
The Shimura-Taniyama conjecture
(d’après Wiles)

Henri Darmon

September 9, 2007

Contents

1 Preliminaries 4
1.1 The main results . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Wiles’ strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Representability of ADΣ and the ring RΣ . . . . . . . . . . . . 12
1.4 Construction of a Hecke ring TΣ . . . . . . . . . . . . . . . . 12
1.5 The map RΣ −→ TΣ . . . . . . . . . . . . . . . . . . . . . . . 15

2 Wiles’ isomorphism criterion 17
2.1 The invariants Φ and η . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.2 Some examples . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Basic properties of ΦA and ηA . . . . . . . . . . . . . . . . . . 20
2.3 Complete intersections . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Isomorphism theorems . . . . . . . . . . . . . . . . . . . . . . 27
2.5 A resolution lemma . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 A criterion for complete intersections . . . . . . . . . . . . . . 31
2.7 Proof of Wiles’ isomorphism criterion . . . . . . . . . . . . . . 32
2.8 The relative invariant ηT

′
/T . . . . . . . . . . . . . . . . . . . 33

2.9 Interpretation of ηT ′/T in the Gorenstein case . . . . . . . . . 34

1



3 Interpretation of ΦRΣ
and ηTΣ

35
3.1 Interpretation of ΦRΣ

. . . . . . . . . . . . . . . . . . . . . . . 35
3.2 A formula for ηTΣ

. . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.1 A map TΣ′ −→ TΣ . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Computing ηT′/T . . . . . . . . . . . . . . . . . . . . . 41

3.3 Relation with the Bloch-Kato conjectures . . . . . . . . . . . . 44

4 Proof of the inequality #ΦRΣ
≤ #(Z5/ηTΣ

) 45
4.1 Reduction to the case Σ = ∅ . . . . . . . . . . . . . . . . . . . 45
4.2 Proof of the inequality for Σ = ∅ . . . . . . . . . . . . . . . . 47

4.2.1 The group Smod
Σ (Q, A) . . . . . . . . . . . . . . . . . . 49

4.2.2 Local Tate duality . . . . . . . . . . . . . . . . . . . . 51
4.2.3 Bounding S∅(Q, A

∗
5) . . . . . . . . . . . . . . . . . . . 53

4.2.4 Bounding S∅(Q, A5) . . . . . . . . . . . . . . . . . . . 55

5 Wiles’ general strategy 58

2



The conjecture of Shimura and Taniyama that every elliptic curve over Q
is modular has been described as a “Himalayan peak” [Mu] whose conquest
is one of the great challenges of mathematics. Until recently, the summit
was viewed as impregnable. Then, in June 1993, Andrew Wiles stunned the
world by mapping out a means of ascent to those lofty peaks.

Wiles’ methods can be used to prove that there are infinitely many elliptic
curves over Q with distinct j-invariants that are modular. In this survey we
will give a fairly complete proof of this result. Our goal here has been to
take as many short-cuts as possible, guiding the reader along a beginner’s
trail which avoids the treacherous slopes of Euler Systems and p-adic Hodge
theory, but still leads to a vantage point from which some of Wiles’ beautiful
achievement can be contemplated.

In the general case, Wiles reduces the Shimura-Taniyama conjecture to a
conjectural upper bound on the Selmer groups associated to certain motives
of rank 3. He also gives a method for establishing this upper bound, assuming
that certain rings of Hecke operators are local complete intersections. The
fundamental work of Matthias Flach suggests that a proof of the upper bound
might also be possible by using the ideas on “Euler systems” introduced by
V.A. Kolyvagin. “Euler system” calculations have been performed before
in many different settings, always with spectacular results, most notably by
Thaine [Th], Kolyvagin [Ko], Rubin [Ru], Nekovar [Ne], and Flach [Fl].

In any case, Wiles’ reduction removes much of the mystery behind the
Shimura-Taniyama conjecture – and, to the optimist, suggests that a proof
must be within reach! We will very briefly indicate some of the features of
Wiles’ general strategy at the end.

We do not say anything about the well-known connection between the
Shimura-Taniyama conjecture and Fermat’s Last Theorem, which is amply
documented, for example in the excellent survey articles [Co], [Gou], [Ri4],
[RH], [RS].

This paper is entirely expository. It owes everything to the ideas of Wiles,
and to a course he and his students gave at Princeton University in the Spring
semester 1994. I would also like to thank Brian Conrad, Fred Diamond, Ravi
Ramakrishna, Ken Ribet, Anna Rio, Richard Taylor and Larry Washington
for making their notes available to me, answering my questions, and making
comments and corrections on earlier versions of this manuscript. Some notes
of H.W. Lenstra [Le] on the ring theoretic aspects of Wiles work were also
tremendously helpful in writing chapter 2.
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1 Preliminaries

1.1 The main results

We say that j ∈ Q is modular if it is the j-invariant of a modular elliptic
curve over Q. It follows from the work of Shimura that if j is modular, then
every elliptic curve with invariant j is modular.

Theorem 1.1 (Wiles) There are infinitely many j ∈ Q which are modular.

This result represents a major watershed: before Wiles’ announcement, a
proof seemed to be nowhere in sight.

If E is an elliptic curve, then we denote by Ep the group of p-division
points of E; it is a two-dimensional Fp-vector space, endowed with a natural
action of GQ = Gal(Q̄/Q).

The infinite set of modular j-invariants can be obtained via the following
more precise statement:

Theorem 1.2 (Wiles) Let X be a semistable modular elliptic curve, let d be
the degree of a minimal modular parametrization X0(N) −→ X, and let p be
an odd prime such that p does not divide d and Xp is absolutely irreducible
as a Galois module.

If E is an elliptic curve over Q such that

Ep ' Xp as Galois modules,

and E has good or semistable reduction at p, then the curve E is modular.

Remarks:
1. There are many examples of pairs (X, p) which satisfy the assumptions of
the theorem, for example:

X = X0(11), p any odd prime 6= 5,
X = X0(14), p > 3,
X = X0(15) or X0(17), p any odd prime, etc...

2. LetX(p)/Q be the modular curve over Q which classifies pairs (E, φ) where
E is an elliptic curve and φ is a monomorphism φ : Z/pZ×Z/pZ −→ E. The
group scheme Xp can be used to define the twisted modular curve X

′
(p)/Q,

which classifies pairs (E, φ) with φ : Xp ↪→ E is an injection. When p = 3
or p = 5, the curves X(p) and X

′
(p) are a union of p− 1 curves of genus 0.
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(For example, the curve X(5) is related to the classical “icosahedral curve”
studied by Klein.) The pair (X,φ : Xp ↪→ X) then defines a rational point
x on one of the components of X

′
(p)/Q. This component is a curve of genus

0 having a Q-rational point, and hence is isomorphic to P1/Q. The rational
points in X

′
(p)(Q) which are close to x in the p-adic topology, give rise to

an infinite set of elliptic curves E satisfying the hypothesis of the theorem.
(In fact, they yield a family of modular j-invariants which are the values at
certain rational arguments of a rational function of degree 12 when p = 3,
and 60 when p = 5.) For p > 5, thm. 1.2 is not as interesting, since the curves
E satisfying the hypothesis for a fixed X correspond to rational points on a
twist of X(p), which has genus strictly greater than 1; by Faltings’ proof of
the Mordell conjecture, there are only finitely many such E.

We will explain the proof of theorem 1.2 only in the special case where
X = X0(17) and p = 5. This allows us to lighten the exposition by avoiding
a number of technical issues, while still being sufficient to prove thm. 1.1.

Theorem 1.3 Let E be an elliptic curve over Q which has good reduction
at 5 and satisfies

E5 ' X0(17)5 as Galois modules.

Then E is modular.

Remarks:
1. The curveX = X0(17) is a curve of genus 1, and hence is a modular elliptic
curve; the degree d of the modular parametrization is 1. Also, as we will see
in lemma 1.4, the module X5 gives a two-dimensional mod 5 representation
of GQ = Gal(Q̄/Q) which is irreducible, and in fact, surjective. Hence, thm.
1.3 is a special case of thm. 1.2.
2. The statement of thm. 1.3 would also be true with 5 replaced by 3; working
with 5 instead of 3 allows us to avoid certain slight technical difficulties. Note,
however, that the prime 3 plays a crucial role in Wiles’ general strategy for
proving the Shimura-Taniyama conjecture; cf. sec. 5.

From now on, let ρ̄0 be the mod 5 representation arising from the 5
division points of X0(17),

ρ̄0 : GQ −→ Aut (X5) ' GL2(F5).
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Lemma 1.4 The representation ρ̄0 satisfies the following properties:

1. The character det(ρ̄0) is the cyclotomic character ε̄ : GQ −→ F∗5 giving
the action of GQ on the 5th roots of unity.

2. (Local behaviour at 5). The decomposition group D5 at 5 acts on X5

by preserving a one-dimensional subspace, and the inertia group I5 acts
trivially on the quotient:

ρ̄0|D5 '
(
χ̄1 ∗
0 χ̄2

,

)
ρ̄0|I5 '

(
ε̄ ∗
0 1

)
.

Furthermore, the unramified character χ̄2 is of order 4.

3. (Local behaviour at 17):

ρ̄0|D17 '
(
ε̄ Ψ̄
0 1

)
,

and Ψ̄|I17 is non-trivial.

4. The representation ρ̄0 is absolutely irreducible - in fact, it is surjective.

Proof:
1. The Weil pairing gives a GQ-equivariant isomorphism ∧2X5 = µ5, and
hence det(ρ̄0) = ε̄.
2. For each prime l, let al = l + 1−#X(Fl). Since a5 = −2 6= 0, the curve
X has good ordinary reduction at 5. Hence X5(F̄5) ' Z/5Z, and there is an
exact sequence of I5-modules

0 −→ µ5 −→ X5 −→ Z/5Z −→ 0

induced by the reduction map X(Q̄5) −→ X(F̄5). Let W = X5(F̄5) ' Z/5Z
be the unramified quotient of X5. Since

#X(F5) = 5 + 1− a5 = 8, #X(F25) = 25 + 1− a25 = 32,

the character χ̄2 cannot be of order 1 or 2; hence it is of order 4.
3. The curve X has split multiplicative reduction at 17, and is isomorphic
over Q17 to a Tate curve Gm/q

〈Z〉 where q ∈ 17Z17 is the Tate parameter.
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From this explicit model, one sees that the representation ρ̄0|I17 is as given
in the proposition. To see that Ψ̄ is non-trivial, let ∆ be the minimal dis-
criminant of X at 17. One can check from tables [Cr] that ord17(∆) 6= 0
(mod 5). Hence

ord17(q) = −ord17(∆) 6= 0 (mod 5),

so that Ψ̄|I17 6= 0.
4. Part 4 follows from prop. 21, p. 306, of [Sr1], using the fact that

ord17(∆) 6= 0 (mod 5) and 2 + 1− a2 6= 0 (mod 5).

A deformation of ρ̄0 is an equivalence class of representations

ρ : GQ −→ GL2(A)

where A is a complete Noetherian local Z5-algebra with residue field F5, such
that the residual representation

GQ −→ GL2(A) −→ GL2(F5)

is equal to ρ̄0. These representations are taken modulo conjugation by ma-
trices in GL2(A) which reduce to the identity in GL2(F5).

The obvious example of a deformation of ρ̄0 is ρ0, the 5-adic representation
associated to the 5-adic Tate module of X0(17).

We now define the two interesting classes of deformations that we wish
to compare.

Definition 1.5 A deformation ρ : GQ −→ GL2(A) of ρ̄0 is admissible if

1. The character det(ρ) is the cyclotomic character ε : GQ −→ Z∗5 ⊂ A∗

giving the action of GQ on the 5nth roots of unity.

2. (Local behaviour at 5). The decomposition group D5 at 5 acts on the
underlying rank 2 A-module by preserving a free submodule of rank 1
with free quotient, and the inertia group I5 acts trivially on this quo-
tient:

ρ|D5 '
(
χ1 ∗
0 χ2

)
, ρ|I5 '

(
ε ∗
0 1

)
.
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3. (Local behaviour at 17):

ρ|D17 '
(
ε Ψ
0 1

)
.

Part of the motivation for this definition, in the context of our problem, is
suggested by the following proposition:

Proposition 1.6 If E is an elliptic curve satisfying the assumption of thm.
1.3, then the 5-adic representation ρE associated to E is admissible. (In
particular, ρ0 is an admissible deformation of ρ̄0.)

