The work of Granville-Stark on $A B C$ and Siegel zeros

Christian Táfula

Département de mathématiques et de statistique (DMS), Université de Montréal (UdeM)

Math 726: Topics in Number Theory
Modular forms and the theory of complex multiplication

Contents

(1) Introduction

(2) Lower bounds for $h(D)$
(3) The Siegel zero

Contents

(1) Introduction

(2) Lower bounds for $h(D)$

3 The Siegel zero

Notation

- $D<0$ fundamental discriminant (so $\sqrt{D} \notin \mathbb{R}, D=\operatorname{disc} \mathbb{Q}(\sqrt{D})$);
- $\mathrm{C} \ell(D)=$ class group of $\mathbb{Q}(\sqrt{D})$;
- $h(D)=|\mathrm{C} \ell(D)|$ class number of $\mathbb{Q}(\sqrt{D})$;
- $j=j$-invariant function:

$$
j(\tau):=\frac{\left(1+240 \sum_{n \geq 1}\left(\sum_{d \mid n} d^{3}\right) q^{n}\right)^{3}}{q \prod_{n \geq 1}\left(1-q^{n}\right)^{24}} \quad\left(\Im(\tau)>0, q=e^{2 \pi i \tau}\right)
$$

$$
\begin{aligned}
& j(\tau+1)=j(\tau), \\
& j(-1 / \tau)=j(\tau)
\end{aligned}
$$

$$
\begin{gathered}
\hline j(i)=1728, \\
j\left(e^{2 \pi i / 3}\right)=0, \\
" j(i \infty)=1 \infty " ;
\end{gathered} \quad j(\tau)=\frac{q \text {-expansion of } j:}{q}+744+196884 q+\cdots
$$

Singular moduli ($1 / 2$)

Let $\tau \in \mathfrak{h} \quad(\Im(\tau)>0)$

- CM-point: $\tau \left\lvert\, A \tau^{2}+B \tau+C=0 \quad\binom{A, B, C \in \mathbb{Z}, A>0}{,\operatorname{gcd}(A, B, C)=1$, unique }\right.
- Singular modulus: $j(\tau) \quad(j=j$-invariant, τ a CM-point $)$
$\frac{\text { CM-points }}{\tau \in \mathfrak{h}} \quad \longleftrightarrow \quad \frac{\text { Quadratic forms }}{A x^{2}+B x y+C y^{2}}$
- $\operatorname{disc}(\tau):=B^{2}-4 A C$
- $\tau \sim \tau^{\prime} \Longleftrightarrow(A, B, C) \sim\left(A^{\prime}, B^{\prime}, C^{\prime}\right)$
- $\tau \in \mathscr{F} \Longleftrightarrow(A, B, C)$ reduced

Singular moduli (2/2)

Heegner points $\Lambda_{D} \quad$ Reduced prim. quad. forms of disc. D
$\left\{\begin{array}{c}\text { CM-points } \tau \in \mathscr{F} \\ \operatorname{disc}(\tau)=D\end{array}\right\} \longleftrightarrow\left\{\begin{array}{c}(a, b, c):=a x^{2}+b x y+c y^{2} \\ \text { s.t. } b^{2}-4 a c=D, \text { and } \\ -a<b \leq a<c \text { or } 0 \leq b \leq a=c\end{array}\right\}$

$$
\tau_{D}:=\underbrace{\frac{\sqrt{D}}{2}}_{D \equiv 0(4)} \text { or } \underbrace{\frac{-1+\sqrt{D}}{2}}_{D \equiv 1(4)} \leftrightarrow \underbrace{\text { Principal form }}_{\left(1,0,-\frac{D}{4}\right) \text { or }\left(1,1, \frac{1-D}{4}\right)} \mathbb{Z}\left[\tau_{D}\right]=\mathcal{O}_{\mathbb{Q}(\sqrt{D})}
$$

Write $\mathrm{H}_{D}:=$ Hilbert class field of $\mathbb{Q}(\sqrt{D})$.

