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Recall

In the previous lecture we saw some results concerning the factorisation of

∏

[τ1],[τ2]
disc(τi )=di

(
j(τ1)− j(τ2)

)

If ` divides the difference then

1 ` ≤ d1d2−x2
4

2 ` doesn’t split in any of Q(
√
d1),Q(

√
d2) which is same as saying

(
d1
`

)
6= 1

(
d2
`

)
6= 1
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Recall

In this presentation we will see precise result of Gross Zagier which tells us
the multiplicities of primes as well. The result concerns the following
quantity

J(d1, d2) =

( ∏

[τ1],[τ2]
disc(τi )=di

(
j(τ1)− j(τ2)

)) 4
w1w2

w1,w2 are number of roots of unity in ring of integers of
Q(
√
d1),Q(

√
d2).

For d1, d2 < −4, w1,w2 = 2 and thus J(d1, d2) is an integer.

In general, J(d1, d2)2 is an integer.
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Result of Gross Zagier

For a prime ` satisfying

(
d1d2
`

)
6= −1

ε(`) =





(
d1
`

)
(d1, `) = 1

(
d2
`

)
(d2, `) = 1

For a natural number n,

n =
∏

i

`aii

such that

(
d1d2
`i

)
6= −1 for all i ,

ε(n) =
∏

i

ε(`i )
ai
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Precise Result of Gross Zagier

1 ε(`) is defined for primes ` satisfying

(
d1d2
`

)
6= −1

2 ε(`) =

(
d1
`

)
or

(
d2
`

)
depending which one is coprime to `.

Theorem (Gross Zagier)

Let D = d1d2

J(d1, d2)2 =

( ∏

[τ1],[τ2]
disc(τi )=di

(
j(τ1)− j(τ2)

) 4
w1w2

)2

= ±
∏

|x |<
√
D

∏

n|D−x2

4

n−ε(n)
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Theorem (Gross Zagier)

Gross Zagier Factorisation

Let D = d1d2

J(d1, d2)2 = ±
∏

|x |<
√
D

∏

n|D−x2

4

n−ε(n)

1 The primes are less than D−x2
4 : immediate from the result.

2 The primes dividing are non-split : We will deduce this in this
presentation.
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More details about the factorisation

J(d1, d2)2 = ±
∏

|x |<
√
D

∏

n|D−x2

4

n−ε(n)

Looking at the second product, let us define

F (m) :=
∏

n|m
n−ε(n)

Interestingly, the function F (m) is either 1 or a power of a single prime. It
is not directly clear from the definition but can be deduced by carefully
collecting the powers of each prime `|m.
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More details about the factorisation

Description of F (m)

For m = `2a+1
∏

i `
2ai
i

∏
r q

br
r where ε(`) = ε(`i ) = −1 and ε(qr ) = 1,

F (m) = `(a+1)(b1+1)(b2+1)...(br+1)

Any other case, F (m) = 1.

If m has the form

`2a1+1
1 `2a2+1

2 `2a3+1
3

∏

i

paii

∏

j

q
bj
j

where ε(`r ) = ε(pi ) = −1 and ε(qj) = 1 then F (m) = 1

The only case F (m) > 1 is when there is exactly one prime `|m
satisfying : ε(`) = −1 and `odd ||m.

Arihant Jain Factorisation of Singular Moduli (Gross-Zagier) October 26th 2020 9 / 11



Examples of F(m)

Consider d1 = −3, d2 = −31. Let us evaluate F (21).

21 = 3× 7

Calculating the function ε() for each prime

ε(3) =

(−31

3

)
= −1

ε(7) =

(−31

3

)
=

(−3

7

)
=

(
4

7

)
= 1

Thus for d1 = −3, d2 = −31,

F (21) = 3(1)(2) = 32
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Primes are non-split

The only case F (m) > 1 is when there is exactly one prime `|m
satisfying : ε(`) = −1 and `odd ||m.