Proof: We check that the representation ρE of GQ acting on the 5-adic
Tate module Ta5(E) of E satisfies the three properties in the definition of
admissibility.
1. The Weil pairing gives a GQ-equivariant isomorphism ∧2Ta5(E) = Z5(1),
and hence det(ρE) = ε.
2. If E has good reduction at 5, the assumption that ρ̄E ' ρ̄0 forces E to have
good ordinary reduction at 5, since X0(17) does. For, otherwise the image
of the inertia group I5 at 5 under ρ̄E would be a non-split cartan subgroup,
(cf. [Sr1], prop. 12, p. 275), and ρ̄E could not be isomorphic to ρ̄0. By the
ordinariness of E, there is an exact sequence of Z5[I5]-modules

0 −→ Z5(1) −→ Ta5(E) −→ Z5 −→ 0,

where the rightmost map comes from the reduction map E(Q̄5) −→ E(F̄5).
If E has multiplicative reduction, then, after twisting by an unramified char-
acter, the curve E/Q5 becomes isomorphic to a Tate curve Gm/q

〈Z〉, where
q ∈ 5Z5. This implies that the representation ρE|D5 is of the form

ρE|D5 '
(
α ∗
0 β

)

where β is a character of D5/I5 of order 1 or 2. By part 2 of lemma 1.4,
one has ρ̄E 6= ρ̄0, and hence, the case where E has multiplicative reduction
is ruled out.
3. The proof that the local condition at 17 is satisfied proceeds along similar
lines. One notes that E necessarily has multiplicative reduction at 17, and
then uses the Tate model to analyze the behaviour of ρE restricted to D17.
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The second class of deformations that we wish to consider are the modular
deformations. We say that f is a cusp form of weight 2 (or simply a cusp
form, since we will deal only with weight 2) if it is holomorphic on the
extended upper half plane, vanishes at the cusps, and satisfies the usual
transformation property under a congruence subgroup Γ0(N) for some N .
By the q-expansion principle, the space S2(N,Z) of such cusp forms having
integral Fourier expansions is a free Z-module of rank g = genus(X0(N)),
and

S2(N,Z)⊗C = S2(N,C),

the space on the right being the usual space of holomorphic cusp forms. This
fact allows us to define the space S2(N,A) of cusp forms with values in a
ring A by

S2(N,A) := S2(N,Z)⊗ A.

The module S2(N,Z) is endowed with an action of the Hecke operators Tp

for (p,N) = 1 and Uq for q|N . This action can be extended to S2(N,A) by
linearity.

An eigenform (with coefficients in A) is a form in S2(N,A) which is an
eigenfunction for all the Hecke operators Tp and Uq. We always assume that
eigenforms are normalized so that their first Fourier coefficient is 1, so that
f can be expanded about the cusp ∞ as

f =
∞∑

n=1

anq
n, a1 = 1, q = e2πiτ .

Let Of be the subring of A generated by the ap, p 6 |N . (Note that in gen-
eral, Of may be strictly contained in the ring generated by all the Fourier
coefficients of f .)

Definition 1.7 A deformation ρ : GQ −→ GL2(A) of ρ̄0 is said to be mod-
ular if there exists a normalized eigenform f =

∑
n anq

n of weight 2 and
some level N , with coefficients in A

′ ⊃ A, such that the element ρ(Frobl) has
characteristic polynomial

x2 − alx+ l,

for all l not dividing 5N . Futhermore, a modular deformation of ρ̄0 is said
to be good if 5 does not divide N .

Proposition 1.8 Every good modular deformation of ρ̄0 is admissible.
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This follows from the construction, due to Eichler and Shimura, of the repre-
sentations attached to normalized cusp forms of weight 2 (cf. [Sh]), and the
work of Carayol which, among other things, analyzes their basic properties
at the bad places (cf. [Ca1]).

What Wiles shows is the converse of this statement.

Theorem 1.9 (Wiles) Every admissible deformation of ρ̄0 is modular.

This theorem implies theorem 1.3. For, if E is an elliptic curve satisfying the
assumption of thm. 1.3, then the Galois representation on the 5-adic Tate
module of E gives an admissible representation

ρE : GQ −→ GL2(Z5)

which is a deformation of ρ̄0. Hence it is modular. It follows from the isogeny
conjectures proved by Faltings that E appears in (is isogenous to a factor of)
the jacobian of a modular curve, and hence, E itself is modular.

We will now concentrate on proving thm. 1.9.

1.2 Wiles’ strategy

Wiles’ proof of thm. 1.9 is a sophisticated counting argument. Roughly
speaking, Wiles shows that the map

{Modular deformations of ρ̄0} −→ {Admissible deformations of ρ̄0}

is an isomorphism (of sets) by counting the respective orders of these sets.
This is not quite true, because both of these sets are infinite. To cut down
their sizes, one fixes a finite set of primes, Σ, which does not contain the “ex-
ceptional set” {5, 17}. One says that a deformation of ρ̄0 is Σ-admissible (Σ-
modular) if it is admissible (modular) and is unramified outside Σ∪ {5, 17}.

One now considers the map

{Σ-Modular deformations of ρ̄0} −→ {Σ-Admissible deformations of ρ̄0}

and attempts to show it is an isomorphism; the set on the right is defined
purely in terms of the properties of GΣ = Gal(QΣ/Q), the Galois group
of the maximal extension unramified outside Σ ∪ {5, 17}. As we will see
later, the size of this rather subtle set is controlled by a subgroup of a Galois
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cohomology group – the Selmer group of the symmetric square associated
to ρ0. Wiles’ strategy is to bound the size of this Selmer group in terms of
“modular” data related to the set on the left, and thus show that the set on
the right cannot be bigger than the set on the left, so that all the admissible
deformations are forced to be modular.

However, the sets above, even with the restrictions associated to Σ, are
still infinite. To obtain finite sets one needs to fix a Z5-algebra, A, and restrict
one’s attention to the (equivalence classes of) deformations of ρ̄0 with values
in A. A better-posed problem is thus to show that the map

Σ-Modular deformations
of ρ̄0

with values in A

 −→


Σ-Admissible deformations
of ρ̄0

with values in A


is an isomorphism for all local Noetherian Z5-algebras A. Let MDΣ(A)
and ADΣ(A) denote these two sets. The assignments A 7→ MDΣ(A) and
A 7→ ADΣ(A) are functors from the category of local Z5-algebras to sets.
With these new notions, one can reformulate the problem as that of showing
that the “natural” natural transformation

MDΣ −→ ADΣ

is a natural equivalence of functors.
A key fact is that the functor ADΣ is representable, i.e., there exists a

local Noetherian Z5-algebra RΣ such that

ADΣ = Spec(RΣ).

(Here we are identifying a scheme with its functor of points.)
From the work of Ribet and others, one also expects that the modular

deformation functor MDΣ should be representable by a finite flat local Z5-
algebra TΣ constructed by completing an appropriate ring of Hecke operators
acting on S2(NΣ,Z), for some level NΣ depending on Σ.

The natural transformation MDΣ −→ ADΣ would then translate into a
ring homomorphism

φ : RΣ −→ TΣ

which can be studied by using the machinery of commutative algebra.
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1.3 Representability of ADΣ and the ring RΣ

In this section we state the result on the representability of ADΣ.

Theorem 1.10 (Mazur): The functor of Σ-admissible deformations of ρ̄0 is
equal to hom(RΣ,−), where RΣ is a finitely generated local Z5-algebra with
residue field F5.

The ring RΣ is called the universal deformation ring associated to the rep-
resentation ρ̄0 and the set Σ. Its construction is based on a formal repre-
sentability criterion of Schlessinger, and is described in [Mz2] (or, see also
[MT]).
Remark: A more general result of Ramkrishna [Ra] establishes the existence
of the universal deformation ring in certain cases where the residual repre-
sentation is not ordinary. We will not need this for our application, however.

By definition, there is a “universal admissible deformation”

ρΣ,univ : GQ −→ GL2(RΣ)

such that for any Σ-admissible deformation ρ : GQ −→ GL2(A) of ρ̄0, there
is a unique homomorphism α : RΣ −→ A such that ρΣ,univ ⊗α A = ρ. In
particular, the deformation ρ0 corresponding to Ta5(X0(17)) gives rise to a
natural “base point map”

πRΣ
: RΣ −→ Z5,

which will play an important role later on.

1.4 Construction of a Hecke ring TΣ

We are unable to establish a priori that the modular deformation functor is
representable. However, we do have:

Expectation 1.11 The set of good Σ-modular deformations of ρ̄0 is equal
to hom(TΣ,−), where TΣ is a finite flat local Z5-algebra with residue field
F5.

In our situation, Wiles proposes a precise construction of TΣ. We briefly
describe this construction here. Let

NΣ = 17
∏
p∈Σ

p2,
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let Γ0(NΣ) be the usual congruence subgroup of level NΣ, and let

X0(NΣ) = Γ0(NΣ)\H ∪ {cusps}

be the corresponding curve, compactified in the usual way by adjoining the
cusps.

Now let T(Σ) be the ring of Hecke operators acting on S2(NΣ,Z), the
space of cusp forms of weight 2 on X0(NΣ) with integer Fourier coefficients.
This ring is generated over Z by the Hecke operators Tl, for l not diving NΣ,
and by the Hecke operators Uq for q ∈ Σ ∪ {17}.

Let
f =

∑
n

anq
n

be the normalized eigenform of level 17 corresponding to X = X0(17). Its
L-function is equal to

L(f, s) =
∑
n

ann
−s = (1− 17−s)−1

∏
p6=17

(1− app
−s + p1−2s)−1.

The form f is an eigenform for all the Hecke operators in T(∅) acting on
S2(17,Z), but not for T(Σ) when viewed as a form in S2(NΣ,Z), since it is
no longer an eigenform for the Hecke operators Uq, with q ∈ Σ. We remedy
this problem by defining a cusp form fΣ on X0(NΣ) which is an eigenform
for T(Σ) by the inductive formula:

f∅ = f, fΣ∪{q} = fΣ(τ)− aqfΣ(qτ) + qfΣ(q2τ).

The reader can check that fΣ is a modular form on Γ0(NΣ) which satisfies

TlfΣ = alfΣ (l /∈ Σ ∪ {17}), UqfΣ = 0 (q ∈ Σ), U17fΣ = fΣ,

and hence is an eigenform for all of T(Σ). The construction of fΣ corresponds
to “removing the Euler factors at the primes of Σ”, since:

L(fΣ, s) = (1− 17−s)−1
∏

p/∈Σ∪{17}
(1− app

−s + p1−2s)−1.

It follows that the ideal

MΣ = 〈5, Tl − al, Uq, U17 + 1〉 ⊂ T(Σ)
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is a proper ideal of T(Σ). Let TΣ denote the completion of T(Σ) at MΣ,

TΣ = lim
←

T(Σ)/Mn
Σ.

The ring TΣ is a local Z5-algebra with residue field F5. It is finite and flat
(i.e., finitely generated and free as a Z5-module). If O is any Z5-algebra with
residue field F5, the Z5-algebra homomorphisms TΣ −→ O correspond to 5-
adic eigenforms on Γ0(NΣ) which are congruent to fΣ mod 5. In particular,
the form fΣ defines a canonical homomorphism

πTΣ
: TΣ −→ Z5.

The fundamental construction of Eichler and Shimura, which associates
a Galois representation to a cusp form of weight 2, completed by the work
of Carayol, gives the following theorem:

Theorem 1.12 There is a (unique, up to conjugation) Galois representation

ρΣ,mod : GQ −→ GL2(TΣ)

which is admissible, and satisfies

trace(ρmod(Frobl)) = Tl, det(ρmod(Frobl)) = l, ∀l /∈ Σ ∪ {5, 17}.

Furthermore, this representation is admissible, and the operator U17 is the
eigenvalue of Frob17 acting on the one-dimensional unramified quotient at
17.

Proof: See for example [Sh], [Ca1].
Remark: It is not clear a priori that the ring TΣ represents the functor MDΣ

as we have defined it, although such a result is suggested by the work of
Ribet [Ri2], and it will eventually follow a posteriori from the proof of thm.
1.9. A crucial ingredient in Wiles’ proof of thm. 1.3 is to first establish this
for certain sets Σ.

Naturally, the representability of MDΣ as it was defined naively before
is not logically necessary for Wiles’ argument, so that our argument is not
circular. One just takes a different tack, and defines the functor MDΣ to be
hom(TΣ,−).
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1.5 The map RΣ −→ TΣ

By thm. 1.12 and the universality property of the universal deformation ring
RΣ, there is a canonical ring homomorphism

φΣ : RΣ −→ TΣ.

Moreover, this homomorphism is compatible with the base point maps, i.e.,
the diagram

RΣ −→ TΣ

↓ ↓
Z5 = Z5

commutes, where the vertical arrows are the base point maps πRΣ
and πTΣ

.
For, it follows directly from the Chebotarev density theorem that the maps
πRΣ

and πTΣ
◦ φΣ induce equivalent (i.e., equal) deformations, so that these

maps are the same, by the universality property of RΣ.
Now, Wiles’ theorem 1.9 can be restated (yet again) as

Theorem 1.13 (Wiles) The map φΣ : RΣ −→ TΣ is an isomorphism.

From now on we will concentrate on the proof of thm. 1.13.

In this section we will show that φΣ is surjective, which is (by far!) the
easy half of thm. 1.13.

Theorem 1.14 The map φΣ is surjective.

Let T0(Σ) ⊂ T(Σ) be the subring generated by the “good” Hecke operators
Tl, for l /∈ {5, 17} ∪ Σ, and let T0

Σ be the closure of the image of T0(Σ) in
TΣ.

Lemma 1.15 The image of φΣ contains T0
Σ.

Proof: For all l /∈ {5, 17} ∪ Σ,

Tl = Tr (ρΣ,mod(Frobl)) = φΣ(Tr (ρΣ,univ(Frobl))),

so that Tl ∈ φΣ(RΣ), for all l /∈ {5, 17} ∪ Σ. The result follows.

