ηA 6= 0, it follows that (AnnAkerπA)∨⊗A k 6= 0, and hence we must have

(kerφ)∨ ⊗A k = 0.

Therefore by Nakayama’s lemma and duality, kerφ = 0, which proves the
theorem. 2
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5.6 A resolution lemma

It turns out that objects in C•O can be “resolved” (in a weak sense) by a
complete intersection, namely,

Theorem 5.26 Let A be an augmented ring which is finite flat over O. Then
there is a morphism Ã −→ A in the category C•O such that:

(a) the ring Ã is finite flat over O and is a complete intersection;

(b) the map Ã −→ A induces an isomorphism ΦÃ −→ ΦA.

Proof: Write A as a quotient of U = O[[X1, . . . , Xn]] (with πU : U −→ O the
map which sends each Xi to 0.) Let f1, . . . , fn be elements in the kernel of the
natural map U −→ A, such that f̄1, . . . , f̄n generate the kernel of ΦU −→ ΦA.
Now letting

Ã = U/(f1, . . . , fn)

would give the desired ring Ã, provided Ã is finitely generated: indeed, the
flatness of Ã would follow from corollary 5.12.

Thus we need to show that the fi can be chosen so that Ã is finitely
generated. Let a1, . . . , an be O-module generators of the finitely generated
module ker πA, and define a homomorphism φ from the polynomial ring

V = O[X1, . . . , Xn]

to A by sending Xj to aj. Clearly φ is surjective. Let f1, . . . , fn be elements
of kerφ chosen as above, and let m denote their maximal degree. Since the
elements a2

i belong to ker πA, we may write

a2
i = hi(a1, . . . , an),

where hi(X1, . . . , Xn) is a linear polynomial. Now, replacing the relations fi
by the relations

fi +Xm
i hi −Xm+2

i ,

we find that the ring V/(f1, . . . , fn) is a finitely generated O-module: it can
be generated by the images of the monomials of degree ≤ n(m+ 1), since the
relations allow us to rewrite any monomial of higher degree in terms of ones of
lower degree. Completing at the ideal (λ,X1, . . . , Xn), we find that the ring

Ã = U/(f1, . . . , fn)

has the desired properties: the natural homomorphism from Ã to A induces
an isomorphism on the tangent spaces, since the linear terms of the fi generate
the kernel of the induced map ΦU −→ ΦA on the tangent spaces, and Ã is a
finitely generated O-module, since V/(f1, . . . , fn) is. 2
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5.7 A criterion for complete intersections

The results we have accumulated so far allow us to give an important criterion
for an object A to be a complete intersection:

Theorem 5.27 Let A be an augmented ring which is a finitely generated
torsion-free O-module. If #ΦA ≤ #(O/ηA) <∞, then A is a complete inter-
section.

Proof: Let φ : Ã −→ A be the surjective morphism given by the resolution
theorem (theorem 5.26). Then we have

#(O/ηA) ≥ (#ΦA) = (#ΦÃ) ≥ #(O/ηÃ),

where the first inequality is by assumption, the second by the choice of Ã, and
the third is by the equation (5.2.3). On the other hand, by equation (5.2.2),
we have

#(O/ηÃ) ≥ #(O/ηA).

It follows that
ηA = ηÃ,

so that φ is an isomorphism by theorem 5.24. It follows that A is a complete
intersection. 2

5.8 Proof of Wiles’ numerical criterion

Theorem 5.28 Let R and T be augmented rings such that T is a finitely
generated torsion-free O-module, and let φ : R −→ T be a surjective morphism.
If

#ΦR ≤ #(O/ηT ) <∞,
then R and T are complete intersections, and φ is an isomorphism.

