The Chowla-Selberg Formula

Subham Roy

MATH726
November 18, 2020

Complex Multiplication

Let K be an imaginary quadratic field, and \mathcal{O} be an order of K. We denote $\Gamma_{1}=S L(2, \mathbb{Z})$.

Complex Multiplication

Let K be an imaginary quadratic field, and \mathcal{O} be an order of K. We denote $\Gamma_{1}=S L(2, \mathbb{Z})$.

- An elliptic curve E has complex multiplication or $C M$ by \mathcal{O} if $\operatorname{End}(E) \cong \mathcal{O}$.
- A $C M$ point of \mathbb{H} is a point $\tau \in \mathbb{H}$ which satisfies a quadratic equation over \mathbb{Q}, so that $\tau=a+b \sqrt{d}$ for some $a, b, d \in \mathbb{Q}$ with $d<0$ and $b>0$.

Complex Multiplication

Let K be an imaginary quadratic field, and \mathcal{O} be an order of K. We denote $\Gamma_{1}=S L(2, \mathbb{Z})$.

- An elliptic curve E has complex multiplication or $C M$ by \mathcal{O} if $\operatorname{End}(E) \cong \mathcal{O}$.
- A $C M$ point of \mathbb{H} is a point $\tau \in \mathbb{H}$ which satisfies a quadratic equation over \mathbb{Q}, so that $\tau=a+b \sqrt{d}$ for some $a, b, d \in \mathbb{Q}$ with $d<0$ and $b>0$.
- The discriminant of a CM point is the smallest discriminant of a quadratic polynomial over \mathbb{Z} of which it is a root. Let $\mathfrak{Z}_{D} \subset \mathbb{H}$ be the set of $C M$ points of discriminant D. In particular, the cardinality of $\Gamma_{1} \backslash Z_{D}$ is $h(D)$, the class number of D.

Complex Multiplication

Let K be an imaginary quadratic field, and \mathcal{O} be an order of K. We denote $\Gamma_{1}=S L(2, \mathbb{Z})$.

- An elliptic curve E has complex multiplication or $C M$ by \mathcal{O} if $\operatorname{End}(E) \cong \mathcal{O}$.
- A CM point of \mathbb{H} is a point $\tau \in \mathbb{H}$ which satisfies a quadratic equation over \mathbb{Q}, so that $\tau=a+b \sqrt{d}$ for some $a, b, d \in \mathbb{Q}$ with $d<0$ and $b>0$.
- The discriminant of a CM point is the smallest discriminant of a quadratic polynomial over \mathbb{Z} of which it is a root. Let $\mathfrak{Z}_{D} \subset \mathbb{H}$ be the set of $C M$ points of discriminant D. In particular, the cardinality of $\Gamma_{1} \backslash Z_{D}$ is $h(D)$, the class number of D.
- Elliptic curves with $C M$ by \mathcal{O} correspond to the elliptic curves $\mathbb{C} /\langle 1, \tau\rangle$ for $\tau \in \mathbb{H} \cap K$.

Complex Multiplication

Theorem 1
Let E / \mathbb{C} be an elliptic curve with $C M$ by \mathcal{O}. Then $j(E) \in \overline{\mathbb{Q}}$.
In fact, $j(E) \in H_{K}$, where H_{K} is the Hilbert class field of K.

Complex Multiplication

Theorem 1
Let E / \mathbb{C} be an elliptic curve with $C M$ by \mathcal{O}. Then $j(E) \in \overline{\mathbb{Q}}$.
In fact, $j(E) \in H_{K}$, where H_{K} is the Hilbert class field of K.
Theorem 2
Let $\tau \in \mathbb{H} \cap K$, and let f be a modular function with rational or algebraic Fourier coefficients. Then $f(\tau)$ is algebraic.

Periods

- If $f \in M_{k}(1)$ and $g \in M_{n}(1)$ then f^{n} / g^{k} has weight 0 , and by Theorem 2 it is algebraic at τ. Therefore $f(\tau)^{\frac{1}{k}}$ and $g(\tau)^{\frac{1}{n}}$ is algebraically proportional.

