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Recall

In the previous lecture we saw some results concerning the factorisation of

1] (j(ﬁ) —J(Tz))
[T1],[72]
diSC(T,‘)Zd,'
If / divides the difference then

didr—x?
Q (< G

@ /¢ doesn't split in any of Q(+/d1), Q(1/d>) which is same as saying

(5 (8)
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Recall

In this presentation we will see precise result of Gross Zagier which tells us
the multiplicities of primes as well. The result concerns the following
quantity

4

J(dl’dz):( 11 (J(Tl)—j(72)>)mw2

[T1],[72]
diSC(T,')Zd,'

@ wi, Wy are number of roots of unity in ring of integers of

Q(vd1), Q(Vd2).

o For di,dr < —4, wy, wr = 2 and thus J(di, d>) is an integer.

o In general, J(d1,d>)? is an integer.
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Result of Gross Zagier

For a prime £ satisfying (%) #+ —1

e(f) = <

For a natural number n,

such that (%) #+ —1 for all i,

e(n) = | [ e(¢n)”

1
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Precise Result of Gross Zagier

@ (/) is defined for primes ¢ satisfying (%) #+ —1

Q (/) = (%) or (%) depending which one is coprime to /.

Theorem (Gross Zagier)
Let D = did>

J(dl,dz)zz( 11 (j(Tl)—j(Tz)>Wl4W2>2

[71],[72]
diSC(T,’)Zd,‘

= I T

Ix|<v/D | szz
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Theorem (Gross Zagier)

Gross Zagier Factorisation

Let D = did>
J(dl, d2 — + H H —e(n)
Ix|<vVD n [)X

D—x?
4

© The primes dividing are non-split : We will deduce this in this
presentation.

- immediate from the result.

© The primes are less than
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More details about the factorisation

J(dl, d2)2 =+ H H n—e(n)

Looking at the second product, let us define

F(m) = H n—e(n)

nlm

Interestingly, the function F(m) is either 1 or a power of a single prime. It
Is not directly clear from the definition but can be deduced by carefully
collecting the powers of each prime £|m.
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More details about the factorisation

Description of F(m)
For m = 231 [T £2% T, b where e(¢) = e(¢;) = —1 and ¢(q,) = 1,

F(m) = £@HDBr1)(b41)...(br+1)

Any other case, F(m) = 1.

@ If m has the form

giaﬁ—l ggaz—l—l €§a3+1 H p;_a,-H qJ{?j
i J
where €(¢,) = €(p;) = —1 and €(q;) = 1 then F(m) =1
@ The only case F(m) > 1 is when there is exactly one prime £|m
satisfying : €(£) = —1 and £°%||m.
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Examples of F(m)

Consider d; = —3,d, = —31. Let us evaluate F(21).
21 =3 x7

Calculating the function ¢() for each prime

((3) = (%1) _
0-(3)-()-()
Thus for dy = —3, dy = —31,

F(21) = 3W() = 32
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Primes are non-split

@ The only case F(m) > 1 is when there is exactly one prime £|m
satisfying : €(£) = —1 and £°%||m.

J(dl,d2)2::|: H H d—e(d):j: H F<D1X2>

x| <v/D g| B= x|<vD

With the description of F(-), we can clearly see that primes ¢ appearing in

the factorisation of are those with /| szz and €(¢) = —1. Hence

ORENOR

This shows our second observation from this result of Gross-Zagier.
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Proofs of some results in Gross-Zagier theorem on
Factorisation of Difference of Singular Moduli

Arihant Jain

1 Gross-Zagier Theorem

This theorem is from [1].

Let dy, dy be negative fundamental discriminants, (d;, ds) = 1 and define

4

st = (- TL G —itw)) ™

[T1],[72]
diSC(Ti ) Zdl

where wy, w9 are roots of unity in imaginary quadratic fields. Then we have the following factori-

sation
J(di,dp)* =+ ] I »~
\m|<\/d1d2 n |d1d24_3’2

The function €(+) is defined as follows. For primes ¢ satisfying (%) # —1,

<%) (¢,di) =1
<dz72) (6,da) =1

For a general n (with the condition that /|n —> <dl$) # 1, we have

n = HE;”

1

e(n) = [Je(e:)™

7

() =

Hence, €(-) is a completely multiplicative function and defined on specific primes satisfying

(42) # —1.

There are two results mentioned in the article of Gross-Zagier, which we will prove here.

1



1. For D = dyd,, and |z| < v/D,

2. Let us define

F(m):= H ncm™

nlm

F(m) is always 1 except just one case when there is exactly one prime ¢ with ¢(¢) = —1 and
odd exponent in the factorisation of m.