Proof: We have:

#(O/ηT ) ≤ #ΦT ≤ #ΦR ≤ #(O/ηT ),

where the first inequality is by equation (5.2.3), the second follows from the
surjectivity of φ, and the third is by hypothesis. Therefore,

#ΦT = #(O/ηT ),

and hence T is a complete intersection by theorem 5.27. Since the orders of
ΦR and ΦT are the same, φ induces an isomorphism between them. Hence φ
is an isomorphism R −→ T , by theorem 5.21. This completes the proof. 2
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Theorem 5.28 shows that the statements (a) and (b) in theorem 5.3 imply
the statement (c). Combining corollaries 5.6, 5.20, and theorem 5.28 completes
the proof of theorem 5.3.

5.9 A reduction to characteristic `

Let Ck be the category of complete local noetherian k-algebras with residue
field k. Again all morphisms are assumed to be local. There is a natural
functor A 7→ Ā from CO to Ck which send A to Ā := A/λ.

We say that an object A of Ck which is finite dimensional as a k-vector
space is a complete intersection if it is isomorphic to a quotient

A = k[[X1, . . . , Xr]]/(f1, . . . , fr).

Note that if an object A of CO is a complete intersection, then Ā is a
complete intersection in Ck. As a partial converse, we have:

Lemma 5.29 Suppose that R 7→ T is a map in the category CO, and that T is
finitely generated and free as an O-module. Then R −→ T is an isomorphism
of complete intersections, if and only if R̄ −→ T̄ is.

Proof: This is an exercise and is left to the reader. 2

We now come to the proof of lemma 3.39 of section 3.4:

Lemma 5.30 Suppose that K ⊂ K ′ are local fields with rings of integers
O ⊂ O′ and that A is an object of CO which is finitely generated and free as
an O-module. Then A is a complete intersection if and only if A⊗O O′ is.

Proof: One implication is clear. Let k and k′ be the residue fields of O and O′
respectively. By lemma 5.29 it is enough to prove that, if R is an object of Ck
which is finite dimensional as a k-vector space, then

R′ = R⊗k k′ is a complete intersection ⇒ R is a complete intersection.

Let m and m′ denote the maximal ideals of R and R′ respectively.
By assumption, we have R′ = k′[[Y1, . . . , Yr]]/J , where the ideal J can be

generated by r elements. We can assume without loss of generality (by adding
extra variables and relations if necessary) that the images of Y1, . . . Yr generate
m′ as a k′-vector space. Now, let

φ : k[[X1, . . . , Xr]] −→ R
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be a ring homomorphism, such that the images of X1, . . . , Xr generate m as
a k-vector space, and let

φ′ : k′[[X1, . . . , Xr]] −→ R′

be the extension of scalars. Let I and I ′ = I ⊗k k′ be the kernels of these
two maps. We claim that I ′ can be generated by r elements. (In fact, this is
also true without the assumption that the images of X1, . . . , Xr generate m′

as a k′ vector space, although we use this assumption in the proof below. Cf.
remark 5.2.) To see this, choose an isomorphism of k′-vector spaces k′X1 ⊕
· · · ⊕ k′Xr −→ k′Y1 ⊕ · · · ⊕ k′Yr such that

k′X1 ⊕ · · · ⊕ k′Xr −→ k′Y1 ⊕ · · · ⊕ k′Yr
↓ ↓
m′ = m′

commutes. Extending this map to an isomorphism of k′-algebras,

ν : k′[[X1, . . . , Xr]] −→ k′[[Y1, . . . , Yr]],

one sees that I ′ = ν−1(J), and hence can be generated by r elements, as
claimed.

In particular we have dimk′(I
′/m′I ′) ≤ r, and

dimk(I/mI) = dimk′((I/mI)⊗k k′) ≤ dimk′(I
′/m′I ′) ≤ r.