Periods

- If $f \in M_{k}(1)$ and $g \in M_{n}(1)$ then f^{n} / g^{k} has weight 0 , and by Theorem 2 it is algebraic at τ. Therefore $f(\tau)^{\frac{1}{k}}$ and $g(\tau)^{\frac{1}{n}}$ is algebraically proportional.
- Theorem 2 implies that for any modular form of weight k for the modular group Γ_{1}, the value of $f(\tau)$ is an algebraic multiple of Ω_{τ}^{k}, where Ω_{τ} depends on τ only.

Periods

The number Ω_{τ} (up to an algebraic number) is unchanged if we replace τ by $M \tau$ for any $M \in G L(2, \mathbb{Z})$, because $f(M \tau) / f(\tau)$ is a modular function.

Periods

The number Ω_{τ} (up to an algebraic number) is unchanged if we replace τ by $M \tau$ for any $M \in G L(2, \mathbb{Z})$, because $f(M \tau) / f(\tau)$ is a modular function.

Proposition 1

Let $G_{2 k}(z)$ be the Eisenstein series of weight k on the modular group Γ_{1}, and let τ be a $C M$ point in \mathbb{H}. Then there is a transcendental number Ω_{τ} such that

$$
\frac{G_{2 k}(\tau)}{\Omega_{\tau}^{2 k}} \in \overline{\mathbb{Q}} .
$$

Moreover, Ω_{τ} can be viewed as a fundamental period of a $C M$ elliptic curve defined over the Hilbert class field of $\mathbb{Q}(\tau)$.

Periods

Since any two CM points which generate the same imaginary quadratic field are related by some $M \in G L(2, \mathbb{Z})$, we can show that:

Proposition 2

For each imaginary quadratic field K there is a number $\Omega_{K} \in \mathbb{C}^{*}$ such that $f(\tau) \in \overline{\mathbb{Q}} \cdot \Omega_{K}^{k}$ for all $\tau \in K \cap \mathbb{H}$, for all $k \in \mathbb{Z}$, and all modular forms f of weight k (of the modular group Γ_{1}) with algebraic coefficient.

Periods

Since any two $C M$ points which generate the same imaginary quadratic field are related by some $M \in G L(2, \mathbb{Z})$, we can show that:

Proposition 2

For each imaginary quadratic field K there is a number $\Omega_{K} \in \mathbb{C}^{*}$ such that $f(\tau) \in \overline{\mathbb{Q}} \cdot \Omega_{K}^{k}$ for all $\tau \in K \cap \mathbb{H}$, for all $k \in \mathbb{Z}$, and all modular forms f of weight k (of the modular group Γ_{1}) with algebraic coefficient.

- A natural choice of f is the modular form $\Delta(z)$, since it never vanishes. Recall that $\Delta(z)=(2 \pi)^{12} \eta(z)^{24}$.
- A better choice would be $\eta(z)^{2}$ in order to achieve weight 1 . As $F(z)=\operatorname{lm}(z)|\eta(z)|^{4}$ is Γ_{1}-invariant, we can choose our f to be $F(z)$.

Periods

Let $\operatorname{disc}(K)=D$, and let $w(D)=\left|\mathcal{O}_{K}^{*}\right|$

- In order to choose τ, we can consider $\tau \in \mathfrak{Z}_{D}$ (CM points of discriminant D).

Periods

Let $\operatorname{disc}(K)=D$, and let $w(D)=\left|\mathcal{O}_{K}^{*}\right|$

- In order to choose τ, we can consider $\tau \in \mathfrak{Z}_{D}$ (CM points of discriminant D).
- There are $h(D)$ of them in $\Gamma_{1} \backslash_{Z_{D}}$, and none should be preferred over the others. Therefore, multiplying all of them together is a feasible choice.

Periods

Let $\operatorname{disc}(K)=D$, and let $w(D)=\left|\mathcal{O}_{K}^{*}\right|$

- In order to choose τ, we can consider $\tau \in \mathfrak{Z}_{D}$ (CM points of discriminant D).
- There are $h(D)$ of them in $\Gamma_{1} \backslash_{Z_{D}}$, and none should be preferred over the others. Therefore, multiplying all of them together is a feasible choice.
- Later we can take the $h(D)$-th root of the product to obtain Ω_{K}. In fact, it is reasonable to take the $2 h(D) / w(D)$-th root, as the elliptic fixed points i and ρ are always to be counted with multiplicity $\frac{1}{2}$ and $\frac{1}{3}$, respectively. In other words,

$$
h^{\prime}(D)=\frac{2 h(D)}{w(D)}=\frac{1}{3}, \frac{1}{2}, \text { or } h(K) \quad \text { for } \quad D=-3, D=-4, \text { or } D<-4
$$