- $\mathrm{H}_{D}=\mathbb{Q}\left(\sqrt{D}, j\left(\tau_{D}\right)\right) \quad\left(\left[\mathrm{H}_{D}: \mathbb{Q}(\sqrt{D})\right]=\left[\mathbb{Q}\left(j\left(\tau_{D}\right)\right): \mathbb{Q}\right]=h(D)\right)$
- $\left\{j(\tau) \mid \tau \in \Lambda_{D}\right\}=\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}(\sqrt{D}))$-conjugates of $j\left(\tau_{D}\right)$
- $j\left(\tau_{D}\right)$ is an algebraic integer!

The equation $x^{3}-D y^{2}=1728$

In class, we saw the equation $x^{3}-D y^{2}=1728 \quad(=j(i))$.

- Factorization of differences of singular moduli
- Solutions of the type $\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, D y^{2}\right)$
- Idea: $A B C \Longrightarrow$ few such solns \Longrightarrow lower bounds for $h(D)$

$$
\begin{array}{c|c}
\underline{\mathbf{A B C}}: & a, b, c \in \mathbb{Z} \text { coprime. } \forall \varepsilon>0, \exists C_{\varepsilon}>0 \text { s.t. } \\
(a+b=c) & \max \{|a|,|b|,|c|\}<C_{\varepsilon}\left(\prod_{p \mid a b c} p\right)^{1+\varepsilon}
\end{array}
$$

Example (Class number 1)

We've seen that $h(D)=1 \Longrightarrow x, y \sqrt{|D|} \in \mathbb{Z}$. However, in this case,

$$
\begin{aligned}
\left|j\left(\tau_{D}\right)\right| \leq \max \left\{|x|^{3},|y \sqrt{D}|^{2}, 1728\right\} & \stackrel{\text { abc }}{\leq} C_{\varepsilon} \cdot|x \cdot y \sqrt{D}|^{1+\varepsilon} \\
& \leq C_{\varepsilon} \cdot\left|j\left(\tau_{D}\right)\right|^{\frac{5}{6}(1+\varepsilon)}
\end{aligned}
$$

so there can only be finitely many $D<0$ with $h(D)=1$.

How does $h(D)$ grow?

What do we know?

- $h(D) \rightarrow \infty$ as $D \rightarrow-\infty$ (Heilbronn, 1934)
- List $h(D)$ (small values of $|D|$)
- Estimate $h(D)$ (large values of $|D|$)
- $-D \in\{3,4,7,8,11,19,43,67,163\}$ are the only D s.t. $h(D)=1$
- Solved by Heegner (~ 1952) [based on Weber's work]
- Reworked and clarified by Stark, Birch (1967~9)
- Baker's solution (~ 1970) [based on Baker's theorem]
- $h(D)$ grows roughly like $|D|^{1 / 2} \quad\left(\right.$ GRH $\left.\Longrightarrow \operatorname{err} \approx(\log \log |D|)^{ \pm 1}\right)$
- Hecke (1917): If $\zeta_{\mathbb{Q}(\sqrt{D})}(s) \neq 0$ near 1 , then $\frac{h(D)}{|D|^{1 / 2}} \gg(\log |D|)^{-1}$
- Landau (1918): $\max \left\{\frac{h\left(D_{1}\right)}{\left|D_{1}\right|^{1 / 2}}, \frac{h\left(D_{2}\right)}{\left|D_{2}\right|^{1 / 2}}\right\} \gg\left(\log \left|D_{1} D_{2}\right|\right)^{-1}$
- Siegel (1935): $\frac{h(D)}{|D|^{1 / 2}} \gg_{\varepsilon}|D|^{-\varepsilon}$ (unconditional but ineffective)

Contents

(1) Introduction

(2) Lower bounds for $h(D)$

(3) The Siegel zero

The Granville-Stark Theorem

Theorem (Granville-Stark, 2000)

Uniform abc-conj. \Longrightarrow

- Study $x^{3}-y^{2}=1728$
- Uniform $A B C$ for number fields (U-abc)
- U-abc \Longrightarrow lower bounds for $h(D)$
- Lower bounds $h(D) \Longleftrightarrow \frac{1}{2}$ "no Siegel zeros"
A. Granville

H. Stark

The equation $x^{3}-y^{2}=1728$

- Solutions of the type $\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, y^{2}\right)$