J(d1, d2)2 = ±
∏

|x |<
√
D

∏

d |D−x2

4

d−ε(d) = ±
∏

|x |<
√
D

F

(
D − x2

4

)

With the description of F (·), we can clearly see that primes ` appearing in

the factorisation of are those with `|D−x24 and ε(`) = −1. Hence

(
d1
`

)
6= 1

(
d2
`

)
6= 1

This shows our second observation from this result of Gross-Zagier.
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Proofs of some results in Gross-Zagier theorem on
Factorisation of Difference of Singular Moduli

Arihant Jain

1 Gross-Zagier Theorem
This theorem is from [1].

Let d1, d2 be negative fundamental discriminants, (d1, d2) = 1 and define

J(d1, d2) =

( ∏

[τ1],[τ2]
disc(τi)=di

(j(τ1)− j(τ2))
) 4

w1w2

where w1, w2 are roots of unity in imaginary quadratic fields. Then we have the following factori-
sation

J(d1, d2)
2 = ±

∏

|x|<
√
d1d2

∏

n | d1d2−x2

4

n−ε(n)

The function ε(·) is defined as follows. For primes ` satisfying
(
d1d2
`

)
6= −1,

ε(`) =





(
d1
`

)
(`, d1) = 1

(
d2
`

)
(`, d2) = 1

For a general n (with the condition that `|n =⇒
(
d1d2
`

)
6= 1, we have

n =
∏

i

`aii

ε(n) =
∏

i

ε(`i)
ai

Hence, ε(·) is a completely multiplicative function and defined on specific primes satisfying
(d1d2

`
) 6= −1.

There are two results mentioned in the article of Gross-Zagier, which we will prove here.
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1. For D = d1d2, and |x| <
√
D,

ε

(
D − x2

4

)
= −1

2. Let us define

F (m) :=
∏

n|m
n−ε(n)

F (m) is always 1 except just one case when there is exactly one prime ` with ε(`) = −1 and
odd exponent in the factorisation ofm.

Precisely, if

m = `2a+1
∏

i

p2aii

∏

j

q
bj
j

where ε(`) = ε(pi) = −1 and ε(qj) = 1, then

F (m) = `(a+1)(b1+1)...(bj+1)

2 Proof of first result
We start with (d1, d2) = 1, thus at least one of them has to be odd. Let d1 be odd. Notice that for
d1 < 0, d1 square free and d1 ≡ 1(mod 4) =⇒ −d1 ≡ 3(mod 4), using quadratic reciprocity (for
some odd prime `),

(−d1
`

)(
`

−d1

)
= (−1) `−1

2

(−1
`

)(
d1
`

)(
`

−d1

)
= (−1) `−1

2

(
d1
`

)(
`

−d1

)
= 1

(
d1
`

)
=

(
`

−d1

)

For `|D−x2
4

and (d1, `) = 1,

ε(`) =

(
d1
`

)

=

(
`

−d1

)

Hence for n =
∏

i `
ai
i ( li|D−x

2

4
) and (n, d1) = 1, we have

ε(n) =

(
n

−d1

)

2



The above calculation wil be helpful in proving the required result. Now let us define

N :=
d1d2 − x2

4

Let (d1, N) = n′ then we have

N = n′n d1 = n′d′

Since n′ is a gcd of d1, N , then we have (n, d′) = 1.

4n′n = n′d′d2 − x2
x2 = n′(d′d2 − 4n)

Clearly n′|x2, thus x = n′x′,

(x′)2n′ = d′d2 − 4n

As (d1, d2) = 1 it implies (n′, d2) = 1.

ε(n′) =

(
d2
n′

)

Also the calculation in the beginning shows

ε(n) =

(
n

−d1

)

By multiplicativity of ε and N = nn′,

ε(N) = ε(n)ε(n′)

Thus

ε(N) =

(
d2
n′

)(
n

−d1

)

Consider
(

n
−d1

)
. Since d1 = n′d′, we have

(
n

−d1

)
=

(
n

−d′
)(

n

n′

)

From the equation (x′)2n′ = d′d2 − 4n, it is clear that

d′d2 ≡ 4n(mod n′) (x′)2n′ ≡ −4n(mod d′)

3



Thus we have
(

n

−d1

)
=

(
n

−d′
)(

n

n′

)

=

(−n′
−d′

)(
d′d2
n′

)

=

(−n′
−d′

)(
d′

n′

)(
d2
n′

)

Combining
(
d2
n′

)(
n

−d1

)
=

(
d2
n′

)(−n′
−d′

)(
d′

n′

)(
d2
n′

)

=

(−n′
−d′

)(
d′

n′

)

=

(−1
−d′

)(
n′

−d′
)(

d′

n′

)

=

(−1
−d′

)(
n′

−d′
)(−1

n′

)(−d′
n′

)

=

(−1
−d′

)(−1
n′

)(
n′

−d′
)(−d′

n′

)

=

( −1
−d1

)((
n′

−d′
)(−d′

n′

))

