1 Overview

The topic of the course is complex multiplication, a beautiful theory developed in the 19-th century with many arithmetic applications. This theory tells us something about the values of certain modular functions at certain points.

Definition 1. A modular function is a holomorphic function $f: \mathfrak{H} \rightarrow \mathbb{C}$ satisfying that

$$
f\left(\frac{a z+b}{c z+d}\right)=f(z) \quad \text { for all }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma \text { and } z \in \mathbb{C},
$$

where

- \mathfrak{H} is the Poincaré upper half-plane $\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$, and
- Γ is a congruence subgroup of $\mathrm{SL}_{2}(\mathbb{Z})$.

Remark. We will only use the following congruence subgroups:

$$
\begin{aligned}
& \Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
* & * \\
0 & *
\end{array}\right) \bmod N\right\}, \\
& \Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod N\right\}, \\
& \Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod N\right\} .
\end{aligned}
$$

Also, sometimes we consider modular functions having values in $\mathbb{P}^{1}(\mathbb{C})$ (i.e., with poles) or even in $E(\mathbb{C})$ for some elliptic curve E.

Example 2. The following are examples of modular functions:
(1) The j-invariant $j: \mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H} \rightarrow \mathbb{C}$ is an analytic isomorphism and generates the ring of modular functions on $\mathrm{SL}_{2}(\mathbb{Z}) \backslash \mathfrak{H}$.
(2) The λ-function $\lambda: \Gamma(2) \backslash \mathfrak{H} \rightarrow \mathbb{C} \backslash\{0,1\}$ is an analytic isomorphism related to j by

$$
j=256 \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}
$$

It also satisfies the equations

$$
\lambda=16 \frac{\eta(z / 2)^{8} \eta(2 z)^{16}}{\eta(z)^{24}} \quad \text { and } \quad 1-\lambda=\frac{\eta(z / 2)^{16} \eta(2 z)^{8}}{\eta(z)^{24}}
$$

where

$$
\eta(z)=q^{1 / 24} \prod_{n \geq 1}\left(1-q^{n}\right) \quad \text { if } q=e^{2 \pi i z} \quad \text { (Dedekind eta function). }
$$

(The q-expansion of $\eta(z)$ together with the previous formulae for λ and $1-\lambda$ show that, indeed, λ does not take the values 0 or 1.)
(3) The Siegel units: we have a modular function $U_{N}: \Gamma_{0}(N) \backslash \mathfrak{H} \rightarrow \mathbb{C}^{\times}$given by

$$
U_{N}=\frac{\Delta(N z)}{\Delta(z)}, \quad \text { where } \Delta(z)=\eta(z)^{24}
$$

(4) Modular parametrizations: every elliptic curve E / Q of conductor N admits a non-constant analytic map $\Phi_{E}: \Gamma_{0}(N) \backslash \mathfrak{H} \rightarrow E(\mathbb{C})$ (modularity theorem).

1.1 The main theorem

Definition 3. A CM point of \mathfrak{H} is a point $\tau \in \mathfrak{H}$ which satisfies a quadratic equation over \mathbf{Q}, so that $\tau=a+b \sqrt{d}$ for some $a, b, d \in \mathbf{Q}$ with $d<0$ and $b>0$.

Theorem 4. Let $\tau \in \mathfrak{H} \cap \mathbb{Q}(\sqrt{d})$ (for some $d<0$) and let f be a modular function. If the q-expansion of f has coefficients in Q, then $f(\tau)$ is algebraic and is defined over an abelian extension of $\mathbb{Q}(\sqrt{d})$.

This theorem suggests that we might be able to generate almost all abelian extensions of a quadratic imaginary fields (i.e., explicit class fields) from the values of modular functions.

Example 5. The CM values of $j(z)$ are called singular moduli. Consider a quadratic imaginary field K with $D=\operatorname{disc}(K), D<0$, and class number $h(K)=1$. Then the CM point

$$
\tau_{D}=\frac{D+\sqrt{D}}{2}
$$

satisfies that $j\left(\tau_{D}\right) \in \mathbb{Z}$.
Table 1 shows all these singular moduli. One can observe several patterns: all the numbers in the second column are perfect cubes and have many small prime factors but not all (no 7 or 13); in contrast the numbers in the third column are almost perfect squares (except for a factor of D) and includes the prime 7 but no 5 . This kind of patterns were explained by the work of Gross and Zagier.

Writing

$$
\left(j\left(\tau_{D}\right), j\left(\tau_{D}\right)-1728\right)=\left(x^{3}, D y^{2}\right)
$$

we obtain an integral solution to the equation

$$
x^{3}-D y^{2}=1728 .
$$

D	$j\left(\tau_{D}\right)$	$j\left(\tau_{D}\right)-1728$
-3	0	$-2^{6} 3^{3}$
-4	$2^{6} 3^{3}$	0
-7	$-3^{3} 5^{3}$	$-3^{6} 7$
-8	$2^{6} 5^{3}$	$2^{7} 7^{2}$
-11	-2^{15}	$-2^{6} 7^{2} 11$
-19	$-2^{15} 3^{3}$	$-2^{6} 3^{6} 19$
-43	$-2^{18} 3^{3} 5^{3}$	$-2^{6} 3^{8} 7^{2} 43$
-67	$-2^{15} 3^{3} 5^{3} 11^{3}$	$-2^{6} 3^{6} 7^{2} 31^{2} 67$
-163	$-2^{18} 3^{3} 5^{3} 23^{3} 29^{3}$	$-2^{6} 3^{6} 7^{2} 11^{2} 19^{2} 127^{2} 163$

Table 1: Singular moduli for quadratic imaginary fields with class number 1.