Chowla-Selberg formula

Let χ_{D} be the quadratic character associated to K, and $\Gamma(x)$ be the Euler gamma function. Then the product of the invariants $F(\tau)$ over $\tau \in \Gamma_{1} \backslash \mathfrak{Z}_{D}$ can be evaluated as a product of $\Gamma(r) s$, where $r \in \mathbb{Q}$:

Chowla-Selberg formula

Let χ_{D} be the quadratic character associated to K, and $\Gamma(x)$ be the Euler gamma function. Then the product of the invariants $F(\tau)$ over $\tau \in \Gamma_{1} \backslash Z_{D}$ can be evaluated as a product of $\Gamma(r) s$, where $r \in \mathbb{Q}$:

Theorem [S.Chowla, A. Selberg (1949)]
Let K be an imaginary quadratic field of discriminant D. Then

$$
\begin{equation*}
\prod_{\tau \in \Gamma_{1} \backslash Z_{D}}(4 \pi \sqrt{|D|} F(\tau))^{\frac{2}{w(D)}}=\prod_{m=1}^{|D|-1} \Gamma\left(\frac{m}{|D|}\right)^{\chi_{D}(m)} \tag{1}
\end{equation*}
$$

where χ_{D} and $\Gamma(x)$ are defined as above.
Recall that $\left|\Gamma_{1} \backslash Z_{D}\right|=h(D)<\infty$, and therefore the product on the left is well-defined.

Chowla-Selberg formula

As a corollary to the Theorem, the constant Ω_{K} in Proposition 2 can be chosen to be:

$$
\begin{equation*}
\Omega_{K}=\frac{1}{\sqrt{(2 \pi|D|)}}\left(\prod_{m=1}^{|D|-1} \Gamma\left(\frac{m}{|D|}\right)^{\chi_{D}(m)}\right)^{\frac{1}{2 n^{\prime}(D)}} \tag{2}
\end{equation*}
$$

Chowla-Selberg formula

Let \mathcal{O}_{K} be the ring of integers of K, and let \mathfrak{a}_{i} be ideals of \mathcal{O}_{K} which represent the distinct ideal classes. We fix an embedding $K \hookrightarrow \mathbb{C}$, so the ideals \mathfrak{a}_{i} give lattices and the quotients $\mathbb{C} / \mathfrak{a}_{j}$ corresponds to the $h(K)$ distinct complex elliptic curves with $C M$ by \mathcal{O}_{K}. Then (1) can also be expressed as:

Chowla-Selberg formula

Let \mathcal{O}_{K} be the ring of integers of K, and let \mathfrak{a}_{i} be ideals of \mathcal{O}_{K} which represent the distinct ideal classes. We fix an embedding $K \hookrightarrow \mathbb{C}$, so the ideals \mathfrak{a}_{i} give lattices and the quotients $\mathbb{C} / \mathfrak{a}_{i}$ corresponds to the $h(K)$ distinct complex elliptic curves with $C M$ by \mathcal{O}_{K}. Then (1) can also be expressed as:

$$
\begin{equation*}
\prod_{i=1}^{h(K)} \Delta\left(\mathfrak{a}_{i}\right) \Delta\left(\mathfrak{a}_{i}^{-1}\right)=\left(\frac{2 \pi}{|D|}\right)^{12 h(K)} \prod_{\substack{0<a<|D| \\(a,|D|)=1}} \Gamma\left(\frac{a}{|D|}\right)^{6 w(D) \chi_{D}(a)} \tag{3}
\end{equation*}
$$

where the product on the left $\Delta(\mathfrak{a}) \Delta\left(\mathfrak{a}^{-1}\right)$ depends only on the ideal class of \mathfrak{a}.