- Applying the same logic for $x^{3}-y^{2}-1728=0$, we would get:

$$
\begin{aligned}
\log \max \left\{|x|^{3},|y|^{2}\right\} & \leq \log \max \left\{|x|^{3},|y|^{2}, 1728\right\} \\
& \stackrel{\text { abc }}{\leq}(1+\varepsilon) \log -\operatorname{cond}(12|x y|)+\text { tax } \\
& \leq \frac{5}{6}(1+\varepsilon) \log \max \left\{|x|^{3},|y|^{2}\right\}+\operatorname{tax}
\end{aligned}
$$

How to make this precise? $\longrightarrow \quad \log \max \left\{|x|^{3},|y|^{2}\right\}<\left(6+\varepsilon^{\prime}\right) \cdot \operatorname{tax}$

$a b c$-conjecture for number fields $(1 / 2)$

Let K / \mathbb{Q} be a NF, \mathcal{M}_{K} its places, $\mathcal{M}_{K}^{\text {non }} \subseteq \mathcal{M}_{K}$ non-arch. places For a point $P=\left[x_{0}: \cdots: x_{n}\right] \in \mathbb{P}_{K}^{n}$, define:

- (naïve, abs, log) height ht (P)

$$
\frac{1}{[K: \mathbb{Q}]} \sum_{v \in \mathcal{M}_{K}} \log \left(\max _{i}\left\{\left\|x_{i}\right\|_{v}\right\}\right)
$$

- (log) conductor $\mathcal{N}_{K}(P)$

$$
\frac{1}{[K: \mathbb{Q}]} \sum_{\substack{v \in \mathcal{M}_{K}^{\text {non }} \\ \exists i, j \leq n \text { s.t. } \\ v\left(x_{i}\right) \neq v\left(x_{j}\right)}} f_{v} \log \left(p_{v}\right)
$$

For $a, b, c \in \mathbb{Z}$ coprime,

- ht $([a: b: c])=\log \max \{|a|,|b|,|c|\}$
- $\mathcal{N}_{\mathbb{Q}}([a: b: c])=\log \left(\prod_{p \mid a b c} p\right)$

$a b c$-conjecture for number fields (2/2)

$a b c$-conjecture for number fields

Fix K / \mathbb{Q} a number field. Then, for every $\varepsilon>0$, there is $\mathcal{C}(K, \varepsilon) \in \mathbb{R}_{+}$ such that, $\forall a, b, c \in K \mid a+b+c=0$, we have

$$
\operatorname{ht}([a: b: c])<(1+\varepsilon)\left(\mathcal{N}_{K}([a: b: c])+\log \left(\operatorname{rd}_{K}\right)\right)+\mathcal{C}(K, \varepsilon)
$$

where $\operatorname{rd}_{K}:=\left|\Delta_{K}\right|^{1 /[K: \mathbb{Q}]}$ is the root-discriminant of K.

Example (a, b, c integral, coprime)

For $a, b, c \in \mathcal{O}_{K}$ coprime (meaning $v(a) \neq v(b) \neq v(c)$ for $v<\infty$),

$$
\begin{aligned}
\max \left\{\left|\mathrm{N}_{K / \mathbb{Q}}(a)\right|^{\frac{1}{K: ब]}},\left|\mathrm{N}_{K / \mathbb{Q}}(b)\right|^{\frac{1}{[K: ब]}},\right. & \left.\left|\mathrm{N}_{K / \mathbb{Q}}(c)\right|^{\frac{1}{K: \mathbb{Q}]}}\right\} \\
& <C_{K, \varepsilon}\left(\left|\Delta_{K}\right| \prod_{\mathfrak{p} \mid(a b c)}\left|\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right|\right)^{1+\varepsilon},
\end{aligned}
$$

with $C_{K, \varepsilon}=\exp ([K: \mathbb{Q}] \cdot \mathcal{C}(K, \varepsilon))$.

What do we get?

$$
\begin{array}{ll}
\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, y^{2}\right) & x^{3}-y^{2}=1728 \\
j\left(\tau_{D}\right) \in \mathrm{H}_{D} \quad \widetilde{\mathrm{H}}_{D}:=\mathrm{H}_{D}(x, y) \quad\left(\left[\widetilde{\mathrm{H}}_{D}: \mathrm{H}_{D}\right] \leq 6\right)
\end{array}
$$

- " $\log \max \left\{|x|^{3},|y|^{2}\right\} "<(6+\varepsilon) \cdot \boldsymbol{\operatorname { t a x }}\left(\widetilde{\mathrm{H}}_{D}, \varepsilon\right)$

