1 Overview

The topic of the course is complex multiplication, a beautiful theory developed in the 19–th century with many arithmetic applications. This theory tells us something about the values of certain modular functions at certain points.

Definition 1. A *modular function* is a holomorphic function $f : \mathfrak{H} \to \mathbb{C}$ satisfying that

$$f\left(\frac{az+b}{cz+d}\right) = f(z)$$
 for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $z \in \mathbb{C}$,

where

- \mathfrak{H} is the Poincaré upper half-plane { $z \in \mathbb{C} : \operatorname{Im}(z) > 0$ }, and
- Γ is a congruence subgroup of $SL_2(\mathbb{Z})$.

Remark. We will only use the following congruence subgroups:

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N \right\},$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod N \right\},$$

$$\Gamma(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \mod N \right\}.$$

Also, sometimes we consider modular functions having values in $\mathbb{P}^1(\mathbb{C})$ (i.e., with poles) or even in $E(\mathbb{C})$ for some elliptic curve *E*.

Example 2. The following are examples of modular functions:

- The *j*-invariant *j*: SL₂(ℤ)\𝔅 → ℂ is an analytic isomorphism and generates the ring of modular functions on SL₂(ℤ)\𝔅.
- (2) The λ-function λ: Γ(2)\5 → C \ { 0,1 } is an analytic isomorphism related to *j* by

$$j = 256 \frac{(\lambda^2 - \lambda + 1)^3}{\lambda^2 (\lambda - 1)^2}.$$

It also satisfies the equations

$$\lambda = 16 \frac{\eta(z/2)^8 \, \eta(2z)^{16}}{\eta(z)^{24}} \quad \text{and} \quad 1 - \lambda = \frac{\eta(z/2)^{16} \, \eta(2z)^8}{\eta(z)^{24}},$$

where

$$\eta(z) = q^{1/24} \prod_{n \ge 1} (1 - q^n)$$
 if $q = e^{2\pi i z}$ (Dedekind eta function).

(The *q*–expansion of $\eta(z)$ together with the previous formulae for λ and $1 - \lambda$ show that, indeed, λ does not take the values 0 or 1.)

(3) The Siegel units: we have a modular function $U_N \colon \Gamma_0(N) \setminus \mathfrak{H} \to \mathbb{C}^{\times}$ given by

$$U_N = \frac{\Delta(Nz)}{\Delta(z)}$$
, where $\Delta(z) = \eta(z)^{24}$.

(4) Modular parametrizations: every elliptic curve E/\mathbb{Q} of conductor N admits a non-constant analytic map $\Phi_E \colon \Gamma_0(N) \setminus \mathfrak{H} \to E(\mathbb{C})$ (modularity theorem).

1.1 The main theorem

Definition 3. A *CM point* of \mathfrak{H} is a point $\tau \in \mathfrak{H}$ which satisfies a quadratic equation over \mathbb{Q} , so that $\tau = a + b\sqrt{d}$ for some $a, b, d \in \mathbb{Q}$ with d < 0 and b > 0.

Theorem 4. Let $\tau \in \mathfrak{H} \cap \mathbb{Q}(\sqrt{d})$ (for some d < 0) and let f be a modular function. If the q-expansion of f has coefficients in \mathbb{Q} , then $f(\tau)$ is algebraic and is defined over an abelian extension of $\mathbb{Q}(\sqrt{d})$.

This theorem suggests that we might be able to generate almost all abelian extensions of a quadratic imaginary fields (i.e., explicit class fields) from the values of modular functions.

Example 5. The CM values of j(z) are called *singular moduli*. Consider a quadratic imaginary field *K* with D = disc(K), D < 0, and class number h(K) = 1. Then the CM point

$$au_D = rac{D + \sqrt{D}}{2}$$

satisfies that $j(\tau_D) \in \mathbb{Z}$.

Table 1 shows all these singular moduli. One can observe several patterns: all the numbers in the second column are perfect cubes and have many small prime factors but not all (no 7 or 13); in contrast the numbers in the third column are *almost* perfect squares (except for a factor of D) and includes the prime 7 but no 5. This kind of patterns were explained by the work of Gross and Zagier.