Examples

- Hurwitz was able to show using elliptic functions that

$$
\begin{equation*}
\sum_{\substack{\lambda \in \mathbb{z}[] \\ \lambda \neq 0}} \frac{1}{\lambda^{k}}=\frac{H_{k}}{k!} \omega^{k} \quad \text { for all } k \geq 3 \tag{4}
\end{equation*}
$$

for certain rational numbers H_{k}, where

$$
\omega=4 \int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}=\frac{\Gamma(1 / 4)^{2}}{\sqrt{2 \pi}}
$$

Examples

- Hurwitz was able to show using elliptic functions that

$$
\begin{equation*}
\sum_{\substack{\lambda \in \mathbb{Z}[] \\ \lambda \neq 0}} \frac{1}{\lambda^{k}}=\frac{H_{k}}{k!} \omega^{k} \quad \text { for all } k \geq 3 \tag{4}
\end{equation*}
$$

for certain rational numbers H_{k}, where

$$
\omega=4 \int_{0}^{1} \frac{d x}{\sqrt{1-x^{4}}}=\frac{\Gamma(1 / 4)^{2}}{\sqrt{2 \pi}}
$$

- Note that the sum on the left of (4) is the special value of the modular form $2 G_{k}(z)$ at $z=i$.

Examples Contd.

- Using Proposition 1 and (2) for $K=\mathbb{Q}(i)$ we get
$\Omega_{K}=\frac{1}{\sqrt{(8 \pi)}}\left(\prod_{m=1}^{3} \Gamma\left(\frac{m}{|D|}\right)^{\chi_{D}(m)}\right)=\frac{1}{2 \sqrt{2 \pi}} \frac{\Gamma(1 / 4)}{\Gamma(3 / 4)}=2 \sqrt{\pi} \Gamma\left(\frac{1}{4}\right)^{2}$,
where $D=-4, h^{\prime}(D)=1$, and the last equality follows from the functional equation $\Gamma(z) \Gamma(1-z)=\pi / \sin \pi z$.

Examples Contd.

- Using Proposition 1 and (2) for $K=\mathbb{Q}(i)$ we get

$$
\Omega_{K}=\frac{1}{\sqrt{(8 \pi)}}\left(\prod_{m=1}^{3} \Gamma\left(\frac{m}{|D|}\right)^{\chi_{D}(m)}\right)=\frac{1}{2 \sqrt{2 \pi}} \frac{\Gamma(1 / 4)}{\Gamma(3 / 4)}=2 \sqrt{\pi} \Gamma\left(\frac{1}{4}\right)^{2}
$$

where $D=-4, h^{\prime}(D)=1$, and the last equality follows from the functional equation $\Gamma(z) \Gamma(1-z)=\pi / \sin \pi z$.

- Therefore $\omega=2 \pi \sqrt{2} \Omega_{\mathbb{Q}(i)}$.

Examples Contd.

- Using Proposition 1 and (2) for $K=\mathbb{Q}(i)$ we get

$$
\Omega_{K}=\frac{1}{\sqrt{(8 \pi)}}\left(\prod_{m=1}^{3} \Gamma\left(\frac{m}{|D|}\right)^{\chi_{D}(m)}\right)=\frac{1}{2 \sqrt{2 \pi}} \frac{\Gamma(1 / 4)}{\Gamma(3 / 4)}=2 \sqrt{\pi} \Gamma\left(\frac{1}{4}\right)^{2}
$$

where $D=-4, h^{\prime}(D)=1$, and the last equality follows from the functional equation $\Gamma(z) \Gamma(1-z)=\pi / \sin \pi z$.

- Therefore $\omega=2 \pi \sqrt{2} \Omega_{\mathbb{Q}(i)}$.
- For $k \geq 1, G_{2 k}$ can be expressed as a rational linear combination of monomials $G_{4}^{m} G_{6}^{n}$, where m and n are integers with $4 m+6 n=2 k$. As $G_{6}(i)=0$, we get that $G_{4 k}(i)=c_{k} G_{4}(i)^{k}=r \Omega_{\mathbb{Q}(i)}^{4 k}$, where $r \in \overline{\mathbb{Q}}$.

Examples Contd.

- Using Proposition 1 and (2) for $K=\mathbb{Q}(i)$ we get

$$
\Omega_{K}=\frac{1}{\sqrt{(8 \pi)}}\left(\prod_{m=1}^{3} \Gamma\left(\frac{m}{|D|}\right)^{\chi_{D}(m)}\right)=\frac{1}{2 \sqrt{2 \pi}} \frac{\Gamma(1 / 4)}{\Gamma(3 / 4)}=2 \sqrt{\pi} \Gamma\left(\frac{1}{4}\right)^{2}
$$

where $D=-4, h^{\prime}(D)=1$, and the last equality follows from the functional equation $\Gamma(z) \Gamma(1-z)=\pi / \sin \pi z$.