More precisely:

$$
\operatorname{ht}\left(j\left(\tau_{D}\right)\right)<6\left((1+\varepsilon) \log \left(\operatorname{rd}_{\widetilde{\mathrm{H}}_{D}}\right)+\mathcal{C}\left(\widetilde{\mathrm{H}}_{D}, \varepsilon\right)\right)
$$

- "Factorization": $\operatorname{rd}_{\widetilde{\mathrm{H}}_{D}} \leq 6 \sqrt{|D|} \quad\left(\operatorname{rd}_{\mathrm{H}_{D}}=\operatorname{rd}_{\mathbb{Q}(\sqrt{D})}=\sqrt{|D|}\right)$
- Uniform $A B C$-conj.: $\mathcal{C}(K, \varepsilon)=\mathcal{C}(\varepsilon) \quad \Longrightarrow \boldsymbol{\operatorname { t a x }}(\varepsilon) \lesssim \frac{1}{2} \log |D|$

Lower bounds for $h(D)$

Lemma [G-S]
 Unif. $A B C$-conj. $\Longrightarrow \operatorname{ht}\left(j\left(\tau_{D}\right)\right) \leq(3+o(1)) \log |D|$

However,

$$
\begin{array}{rlr}
\operatorname{ht}\left(j\left(\tau_{D}\right)\right) & =\frac{1}{h(D)} \sum_{(a, b, c)} \log ^{+}\left|j\left(\tau_{(a, b, c)}\right)\right| & \begin{array}{c}
a x^{2}+b x y+c y^{2} \\
\text { reduced, } \\
b^{2}-4 a c=D
\end{array} \\
& =\frac{1}{h(D)} \sum_{(a, b, c)} \frac{\pi \sqrt{|D|}}{a}+O(1), & \\
\text { and thus: } & & \tau_{(a, b, c)}=\frac{-b+\sqrt{D}}{2 a}
\end{array}
$$

Theorem [G-S]

$$
h(D) \stackrel{\mathrm{U}-a b c}{\geq}\left(\frac{\pi}{3}+o(1)\right) \frac{\sqrt{|D|}}{\log |D|} \sum_{(a, b, c)} \frac{1}{a}
$$

q-expansion!
$j(\tau)=\frac{1}{q}+O(1)$

Contents

(1) Introduction

(2) Lower bounds for $h(D)$
(3) The Siegel zero

Dedekind zeta function of $\mathbb{Q}(\sqrt{D})$

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \subseteq \mathcal{O}_{K}} \frac{1}{\mathfrak{N}(\mathfrak{a})^{s}}=\frac{c_{-1}}{s-1}+c_{0}+O(s-1) \quad(s \rightarrow 1)
$$

Conjecture ("no Siegel zeros" for $D<0$)

There is $\delta>0$ such that $\zeta_{\mathbb{Q}(\sqrt{D})}(\beta) \neq 0$ for $1-\frac{\delta}{\log |D|} \leq \beta<1$.

- Dirichlet's class number formula: $c_{-1}(D)=\frac{\pi h(D)}{\sqrt{|D|}} \quad(D<-4)$

$$
\begin{aligned}
& \zeta_{\mathbb{Q}(\sqrt{D})}(\beta) \leq-\frac{1}{\delta} \frac{\pi h(D) \log |D|}{\sqrt{|D|}}+c_{0}(D)+O\left((\log |D|)^{-1}\right) \\
& \quad \mathrm{U}-a b c \\
& \leq\left(\frac{1}{\delta}+o(1)\right) \sum_{(a, b, c)} \frac{1}{a}+c_{0}(D)+o(1)
\end{aligned}
$$

Kronecker's limit formula (KLF)

We just need to show that $c_{0}(D) \ll \sum_{(a, b, c)} \frac{1}{a} \quad($ as $D \rightarrow-\infty)$.

$$
\zeta_{\mathbb{Q}(\sqrt{D})}(s)=\frac{1}{2} \sum_{(a, b, c)}(\underbrace{\sum_{\substack{m, n=-\infty \\ m, n \neq 0}}^{+\infty} \frac{1}{\left(a m^{2}+b m n+c n^{2}\right)^{s}}}_{\text {Epstein zeta function: } Z_{(a, b, c)}(s)})
$$

KLF [Kronecker 1863, Weber 1881, ..., Chowla-Selberg 1967, ...]