Lemma 1.16 If q ∈ Σ, then the image of the Hecke operator Uq in TΣ is 0.
In particular, Uq ∈ T0

Σ.

15



Proof: The operator Uq in T(Σ) satisfies the relation:

Uq(U
2
q − 1)

∏
g

(U2
q − aq(g)Uq + q) = 0

where the product is taken over all the newforms of level dividing NΣ/q
2 (cf.

[Kn], prop. 9.27, p.289). Since Uq belongs to M, its image in TΣ is topolog-
ically nilpotent. It follows that the expression (U2

q − 1)
∏

(U2
q − aq(g)Uq + q)

maps to a unit in TΣ, so that the image of Uq in TΣ is 0. The result follows.
To see that the operators U17 and T5 belong to φ(RΣ) requires a better

understanding of ρΣ,mod.

Lemma 1.17 The representation ρΣ,mod : GQ −→ GL2(TΣ) is conjugate to
a representation with values in GL2(T

0
Σ).

Proof: This follows directly from the following more general statement. (I
am grateful to J-P. Serre for explaining this to me.)

Proposition 1.18 Let A0 ⊂ A be an inclusion of local rings (i.e., if mA

and mA0 are the maximal ideals of A and A0, then mA0 = mA ∩ A0, and
A0 and A have the same residue fields), and suppose that the residue field k
of A has trivial Brauer group, H2(k, k̄∗) = 0. Let ρ : G −→ GLn(A) be a
representation of a group G over A, and suppose that
1. The residual representation ρ̄ : G −→ GLn(k) is absolutely irreducible.
2. Tr (ρ(σ)) ∈ A0 for all σ ∈ G.
Then ρ is conjugate to a representation with values in GLn(A0).

Proof: Let B be the A0-subalgebra of Mn(A) generated by ρ(G). Since ρ̄
is absolutely irreducible, the image of B in Mn(k) is an Azumaya algebra
over k, and hence is the full matrix ring Mn(k) since H2(k, k̄∗) = 0. Let
e1, . . . , en2 be elements of B that reduce to a standard basis of Mn(k). We
claim that e1, . . . , en2 is an A0 basis for B. By Nakayama’s lemma, it is an
A-basis for Mn(A), and hence every element b of B can be written uniquely
as a combination

b =
∑

aiei, with ai ∈ A.

We claim that the ai actually belong to A0. For, multiplying the above
relation by the transpose et

j of ej and taking traces, we find the system:

Tr (bet
j) =

∑
aiTr (eie

t
j), j = 1, . . . , n2. (1)
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The matrix (cij) = (Tr (eie
t
j)) is an n2×n2-matrix with coefficients in A0, by

assumption. Since the ei reduce to the standard basis of Mn(k), the image of
(cij) in Mn2(k) is the identity matrix. Hence, (cij) is invertible in Mn2(A0),
so that the system (1) can be solved for the ai, and hence ai ∈ A0. It follows
that B is an algebra of rank n2 over A0, generated by the ei. Let V ⊂ An

be the A0-module generated by the first columns (say) of elements of B.
Then V is a free A0-module of rank n, and the action of B on V gives a
map B −→ end(V ) ' Mn(A0). By Nakayama B ' Mn(A0), and the result
follows.

Lemma 1.19 The image of U17 in TΣ belongs to T0
Σ.

Proof: By lemma 1.17, the representation ρΣ,mod is conjugate to a represen-
tation with values in GL2(T

0
Σ). But U17 can be recovered as the eigenvalue

of Frob17 acting on the unique unramified one-dimensional quotient of the
underlying T0

Σ-module, by thm. 1.12. Therefore, U17 ∈ T0
Σ.

Lemma 1.20 The image of T5 in TΣ belongs to T0
Σ.

Proof: One recovers T5 as α5 + 5/α5, where α5 ∈ T0
Σ is the eigenvalue of

Frob5 acting on the unique unramified rank 1 quotient of ρΣ,mod, by thm.
1.12. Hence, T5 belongs to T0

Σ, as before.

Corollary 1.21 The natural inclusion T0
Σ ⊂ TΣ is an isomorphism.

Proof: This follows immediately from lemmas 1.16, 1.19, and 1.20.

Proof of thm. 1.14: Combine lemma 1.15 and cor. 1.21.

2 Wiles’ isomorphism criterion

Wiles gives a beautiful criterion, based entirely on commutative algebra, to
show that certain surjective maps of local rings are isomorphisms.

As we saw in the previous section, the rings that come up in Wiles’ sit-
uation are finitely generated complete local Zp-algebras A and are equipped
with a natural surjective map A −→ Zp. Thus it is natural to work in the
category C whose objects are pairs (A, π), where A is a finitely generated
local Zp-algebra and π : A −→ Zp is a surjective ring homomorphism (called
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the “base point map”). Morphisms in this category are local ring homomor-
phisms which are compatible in the obvious way with the base point maps.
By abuse of notation we often omit mentioning the base point map π when
we talk of objects in C, and simply use A to denote (A, π), when this causes
no confusion.

2.1 The invariants Φ and η

2.1.1 Definition

Let A = (A, π) be an object of C. One associates to such an object two
fundamental invariants:

ΦA = (ker π)/(kerπ)2; (2)

ηA = π(AnnA kerπ). (3)

The invariant ΦA can be thought of as a tangent space for the object A.
(More precisely, it is the cotangent space for the scheme spec(A) at the point
kerπ.) It is a finitely generated Zp module.

The invariant ηA is called the congruence ideal. The reason for this ter-
minology should become clear in section 2.1.2.

We can now state Wiles’ isomorphism criterion:

Theorem 2.1 (Wiles) Let R and T be objects of C such that T is a finitely
generated torsion-free Zp-module, and let φ : R −→ T be a surjective mor-
phism. If

#ΦR ≤ #(Zp/ηT ) <∞,

then φ is an isomorphism.

This beautiful result is the engine which is at the heart of Wiles’ proof of
thm. 1.13; the reader is invited on a first reading to skip to sec. 3 to see how
thm. 1.13 is deduced from the isomorphism criterion.

The proof we will give of Wiles’ isomorphism criterion follows closely a
presentation of Lenstra [Le].

2.1.2 Some examples

Before going further, it is good to pause and consider some examples of ob-
jects of C and the invariants associated to them. While logically independent
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of the proof, the examples should help the reader develop some intuition. It
is therefore a good idea to work out these examples. (For an indication on
how to compute the tangent spaces ΦA, see the paragraph at the beginning
of sec. 2.3.)

Example 1:

A = {(a, b) ∈ Zp × Zp, a ≡ b (mod pn)}
' Zp[[T ]]/(T (T − pn)),

π(a, b) = a.

ΦA ' Z/pnZ, ηA = (pn).

Example 2:

A = {(a, b, c) ∈ Zp × Zp × Zp, a ≡ b ≡ c (mod p)}
' Zp[[X, Y ]]/(X(X − p), Y (Y − p), XY ),

π(a, b, c) = a.

ΦA ' Z/pZ× Z/pZ, ηA = (p).

Example 3:

A = Zp[[X]]/(X2),

π(f) = f(0).

ΦA ' Zp, ηA = 0.

Example 4:

A =

{
(a, b, c, d) ∈ Zp × · · · × Zp,

a ≡ b ≡ c ≡ d (mod p),
a+ d ≡ b+ c (mod p2)

}
' Zp[[X,Y ]]/(X(X − p), Y (Y − p)),

π(a, b, c, d) = a.

ΦA ' Z/pZ× Z/pZ, ηA = (p2).
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Example 5:

A = Zp[[X1, . . . , Xn]],

π(f) = f(0).

ΦA ' (Zn
p ), ηA = (0).

Example 6: (p ≡ −1 (mod 4)).

A = {(a, b+ ci) ∈ Zp × Zp[i], a ≡ b (mod p2), c ≡ 0 (mod p)}
= Zp[[X]]/(X(X2 + p2)).

π(a, b+ ci) = a.

ΦA ' Z/p2Z, ηA = (p2).

Example 7:

A = Zp[[T ]]/(pT ) = Zp ⊕ FpT ⊕ FpT
2 ⊕ · · ·

π(f) = f(0).

ΦA ' (Z/pZ), ηA = (p).

2.2 Basic properties of ΦA and ηA

In this section we collect some of the basic properties of the invariants ΦA and
ηA. The first two concern the behaviour of these invariants under morphisms
(particularly surjective morphisms).

1. The assignment A 7→ ΦA is a functor from the category C to the category
of finitely generated Zp-modules. Hence a morphism A −→ B in C induces
a homomorphism ΦA −→ ΦB of Zp-modules. Moreover, if A −→ B is
surjective, then so is the induced map on the tangent spaces. Therefore,
when A maps surjectively onto B we have

#ΦA ≥ #ΦB. (4)

2. Unlike the assignment A 7→ ΦA, the assignment A −→ ηA is not functorial,
but it does have a nice behaviour under surjective morphisms: namely, if
φ : A −→ B is surjective, then

ηA ⊂ ηB, i.e., #(Zp/ηA) ≥ #(Zp/ηB). (5)
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This is simply because in that case φ induces a map

Ann ker πA −→ Ann ker πB.

3. The third general property gives a relation between the invariants ΦA

and ηA. Observe that in all the examples of the previous section, we have
#ΦA ∈ ηA, whenever #ΦA is finite. In fact, this is true in general:

#ΦA ≥ #(Zp/ηA). (6)

The key behind proving this identity is to interpret #ΦA in terms of Fitting
ideals. Namely, #ΦA (if it is finite) gives a generator for the Fitting ideal,
FitZp(ΦA) of ΦA as a Zp module. Hence

#ΦA ∈ FitZp(ΦA)

= πA(FitA(kerπA))

⊂ πA(AnnA kerπA) = ηA.

The first equality follows from the fact that, if M is any A module, then

πA(FitA(M)) = FitZp(M ⊗A Zp),

where the tensor product is taken with respect to πA. Applying this to
M = ker πA, and observing that kerπA⊗A Zp = (kerπA)/(kerπA)2, one finds
the desired equality.
4. Computing tangent spaces:
Any object (A, πA) in C can be expressed as a quotient of the object U =
Zp[[X1, . . . , Xn]] of example 5 with base point map given by πU(f) = f(0).
For, one can take a1, . . . , an to be A-module generators of the finitely gener-
ated A-module ker πA, and obtain the desired quotient map by sending Xi

to ai.
The tangent space ΦU of U is a free Zp-module of rank n which can be

written down canonically as

ZpX1 ⊕ ZpX2 ⊕ · · · ⊕ ZpXn,

the map (ker πU)/(kerπU)2 being simply the map which sends a power series
f ∈ U with no constant term to its degree 1 term, which we will denote by
f̄ .
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If A is expressed as a quotient U/(f1, . . . , fr), then one has

ΦA = ΦU/(f̄1, . . . , f̄r).

This formula gives the most natural way of computing tangent spaces.

2.3 Complete intersections

We say that A is a complete intersection if it can be expressed as a quotient

A ' Zp[[X1, . . . , Xn]]/(f1, . . . , fn)

where there are as many relations as there are variables.
The rings of examples 1, 3, 4, 6 and 7 are complete intersections (ac-

cording to our definition), and the others are not. Observe that in the seven
examples that are worked out, a ring A is a complete intersection precisely
when #ΦA = #(Zp/ηA).

An object A in C is said to be Gorenstein if

Hom(A,Zp) ' A as A-modules.

Proposition 2.2 If A is a complete intersection, and A is a finitely gener-
ated Zp-module, then A is Gorenstein. (In particular, it is torsion-free as a
Zp-module.)

Remark: The condition that A be finitely generated is essential. For example,
the ring A of example 7 is a complete intersection, but it is certainly not
Gorenstein, since it is not even free as a Zp-module.

The remainder of this section will be devoted to proving prop. 2.2.
We recall some definitions from commutative algebra that we will need.

An ideal I of a local ring R is said to be primary if I 6= R and every zero
divisor in R/I is nilpotent. If (x1, . . . , xn) generates a primary ideal of R,
and n = dimR, then (x1, . . . , xn) is called a system of parameters for R.

Lemma 2.3 The sequence (f1, . . . , fn, p) is a system of parameters for U =
Zp[[X1, . . . , Xn]].

Proof: The quotient ring U/(f1, . . . , fn, p) is local and is finitely generated as
an Fp-vector space; therefore every element in its maximal ideal is nilpotent.

A sequence (x1, . . . , xn) in a ring R is said to be a regular sequence if xi

is not a zero-divisor in R/(x1, . . . , xi−1) for i = 1, . . . , n.
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Lemma 2.4 The sequence (f1, . . . , fn) is a regular sequence for U .

Proof: The ring U is Cohen Macaulay, since p,X1, . . . , Xn is a system of
parameters of U which is also a regular sequence. Hence, by theorem 17.4 (iii)
of [Mat], (f1, . . . , fn, p) is a regular sequence in U . A fortiori, the sequence
(f1, . . . , fn) is also a regular sequence.

