Factorisation of Singular Moduli (Gross-Zagier)

Arihant Jain

October 26th 2020

Overview

- Previous Lecture recall
- Precise Result of Gross Zagier
- More details about the Factorisation
- Examples using PARI/GP

Recall

In the previous lecture we saw some results concerning the factorisation of

$$
\prod_{\substack{\left[\tau_{1}\right],\left[\tau_{2}\right] \\ \operatorname{disc}\left(\tau_{i}\right)=d_{i}}}\left(j\left(\tau_{1}\right)-j\left(\tau_{2}\right)\right)
$$

If ℓ divides the difference then
(1) $\ell \leq \frac{d_{1} d_{2}-x^{2}}{4}$
(2) ℓ doesn't split in any of $\mathbb{Q}\left(\sqrt{d_{1}}\right), \mathbb{Q}\left(\sqrt{d_{2}}\right)$ which is same as saying

$$
\left(\frac{d_{1}}{\ell}\right) \neq 1 \quad\left(\frac{d_{2}}{\ell}\right) \neq 1
$$

Recall

In this presentation we will see precise result of Gross Zagier which tells us the multiplicities of primes as well. The result concerns the following quantity

$$
J\left(d_{1}, d_{2}\right)=\left(\prod_{\substack{\left[\tau_{1}\right],\left[\tau_{2}\right] \\ \operatorname{disc}\left(\tau_{i}\right)=d_{i}}}\left(j\left(\tau_{1}\right)-j\left(\tau_{2}\right)\right)\right)^{\frac{4}{w_{1} w_{2}}}
$$

- w_{1}, w_{2} are number of roots of unity in ring of integers of $\mathbb{Q}\left(\sqrt{d_{1}}\right), \mathbb{Q}\left(\sqrt{d_{2}}\right)$.
- For $d_{1}, d_{2}<-4, w_{1}, w_{2}=2$ and thus $J\left(d_{1}, d_{2}\right)$ is an integer.
- In general, $J\left(d_{1}, d_{2}\right)^{2}$ is an integer.

Result of Gross Zagier

For a prime ℓ satisfying $\left(\frac{d_{1} d_{2}}{\ell}\right) \neq-1$

$$
\epsilon(\ell)= \begin{cases}\left(\frac{d_{1}}{\ell}\right) & \left(d_{1}, \ell\right)=1 \\ \left(\frac{d_{2}}{\ell}\right) & \left(d_{2}, \ell\right)=1\end{cases}
$$

For a natural number n,

$$
n=\prod \ell_{i}^{a_{i}}
$$

such that $\left(\frac{d_{1} d_{2}}{\ell_{i}}\right) \neq-1$ for all i,

$$
\epsilon(n)=\prod \epsilon\left(\ell_{i}\right)^{a_{i}}
$$

Precise Result of Gross Zagier

(1) $\epsilon(\ell)$ is defined for primes ℓ satisfying $\left(\frac{d_{1} d_{2}}{\ell}\right) \neq-1$
(2) $\epsilon(\ell)=\left(\frac{d_{1}}{\ell}\right)$ or $\left(\frac{d_{2}}{\ell}\right)$ depending which one is coprime to ℓ.

Theorem (Gross Zagier)

Let $D=d_{1} d_{2}$

$$
\begin{aligned}
J\left(d_{1}, d_{2}\right)^{2} & =\left(\prod_{\substack{\left[\tau_{1}\right],\left[\tau_{2}\right] \\
\operatorname{disc}\left(\tau_{i}\right)=d_{i}}}\left(j\left(\tau_{1}\right)-j\left(\tau_{2}\right)\right)^{\frac{4}{w_{1} w_{2}}}\right)^{2} \\
& = \pm \prod_{|x|<\sqrt{D}} \prod_{n \left\lvert\, \frac{D-x^{2}}{4}\right.} n^{-\epsilon(n)}
\end{aligned}
$$

Theorem (Gross Zagier)

Gross Zagier Factorisation

Let $D=d_{1} d_{2}$

$$
J\left(d_{1}, d_{2}\right)^{2}= \pm \prod_{|x|<\sqrt{D}} \prod_{n \left\lvert\, \frac{D-x^{2}}{4}\right.} n^{-\epsilon(n)}
$$

(1) The primes are less than $\frac{D-x^{2}}{4}$: immediate from the result.
(2) The primes dividing are non-split: We will deduce this in this presentation.