The constant term $\left(c_{0}\right)$ of $Z_{(a, b, c)}(s)$ as $s \rightarrow 1$ is given by:

$$
\frac{\pi}{\sqrt{|D|}}\left(2 \gamma-\log (2)-\frac{1}{2} \log |D|-\log \left(\frac{\sqrt{|D|}}{2 a}\left|\eta\left(\frac{-b+\sqrt{D}}{2 a}\right)\right|^{4}\right)\right)
$$

Estimating $c_{0}(D)$

$$
c_{0}(D)=\frac{\pi^{2}}{6} \sum_{(a, b, c)} \frac{1}{a}-\frac{\pi}{\sqrt{|D|}} \sum_{(a, b, c)} \log \left(\frac{\sqrt{|D|}}{2 a}\right)+O\left(\frac{h(D)}{\sqrt{|D|}}\right)
$$

- Because $a \leq \sqrt{|D| / 3}$, we have

$$
\frac{h(D)}{\sqrt{|D|}}=\sum_{(a, b, c)} \frac{1}{\sqrt{|D|}} \ll \sum_{(a, b, c)} \frac{1}{a}
$$

- For the "log" term,

$$
\frac{\pi}{\sqrt{|D|}} \sum_{(a, b, c)} \log \left(\frac{\sqrt{|D|}}{2 a}\right)=\frac{\pi h(D)}{\sqrt{|D|}}\left(\frac{1}{h(D)} \sum_{(a, b, c)} \log \Im\left(\tau_{(a, b, c)}\right)\right)+o(1)
$$

where $\tau_{(a, b, c)}=(-b+\sqrt{D}) / 2 a$. How to estimate this?

Duke's equidistribution theorem

Theorem (Duke, 1988)

$$
\Lambda_{D}=\left\{\tau_{(a, b, c)} \mid b^{2}-4 a c=D\right\} \text { is equidistributed in } \mathscr{F} .
$$

If $f: \mathscr{F} \rightarrow \mathbb{C}$ is Riemann-integrable, then:

$$
\lim _{D \rightarrow-\infty} \frac{1}{h(D)} \sum_{(a, b, c)} f\left(\tau_{(a, b, c)}\right)=\int_{\mathscr{F}} f(z) \mathrm{d} \mu
$$

$$
\begin{gathered}
z=x+i y \\
\mathrm{~d} \mu=\frac{3}{\pi} \frac{\mathrm{~d} x \mathrm{~d} y}{y^{2}} \\
\left(\begin{array}{c}
\text { Normalized } \\
\text { hyperbolic area } \\
\text { element }
\end{array}\right)
\end{gathered}
$$

W. Duke

Conclusion

Using Duke's theorem, the "log" term becomes:

$$
\begin{aligned}
\frac{\pi h(D)}{\sqrt{|D|}}\left(\frac{1}{h(D)} \sum_{(a, b, c)} \log \Im_{\left(\tau_{(a, b, c)}\right)}\right) & \sim \frac{\pi h(D)}{\sqrt{|D|}}\left(\frac{3}{\pi} \int_{\mathscr{F}} \frac{\log y}{y^{2}} \mathrm{~d} x \mathrm{~d} y\right) \\
& =\frac{\pi h(D)}{\sqrt{|D|}} \cdot 0.952934 \ldots
\end{aligned}
$$

Thus,

$$
" \log " \text { term }=O\left(\frac{h(D)}{\sqrt{|D|}}\right)=O\left(\sum_{(a, b, c)} \frac{1}{a}\right) .
$$

$$
h(D) \gg \frac{\sqrt{|D|}}{\log |D|} \sum_{(a, b, c)} \frac{1}{a} \Longleftrightarrow \quad \text { "no Siegel zeros" for } D<0
$$

Thank you!

References

A. Granville and H. M. Stark, $A B C$ implies no "Siegel zeros" for L-functions of characters with negative discriminant
Invent. Math. 139 (2000), 509-523.
围 C. Táfula,
On Landau-Siegel zeros and heights of singular moduli Submitted for publication. Preprint [arXiv:1911.07215]
C. L. Siegel

Advanced analytic number theory
Tata Institute of Fundamental Research, 1961.