These kind of numbers seem to contradict the ABC conjecture. Of course this is not really the case because we only have a finite number of quadratic imaginary fields with class number 1.

Example 6. In the spirit of the last observation in the previous example, Granville and Stark proved that a strong version of the ABC conjecture implies that $h(D)$ grows asymptotically like

$$
\frac{\sqrt{|D|}}{\log (|D|)}
$$

as $D \rightarrow-\infty$. In particular, the Dirichlet $L-$ function $L\left(\chi_{D}, s\right)$ has no Siegel zeros.

1.2 More applications

Let D be a negative discriminant as before. We have the following associated data:
(1) a quadratic order $\mathscr{O}_{D}=\mathbb{Z}[(D+\sqrt{D}) / 2]$;
(2) the class group $\mathrm{Cl}(D)=\operatorname{Pic}\left(\mathscr{O}_{D}\right)$, and
(3) a ring class field H_{D} such that, if $K=\mathbb{Q}(\sqrt{D})$,

$$
\operatorname{Gal}\left(H_{D} / K\right)=\mathrm{Cl}(D)
$$

by class field theory. Furthermore, if we write $D=D_{0} c^{2}$, where D_{0} is a fundamental discriminant (square-free) and c is the conductor of the order, then H_{D} is unramified outside c.

Proposition 7. If f is a modular function for some group Γ with rational q-expansion, then $f\left(\tau_{D}\right)$ is defined over an abelian extension L of H_{D} satisfying that
(1) L is unramified outside the level N of Γ and
(2) $\left[L: H_{D}\right] \leq\left[\mathrm{SL}_{2}(Z): \Gamma\right]$.

Proposition 8. In the situation of proposition 7, if $f(\mathfrak{H})$ is contained in $V(\mathbb{C})$ for an algebraic variety V (such as $\mathbb{A}^{1}, \mathbb{A}^{1} \backslash\{1\}$ or an elliptic curve E), then

$$
f\left(\tau_{D}\right) \in V\left(\mathscr{O}_{L}\left[N^{-1}\right]\right)
$$

Example 9.

(1) $j\left(\tau_{D}\right) \in \mathscr{O}_{L}$.
(2) $\lambda\left(\tau_{D}\right)$ is a solution to

$$
\left(x^{2}-x+1\right)^{3}-2^{-8} j\left(\tau_{D}\right) x^{2}(x-1)^{2}=0
$$

and so $\lambda\left(\tau_{D}\right) \in \mathscr{O}_{L}[1 / 2]^{\times}$. Exercise: $1-\lambda\left(\tau_{D}\right) \in \mathscr{O}_{L}[1 / 2]^{\times}$. The pair $\left(\lambda\left(\tau_{D}\right), 1-\lambda\left(\tau_{D}\right)\right)$ is then a solution to the 2 -unit equation in L.
(3) $U_{N}\left(\tau_{D}\right) \in \mathscr{O}_{L}[1 / N]^{\times}$(and often even $U_{N}\left(\tau_{D}\right) \in \mathscr{O}_{L}^{\times}$). These units are called elliptic units. There is an interesting analogy summarized in table 2.

Q	K (imaginary quadratic)
Circular units $1-\zeta_{N}$	Elliptic units $U_{N}\left(\tau_{D}\right)$
Class number formula:	Kronecker limit formula:
$L^{\prime}(\chi, 1) \leftrightarrow \log \left(1-\zeta_{N}\right)$	$L^{\prime}(\psi, 1) \leftrightarrow \log \left(U_{N}\left(\tau_{D}\right)\right)$
for an even Dirichlet character χ	for a finite-order Hecke character ψ
Work of Thaine, Rubin	Work of Coates-Wiles, Rubin
(Iwasawa main conjecture)	(Iwasawa main conjecture)

Table 2: Analogy between the theory over \mathbb{Q} and over K.

Theorem 10 (Coates-Wiles, Rubin). Let A / \mathbb{Q} be an elliptic curve with $C M$. If the Hasse-Weil L-function of A satisfies that $L(A, 1) \neq 0$, then $A(\mathbb{Q})<\infty$ (Coates-Wiles) and $\amalg(A / Q)<\infty$ (Rubin).

Remarkably, CM theory has applications towards the proof of the BSD conjecture for general elliptic curves (not just those with CM). Consider an elliptic curve E / Q and a modular parametrization $\Phi_{E}: \Gamma_{0}(N) / \mathfrak{H} \rightarrow E(\mathbb{C})$. Choosing an appropriate D, we get $\Phi_{E}\left(\tau_{D}\right) \in E\left(H_{D}\right)$. Define

$$
P_{D}=\sum_{\operatorname{disc}(\tau)=D} \Phi_{E}(\tau) \in E(K)
$$

Theorem 11 (Gross-Zagier). In the situation above and if D is perfect square modulo N, then

$$
L^{\prime}(E, 1) \sim \operatorname{ht}_{\mathrm{NT}}\left(P_{D}\right)
$$

In particular, P_{D} has infinite order precisely when $L^{\prime}(E, 1) \neq 0$.
Theorem 12 (Kolyvagin). If P_{D} has infinite order, then $E(K)$ is generated by P_{D} and $Ш(E / K)<\infty$.

Corollary 13. If $\operatorname{ord}_{s=1}(L(E, s)) \leq 1$, then

$$
\operatorname{rank}(E(\mathbb{Q}))=\operatorname{ord}_{s=1}(L(E, s)) \quad \text { and } \quad \amalg(E / \mathbb{Q})<\infty .
$$

These are essentially the best known results towards a proof of the BSD conjecture, and they would not be available without the theory of complex multiplication.