More details about the factorisation

$$
J\left(d_{1}, d_{2}\right)^{2}= \pm \prod_{|x|<\sqrt{D}} \prod_{n \left\lvert\, \frac{D-x^{2}}{4}\right.} n^{-\epsilon(n)}
$$

Looking at the second product, let us define

$$
F(m):=\prod_{n \mid m} n^{-\epsilon(n)}
$$

Interestingly, the function $F(m)$ is either 1 or a power of a single prime. It is not directly clear from the definition but can be deduced by carefully collecting the powers of each prime $\ell \mid m$.

More details about the factorisation

Description of $F(m)$

For $m=\ell^{2 a+1} \prod_{i} \ell_{i}^{2 a_{i}} \prod_{r} q_{r}^{b_{r}}$ where $\epsilon(\ell)=\epsilon\left(\ell_{i}\right)=-1$ and $\epsilon\left(q_{r}\right)=1$,

$$
F(m)=\ell^{(a+1)\left(b_{1}+1\right)\left(b_{2}+1\right) \ldots\left(b_{r}+1\right)}
$$

Any other case, $F(m)=1$.

- If m has the form

$$
\ell_{1}^{2 a_{1}+1} \ell_{2}^{2 a_{2}+1} \ell_{3}^{2 a_{3}+1} \prod_{i} p_{i}^{a_{i}} \prod_{j} q_{j}^{b_{j}}
$$

where $\epsilon\left(\ell_{r}\right)=\epsilon\left(p_{i}\right)=-1$ and $\epsilon\left(q_{j}\right)=1$ then $F(m)=1$

- The only case $F(m)>1$ is when there is exactly one prime $\ell \mid m$ satisfying : $\epsilon(\ell)=-1$ and $\ell^{\text {odd }} \| m$.

Examples of $F(m)$

Consider $d_{1}=-3, d_{2}=-31$. Let us evaluate $F(21)$.

$$
21=3 \times 7
$$

Calculating the function $\epsilon()$ for each prime

$$
\begin{aligned}
& \epsilon(3)=\left(\frac{-31}{3}\right)=-1 \\
& \epsilon(7)=\left(\frac{-31}{3}\right)=\left(\frac{-3}{7}\right)=\left(\frac{4}{7}\right)=1
\end{aligned}
$$

Thus for $d_{1}=-3, d_{2}=-31$,

$$
F(21)=3^{(1)(2)}=3^{2}
$$

Primes are non-split

- The only case $F(m)>1$ is when there is exactly one prime $\ell \mid m$ satisfying : $\epsilon(\ell)=-1$ and $\ell^{\text {odd }} \| m$.

$$
J\left(d_{1}, d_{2}\right)^{2}= \pm \prod_{|x|<\sqrt{D}} \prod_{d \left\lvert\, \frac{D-x^{2}}{4}\right.} d^{-\epsilon(d)}= \pm \prod_{|x|<\sqrt{D}} F\left(\frac{D-x^{2}}{4}\right)
$$

With the description of $F(\cdot)$, we can clearly see that primes ℓ appearing in the factorisation of are those with $\ell \left\lvert\, \frac{D-x^{2}}{4}\right.$ and $\epsilon(\ell)=-1$. Hence

$$
\left(\frac{d_{1}}{\ell}\right) \neq 1 \quad\left(\frac{d_{2}}{\ell}\right) \neq 1
$$

This shows our second observation from this result of Gross-Zagier.

Proofs of some results in Gross-Zagier theorem on Factorisation of Difference of Singular Moduli

Arihant Jain

1 Gross-Zagier Theorem

This theorem is from [1].
Let d_{1}, d_{2} be negative fundamental discriminants, $\left(d_{1}, d_{2}\right)=1$ and define

$$
J\left(d_{1}, d_{2}\right)=\left(\prod_{\substack{\left[\tau_{1}\right],\left[\tau_{2}\right] \\ \operatorname{disc}\left(\tau_{i}\right)=d_{i}}}\left(j\left(\tau_{1}\right)-j\left(\tau_{2}\right)\right)\right)^{\frac{4}{w_{1} w_{2}}}
$$

where w_{1}, w_{2} are roots of unity in imaginary quadratic fields. Then we have the following factorisation

$$
J\left(d_{1}, d_{2}\right)^{2}= \pm \prod_{|x|<\sqrt{d_{1} d_{2}}} \prod_{n \left\lvert\, \frac{d_{1} d_{2}-x^{2}}{4}\right.} n^{-\epsilon(n)}
$$