To go further, we will introduce the Koszul complex

K(x,R) := ⊕n
p=0Kp(x,R)

associated to a local ring R and a sequence x = (x1, . . . , xn) of elements in
its maximal ideal. This complex is defined to be the free graded differential
algebra generated by symbols u1, . . . , un:

Kp(x,R) := ⊕i1<i2<···<ipR · ui1 ∧ · · · ∧ uip ,

with differential d : Kp −→ Kp−1 defined by

d(ui1 ∧ · · · ∧ uip) =
p∑

t=1

(−1)txt · ui1 ∧ · · · ∧ uit−1 ∧ uit+1 ∧ · · · ∧ uip .

We denote by Hp(x,R) the homology groups of this complex. We record here
the main properties of this complex that we will use.

Proposition 2.5 1. H0(x,R) = R/(x).

2. There is a long exact homology sequence

· · · −→ Hp(x,R) −→ Hp(x, xn+1, R) −→ Hp−1(x,R)
±xn+1−→

Hp−1(x,R) −→ Hp−1(x, xn+1, R) −→ Hp−2(x,R) −→ · · ·

3. Hp(x,R) is annihilated by the ideal (x), i.e., it has a natural R/(x)-
module structure.

4. If x is a regular sequence, then Hp(x, r) = 0 for all p > 0 (i.e., the
complex Kp(x,R) is a free resolution of R/(x).)
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Proof: The first assertion follows directly from the definition. For 2 and 3,
see [Mat], th. 16.4. The assertion 4 can be proved by a direct induction
argument on n, using the long exact homology sequence: For p > 1, this
sequence becomes

0 −→ Hp(x, xn+1, R) −→ 0,

and for p = 1, it is

0 −→ H1(x, xn+1, R) −→ H0(x,R)
xn+1−→ H0(x,R).

But the assumption that x, xn+1 is a regular sequence means that multiplica-
tion by xn+1 is injective on H0(x,R) = R/(x). Hence, the assertion 4 follows.
For more details on the Koszul complex and its relation to regular sequences,
the reader can consult [Mat], especially §16.

Now, we turn to the proof of prop. 2.2, following a method of Tate which
is explained in the appendix of [MRo]. For any ring R, write R[[X]] :=
R[[X1, . . . , Xn]]. Let a1, . . . , an be the images in A of X1, . . . , Xn by the
natural map

α : Zp[[X]] −→ A = Zp[[X]]/(f1, . . . , fn),

and let
β : A[[X]] −→ A

be the natural map which sends Xi to ai. The sequence (gi) = (Xi − ai)
generates the kernel of β. Since the fi, viewed as polynomials in A[[X]], also
belong to ker β, we have:

(f1, . . . , fn) = (g1, . . . , gn)M,

where M is an n× n matrix with coefficients in A[[X]]. Let

D = det(M) ∈ A[[X]].

Our goal is to construct an A-module isomorphism

homZp(A,Zp) −→ A.

We begin by constructing a surjective (Zp-linear) map

homZp[[X]](A[[X]],Zp[[X]]) −→ A.
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Lemma 2.6 (Tate): The function Φ(f) = α(f(D)) induces an isomorphism
of Zp[[x]]-modules

homZp[[X]](A[[X]],Zp[[X]])/(g1, . . . , gn) −→ A.

Proof: By lemma 2.4, the sequence (f) = (f1, . . . , fn) is a regular Zp[[X]]-
sequence. One can see directly from the definition that the sequence (g) =
(gi) = (Xi − ai) is a regular A[[X]]-sequence. Let K(f) and K(g) be the
Koszul complexes associated to these two sequences. It follows from prop. 2.5
that the Koszul complex K(f) is a resolution of A by free Zp[[X]]-modules,
and the Koszul complex K(g) is a resolution of A by free A[[X]]-modules,
and hence a fortiori, by free Zp[[X]]-modules. We define a map Φ : K(f) −→
K(g) of complexes by letting

Φ0 : K0(f) −→ K0(g)

be the natural inclusion of Zp[[x]] into A[[x]], and letting

Φ1 : K1(f) −→ K1(g)

be the map defined by

(Φ1(u1), . . . ,Φ1(un)) = (v1, . . . , vn)M,

and extending it by skew-linearity a map of exterior algebras. One can check
that the resulting map Φ is a morphism of complexes which induces the
identity map A −→ A, and satisfies

Φn(u1 ∧ · · · ∧ un) = D · v1 ∧ · · · ∧ vn.

Applying the functor homZp[[X]](−,Zp[[X]]) to these two free resolutions, and
taking the homology of the resulting complexes, we find that Φ induces an
isomorphism on the cohomology, and in particular, on the nth cohomology:

Φn : homZp[[X]](A[[X]],Zp[[X]])/(g1, . . . , gn)
'−→

hom(Zp[[X]],Zp[[X]])/(f1, . . . , fn) = A,

which is given explicitly by the formula:

Φn(f) = α(f(D)).

We finally come to the proof of prop. 2.2, which we can state in a more
precise form.
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Lemma 2.7 The map Ψ : homZp(A,Zp) −→ A defined by Ψ(f) = α(f̃(D)),

where f̃ : A[[X]] −→ Zp[[X]] is the base change of f , is an A-module iso-
morphism, and hence, A is Gorenstein.

Proof: The key point is to show that Ψ is A-linear. By definition, if

a = α(a
′
) ∈ A, with a

′ ∈ Zp[[X]],

then
Ψ(af) = α(f̃(aD)) = α(f̃((a− a

′
)D)) + α(f̃(a

′
D)).

Since a− a
′ ∈ ker β, it can be written as a A[[X]]-linear combination of the

gi. By multiplying the relation

(f1, . . . , fn) = (g1, . . . , gn)M

by the matrix D ·M−1 ∈Mn(A[[X]]), one sees that the Dgi can be written as
A[[X]]-linear combinations of the fi’s. Hence, so can the expression (a−a′)D.
By the Zp[[X]]-linearity of f̃ , and the fact that each fi belongs to kerα, it
follows that

α(f̃((a− a
′
)D)) = 0.

Therefore,
Ψ(af) = α(a

′
f̃(D)) = aΨ(f).

This shows that Ψ is A-linear. To show that Ψ is surjective, observe that if
f1, . . . , fr is a Zp-basis of homZp(A,Zp), then f̃1, . . . , f̃r is a Zp[[X]]-basis for
homZp[[X]](A[[X]],Zp[[X]]). Hence, for all a ∈ A, there exist p1, . . . , pr such
that

Φn(p1f̃1 + · · ·+ prf̃r) = a.

But this means that

Ψ(α(p1)f1 + · · ·+ α(pr)fr) = a,

so that Ψ is surjective. Finally, since homZp(A,Zp) and A are free Zp-modules
of the same finite rank, and Ψ is surjective, it must also be injective. Hence
Ψ is an isomorphism, as was to be shown.

Examples:
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1. Let A ⊂ Zp × Zp be the ring of example 1 in section 2.1.2. Then,
f = T 2 − pnT , and g = T − (0, pn). Hence, f = (T − (pn, 0))g, so that
D = T − (pn, 0). It follows that

Φ(h) = α(h̃(T − (pn, 0))) = α(Th(1, 1)− h(pn, 0)) = (0, pn)h(1, 1)− h(pn, 0).

The reader can check that Φ is indeed an A-linear isomorphism from the
A-module homZp(A,Zp) to A.
2. Let A = Zp[ε]/(ε

2) be the ring of example 3 in section 2.1.2. Then, f = T 2,
and g = T − ε. Hence, f = (T + ε)g, so that D = T + ε. It follows that

Φ(f) = α(f̃(T + ε)) = α(Tf(1) + f(ε)) = εf(1) + f(ε).

A good way to gain insight into prop. 2.2 is to work out the isomorphism
homZp(A,Zp) for the complete intersection ring A of example 4 of sec. 2.1.2.

2.4 Isomorphism theorems

The usefulness of the notion of complete intersections comes from the follow-
ing two (vaguely stated) principles:
1. Isomorphisms to complete intersections can often be recognized by looking
at their effects on the tangent spaces.
2. Isomorphisms from complete intersections can often be recognized by
looking at their effects on the invariants η.

These vague principles are made precise in theorems 2.8 and 2.9 respec-
tively.

Theorem 2.8 Let φ : A −→ B be a surjective morphism of the category C
with B a complete intersection. If φ induces an isomorphism ΦA −→ ΦB,
and these modules are finite, then φ is an isomorphism.

Remarks:
1. Let A = Zp[[X, Y ]]/(X(X − p), Y (Y − p)) be the ring of example 4, let
B = Zp[[X,Y ]]/(X(X − p), Y (Y − p), XY ) be the ring of example 2, and let
φ : A −→ B be the natural projection. The map φ induces an isomorphism
ΦA −→ ΦB, even though φ is not an isomorphism. The assumption that B
be a complete intersection is crucial for concluding that φ is an isomorphism.
2. The natural map

Zp[[X]]/(X3) −→ Zp[[X]]/(X2)
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is a surjective morphism inducing an isomorphism on tangent spaces, and the
target ring is a complete intersection. Yet this map is not an isomorphism.
This shows that the assumption on the finiteness of the tangent spaces cannot
be dispensed with.

Proof: Let
νB : Zp[[X1, . . . , Xn]] −→ B

be a surjective C-morphism with ker νB = (f1, . . . , fn). Let b1, . . . , bn ∈ kerπB

denote the images of X1, . . . , Xn by νB, and let a1, . . . , an ∈ kerπA denote
inverse images of b1, . . . , bn by φ. Since φ is an isomorphism on tangent spaces,
the elements ai generate (kerπA)/(kerπA)2. Hence they generate kerπA as
an A-module, by Nakayama’s lemma. It follows (again by Nakayama) that
the C-morphism

νA : Zp[[X1, . . . , Xn]] −→ A

defined by νA(Xi) = ai is surjective. We claim that ker νB ⊂ ker νA (and
hence, ker νB = ker νA). For, let g1, . . . , gn be elements of ker νA whose linear
terms ḡ1, . . . , ḡn generate the kernel of

ν̄A : ΦU −→ ΦA.

Since ker νA ⊂ ker νB, it follows that there exists an n×n matrix M ∈Mn(U)
with entries in U such that

(g1, . . . , gn) = (f1, . . . , fn)M.

Let M̄ be the matrix of constant terms of the matrix M . Then we have

(ḡ1, . . . , ḡn) = (f̄1, . . . , f̄n)M̄.

Since (ḡ1, . . . , ḡn) and (f̄1, . . . , f̄n) generate the same submodules of rank n
and finite index in ΦU , it follows that det M̄ is a unit in Zp. Hence, M is
invertible, and therefore the fi can be expressed as a U -linear combination
of the gj. This implies that ker νB ⊂ ker νA. Now we see that νAν

−1
B gives a

well-defined inverse to φ, so that φ is an isomorphism.

Theorem 2.9 Let φ : A −→ B be a surjective morphism of the category C,
with A being a complete intersection, and A and B finitely generated torsion
free Zp-modules. If ηA = ηB 6= 0, then φ is an isomorphism.
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Remark: The torsion-freeness assumption on B is essential. For if A is a
finitely generated complete intersection with ηA 6= (0), and n is large enough,
then B = A/pnA satisfies ηA = ηB, although the natural map A −→ B is
not surjective.

Proof: By proposition 2.2, A is Gorenstein, i.e., it satisfies

A∗ = homZp(A,Zp) ' A as A-modules.

Now, we observe that

kerπA ∩ AnnA kerπA = 0, (7)

and likewise for B. For, let x be a non-zero element of ηA, and let x
′ ∈

AnnA kerπA satisfy πA(x
′
) = x. For all a ∈ kerπA ∩ AnnA kerπA, we have

0 = a(x− x
′
) = ax,

the first equality because a belongs to AnnA kerπA and (x − x
′
) belongs

to kerπA, the second equality because a belongs to ker πA and x
′

belongs
to AnnA kerπA. Hence a belongs to the Zp-torsion submodule of A, and
therefore is 0.

It follows from (7) that πA (resp. πB) induces an isomorphism from
AnnA kerπA (resp. AnnB kerπB) to ηA (resp. ηB). Since ηA = ηB, it fol-
lows that φ induces an isomorphism from AnnA kerπA to AnnB kerπB, i.e.,

φAnnA kerπA = AnnB kerπB.

From (7) it also follows a fortiori that

kerφ ∩ AnnA kerπA = 0,

hence there is an exact sequence of A-modules:

0 −→ kerφ⊕ AnnA kerπA −→ A. (8)

The cokernel of the last map is

A/(kerφ⊕ AnnA kerπA) ' B/(φAnnA kerπA) ' B/(AnnB kerπB),
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which is torsion-free, since there is a natural injection

B/(AnnB kerπB) ↪→ endZp(kerπB).

Hence, the exact sequence (8) splits over Zp. Taking Zp duals in (8) and using
the Gorenstein condition for A, we thus get an exact sequence of A-modules:

A −→ (kerφ)∗ ⊕ (AnnA kerπA)∗ −→ 0.

Applying the functor −⊗A Fp (relative to the map A −→ Fp), we find

1 = dimFp(A⊗AFp) ≥ dimFp((kerφ)∗⊗AFp)+dimFp((AnnA kerπA)∗⊗AFp).