Nakayama’s lemma now implies that I can be generated by r elements, and
hence R is a complete intersection. This proves the lemma. 2

5.10 J-structures

We now turn to the proof of theorem 3.41. In view of the last section we will
work in characteristic `. Thus let π : R→→ T be a surjective morphism in the
category Ck, where R and T are finite dimensional as k-vector spaces. Let r
be a non-negative integer. If J � k[[S1, ..., Sr]] and J ⊂ (S1, ..., Sr) then by a
strong J-structure we shall mean a commutative diagram in Ck

k[[S1, ..., Sr]]
↓

k[[X1, ..., Xr]]→→ R′ →→ T ′

↓ ↓
R →→ T,

such that
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(a) T ′/(S1, ..., Sr)T
′ ∼→ T and R′/(S1, ..., Sr)R

′ →→ R,

(b) for each ideal I ⊃ J , I = ker (k[[S1, ..., Sr]]→ T ′/I),

(c) J = ker (k[[S1, ..., Sr]]→ T ′) and R′ ↪→ T ′ ⊕R.

We refer to these as strong J-structures because we have slightly altered the
conditions from section 3.4 for technical convenience in the rest of this section.

We will prove the following result.

Theorem 5.31 Suppose there exist a sequence of ideals Jn�k[[S1, ..., Sr]] such
that J0 = (S1, ..., Sr), Jn ⊃ Jn+1,

⋂
n Jn = (0) and for each n there exists a

strong Jn-structure. Then R
∼→ T and these rings are complete intersections.

Before proving theorem 5.31 we shall explain how to deduce theorem 3.41
from it. If J is an ideal of O[[S1, ..., Sr]] we will use J̄ to denote its image in
k[[S1, ..., Sr]]. If S given by

O[[S1, ..., Sr]]
↓

O[[X1, ..., Xr]]→→ R′ →→ T ′

↓ ↓
R →→ T,

is a J-structure for R→ T , let a = ker (R −→ T ), and let R′′ denote the ring
Im (R′ → (R/mRa⊕ (T ′/J))⊗O k). Then S̄ given by

k[[S1, ..., Sr]]
↓

k[[X1, ..., Xr]]→→ R′′ →→ (T ′/J)⊗O k
↓ ↓

(R/mRa)⊗O k→→ T ⊗O k,

is a strong J̄-structure for (R/mRa)⊗Ok → T⊗Ok. If Jn is a sequence of ideals
as in theorem 3.41 then J̄n is a sequence of nested ideals with J̄0 = (S1, ..., Sr)
and

⋂
n J̄n = (0). Moreover if for each n there is a Jn-structure Sn for R→ T

then for each n there is a strong J̄n-structure S̄n for

(R/mRa)⊗O k → T ⊗O k.

Then by theorem 5.31 we see that this map is an isomorphism of complete
intersections. Lemma 5.29 shows that theorem 3.41 follows. 2

Before returning to the proof of theorem 5.31, let us first make some re-
marks about strong J-structures.
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• The set of strong J structures for all ideals J ⊂ (S1, ..., Sr) ⊂ k[[S1, ..., Sr]]
forms a category, with the obvious notion of morphism.

• If S is a strong J-structure and if (S1, ..., Sr) ⊃ J ′ ⊃ J then there is a natural
J ′-structure S mod J ′ obtained by replacing T ′ by T ′/J ′ and R′ by the image
of R′ → R⊕ (T ′/J ′).

• If R is a finite dimensional k-vector space and if J has finite index in
k[[S1, ..., Sr]] then there are only finitely many isomorphism classes of strong
J-structure. (This follows because we can bound the order of R′ in any J-
structure. Explicitly we must have #R′ ≤ (#R)(#k[[S1, ..., Sr]]/J)dimk T .)

Lemma 5.32 Suppose that R is a finite dimensional k vector space. Suppose
also that {Jn} is a nested (decreasing) sequence of ideals and that J =

⋂
n Jn.

If for each n a strong Jn structure exists then a strong J structure exists.