The function $\epsilon(\cdot)$ is defined as follows. For primes ℓ satisfying $\left(\frac{d_{1} d_{2}}{\ell}\right) \neq-1$,

$$
\epsilon(\ell)= \begin{cases}\left(\frac{d_{1}}{\ell}\right) & \left(\ell, d_{1}\right)=1 \\ \left(\frac{d_{2}}{\ell}\right) & \left(\ell, d_{2}\right)=1\end{cases}
$$

For a general n (with the condition that $\ell \left\lvert\, n \Longrightarrow\left(\frac{d_{1} d_{2}}{\ell}\right) \neq 1\right.$, we have

$$
\begin{aligned}
n & =\prod_{i} \ell_{i}^{a_{i}} \\
\epsilon(n) & =\prod_{i} \epsilon\left(\ell_{i}\right)^{a_{i}}
\end{aligned}
$$

Hence, $\epsilon(\cdot)$ is a completely multiplicative function and defined on specific primes satisfying $\left(\frac{d_{1} d_{2}}{\ell}\right) \neq-1$.

There are two results mentioned in the article of Gross-Zagier, which we will prove here.

1. For $D=d_{1} d_{2}$, and $|x|<\sqrt{D}$,

$$
\epsilon\left(\frac{D-x^{2}}{4}\right)=-1
$$

2. Let us define

$$
F(m):=\prod_{n \mid m} n^{-\epsilon(n)}
$$

$F(m)$ is always 1 except just one case when there is exactly one prime ℓ with $\epsilon(\ell)=-1$ and odd exponent in the factorisation of m.

Precisely, if

$$
m=\ell^{2 a+1} \prod_{i} p_{i}^{2 a_{i}} \prod_{j} q_{j}^{b_{j}}
$$

where $\epsilon(\ell)=\epsilon\left(p_{i}\right)=-1$ and $\epsilon\left(q_{j}\right)=1$, then

$$
F(m)=\ell^{(a+1)\left(b_{1}+1\right) \ldots\left(b_{j}+1\right)}
$$

2 Proof of first result

We start with $\left(d_{1}, d_{2}\right)=1$, thus at least one of them has to be odd. Let d_{1} be odd. Notice that for $d_{1}<0, d_{1}$ square free and $d_{1} \equiv 1(\bmod 4) \Longrightarrow-d_{1} \equiv 3(\bmod 4)$, using quadratic reciprocity (for some odd prime ℓ),

$$
\begin{aligned}
\left(\frac{-d_{1}}{\ell}\right)\left(\frac{\ell}{-d_{1}}\right) & =(-1)^{\frac{\ell-1}{2}} \\
\left(\frac{-1}{\ell}\right)\left(\frac{d_{1}}{\ell}\right)\left(\frac{\ell}{-d_{1}}\right) & =(-1)^{\frac{\ell-1}{2}} \\
\left(\frac{d_{1}}{\ell}\right)\left(\frac{\ell}{-d_{1}}\right) & =1 \\
\left(\frac{d_{1}}{\ell}\right) & =\left(\frac{\ell}{-d_{1}}\right)
\end{aligned}
$$

For $\ell \left\lvert\, \frac{D-x^{2}}{4}\right.$ and $\left(d_{1}, \ell\right)=1$,

$$
\begin{aligned}
\epsilon(\ell) & =\left(\frac{d_{1}}{\ell}\right) \\
& =\left(\frac{\ell}{-d_{1}}\right)
\end{aligned}
$$

Hence for $n=\prod_{i} \ell_{i}^{a_{i}}\left(l_{i} \left\lvert\, \frac{D-x^{2}}{4}\right.\right)$ and $\left(n, d_{1}\right)=1$, we have

$$
\epsilon(n)=\left(\frac{n}{-d_{1}}\right)
$$

The above calculation wil be helpful in proving the required result. Now let us define

$$
N:=\frac{d_{1} d_{2}-x^{2}}{4}
$$

Let $\left(d_{1}, N\right)=n^{\prime}$ then we have

$$
N=n^{\prime} n \quad d_{1}=n^{\prime} d^{\prime}
$$

Since n^{\prime} is a gcd of d_{1}, N, then we have $\left(n, d^{\prime}\right)=1$.