Since ηA 6= 0, it follows that (AnnA kerπA)∗ ⊗A Fp 6= 0, and hence we must
have

(kerφ)∗ ⊗A Fp = 0.

Therefore by Nakayama’s lemma and duality, kerφ = 0, which proves the
theorem.

2.5 A resolution lemma

Although objects in C need not be complete intersections, they always can
be “resolved” (in a weak sense) by a complete intersection, namely,

Theorem 2.10 Let A be an object of C. Then there is a morphism Ã −→ A
of C which induces an isomorphism ΦÃ −→ ΦA and such that Ã is a complete
intersection. Moreover, if A is finitely generated over Zp, then Ã can be
chosen so as well.

Proof: Write A as a quotient of U = Zp[[X1, . . . , Xn]] (with πU : U −→ Zp

the map which sends each Xi to 0.) Let f1, . . . , fn ∈ kerπU be such that
f̄1, . . . , f̄n generate the kernel of ΦU −→ ΦA. Now letting

Ã = U/(f1, . . . , fn)

gives the desired ring Ã.
It remains to show that, if A is a finitely generated Zp-module, then Ã can

be chosen to be finitely generated. This is not generally true of the ring Ã
constructed above, of course: we must take some care so that the n relations
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f1, . . . , fn we leave in when defining Ã are nice enough, so that Ã is finitely
generated.

Let a1, . . . , an be Zp-module generators of the finitely generated module
kerπA, and define a homomorphism φ from the polynomial ring

V = Zp[X1, . . . , Xn]

to A by sending Xj to aj. Clearly φ is surjective. Let f1,. . . fn be elements
of kerφ chosen in the same way as before, and let m denote their maximal
degree. Since the elements a2

i belong to ker πA, we may write

a2
i = hi(a1, . . . , an),

where hi(X1, . . . , Xn) is a linear polynomial. Now, replacing the relations fi

by the relations
fi +Xm

i hi −Xm+2
i ,

and viewing these relations as belonging to the power series ring U instead
of the polynomial ring V , we find that the ring

Ã = U/(f1, . . . , fn)

has the desired properties:
1. The natural homomorphism from Ã to A induces an isomorphism on

the tangent spaces, since the linear terms of the fi generate the kernel of the
induced map ΦU −→ ΦA on the tangent spaces.

2. The quotient Ã is a finitely generated Zp-module, generated by the
images of the monomials of degree ≤ n(m + 1), since the relations allow us
to rewrite any monomial of higher degree in terms of ones of lower degree.

2.6 A criterion for complete intersections

The results we have accumulated so far allow us to give an important criterion
for an object A to be a complete intersection:

Theorem 2.11 Let A be an object of C which is a finitely generated torsion-
free Zp-module. If #ΦA ≤ #(Zp/ηA) <∞, then A is a complete intersection.
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Proof: Let φ : Ã −→ A be the surjective morphism given by the resolution
theorem (thm. 2.10). Then we have

#(Zp/ηA) ≥ (#ΦA) = (#ΦÃ) ≥ #(Zp/ηÃ),

where the first inequality is by assumption, the second by the choice of Ã,
and the third is by the equation (6). On the other hand, by equation (5), we
have

#(Zp/ηÃ) ≥ #(Zp/ηA).

It follows that
ηA = ηÃ,

so that φ is an isomorphism by thm. 2.9. It follows that A is a complete
intersection.

2.7 Proof of Wiles’ isomorphism criterion

Let us now recall the statement of Wiles’ isomorphism criterion:

Theorem 2.12 (Wiles) Let R and T be objects of C such that T is a finitely
generated torsion-free Zp-module, and let φ : R −→ T be a surjective mor-
phism. If

#ΦR ≤ #(Zp/ηT ) <∞,

then φ is an isomorphism.

Proof: We have:

#(Zp/ηT ) ≤ #ΦT ≤ #ΦR ≤ #(Zp/ηT ),

where the first inequality is by equation (6), the second follows from the
surjectivity of φ, and the third follows from the assumption of the theorem.
Therefore,

#ΦT = #(Zp/ηT ),

and hence T is a complete intersection. Since the orders of ΦR and ΦT are the
same, φ induces an isomorphism between them. Hence φ is an isomorphism
R −→ T , by thm. 2.8. This completes the proof.
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2.8 The relative invariant ηT ′/T

.
Let π : T

′ −→ T be a map of objects of C. We will generalize slightly the
invariant η of the previous sections, and introduce a relative invariant ηT ′/T

defined by
ηT ′/T = π(AnnT ′ kerπ),

which is an ideal of T .
We now describe a set-up in which the relative congruence ideal can be

computed, in the case where T and T
′
are finite flat and reduced.

Suppose that Λ
′
is a free T

′
-module and Λ is a free T -module of the same

rank, k. The module Λ can also be viewed as a T
′
-module via the map

T
′ −→ T . By choosing isomorphisms Λ

′ ' T
′k and Λ ' T k, the map π

induces a map α : Λ
′ −→ Λ of T

′
-modules.

Proposition 2.13 If β : Λ −→ Λ
′
is an injective map of T ′-modules such

that Λ
′
/βΛ has no Zp-torsion, then

ηT ′/T = AnnT (Λ/αβΛ).

Proof: The map
homT ′ (T, T

′
) −→ AnnT ′ kerπ
f 7→ f(1)

is an isomorphism, and hence homT ′ (Λ,Λ
′
) ' Mn(AnnT ′ kerπ). It fol-

lows that after choosing an isomorphism of Λ
′

with T
′k, we have β(Λ) ⊂

(AnnT ′ kerπ)k. Consider the exact sequence

0 −→ (AnnT ′ kerπ)k/βΛ −→ Λ
′
/βΛ −→ Λ

′
/(AnnT ′ kerπ)k −→ 0. (9)

Let r(M) = dimQp(M ⊗Qp) denote the Zp-rank of a finitely generated Zp-
module M . Since T

′
is finite flat and reduced, we have

r(AnnT ′ kerπ) + r(kerπ) = r(T
′
),

so that r(AnnT ′ kerπ) = r(T ). Since β is injective, it follows that

r((AnnT ′ kerπ)k) = r(Λ) = r(βΛ),
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and therefore the leftmost module in the exact sequence (9) is Zp-torsion.
Therefore, it is trivial, since Λ

′
/βΛ is assumed to be torsion-free. It follows

that
Λ

′
/βΛ ' Λ

′
/(AnnT ′ kerπ)k.

Applying α yields the proposition:

Λ/αβΛ ' Λ/ηT ′/T Λ.

2.9 Interpretation of ηT ′/T in the Gorenstein case

Assume now that the rings T
′

and T , in addition to being finite flat and
reduced, are Gorenstein. Let π∨ : T∨ −→ T

′∨ be the dual map. By using
the identifications of T and T

′
with their duals, we obtain an element

π ◦ π∨ : T ' T∨ −→ T
′∨ ' T

′ −→ T,

which gives an element of T which is well-defined up to a unit.

Proposition 2.14 The ideal of T generated by the image of π ◦ π∨ is equal
to ηT ′/T .

Proof: Let f be a T
′
-module generator of T

′∨. The image of T∨ by π∨ is the
set of all functions in T

′∨ of the form x 7→ f(λx), for some λ ∈ Ann(kerπ).
The proposition follows.

This result allows us to give a relation between the relative congruence
ideal and the absolute ones in the case where the rings T and T

′
are Goren-

stein, namely:

Corollary 2.15 If the rings T and T
′
are finite flat and reduced and satisfy

the Gorenstein condition, then

ηT ′ = ηT · πT (ηT ′/T ).

This formula allows us to compute the invariant ηT ′ in terms of the relative
invariant, and will be used later in studying the variation of ηT for Hecke
rings when one increases the level.
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3 Interpretation of ΦRΣ and ηTΣ

To show theorem 1.13 Wiles must show that the inequality

#ΦRΣ
≤ #(Z5/ηTΣ

) (10)

is satisfied for all finite sets Σ.
In section 3.1 we study the left hand side and show how to interpret

ΦRΣ
as the (dual of) a subgroup of a Galois cohomology group. We give an

explicit formula for the right hand side in 3.2.

3.1 Interpretation of ΦRΣ

In this section we explain how one defines the symmetric square motive and
the Selmer group associated to it, and how this Selmer group is (dual to) the
tangent space ΦRΣ

.
Let X = X0(17), and let T = end0(T5(X)) denote the module of trace

zero endomorphisms of the 5-adic Tate module T5(X); it is a free Z5-module
of rank 3, equipped with a natural continuous GQ-action, defined by

σ(t) = ρ0(σ)tρ0(σ)−1,

for all t ∈ T and σ ∈ GQ. Define

V = T ⊗Q5, A = T ⊗ (Q5/Z5).

The vector space V and the Z5-divisible module A inherit a Galois action
from T in the obvious way, and there is an exact sequence of GQ-modules

0 −→ T −→ V −→ A −→ 0.

Local behaviour at 5:
Since X = X0(17) is ordinary at 5, the module T5(X) is equipped with a
two-step filtration

0 ⊂ Z5(1) ⊂ T5(X)

preserved by the action of the inertia group I5. Now, T contains a natural
1-dimensional I5-stable subspace, consisting of the nilpotent endomorphisms
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which preserve this filtration. Call this subspace T o
(5). Likewise, define V o

(5)

and Ao
(5) by

V o
(5) = T o

(5) ⊗Q5, Ao
(5) = T o

(5) ⊗Q5/Z5.

A more careful study shows that T is an ordinary representation, i.e., it is
equipped with a 3-step filtration with 1-dimensional quotients on which I5
acts by powers of the cyclotomic character. But we will not need this here.

Local behaviour at 17:
Likewise, the fact that X0(17) has split multiplicative reduction at 17 implies
that Ta5(X) is equipped with a two-step filtration

0 ⊂ Z5(1) ⊂ Ta5(X)

preserved by the action of the decomposition group D17; this allows one
to define as before a rank one D17-stable submodule of T , consisting of the
nilpotent endomorphisms preserving this filtration. Call this submodule T o

(17),
and define as before V o

(17) and Ao
(17) by

V o
(17) = T o

(17) ⊗Q5, Ao
(17) = T o

(17) ⊗Q5/Z5.

The Selmer group SΣ(Q, A):
Given a set of primes Σ not containing {5, 17}, we define a system Jr of
subgroups of the local Galois cohomology groups

Jr ⊂ H1(Qr, A),

for each prime r of Q:
1. If r /∈ Σ ∪ {5, 17}, then

Jr = H1(Qnr
r /Qr, A) := ker

(
H1(Qr, A) −→ H1(Ir, A)

)
.

2. If r ∈ Σ, then
Jr = H1(Qr, A).

3. If r = 17, then

J17 = ker
(
H1(Q17, A) −→ H1(Q17, A/A

o
(17))

)
.
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4. If r = 5, then

J5 = ker
(
H1(Q5, A) −→ H1(I5, A/A

o
(5))

)
.

Define the Selmer group (relative to Σ) by the formula

SΣ(Q, A) = ker

(
H1(Q, A) −→

∏
r

H1(Qr, A)/Jr

)
.

One can also define the Selmer groups SΣ(Q, A5n) ⊂ H1(Q, A5n), in the
obvious way. It follows from the fact that H0(Q, A5) = 0 that SΣ(Q, A5) =
SΣ(Q, A)5, and that

SΣ(Q, A) = lim
−→

SΣ(Q, A5n).

The universal deformation class:
Recall that RΣ is the universal deformation ring associated to the set of
primes Σ, and let PRΣ

be the kernel of the base point map RΣ −→ Z5.
There is a natural split exact sequence

1 −→M2(ΦRΣ
) −→ GL2(RΣ/P2

RΣ
) −→ GL2(Z5) −→ 1,

where the action of GL2(Z5) on the space of matrices M2(ΦRΣ
) is by conjuga-

tion. By the standard cohomological construction, the Galois representation

ρ
′
: GQ −→ GL2(RΣ/P2

RΣ
)

coming from the universal deformation gives rise to a “universal deformation
class”

uΣ ∈ H1(Q,M2(ΦRΣ
)).

The class uΣ is constructed explicitly as follows. Let ρ̃0 be the natural
lift of ρ0 to GL2(RΣ/P2

RΣ
). Then

uΣ(σ) = ρ̃0(σ)ρ
′
(σ)−1.

Since det(uΣ(σ)) = 1, it follows that uΣ(σ) can be viewed as belonging to
the Lie algebra sl2(ΦRΣ

) = T ⊗ΦRΣ
. The class uΣ sets up a homomorphism

φΣ : hom(ΦRΣ
,Q5/Z5) −→ H1(Q, A)

through the natural rule
φΣ(f) = f(uΣ).
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Claim 3.1 The homomorphism φΣ gives an isomorphism

φΣ : hom(ΦRΣ
,Q5/Z5)

'−→ SΣ(Q, A).

Proof: First, one must show that φΣ actually maps to the Selmer group.
This follows from the definitions. At the prime 5, the assumption that the
deformation ρ

′
is admissible means that

ρ
′|I5 =

(
ε Ψ

′

0 1

)
, ρ̃o|I5 =

(
ε Ψ̃o

0 1

)
,

and hence the restriction of the universal class uΣ to I5 belongs to

H1(I5, T
o
(5) ⊗ ΦRΣ

).