Precisely, if
m = (>t Hp?ai H ij
i J
where €(¢) = €(p;) = —1 and €(g;) = 1, then

F(m) = ¢@tDerD).(b5+1)

2 Proof of first result

We start with (dy, ds) = 1, thus at least one of them has to be odd. Let d; be odd. Notice that for
d; < 0, d; square free and d; = 1(mod 4) = —d; = 3(mod 4), using quadratic reciprocity (for
some odd prime ¢),

For €|D%””2 and (dq,0) =1,

“(=a)

Hence for n = [, ¢ ( li|Df"2 )and (n,d;) = 1, we have

=(=3)




The above calculation wil be helpful in proving the required result. Now let us define

. d1d2 —.1’2
4

N :
Let (dy, N) = n’ then we have
N =n'n dy =n'd
Since n' is a ged of dy, N, then we have (n,d’) = 1.

an'n =n'ddy — 2*

2 = n'(d'dy — 4n)
Clearly n/|2?, thus = n'2/,
(2')*n = d'dy — 4n

As (dy,dy) = 1itimplies (n, ds) = 1.

Thus

Consider ( L ) Since d; = n'd’, we have

| 3)-(3)0)

From the equation (2/)?n’ = d'dy — 4n, it is clear that

d'dy = 4n(mod n') (2')*n' = —4n(mod d')



Thus we have

Combining

Last step follows by quadratic reciprocity, as —d'n’ = —d = 3(mod 4). Further, —d; = 3(mod 4),

—1 is not a quadratic residue and _clz) =-—1

3 Proof of Second Result

Let us first show a special property of function F'(-).

1. For (m,n) =1

F(mn) = F(m)=dn D F(p)Zam <



Proof: Let us rewrite F'(mn) as

_ H d—s(d)

dmn

_ H H d1d2 e(d1dz2)

dilm d2|n

— —e(dida) ;—e(d1da)
H H dl d2

di|lm da|n

- (H 11 df“d”’”) (H I1 d;(dldﬂ)

dilm d2|n dilm dz|n

Using €(dyds) = €(dy)e(d2)

= (T1 I @) (T TL @)

d2|n dl\m dl‘n da|n
= (T1 Py @) ( I Pre)
da|n dilm

Let us now introduce some notation, which makes this writing and the whole proof a bit more clear.
For any integer N, define

d|N
So we rewrite the result just proved in this notation. For (m,n) = 1,
F(mn) = F(m)3™ F(n)S0m
It is easy to note that S(-) is multiplicative, ie, for (m,n) =1
> ed) = (Z e(d)) <Z e(d)) — S(mn) = S(n)S(m)
dlmn dlm dln

Thus it is sufficient to know the behaviour of S(-) on prime powers. The table below lists the values
of S(p®) for different possible cases.

e(p) =1 e(p) = -1
e: odd/even | e: even | e : odd
e+1 1 0

Table 1: Values of S(p¢) depending on ¢(p) and multiplicity e



With the results above and special property of F'(-), we find how F(N) for N = [], p;* looks

like.
. S(p7t)
b5t
- S(p5°)
F(pg2)Ss" )XF( - pr)

e 7‘ €1,,€3 er S(p 8 )
_ F(pcil)S(pQ pr") F(pQ)S(pl p3°..pr") F’(p?3 .. .p?)

€2

F(N) = F(pf")*

S(pih)
= Flpp )0

Continuing in this manner we will have

S(va*pi") S(py'ps® o) S(p{ps?..pim )
F) = (Fat) (Fos)) (ru)

S(N/pSh) S(N/p3?) S(N/p:™)
_ (F<p?>) (F(p?)) (F(pi"))

where for1 < k <r

S(N/pi¥) HS )S(P5) . S ) Sy ) - S (") =
z;ék
Let us say p; is the unique prime with odd multiplicity and € equals to -1, ie, €(p;) = —1 and

ey is odd, then S(p{') = 0. This makes all the powers of F(p5?), F'(p$*), ..., F(p,) zero, only
saving powers of F'(p{'). Similarly if we have more than one prime with this property then all
factors will have power 0.

Existence of prime p with ¢(p) = —1 : Since ¢ (W) = —1, then there has to be at least

one prime with € equal to -1.

e For exact value of F'(m) the following calculation is helpful.

For) = [T =TT+ S5 20"

k=1

Now we know that prime which contributes satisfies e( ) = —1 and r is odd. Hence,

Fp')=p%
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