$$
\begin{aligned}
4 n^{\prime} n & =n^{\prime} d^{\prime} d_{2}-x^{2} \\
x^{2} & =n^{\prime}\left(d^{\prime} d_{2}-4 n\right)
\end{aligned}
$$

Clearly $n^{\prime} \mid x^{2}$, thus $x=n^{\prime} x^{\prime}$,

$$
\left(x^{\prime}\right)^{2} n^{\prime}=d^{\prime} d_{2}-4 n
$$

As $\left(d_{1}, d_{2}\right)=1$ it implies $\left(n^{\prime}, d_{2}\right)=1$.

$$
\epsilon\left(n^{\prime}\right)=\left(\frac{d_{2}}{n^{\prime}}\right)
$$

Also the calculation in the beginning shows

$$
\epsilon(n)=\left(\frac{n}{-d_{1}}\right)
$$

By multiplicativity of ϵ and $N=n n^{\prime}$,

$$
\epsilon(N)=\epsilon(n) \epsilon\left(n^{\prime}\right)
$$

Thus

$$
\epsilon(N)=\left(\frac{d_{2}}{n^{\prime}}\right)\left(\frac{n}{-d_{1}}\right)
$$

Consider $\left(\frac{n}{-d_{1}}\right)$. Since $d_{1}=n^{\prime} d^{\prime}$, we have

$$
\left(\frac{n}{-d_{1}}\right)=\left(\frac{n}{-d^{\prime}}\right)\left(\frac{n}{n^{\prime}}\right)
$$

From the equation $\left(x^{\prime}\right)^{2} n^{\prime}=d^{\prime} d_{2}-4 n$, it is clear that

$$
d^{\prime} d_{2} \equiv 4 n\left(\bmod n^{\prime}\right) \quad\left(x^{\prime}\right)^{2} n^{\prime} \equiv-4 n\left(\bmod d^{\prime}\right)
$$

Thus we have

$$
\begin{aligned}
\left(\frac{n}{-d_{1}}\right) & =\left(\frac{n}{-d^{\prime}}\right)\left(\frac{n}{n^{\prime}}\right) \\
& =\left(\frac{-n^{\prime}}{-d^{\prime}}\right)\left(\frac{d^{\prime} d_{2}}{n^{\prime}}\right) \\
& =\left(\frac{-n^{\prime}}{-d^{\prime}}\right)\left(\frac{d^{\prime}}{n^{\prime}}\right)\left(\frac{d_{2}}{n^{\prime}}\right)
\end{aligned}
$$

Combining

$$
\begin{aligned}
\left(\frac{d_{2}}{n^{\prime}}\right)\left(\frac{n}{-d_{1}}\right) & =\left(\frac{d_{2}}{n^{\prime}}\right)\left(\frac{-n^{\prime}}{-d^{\prime}}\right)\left(\frac{d^{\prime}}{n^{\prime}}\right)\left(\frac{d_{2}}{n^{\prime}}\right) \\
& =\left(\frac{-n^{\prime}}{-d^{\prime}}\right)\left(\frac{d^{\prime}}{n^{\prime}}\right) \\
& =\left(\frac{-1}{-d^{\prime}}\right)\left(\frac{n^{\prime}}{-d^{\prime}}\right)\left(\frac{d^{\prime}}{n^{\prime}}\right) \\
& =\left(\frac{-1}{-d^{\prime}}\right)\left(\frac{n^{\prime}}{-d^{\prime}}\right)\left(\frac{-1}{n^{\prime}}\right)\left(\frac{-d^{\prime}}{n^{\prime}}\right) \\
& =\left(\frac{-1}{-d^{\prime}}\right)\left(\frac{-1}{n^{\prime}}\right)\left(\frac{n^{\prime}}{-d^{\prime}}\right)\left(\frac{-d^{\prime}}{n^{\prime}}\right) \\
& =\left(\frac{-1}{-d_{1}}\right)\left(\left(\frac{n^{\prime}}{-d^{\prime}}\right)\left(\frac{-d^{\prime}}{n^{\prime}}\right)\right) \\
& =\left(\frac{-1}{-d_{1}}\right)
\end{aligned}
$$

Last step follows by quadratic reciprocity, as $-d^{\prime} n^{\prime}=-d \equiv 3(\bmod 4)$. Further, $-d_{1} \equiv 3(\bmod 4)$, -1 is not a quadratic residue and $\left(\frac{-1}{-d}\right)=-1$

3 Proof of Second Result

Let us first show a special property of function $F(\cdot)$.