Likewise, one checks that the restriction of the universal class uΣ to the de-
composition group D17 belongs to H1(Q17, T

o
(17) ⊗ ΦRΣ

), so that ΦΣ(f) does
belong to SΣ(A). The fact that φΣ is an isomorphism is a formal consequence
of the universality of RΣ. For, distinct elements of hom(ΦRΣ

,Q5/Z5) giving
rise to the same element in SΣ(Q, A) would give distinct maps RΣ −→ R
(for some local ring R) corresponding to equivalent (i.e., equal) deformations,
contradicting the uniqueness clause in the definition of the universal defor-
mation ring. This proves injectivity. Surjectivity is proved in exactly the
same way.

3.2 A formula for ηTΣ

Recall that
f(q) =

∑
n

anq
n

is the normalized eigenform with integer coefficients corresponding to X =
X0(17). The following gives a precise formula for #(Z5/ηTΣ

).

Theorem 3.2 Up to units in Z∗5, we have:

#(Z5/ηTΣ
) =

∏
q∈Σ

(q − 1)(a2
q − (q + 1)2).
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Observe that when Σ = ∅, then T∅ is the Z5-algebra of Hecke operators
acting on S2(17,Z5), and hence, since X0(17) is of genus 1,

T∅ ' Z5.

The base point map T∅ −→ Z5 is the identity map; hence, in that case

ηT∅ = (1).

We prove theorem 3.2 by induction on the size of Σ. Assume the theorem is
true for Σ, and let Σ

′
= Σ∪{q}, where q is a prime not in Σ. We view these

rings, equipped with the base point maps arising from the forms fΣ and fΣ′ ,
as objects in the category C introduced in section 2. To apply induction,
one needs a surjective map TΣ′ −→ TΣ between these objects. We being by
constructing such a map.

3.2.1 A map TΣ′ −→ TΣ

Since NΣ′ = q2NΣ, there is a natural “degeneracy map”

ξ : X0(NΣ′ ) −→ X0(NΣ)3,

given by the formula:
ξ(τ) = (τ, qτ, q2τ).

This map induces by Pic functoriality a map i:

i : J0(NΣ)3 −→ J0(NΣ′ ).

Define a map β0:
β0 : J0(NΣ) −→ J0(NΣ)3

by the formula
β0(P ) = (qP,−TqP, P ).

The map β0 is a map of T(Σ)-modules, and i commutes with the obvious
action of T0(Σ

′
) - in fact i respects the natural action of all the Hecke opera-

tors, except Uq which does not act on J0(NΣ)3 in any obvious way. However,
we do have:
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Lemma 3.3 The image of J0(NΣ)3 in J0(NΣ′ ) under i is stable under the
action of the Hecke operator Uq, and Uq induces the endomorphism Tq q 0

−1 0 q
0 0 0


acting on J0(NΣ)3.

Proof: This is verified by a direct calculation. It is convenient to view ele-
ments of J0(NΣ) as formal sums of degree 0 of objects of the form [C], where
C is an elliptic curve equipped with the appropriate NΣ level structure, and
elements of J0(NΣ′ ) as sums of objects of the form [C1 → C2 → C3], where
the Ci are curves with level NΣ structure and the arrows are cyclic q-isogenies
whose composite is cyclic of degree q2. The formula for i on such objects is:

i([C1], [C2], [C3]) =
∑
A,B

[C1 → A→ B] +
∑
A,B

[A→ C2 → B] + (11)

+
∑
A,B

[A→ B → C3],

where the sums in each case are taken over all possible A,B so that the
composite arrow is cyclic of degree q2. (Hence, each sum contains q(q + 1)
distinct terms.) The formula for Uq on J0(NΣ′ ) is

Uq([A→ B → C]) =
∑
D

[B → C → D], (12)

where again the sum is taken over the q possible D such that the composite
isogeny is cyclic of degree q2. Using equations (11) and (12), one checks
directly that i(J0(NΣ)3) is stable under Uq, and in fact that

Uq(i([C1], [C2], [C3])) = i(Tq[C1] + q[C2],−[C1] + q[C3], 0),

so that Uq acts by the matrix  Tq q 0
−1 0 q
0 0 0

 ,
as was to be shown.
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Let now β = iβ0. From lemma 3.3, one sees that image of β is stable
under Uq, and in fact, is killed by Uq. Hence, one can define a natural ring
homomorphism

π : T(Σ
′
) −→ T(Σ)

sending an operator to its restriction to β(J0(NΣ)).

Lemma 3.4 The map π : T(Σ
′
)⊗Z5 −→ T(Σ)⊗Z5 is surjective, and maps

the ideal MΣ′ to the ideal MΣ.

Proof: To show surjectivity, since T(Σ) ⊗ Z5 is generated by the Hecke
operators Tl and Ul for l ∈ {17} ∪Σ, it suffices to show that these operators
are in the image of π. The operators Tl with l 6= q and Ul are just the
images of the corresponding operators in T(Σ

′
) ⊗ Z5. As for the operator

Tq, it follows directly from the Chebotarev density theorem (using the fact
that T(Σ) ⊗ Z5 is 5-adically topologically complete) that it is in the ring
generated by the good Hecke operators Tl, l 6= q. Finally, π maps MΣ to
MΣ′ , since it sends Tl − al to Tl − al (l /∈ {17} ∪ Σ) and sends Ul to Ul if
l 6= q, and to 0 otherwise.

Hence, by completing at the ideals MΣ′ and MΣ, we get a surjective map
(which by abuse of notation we also call π):

π : TΣ′ −→ TΣ,

and we can define a relative congruence ideal associated to this map, as in
sec. 2.8.

3.2.2 Computing ηT′/T

Let T = TΣ and T
′
= TΣ′ be the Hecke rings at level Σ and Σ

′
. By applying

the induction hypothesis and cor. 2.15 of sec. 2.8, we are reduced to showing
that

πT(ηT′/T) = ((q − 1)(a2
q − (q + 1)2).

In fact, we will show:

ηT′/T = ((q − 1)(T 2
q − (q + 1)2)),

where Tq ∈ T is the qth Hecke operator.
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Let the maps i, β0, and β be as above, and let j, α0 and α denote their
duals.

The maps i, j, α0 and β0 induce maps on the 5-adic Tate modules of the
associated abelian varieties, which, by abuse of notation, we will denote by
the same letters, and we have a sequence of maps:

Ta5(J0(NΣ))3 i−→ Ta5(J0(NΣ′ ))
j−→ Ta5(J0(NΣ))3

β0 ↑ ↓ α0

Ta5(J0(NΣ)) Ta5(J0(NΣ))

.

Now let

Λ := Ta5(J0(NΣ))⊗T(Σ) TΣ, Λ
′
:= Ta5(J0(NΣ′ ))⊗T(Σ′ ) TΣ′ .

The maps α and β induce maps on these tensored modules, which, by abuse of
notation, we will again call α and β. Hence, we have a diagram of morphisms:

Λ
β−→ Λ

′ α−→ Λ.

Note that β and α are maps of TΣ′ -modules when we endow Λ with its TΣ′ -
module structure coming from the map TΣ′ −→ TΣ. Furthermore, we have
the following key propositions:

Theorem 3.5 The rings TΣ and TΣ′ are Gorenstein, and Λ ' T2
Σ and

Λ
′ ' T2

Σ′.

This theorem was proved first by Mazur in [Mz1] in the case of J0(N), N
prime, and has since been extended by a number of people, including Wiles
in [Wi]; cf. also [Ed].

Theorem 3.6 The module Λ
′
/βΛ has no Z5-torsion.

Since Ta5(J0(NΣ)3)/β0(Ta5(J0(NΣ))) is torsion free, it suffices to show that
Ta5(J0(NΣ′ )/i(Ta5(J0(NΣ)3) is torsion free, at least after tensoring with TΣ′ .
This was proved by Ribet [Ri1] in the case of the map

i : J0(N)2 −→ J0(Nq), gcd(q,N) = 1

induced by the obvious two degeneracy maps, using some results of Ihara.
Building on Ribet’s result, Wiles has extended it to cover the case he needs;
cf. [Wi].

Thanks to thm. 3.5 and thm. 3.6, we are in the situation of prop. 2.13,
so that it suffices now to compute the modules Λ/αβΛ.
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Lemma 3.7 The map j ◦ i, viewed as an endomorphism of Ta5(J0(NΣ))3 ⊗
TΣ in M3(TΣ), is equal to q(q + 1) qTq T 2

q − (q + 1)
qTq q(q + 1) qTq

T 2
q − (q + 1) qTq q(q + 1)

 .
Proof: One proceeds as in the proof of lemma 3.3, using the explicit formula
for i given there, combined with the formula

j([A→ B → C]) = ([A], [B], [C]).

Finally we come to:

Proposition 3.8 αβ = −q(q − 1)(T 2
q − (q + 1)2).

Proof: One notes that α0, the dual of β0, is given by the formula

α0([C1], [C2], [C3]) = q[C1]− Tq[C2] + [C3].

αβ([C]) = α0jiβ0([C]) = α0ji(q[C],−Tq[C], [C])

= α0(−(q − 1)(T 2
q − (q + 1)2)[C], 0, 0)

= −q(q − 1)(T 2
q − (q + 1)2)[C].

Corollary 3.9 ηT′/T = ((q − 1)(T 2
q − (q + 1)2)).

Proof: By prop. 3.8, we have

AnnT(Λ/αβΛ) = ((q − 1)(T 2
q − (q + 1)2)),

since q 6= 5 is a unit in TΣ. The proof follows from prop. 2.13.
The proof of thm. 3.2 now follows from cor. 3.9 and cor. 2.15.
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3.3 Relation with the Bloch-Kato conjectures

In this section we mention briefly the relation between ηTΣ
and special values

of L-functions, and the relation between Wiles’ inequality and the Bloch-
Kato conjecture. This section is not logically needed for the proof of thm.
1.13.

Let us drop for this section our running assumption that X is the modular
elliptic curveX0(17). LetX be an arbitrary (semistable, to simplify) modular
elliptic curve, and define algebraic numbers αq and βq for each prime q by
the conditions

αq + βq = aq, αqβq = q, if X has good reduction at q,

αq = ±1, βq = 0 otherwise,

where αq is 1 precisely when X has split multplicative reduction at q. Now
define the local L-function associated to T by

Lq(T, s) = (1− α2
qq
−s)−1(1− β2

q q
−s)−1(1− αqβqq

−s)−1.

Finally, we define the global L-function associated to T and the set Σ by

LΣ(T, s) =
∏
q /∈Σ

Lq(T, s).

This function extends to an entire function on the complex plane, and satisfies
a functional equation interchanging s and 3− s.

By using Rankin’s method and some techniques of Shimura, Sturm [St]
has shown that LΣ(T, 2) is a rational multiple of a transcendental period Ω,

Ω =
∫

X(C)
ω ∧ ω̄,

where ω is a Néron differential attached to X.
If x ∈ Q, let [x]5 = 5ord5(x) denote the 5-part of x. Hida, using the

fundamental work of Ribet and others, has succeeded in relating the special
value LΣ(T, 2) to congruences between modular forms in a very precise way
(usually in the case where Σ is minimal). His ideas, combined with the
calculations of sec. 3.2, lead to the following relation:
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Theorem 3.10

#(Z5/ηTΣ
) =

[
LΣ(T, 2)

Ω

]
.

(Of course, one has a similar formula with any prime p replacing 5.) Thanks
to thm. 3.10, Wiles conjectured inequality (10) can be reformulated as:

#SΣ(Q, A) ≤
[
LΣ(T, 2)

Ω

]
.

This fits into the framework of the general conjectures of Bloch and Kato on
the special values of the L-functions attached to motives which are a vast
generalization of Dirichlet’s class number formula and the Birch Swinnerton
Dyer conjecture.

Such a reformulation is striking, since it gives a justification for the
Shimura-Taniyama conjecture from a rather unexpected point of view. On
the other hand, a proof of the inequality could be a priori quite difficult -
one just has to think of how elusive the Birch Swinnerton-Dyer conjecture
remains, even for modular elliptic curves!

Fortunately, the Bloch-Kato conjecture for the symmetric square is “eas-
ier” than the Birch Swinnerton-Dyer conjecture, in one important respect:
the special value of the symmetric square L-function is always non-zero at
the point of interest. Hence the difficulties which are caused by the unpre-
dictable behaviour of the order of vanishing at s = 1 for the L-function of an
elliptic curve, do not arise in this situation.

Furthermore, the ideas of Wiles and Flach allow us to come to grips with
the Selmer groups of the symmetric square in many cases, (and, for example,
to prove their finiteness). Naturally, one hopes that these techniques can
be pushed further to prove the analogue of the class number formula in this
setting, and hence, the full Shimura-Taniyama conjecture.

4 Proof of the inequality #ΦRΣ ≤ #(Z5/ηTΣ)

4.1 Reduction to the case Σ = ∅
Wiles first shows that the inequality

#(ΦRΣ
) ≤ #(Z5/ηTΣ

)
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follows from the corresponding inequality for the minimal set Σ = ∅, by a
simple induction argument.