- Therefore $\omega=2 \pi \sqrt{2} \Omega_{\mathbb{Q}(i)}$.
- For $k \geq 1, G_{2 k}$ can be expressed as a rational linear combination of monomials $G_{4}^{m} G_{6}^{n}$, where m and n are integers with $4 m+6 n=2 k$. As $G_{6}(i)=0$, we get that $G_{4 k}(i)=c_{k} G_{4}(i)^{k}=r \Omega_{\mathbb{Q}(i)}^{4 k}$, where $r \in \overline{\mathbb{Q}}$.
- A similar argument for $\mathcal{O}_{\mathbb{Q}(\rho)}=\mathbb{Z}[\rho]$ shows that

$$
G_{6 k}(\rho)=r^{\prime} \Omega_{\mathbb{Q}(\rho)}^{6 k}=r^{\prime}\left(\Gamma(1 / 3)^{3} / \pi\right)^{6 k}
$$

where $r^{\prime} \in \overline{\mathbb{Q}}$.

Sketch of the proof of (3)

The analytic proof involves the computation of the logarithmic derivative of the zeta function of K at the point $s=0$ in two different ways, where the zeta function of K is given by

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \subset \mathcal{O}_{K}, \mathfrak{a} \neq 0} \frac{1}{N_{K / \mathbb{Q}}(\mathfrak{a})^{s}},
$$

with a meromorphic continuation to the entire complex plane, and a simple pole at $s=1$ (no other singularities).

Sketch of the proof of (3)

The analytic proof involves the computation of the logarithmic derivative of the zeta function of K at the point $s=0$ in two different ways, where the zeta function of K is given by

$$
\zeta_{K}(s)=\sum_{\mathfrak{a} \subset \mathcal{O}_{K}, \mathfrak{a} \neq 0} \frac{1}{N_{K / \mathbb{Q}}(\mathfrak{a})^{s}},
$$

with a meromorphic continuation to the entire complex plane, and a simple pole at $s=1$ (no other singularities).
Let $\zeta_{K}\left(\mathfrak{a}_{i}, s\right)$ be the partial zeta functions which are defined by taking the partial sum over the ideals \mathfrak{a} of \mathcal{O}_{K} in the same class as \mathfrak{a}_{i}, for $i=1, \ldots, h(K)$. We will also denote $h(K)=h, w(D)=w$, and $\chi_{D}(\cdot)=\chi(\cdot)$ for a fixed K.

Proof Contd.

- Kronecker's limit formula gives the first two terms in the Taylor expansion of $\zeta_{K}\left(\mathfrak{a}_{i}, s\right)$ at $s=0$, and summing them over the ideal classes yields:

$$
\zeta_{k}(s)=-\frac{h}{w}-\frac{1}{12 w} \log \left(\Delta\left(\mathfrak{a}_{i}\right) \Delta\left(\mathfrak{a}_{i}^{-1}\right)\right) s+O\left(s^{2}\right)
$$

Proof Contd.

- Kronecker's limit formula gives the first two terms in the Taylor expansion of $\zeta_{K}\left(\mathfrak{a}_{i}, s\right)$ at $s=0$, and summing them over the ideal classes yields:

$$
\zeta_{k}(s)=-\frac{h}{w}-\frac{1}{12 w} \log \left(\Delta\left(\mathfrak{a}_{i}\right) \Delta\left(\mathfrak{a}_{i}^{-1}\right)\right) s+O\left(s^{2}\right)
$$

- Therefore,

$$
\left.\frac{d \log \left(\zeta_{k}(s)\right)}{d s}\right|_{s=0}=\frac{1}{12 h} \sum_{i=1}^{h} \log \left(\Delta\left(\mathfrak{a}_{i}\right) \Delta\left(\mathfrak{a}_{i}^{-1}\right)\right)
$$

Proof Contd.

On the other hand:

- For $\operatorname{Re}(s)>1$ we may also write:

$$
\zeta_{K}(s)=\zeta(s) L(\chi, s)
$$

by identifying the terms in the Euler product this equality holds even for all s by analytic continuation.

Proof Contd.