1. For $(m, n)=1$

$$
F(m n)=F(m)^{\sum_{d \mid n} \epsilon(d)} F(n)^{\sum_{d \mid m} \epsilon(d)}
$$

Proof: Let us rewrite $F(m n)$ as

$$
\begin{aligned}
F(m n) & =\prod_{d \mid m n} d^{-\epsilon(d)} \\
& =\prod_{d_{1} \mid m} \prod_{d_{2} \mid n}\left(d_{1} d_{2}\right)^{-\epsilon\left(d_{1} d_{2}\right)} \\
& =\prod_{d_{1} \mid m} \prod_{d_{2} \mid n} d_{1}^{-\epsilon\left(d_{1} d_{2}\right)} d_{2}^{-\epsilon\left(d_{1} d_{2}\right)} \\
& =\left(\prod_{d_{1} \mid m} \prod_{d_{2} \mid n} d_{1}^{-\epsilon\left(d_{1} d_{2}\right)}\right)\left(\prod_{d_{1} \mid m} \prod_{d_{2} \mid n} d_{2}^{-\epsilon\left(d_{1} d_{2}\right)}\right)
\end{aligned}
$$

Using $\epsilon\left(d_{1} d_{2}\right)=\epsilon\left(d_{1}\right) \epsilon\left(d_{2}\right)$

$$
\begin{aligned}
& =\left(\prod_{d_{2} \mid n} \prod_{d_{1} \mid m}\left(d_{1}^{-\epsilon\left(d_{1}\right)}\right)^{\epsilon\left(d_{2}\right)}\right)\left(\prod_{d_{1} \mid n} \prod_{d_{2} \mid n}\left(d_{2}^{-\epsilon\left(d_{2}\right)}\right)^{\epsilon\left(d_{1}\right)}\right) \\
& =\left(\prod_{d_{2} \mid n} F(m)^{\epsilon\left(d_{2}\right)}\right)\left(\prod_{d_{1} \mid m} F(n)^{\epsilon\left(d_{1}\right)}\right) \\
& =F(m)^{\sum_{d \mid n} \epsilon(d)} F(n)^{\sum_{d \mid m} \epsilon(d)}
\end{aligned}
$$

Let us now introduce some notation, which makes this writing and the whole proof a bit more clear. For any integer N, define

$$
S(N):=\sum_{d \mid N} \epsilon(d)
$$

So we rewrite the result just proved in this notation. For $(m, n)=1$,

$$
F(m n)=F(m)^{S(n)} F(n)^{S(m)}
$$

It is easy to note that $S(\cdot)$ is multiplicative, ie, for $(m, n)=1$

$$
\sum_{d \mid m n} \epsilon(d)=\left(\sum_{d \mid m} \epsilon(d)\right)\left(\sum_{d \mid n} \epsilon(d)\right) \Longrightarrow S(m n)=S(n) S(m)
$$

Thus it is sufficient to know the behaviour of $S(\cdot)$ on prime powers. The table below lists the values of $S\left(p^{e}\right)$ for different possible cases.

$\epsilon(p)=1$	$\epsilon(p)=-1$	
e: odd/even	e : even	e : odd
$\mathrm{e}+1$	1	0

Table 1: Values of $S\left(p^{e}\right)$ depending on $\epsilon(p)$ and multiplicity e

With the results above and special property of $F(\cdot)$, we find how $F(N)$ for $N=\prod_{i} p_{i}^{e_{i}}$ looks like.