Assume the inequality is true for Σ, and let Σ
′
= Σ∪ {q} for some prime

number q. The exact sequence

0 −→ SΣ(Q, A) −→ SΣ′ (Q, A) −→ H1(Iq, A)Dq

implies that
#ΦΣ′ ≤ (#ΦΣ)(#H1(Iq, A)Dq), (13)

and our explicit formula for ηTΣ
of thm. 3.2 implies that

#(Z5/ηT
Σ
′ ) = #(Z5/ηTΣ

)((q + 1)2 − a2
q)(q − 1). (14)

Combining equations (13) and (14), we are reduced to showing that

#H1(Iq, A)Dq ≤ [((q + 1)2 − a2
q)(q − 1)].

This follows from an explicit calculation; since Iq acts trivially on A,

H1(Iq, A)Dq = homDq(Iq, A) = homDq(Z5(1), A).

Since Iq acts trivially on Z5(1) and A, the group Dq acts on both via Dq/Iq,
which is topologically generated by the Frobenius element Frobq. The eigen-
value of Frobq on Z5(1) is q, and on A the eigenvalues are

1, α2
q/q, β2

q/q.

Hence, we find

#H1(Iq, A)Dq = [(q − 1)(q2 − α2
q)(q

2 − β2
q )]. (15)

Using the identity α2
q + β2

q = aq2 = a2
q − 2q, we find that the right hand side

is [(q − 1)((q + 1)2 − a2
q)], as was to be showed.

Remark: In the end, all the inequalities that Wiles proves turn out to be
actual equalities. Hence, the above calculation indicates that the reduction
map

SΣ
′ (Q, A) −→ H1(Iq, A)Dq

is surjective for all choices of Σ
′
. This assertion, in the case Σ

′
= {q} and

Σ = ∅ for certain primes q, turns out to be a key ingredient in bounding the
order of S∅(Q, A), as we will explain in the next section.
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4.2 Proof of the inequality for Σ = ∅
We are reduced to showing the inequality (10) for the minimal set Σ = ∅.

Theorem 4.1 #S∅(Q, A) = 1.

There are at least three ways in which this can be proved:

1. The ad hoc method: Taking cohomology of the exact sequence

0 −→ A5 −→ A −→ A −→ 0,

and using the fact that H0(Q, A) = 0, gives the isomorphism:

H1(Q, A)5 ' H1(Q, A5).

Let K/Q be the splitting field of A5, and let G = Gal(K/Q) ' GL2(F5)
be its Galois group. As we will see later (lemma 4.9) the cohomology group
H1(G,A5) vanishes, and hence the inflation-restriction sequence gives an
injection

H1(Q, A5) −→ homG(Gal(K(5)/K), A5),

where K(5) is the maximal abelian extension of K of exponent 5, and the
action of G is the natural one. Let K

′

(5) be the abelian extension of exponent
5 which is unramified outside of 5 and 17. Then S∅(Q, A5) injects into

homG(Gal(K
′

(5)/K), A5),

and one can therefore hope to control S∅(Q, A5) by controlling the size of this
group, which is (dual to) a piece of the 5-part of a well-defined class group
of K. Since the field K is of degree 480 over Q, this calculation seems rather
daunting. It would be interesting to see if it can be carried out in practice,
(which would probably require a more careful description of the image of
S∅(Q, A) as well as some theoretical insights into how the class group of the
field K behaves.) At any rate, it is worth noting that at this stage we have
reduced the proof of thm 1.1 to a finite amount of (machine) calculation.

2. Flach’s approach: In [Fl], Flach shows that if the module A arises from
the symmetric square of any (semi-stable) modular elliptic curve X, then
deg φ annihilates #SΣ(Q, A), where φ is a minimal degree of a modular
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parametrization fromX0(N) toX. In our case, this modular parametrization
is the identity map X0(17) −→ X0(17) of degree 1. Hence SΣ(Q, A) is trivial.

Flach’s argument proceeds by constructing explicit “Kolyvagin-type” co-
homology classes

c(l) ∈ H1(Q, T ∗),

where T ∗ = hom(T,Z5(1)) is the Kummer dual of T . Roughly speaking,
these classes are constructed as follows: the degeneracy maps of section 3.2
give a map of X0(17l) into X0(17)×X0(17) whose image is the Hecke corre-
spondance Tl on the surface X0(17)×X0(17). Flach defines a certain modular
unit u on X0(17l) whose divisor becomes trivial on the image Tl. The divisor
Tl, together with the unit u, gives rise to a class in a certain algebraic K-
group H1(X0(17)×X0(17),K2), which maps to the étale cohomology group

H3
et(X0(17)×X0(17),Z5(2)).

The Hochshild-Serre spectral sequence, combined with the fact that

H0(Q, H3
et(X0(17)×X0(17),Z5(2))) = 0

allows Flach to transfer this class to the group

H1(Q, H2
et(X0(17)×X0(17),Z5(2))),

which maps, via the Künneth projections, to

H1(Q, H1
et(X0(17),Z5(1))

⊗2).

By projecting to the symmetric tensors, Flach obtains his class

c(l) ∈ H1(Q, T ∗).

By a careful and delicate analysis, Flach shows that c(l) is ordinary at 5
and ramified only at l, and that its restriction to the inertia group Il, on the
other hand, generates H1(Il, T

∗)Dl , at least for sufficiently many l, (those for
which 5 does not divide ((l + 1)2 − a2

l )). An application of the local Tate
duality and the global reciprocity law of class field theory shows that for all
these l, and for all s ∈ SΣ(Q, A), the restriction of s to the decomposition
group Dl is trivial. Such stringent local conditions force the Selmer group
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SΣ(Q, A) to be trivial, by an application of the Chebotarev density theorem.
All of this is very well explained in Flach’s paper [Fl].

Flach’s method is inspired by the work of Kolyvagin, who constructed
ramified classes c(l) in different contexts to obtain annihilators of the ap-
propriate Selmer groups [Ko1], thereby establishing some striking cases of
the Birch Swinnerton Dyer conjecture. In his seminal paper [Ko] on Euler
systems, Kolyvagin showed how to strengthen this argument to obtain actual
upper bounds on the Selmer groups, by constructing systems of cohomology
classes c(l1, . . . , lk), extending his classes c(l), satisfying a subtle compati-
bility property relating the restriction to Dlk of c(l1, . . . , lk) to that of the
previous class c(l1, . . . , lk−1).

It is a tantalizing question to see if Flach’s cohomology classes c(l) can be
likewise extended to an Euler system, and whether this approach can yield
a proof of the inequality (10) in more general contexts.

3. Wiles’ approach: Wiles proves the inequality (10) for X0(17) by a com-
pletely different route, which relies crucially on the fact that the Hecke ring
T∅ is a local complete intersection.

We will explain Wiles’ proof here in some detail.

4.2.1 The group Smod
Σ (Q, A)

For any finite set Σ not containing 5 and 17, let

Smod
Σ (Q, A) := Φ∨TΣ

,

where M∨ = hom(M,Q5/Z5) denotes the Pontrjagin dual of a Z5-torsion
module. The surjective map ΦRΣ

−→ ΦTΣ
gives, upon passing to the duals,

an inclusion
Smod

Σ (Q, A) ⊂ SΣ(Q, A).

The group Smod
Σ (Q, A) should be thought of as the part of SΣ(Q, A) which

“comes from modular forms”.
If Σ1 ⊂ Σ2 are finite sets of primes not containing 5 and 17, then, by

definition there is an exact sequence

0 −→ SΣ1(Q, A) −→ SΣ2(Q, A) −→ ⊕Σ2−Σ1H
1(Iq, A)Dq .
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One could expect a similar statement for the modular Selmer groups, i.e.,
that the sequence

0 −→ Smod
Σ1

(Q, A) −→ Smod
Σ2

(Q, A) −→ ⊕Σ2−Σ1H
1(Iq, A)Dq

is also exact. Injectivity of the first map follows from the fact that TΣ2 −→
TΣ1 , and hence, ΦTΣ2

−→ ΦTΣ1
, is surjective.

Exactness at the second stage asserts that a modular deformation of level
NΣ2 which is unramified at the primes in Σ2−Σ1, already arises from a mod-
ular form of level NΣ1 . This is very much in the spirit of Ribet’s celebrated
“lowering the level” result [Ri2]. (Ribet only concerns himself with mod p
modular forms, whereas what is needed here is some version for modular
forms mod pk.)

Say that a prime q is good if

(q + 1)2 − a2
q 6= 0 (mod 5).

Proposition 4.2 (Wiles) If Σ2 − Σ1 consists only of good primes, then the
sequence

0 −→ Smod
Σ1

(Q, A) −→ Smod
Σ2

(Q, A) −→ ⊕Σ2−Σ1H
1(Iq, A)Dq

is exact.

This proposition is the main technical ingredient in Wiles’ proof of the in-
equality (10). The proof relies in an essential way on the work of Ribet and
on its subsequent refinements and extensions. For details, the reader may
consult [Wi].

Now, let q be a good prime. In our particularly simple situation, we know
that Smod

∅ (Q, A) = 0, and hence prop. 4.2 gives an injective map

Smod
{q} (Q, A) ↪→ H1(Iq, A)Dq .

On the other hand

#Smod
{q} (Q, A) = #ΦT{q} ≥ #(Z5/ηT{q}) = [(q − 1)((q + 1)2 − a2

q)],

where the first inequality follows from equation (6), and the last equality is
thm. 3.2. Hence by using equation (15) and counting orders, we find that the
map Smod

{q} (Q, A) −→ H1(Iq, A)Dq is an isomorphism. Hence, so is the map

Smod
{q} (Q, A)5 −→ H1(Iq, A)

Dq

5 . Since Smod
{q} (Q, A)5 injects into S{q}(Q, A)5,

and since S{q}(Q, A5) surjects onto S{q}(Q, A)5, we have shown:
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Lemma 4.3 If q is a good prime, then the map

S{q}(Q, A5) −→ H1(Iq, A5)
Dq = homDq(Iq, A5)

is surjective.

4.2.2 Local Tate duality

In this section (and this section only!) let A be a finite GQ-module of p-power
order, and let A∗ = hom(A,Gm) be the Kummer dual of A, equipped with
the natural Galois action.

Proposition 4.4 (Tate) For all primes q cup-product induces a canonical
non-degenerate pairing

〈 , 〉q : H1(Qq, A)×H1(Qq, A
∗) −→ Qp/Zp.

The local Tate pairing is defined by composing the natural maps

H1(Qq, A)×H1(Qq, A
∗)

∪−→ H2(Qq, A⊗ A∗) = H2(Qq, Gm) = Q/Z,

where the first is given by cup product and the last equality follows from
local class field theory [CF].

A simple description of the local Tate pairing can be given when q 6= p
and the module A is unramified at q. In this case, the inflation-restriction
sequence gives an exact sequence:

0 −→ H1(Qnr
q /Qq, A) −→ H1(Qq, A) −→ H1(Iq, A)Dq −→ 0.

Since A is unramified, the term on the left can be identified with the module
ADq of Dq-coinvariants of A, and the term on the right can be identified with

hom(Iq, A)Dq = A(−1)Dq .

One can show that the submodules ADq ⊂ H1(Qq, A) and A∗Dq
⊂ H1(Qq, A

∗)
are the orthogonal complements of each other under the local Tate pairing,
and that the induced pairings on ADq × A∗(−1)Dq and A∗Dq

× A(−1)Dq are
the obvious ones.

If a and a
′
are classes in H1(Q, A) and H1(Q, A∗) respectively, let av and

a
′
v denote their images in the local groups H1(Qv, A) and H1(Qv, A

∗).
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Proposition 4.5 (Tate) For all a and a
′
, we have∑

v

〈av, a
′

v〉v = 0.

Proof: We have
〈a, a′〉v = invv(a ∪ a

′
),

where a ∪ a′ ∈ H2(Q, Gm) is an element in the global Brauer group of Q.
Hence the proposition follows directly from the global reciprocity law of class
field theory [CF] which states that∑

v

invv(x) = 0, ∀x ∈ H2(Q, Gm).

Now, let Jq ⊂ H1(Qq, A) be a choice of subgroups of the local cohomology
groups, satisfying

Jq = H1(Dq/Iq, A
Iq) for almost all q,

and for any such system of (Jq), define the generalized Selmer group:

S(Jq)(Q, A) =:= {s ∈ H1(Q, A) | sq ∈ Jq ∀q }.

If we define J∗q ⊂ H1(Qq, A
∗) to be the orthogonal submodules under the

local Tate pairings, then J∗q also satisfies the condition:

J∗q = H1(Dq/Iq, A
∗Iq) for almost all q.

We define the dual Selmer group of S(Jq)(Q, A) to be the Selmer group
S(J∗q )(Q, A

∗).
The following Euler characteristic formula compares the orders of the

Selmer group S(Jq)(Q, A) and its dual S(J∗q )(Q, A
∗).

Proposition 4.6 The Selmer groups S(Jq)(Q, A) and S(J∗q )(Q, A
∗) are finite,

and
#S(Jq)(Q, A)

#S(J∗q )(Q, A∗)
=

#H0(Q, A)

#H0(Q, A∗)
h∞

∏
q

hq,

where

h∞ = #H0(R, A∗), hq = #H0(Qq, A
∗)/[H1(Qq, A) : Jq].
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For a proof of the general formula, see [Gre]. Note that when A is unramified
at q 6= p, then

Jq = H1(Dq/Iq, A) ⇒ #H0(Dq/Iq, A
∗) = [H1(Qq, A) : Jq],

and hq = 1. Hence, hq = 1 for almost all q, so that the above product makes
sense.