On the other hand:

- For $\operatorname{Re}(s)>1$ we may also write:

$$
\zeta_{K}(s)=\zeta(s) L(\chi, s) ;
$$

by identifying the terms in the Euler product this equality holds even for all s by analytic continuation.

- It follows that $d \log \left(\zeta_{K}(s)\right)=d \log \zeta(s)+d \log L(\chi, s)$. These logarithmic derivative st $s=0$ can be calculated from Lerch's expansion of the Hurwitz zeta function (with $0<x \leq 1$):

$$
H(x, s)=\sum_{n=0}^{\infty} \frac{1}{(n+x)^{s}}=\left(\frac{1}{2}-x\right)+\log \left(\frac{\Gamma(x)}{\sqrt{2 \pi}}\right) s+O\left(s^{2}\right) .
$$

Proof Contd.

- Taking $x=1$ yields $\zeta(0)=-1 / 2$ and $\left.d \log (\zeta(s))\right|_{s=0}=\log (2 \pi)$.

Proof Contd.

- Taking $x=1$ yields $\zeta(0)=-1 / 2$ and $\left.d \log (\zeta(s))\right|_{s=0}=\log (2 \pi)$.
- We also obtain by summing over $0<a<|D|$ with $(a,|D|)=1$:

$$
\left.d \log L(\chi, s)\right|_{s=0}=\frac{w}{2 h} \sum_{0<a<|D|} \chi(a) \log \Gamma\left(\frac{a}{|D|}\right)-\log |D| .
$$

Proof Contd.

- Taking $x=1$ yields $\zeta(0)=-1 / 2$ and $\left.d \log (\zeta(s))\right|_{s=0}=\log (2 \pi)$.
- We also obtain by summing over $0<a<|D|$ with $(a,|D|)=1$:

$$
\left.d \log L(\chi, s)\right|_{s=0}=\frac{w}{2 h} \sum_{0<a<|D|} \chi(a) \log \Gamma\left(\frac{a}{|D|}\right)-\log |D|
$$

- Therefore

$$
\left.d \log \left(\zeta_{K}(s)\right)\right|_{s=0}=\log (2 \pi)-\log d+\frac{w}{2 h} \sum_{0<a<|D|} \chi(a) \log \Gamma\left(\frac{a}{|D|}\right)
$$

Proof Contd.

- Taking $x=1$ yields $\zeta(0)=-1 / 2$ and $\left.d \log (\zeta(s))\right|_{s=0}=\log (2 \pi)$.
- We also obtain by summing over $0<a<|D|$ with $(a,|D|)=1$:

$$
\left.d \log L(\chi, s)\right|_{s=0}=\frac{w}{2 h} \sum_{0<a<|D|} \chi(a) \log \Gamma\left(\frac{a}{|D|}\right)-\log |D|
$$

- Therefore

$$
\left.d \log \left(\zeta_{K}(s)\right)\right|_{s=0}=\log (2 \pi)-\log d+\frac{w}{2 h} \sum_{0<a<|D|} \chi(a) \log \Gamma\left(\frac{a}{|D|}\right)
$$

- Comparing this with the one obtained using Kronecker's limit formula and exponentiation gives the Chowla-Selberg formula (3).

Proof Contd.

- Summing over $0<a<|D|$ with $(a,|D|)=1$ we find

$$
L(\chi, s)=d^{-s} \sum \chi(a) H\left(\frac{a}{|D|}, s\right),
$$

and $L(\chi, 0)=-\sum \chi(a) \frac{a}{|D|}, \zeta_{K}(0)=\frac{1}{2} \sum \chi(a) \frac{a}{|D|}$.

Proof Contd.

- Summing over $0<a<|D|$ with $(a,|D|)=1$ we find

$$
L(\chi, s)=d^{-s} \sum \chi(a) H\left(\frac{a}{|D|}, s\right)
$$

and $L(\chi, 0)=-\sum \chi(a) \frac{a}{|D|}, \zeta_{K}(0)=\frac{1}{2} \sum \chi(a) \frac{a}{|D|}$.

- Comparing the last formula with the formula for $\zeta_{K}(0)$ obtained by summing the partial zeta functions gives the Dirichlet's Class Number formula:

$$
h=-\frac{w}{2} \sum_{0<a<d} \chi(a) \frac{a}{|D|} .
$$

Thank you for your attention!