Proof: We may suppose that each Jn has finite index in k[[S1, ..., Sr]]. Let Sn
denote a strong Jn-structure. Let Sn,m = Sn mod Jm if m ≤ n. Because there
are only finitely many isomorphism classes of strong Jm structure, we may
recursively choose integers n(m) such that

• Sn(m),m
∼= Sn,m for infinitely many n,

• if m > 1 then Sn(m),m−1
∼= Sn(m−1),m−1.

Let S ′m = Sn(m),m. Then S ′m is a strong Jm structure and if m ≥ m1 then
S ′m mod Jm1

∼= S ′m1
. One checks that S = lim

←
S ′m is the desired strong J-

structure. 2

Lemma 5.33 Suppose that a strong (0) structure exists. Then the map R −→
T is an isomorphism, and these rings are complete intersections.

Proof: Because k[[S1, ..., Sr]] ↪→ T ′ (and T ′ is a finitely generated k[[S1, ..., Sr]]-
module by Nakayama’s lemma, cf. [Mat], thm. 8.4) we see that the Krull
dimension of T ′ is at least r. On the other hand k[[X1, ..., Xr]] →→ T ′ and so
by Krull’s principal ideal theorem this map must be an isomorphism. Thus

k[[X1, ..., Xr]]
∼→ R′

∼→ T ′.

Hence we have that

k[[X1, ..., Xr]]/(S1, ..., Sr)
∼→ R′/(S1, ..., Sr)

∼→ T,

and the lemma follows. 2

Theorem 5.31 follows at once from these two lemmas. 2
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metic of modular curves, Astérisque 196–197 (1991), 215–255.

[MRo] B. Mazur, L. Roberts, Local Euler characteristics, Inv. Math. 9
(1970), 201–234.

[MT] B. Mazur, J. Tilouine, Représentations galoisiennes, différentielles
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algébriques, J. Math. Soc. Japan 10 (1958), 1–28.

[Shi2] G. Shimura, Introduction to the Arithmetic Theory of Automorphic
Functions, Princeton Univ. Press, Princeton, 1971.

[Shi3] G. Shimura, On the factors of the jacobian variety of a modular func-
tion field, J. Math. Soc. Japan 25 (1973), 523–544.

[Shi4] G. Shimura, On the holomorphy of certain Dirichlet series, Proc.
LMS (3) 31 (1975), 79–98.

[Shi5] G. Shimura, The special values of the zeta functions associated with
cusp forms, Comm. Pure Appl. Math. 29 (1976), 783–804.

[Si1] J. Silverman, The Arithmetic of Elliptic Curves, Graduate Texts in
Math. 106, Springer-Verlag, New York, Berlin, Heidelberg, 1986.

[Si2] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves,
Graduate Texts in Math. 151, Springer-Verlag, New York, Berlin,
Heidelberg, 1994.

166



[St] J. Sturm, Special values of zeta functions, and Eisenstein series of
half integral weight, Amer. J. Math. 102 (1980), 219–240.

[ST] J.-P. Serre, J.T. Tate, Good reduction of abelian varieties, Annals of
Math. 88 (1968), 492–517.

[Su] J. Suzuki, On the generalized Wieferich criterion, Proc. Japan Acad.
70 (1994), 230-234.

[Ta] J.T. Tate, Algorithm for determining the type of a singular fiber in
an elliptic pencil, in [Ant4], pp. 33–52.

[Te] G. Terjanian, Sur l’équation x2p + y2p = z2p, C.R. Acad. Sci. Paris,
285 (1977) 973-975.

[Th] F. Thaine, On the ideal class groups of real abelian number fields,
Annals of Math. 128 (1988), 1–18.

[Tu] J. Tunnell, Artin’s conjecture for representations of octahedral type,
Bull. AMS 5 (1981), 173–175.

[TW] R. Taylor, A. Wiles, Ring theoretic properties of certain Hecke alge-
bras, Annals of Math. 141 (1995), 553–572.

[Wa] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts
in Math. 83, Springer-Verlag, New York, Berlin, Heidelberg, 1982.
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