4.2.3 Bounding S∅(Q, A
∗
5)

Define SΣ(Q, A∗5) to be the dual Selmer group of SΣ(Q, A5), using the general
construction of the previous section. Our goal in this section is to show

Proposition 4.7 #S∅(Q, A
∗
5) = 1.

Proof: We begin by showing that any s ∈ S∅(Q, A
∗
5) is locally trivial for

many q. More precisely, if s ∈ S∅(Q, A
∗
5), and q is any prime, let sq be the

image of s in H1(Qq, A
∗
5) by restriction. If q is not 5 or 17, then sq belongs

to H1(Dq/Iq, A
∗
5).

Lemma 4.8 If s belongs to S∅(Q, A
∗
5) and if q is a good prime, then sq = 0.

Proof: For all γ ∈ S{q}(Q, A5), we have, by prop. 4.5,∑
v

〈sv, γv〉v = 0. (16)

But if v 6= q, then by definition 〈sv, γv〉v = 0. Hence, equation (16) reduces
to:

〈sq, γq〉q = 0, ∀γ ∈ S{q}(Q, A5).

By lemma 4.3 (which is the main actor in this proof), it follows that

〈sq, α〉q = 0, ∀α ∈ H1(Iq, A5)
Dq .

But this proves that sq = 0, by the non-degeneracy of the local Tate pairing.
Let K = Q(A∗5)(= Q(A5)) be the splitting field of A∗5, i.e., the smallest

field through which ρ̄0 factors. By lemma 1.4, we have G = Gal(K/Q) '
GL2(F5).
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Lemma 4.9 The restriction map

H1(Q, A∗5) −→ H1(K,A∗5)

is injective.

Proof: From the inflation-restriction sequence, the kernel of this map is

H1(G,A∗5) ' H1(GL2(F5), Sym2),

where Sym2 is the symmetric square of the standard two-dimensional repre-
sentation of GL2(F5). Let Z ⊂ GL2(F5) denote the group of scalar matrices.
The Hochschild-Serre spectral sequence

Hp(PGL2(F5), H
q(Z, Sym2)) ⇒ Hp+q(GL2(F5), Sym2)

shows that Hp(GL2(F5), Sym2) = 0 for all p, since the group Z is of order
prime to 5.

We now come to the proof of prop. 4.7. Let s be an element of S∅(Q, A
∗
5).

We will show that s = 0. To show this, it suffices to show that the restriction
s̄ of s to H1(K,A∗5) is zero, by lemma 4.9. Let L/K be the smallest extension
of K such that s̄ ∈ hom(Gal(K̄/K), A∗5) factors through U = Gal(L/K). If s̄
is non-trivial, then the group U is isomorphic to (Z/5Z)3, and G ' GL2(F5)
acts on U by conjugation. Furthermore, U is isomorphic as a G-module
to the symmetric square of the standard representation of GL2(F5). Let
Γ = Gal(L/Q), so that we have an exact sequence of finite groups:

0 −→ U −→ Γ −→ G −→ 0.

Now fix a τ ∈ Γ such that the image of τ in G ' GL2(F5) is conjugate to

a matrix of the form

(
2 0
0 3

)
, and is of order 4 in Γ. (Such a τ always

exists, since 4 is prime to 5.) Now let h be an arbitrary element of the group
U , and choose a prime q of Q whose Frobenius element in Gal(L/Q) = Γ is
equal to hτ . Such a prime exists, by the Chebotarev density theorem. Since
ρ̄0(Frobq) has eigenvalues 2 and 3, it follows that

aq = 0 (mod 5), q = 1 (mod 5),
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so that (q + 1)2 − a2
q = 4 6= 0 (mod 5). Therefore q is a good prime. Hence

we can apply lemma 4.8 to conclude that sq = 0, so that, if Q is a prime of
K above q,

s̄(FrobQ) = 0.

Since the extension KQ/Qq has residue degree 4, we have

FrobQ = (hτ)4 = h(τhτ−1)(τ 2hτ−2)(τ 3hτ−3) = h+,

where h+ is the projection of h ∈ U to the +1-eigenspace, U+, for the action
of τ on U . Since h ∈ U was arbitrary, it follows that s̄ annihilates U+. The
eigenvalues of τ on U are −1, −1, and +1, and hence U+ is non-trivial. Since
U is an irreducilbe G-module, and s̄ is G-equivariant, it follows that s̄ = 0,
as was to be shown.

4.2.4 Bounding S∅(Q, A5)

Let Jq ⊂ H1(Qq, A5) be the groups defined in sec. 3.1, but with A5 replacing
A, and let J∗q ⊂ H1(Qq, A

∗
5) denote the orhogonal complements under the

local Tate pairings, so that

SΣ(Q, A5) = S(Jq)(Q, A5), SΣ(Q, A∗5) = SJ∗q (Q, A∗5).

Applying proposition 4.6 in our situation, with Σ = ∅, we get:

#S∅(Q, A5)

#S∅(Q, A∗5)
= h∞h5h17, (17)

where

h∞ = #H0(R, A∗5), hq = #H0(Qq, A
∗
5)/[H

1(Qq, A5) : Jq].

Thus to compute #S∅(Q, A5) we are reduced to a series of local computations.
We recall briefly the facts of local Galois cohomology that we will use. (For
proofs of these, see [Sr2].)
1. If A is any finite module over Dq = GQq , let hi(A) denote #H i(Qq, A).
Then hi(A) = 1 if i > 2, and the Euler characteristic of A is defined by

χ(A) =
h0(A)h2(A)

h1(A)
.
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The Poitou-Tate formula for the local Euler characteristic is

χ(A) = |#A|q,

where |x|q = q−ordq(x) is the usual q-adic valuation.
2. It is a direct consequence of the local Tate duality that hi(A) = h2−i(A∗).

Lemma 4.10 h∞ = 25.

Proof: Since ρ̄0 is odd, complex conjugation acts on A5 with eigenvalues
1,−1, and−1, and hence with eigenvalues −1, 1, 1 on A∗5. The result follows.

Lemma 4.11 h17 = 1.

Proof: Let A0
5 be the module (A0

(17))5, so that J17 is defined by the exact
sequence

0 −→ J17 −→ H1(Q17, A5) −→ H1(Q17, A5/A
0
5).

The group GQ17 acts on the line A0
5 by the cyclotomic character χ. More

generally, there is a filtration

A0
5 ⊂ A1

5 ⊂ A5

with one dimensional quotients, and the action of GQ17 on the sucessive
quotients is by χ, 1, and χ−1. Using this explicit description, one verifies
that h0(A5) = h0(A∗5) = 1, that h0(A0

5) = 1, h0(A0∗
5 ) = 5, etc.

From the long exact cohomology sequence associated to

0 −→ A0
5 −→ A5 −→ A5/A

0
5 −→ 0,

we obtain

[H1(Q17, A5) : J17] =
h1(A5/A

0
5)h

2(A5)

h2(A0
5)h

2(A5/A0
5)

=
h0(A5/A

0
5)

χ(A5/A0
5)
· h

0(A∗5)

h0(A0∗
5 )

=
5

1
× 1

5
= 1.

Since h0(A∗5) = 1, one obtains h17 = 1, which proves the lemma.

Lemma 4.12 h5 ≤ 1/25.
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Proof: Denote now by A0
5 the module (A0

(5))5, so that J5 is defined by the
exact sequence

0 −→ J5 −→ H1(Q5, A5) −→ H1(I5, A5/A
0
5).

The inertia group I5 acts on the line A0
5 by the cyclotomic character χ. More

generally, there is a filtration

A0
5 ⊂ A1

5 ⊂ A5

with one dimensional quotients, and the action of the decomposition group
GQ5 on the sucessive quotients is by χψ−2, 1, and χ−1ψ2, where ψ is an
unramified character of order 4. This follows from part 2 of lemma 1.4.

Using this explicit description, one verifies that h0(A5) = h0(A∗5) = 1,
that h0(A0

5) = h0(A0
5) = 1, etc.

Now, consider the composite map

φ : H1(Q5, A5)
φ1−→ H1(Q5, A5/A

0
5)

φ2−→ H1(I5, A5/A
0
5).

Then we have

[H1(Q5, A5) : J5] = #Im(φ) ≥ #(Imφ1)/#(kerφ2). (18)

By the inflation restriction sequence,

kerφ2 = H1(D5/I5, (A5/A
0
5)

I5) = ((A5/A
0
5)

I5)D5/I5 ,

so that
# kerφ2 = h0(A5/A

0
5) = 5. (19)

On the other hand, by the same argument as in the proof of lemma 4.11, we
find:

#Imφ1 =
h0(A5/A

0
5)

χ(A5/A0
5)
· h

0(A∗5)

h0(A0∗
5 )

=
5

25−1
× 1

1
= 125.

(Now, of course, hi(M) denotes #H i(Q5,M) instead of #H i(Q17,M)!)
Hence, by eqn. (18) and (19),

[H1(Q5, A5) : J5] ≥ 25.

Since h0(A∗5) = 1, one obtains h5 ≤ 1/25, which proves the lemma.
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Corollary 4.13 #S∅(Q, A5) = #S∅(Q, A
∗
5) = 1.

Proof: Combining lemmas 4.10, 4.11, and 4.12 yields the inequality

h∞h5h17 ≤ 1.

The corollary now follows from eqn. (17). This finishes the proof of inequality
(10), and hence of thm. 1.2.

5 Wiles’ general strategy

We conclude by briefly mentionning Wiles’ strategy for proving the Shimura-
Taniyama conjecture for a large class of elliptic curves, containing all of the
semi-stable ones. This can also be found in other surveys, eg. [RS], [Gou].
1. If E is an arbitrary (semistable) elliptic curve over Q, to get the machinery
of Wiles going one needs to know that Ep is modular for some prime p. It
was conjectured by Serre [Sr3] that any odd representation with values in
GL2(Fp) arises from a modular form with apropriate weight, character and
level, but this conjecture seems quite difficult and is very much an open
problem, even for p = 5. For p = 3, however, something very fortunate
occurs: the image of the mod 3 representation is isomorphic to a double cover
of S4 which is a finite solvable subgroup of GL2(C). A result of Langlands
[La] and Tunnell [Tu] then guarantees that ρ3 arises from a modular form
(mod 3) of weight 1. By multiplying by an appropriate Eisenstein series, one
gets a form of weight 2 mod 3 which gives the corresponding representation.
Finally, the work of Ribet and others allows one to then show that there is
a form of “minimal” level given by the recipe explained in the conjectures of
[Sr3]. (See for example [Di].) Using this minimal level, Wiles constructs the
Hecke ring T∅ and the base point map T∅ −→ O, where O is a local ring
with residue field F3. He also gets rings TΣ for sets of primes Σ by increasing
the level.

2. Wiles then needs to construct a deformation ring RΣ which “captures” the
3-adic representation associated to E. This leads him to consider a variety of
deformation problems, corresponding to the cases where E is good ordinary,
multiplicative, or supersingular at 3. In the ordinary and multiplicative
cases, the deformation given by Ta3(E) is ordinary, and the existence of
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the universal rings RΣ is shown by Mazur and Tilouine [MT]. When E is
supersingular at 3 one needs to consider flat deformations; here one makes
essential use of the work of Ramakrishna [Ra], where the existence and key
properties of the universal deformation ring are established.

3. Wiles then needs to show that the map RΣ −→ TΣ is an isomorphism for
all sets Σ. Using the ideas explained in this report, he succeeds in reducing
this isomorphism to the inequality

length(S∅(Q, A)) ≤ length(O/ηT∅O), (20)

for the ring T∅ that arises in the minimal deformation problem. At the time
of writing, this inequality has not yet been established in sufficient generality,
although it can be established in many specific instances thanks to the ideas
of Wiles and Flach, as we have explained.

4. The inequality (20) (for p = 3) is sufficient to show that any semi-stable
elliptic curve such that E3 is absolutely irreducible is modular. (N. Elkies has
shown that this fact alone is enough to prove that all of the Frey curves, whose
modularity implies Fermat’s Last Theorem, satisfy the Shimura Taniyama
conjecture.) By an elementary and ingenious argument, Wiles shows that
all semistable curves are modular, assuming (20), as follows: If the mod 3
representation ρ3 arising from E is reducible, Wiles constructs an auxiliary
curve E

′
such that E

′
3 is absolutely irreducible as a Galois module, and

E5 is isomorphic to E
′
5 as Galois modules. The key point here is that the

modular curve X(5) is of genus 0, so that there is a plentiful supply of
curves E

′
satisfying E

′
5 ' E5. Now, applying his argument to the irreducible

representation attached to E
′
3, Wiles shows that E

′
is modular. Hence, so

is E
′
5, and therefore E5. By an analysis of the rational points on X0(15),

one knows that E5 must be irreducible; hence, Wiles can apply his analysis,
again assuming equation (20) with p = 5, to conclude that E is modular.
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