$$
\begin{aligned}
F(N) & =F\left(p_{1}^{e_{1}}\right)^{S\left(p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}\right)} F\left(p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}\right)^{S\left(p_{1}^{e_{1}}\right)} \\
& =F\left(p_{1}^{e_{1}}\right)^{S\left(p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}\right)}\left[F\left(p_{2}^{e_{2}}\right)^{S\left(p_{3}^{e_{3}} \ldots p_{r}^{e_{r}}\right)} \times F\left(p_{3}^{e_{3}} \ldots p_{r}^{e_{r}}\right)^{S\left(p_{2}^{e_{2}}\right)}\right]^{S\left(p_{1}^{e_{1}}\right)} \\
& =F\left(p_{1}^{e_{1}}\right)^{S\left(p_{2}^{\left.e_{2} \ldots p_{r}^{e_{r}}\right)} F\left(p_{2}\right)^{S\left(p_{1}^{e_{1}} p_{3}^{e_{3}} \ldots p_{r}^{e_{r}}\right)} F\left(p_{3}^{e_{3}} \ldots p_{r}^{e_{r}}\right)^{S\left(p_{1}^{\left.e_{1} p_{2}^{e_{2}}\right)}\right.}\right.} \$ \text {. }
\end{aligned}
$$

Continuing in this manner we will have

$$
\begin{aligned}
F(N) & =\left(F\left(p_{1}^{e_{1}}\right)\right)^{S\left(p_{2}^{e_{2}} \ldots p_{r}^{e_{r}}\right)}\left(F\left(p_{2}^{e_{2}}\right)\right)^{S\left(p_{1}^{\left.e_{1} p_{3}^{e_{3}} \ldots p_{r}^{e_{r}}\right)} \ldots\left(F\left(p_{r}^{e_{r}}\right)\right)^{S\left(p_{1}^{e_{1}} p_{2}^{\left.e_{2} \ldots p_{r-1}^{e_{r}-1}\right)}\right.}\right.} \begin{aligned}
& =\left(F\left(p_{1}^{e_{1}}\right)\right)^{S\left(N / p_{1}^{e_{1}}\right)}\left(F\left(p_{2}^{e_{2}}\right)\right)^{S\left(N / p_{2}^{e_{2}}\right)} \ldots\left(F\left(p_{r}^{e_{r}}\right)\right)^{S\left(N / p_{r}^{e_{r}}\right)}
\end{aligned}
\end{aligned}
$$

where for $1 \leq k \leq r$

$$
S\left(N / p_{k}^{e_{k}}\right)=\prod_{\substack{i=1 \\ i \neq k}}^{r} S\left(p_{i}^{e_{i}}\right) S\left(p_{1}^{e_{1}}\right) S\left(p_{2}^{e_{2}}\right) \ldots S\left(p_{k-1}^{e_{k-1}}\right) S\left(p_{k+1}^{e_{k+1}}\right) \ldots S\left(p^{r}\right)^{e_{r}}=
$$

Let us say p_{1} is the unique prime with odd multiplicity and ϵ equals to -1 , ie, $\epsilon\left(p_{1}\right)=-1$ and e_{1} is odd, then $S\left(p_{1}^{e_{1}}\right)=0$. This makes all the powers of $F\left(p_{2}^{e_{2}}\right), F\left(p_{3}^{e_{3}}\right), \ldots, F\left(p_{r}\right)^{e_{r}}$ zero, only saving powers of $F\left(p_{1}^{e_{1}}\right)$. Similarly if we have more than one prime with this property then all factors will have power 0 .

Existence of prime p with $\epsilon(p)=-1$: Since $\epsilon\left(\frac{d_{1} d_{2}-x^{2}}{4}\right)=-1$, then there has to be at least one prime with ϵ equal to -1 .

- For exact value of $F(m)$ the following calculation is helpful.

$$
F\left(p^{r}\right)=\prod_{k=1}^{r}\left(p^{k}\right)^{-\epsilon\left(p^{k}\right)}=\prod_{k=1}^{r} p^{-k \epsilon\left(p^{k}\right)}=p^{-\sum_{k=1}^{r} k \epsilon(p)^{k}}
$$

Now we know that prime which contributes satisfies $\epsilon(p)=-1$ and r is odd. Hence,

$$
F\left(p^{r}\right)=p^{\frac{r+1}{2}}
$$

References

[1] Z. D. B. Gross, B.H., "On singular moduli.," Journal für die reine und angewandte Mathematik, vol. 355, pp. 191-220, 1984.