=

( −1
−d1

)

Last step follows by quadratic reciprocity, as −d′n′ = −d ≡ 3(mod 4). Further, −d1 ≡ 3(mod 4),

−1 is not a quadratic residue and
(
−1
−d

)
= −1

3 Proof of Second Result
Let us first show a special property of function F (·).

1. For (m,n) = 1

F (mn) = F (m)
∑

d|n ε(d) F (n)
∑

d|m ε(d)

4



Proof : Let us rewrite F (mn) as

F (mn) =
∏

d|mn
d−ε(d)

=
∏

d1|m

∏

d2|n
(d1d2)

−ε(d1d2)

=
∏

d1|m

∏

d2|n
d
−ε(d1d2)
1 d

−ε(d1d2)
2

=

(∏

d1|m

∏

d2|n
d
−ε(d1d2)
1

) (∏

d1|m

∏

d2|n
d
−ε(d1d2)
2

)

Using ε(d1d2) = ε(d1)ε(d2)

=

(∏

d2|n

∏

d1|m
(d
−ε(d1)
1 )ε(d2)

) ( ∏

d1|n

∏

d2|n
(d
−ε(d2)
2 )ε(d1)

)

=

(∏

d2|n
F (m)ε(d2)

) ( ∏

d1|m
F (n)ε(d1)

)

= F (m)
∑

d|n ε(d)F (n)
∑

d|m ε(d)

Let us now introduce some notation, which makes this writing and the whole proof a bit more clear.
For any integer N , define

S(N) :=
∑

d|N
ε(d)

So we rewrite the result just proved in this notation. For (m,n) = 1,

F (mn) = F (m)S(n)F (n)S(m)

It is easy to note that S(·) is multiplicative, ie, for (m,n) = 1

∑

d|mn
ε(d) =

(∑

d|m
ε(d)

) (∑

d|n
ε(d)

)
=⇒ S(mn) = S(n)S(m)

Thus it is sufficient to know the behaviour of S(·) on prime powers. The table below lists the values
of S(pe) for different possible cases.

ε(p) = 1 ε(p) = −1
e: odd/even e : even e : odd

e+1 1 0

Table 1: Values of S(pe) depending on ε(p) and multiplicity e
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With the results above and special property of F (·), we find how F (N) for N =
∏

i p
ei
i looks

like.

F (N) = F (pe11 )S(p
e2
2 ...perr ) F

(
pe22 . . . perr

)S(pe11 )

= F (pe11 )S(p
e2
2 ...perr )

[
F (pe22 )S(p

e3
3 ...perr ) × F

(
pe33 . . . perr

)S(pe22 )
]S(pe11 )

= F (pe11 )S(p
e2
2 ...perr ) F (p2)

S(p
e1
1 p

e3
3 ...perr ) F

(
pe33 . . . perr

)S(pe11 p
e2
2 )

Continuing in this manner we will have

F (N) =

(
F (pe11 )

)S(pe22 ...perr ) (
F (pe22 )

)S(pe11 p
e3
3 ...perr )

. . .

(
F (perr )

)S(pe11 p
e2
2 ...p

er−1
r−1 )

=

(
F (pe11 )

)S(N/pe11 ) (
F (pe22 )

)S(N/pe22 )

. . .

(
F (perr )

)S(N/perr )

where for 1 ≤ k ≤ r

S(N/pekk ) =
r∏

i=1
i 6=k

S(peii )S(p
e1
1 )S(pe22 ) . . . S(p

ek−1

k−1 )S(p
ek+1

k+1 ) . . . S(p
r)er =

Let us say p1 is the unique prime with odd multiplicity and ε equals to -1, ie, ε(p1) = −1 and
e1 is odd, then S(pe11 ) = 0. This makes all the powers of F (pe22 ), F (pe33 ), . . . , F (pr)

er zero, only
saving powers of F (pe11 ). Similarly if we have more than one prime with this property then all
factors will have power 0.

Existence of prime p with ε(p) = −1 : Since ε
(
d1d2−x2

4

)
= −1, then there has to be at least

one prime with ε equal to -1.

• For exact value of F (m) the following calculation is helpful.

F (pr) =
r∏

k=1

(pk)−ε(p
k) =

r∏

k=1

p−kε(p
k) = p−

∑r
k=1 k ε(p)k

Now we know that prime which contributes satisfies ε(p) = −1 and r is odd. Hence,

F (pr) = p
r+1
2
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