Writing

$$(j(\tau_D), j(\tau_D) - 1728) = (x^3, Dy^2),$$

we obtain an integral solution to the equation

$$x^3 - Dy^2 = 1728.$$

D	$j(au_D)$	$j(au_D) - 1728$
-3	0	$-2^{6}3^{3}$
-4	2 ⁶ 3 ³	0
-7	$-3^{3}5^{3}$	$-3^{6}7$
-8	2 ⁶ 5 ³	$2^{7}7^{2}$
-11	-2^{15}	$-2^{6}7^{2}11$
-19	$-2^{15}3^3$	$-2^{6}3^{6}19$
-43	$-2^{18}3^35^3$	$-2^{6}3^{8}7^{2}43$
-67	$-2^{15}3^35^311^3$	$-2^{6}3^{6}7^{2}31^{2}67$
-163	$-2^{18}3^35^323^329^3$	$-2^{6}3^{6}7^{2}11^{2}19^{2}127^{2}163$

Table 1: Singular moduli for quadratic imaginary fields with class number 1.

These kind of numbers seem to *contradict* the ABC conjecture. Of course this is not really the case because we only have a finite number of quadratic imaginary fields with class number 1.

Example 6. In the spirit of the last observation in the previous example, Granville and Stark proved that a strong version of the ABC conjecture implies that h(D) grows asymptotically like

$$\frac{\sqrt{|D|}}{\log(|D|)}$$

as $D \to -\infty$. In particular, the Dirichlet *L*-function $L(\chi_D, s)$ has no Siegel zeros.

1.2 More applications

Let *D* be a negative discriminant as before. We have the following associated data:

- (1) a quadratic order $\mathcal{O}_D = \mathbb{Z}[(D + \sqrt{D})/2];$
- (2) the class group $Cl(D) = Pic(\mathcal{O}_D)$, and
- (3) a ring class field H_D such that, if $K = \mathbb{Q}(\sqrt{D})$,

$$\operatorname{Gal}(H_D/K) = \operatorname{Cl}(D)$$

by class field theory. Furthermore, if we write $D = D_0 c^2$, where D_0 is a fundamental discriminant (square-free) and *c* is the conductor of the order, then H_D is unramified outside *c*.

Proposition 7. If f is a modular function for some group Γ with rational q-expansion, then $f(\tau_D)$ is defined over an abelian extension L of H_D satisfying that

(1) *L* is unramified outside the level N of Γ and

(2) $[L:H_D] \leq [SL_2(Z):\Gamma].$

Proposition 8. In the situation of proposition 7, if $f(\mathfrak{H})$ is contained in $V(\mathbb{C})$ for an algebraic variety V (such as \mathbb{A}^1 , $\mathbb{A}^1 \setminus \{1\}$ or an elliptic curve E), then

$$f(\tau_D) \in V(\mathscr{O}_L[N^{-1}]).$$

Example 9.

(1) $j(\tau_D) \in \mathscr{O}_L$.

(2) $\lambda(\tau_D)$ is a solution to

$$(x^2 - x + 1)^3 - 2^{-8}j(\tau_D)x^2(x - 1)^2 = 0$$

and so $\lambda(\tau_D) \in \mathcal{O}_L[1/2]^{\times}$. Exercise: $1 - \lambda(\tau_D) \in \mathcal{O}_L[1/2]^{\times}$. The pair $(\lambda(\tau_D), 1 - \lambda(\tau_D))$ is then a solution to the 2–unit equation in *L*.

(3) U_N(τ_D) ∈ 𝒪_L[1/N][×] (and often even U_N(τ_D) ∈ 𝒪_L[×]). These units are called *elliptic units*. There is an interesting analogy summarized in table 2.

Q	K (imaginary quadratic)
Circular units $1 - \zeta_N$	Elliptic units $U_N(\tau_D)$
Class number formula:	Kronecker limit formula:
$L'(\chi, 1) \leftrightarrow \log(1 - \zeta_N)$	$L'(\psi, 1) \leftrightarrow \log(U_N(\tau_D))$
for an even Dirichlet character χ	for a finite-order Hecke character ψ
Work of Thaine, Rubin	Work of Coates–Wiles, Rubin
(Iwasawa main conjecture)	(Iwasawa main conjecture)

Table 2: Analogy between the theory over Q and over K.

Theorem 10 (Coates–Wiles, Rubin). Let A/\mathbb{Q} be an elliptic curve with CM. If the Hasse–Weil L–function of A satisfies that $L(A, 1) \neq 0$, then $A(\mathbb{Q}) < \infty$ (Coates–Wiles) and $\operatorname{III}(A/\mathbb{Q}) < \infty$ (Rubin).

Remarkably, CM theory has applications towards the proof of the BSD conjecture for general elliptic curves (not just those with CM). Consider an elliptic curve E/\mathbb{Q} and a modular parametrization $\Phi_E \colon \Gamma_0(N)/\mathfrak{H} \to E(\mathbb{C})$. Choosing an appropriate D, we get $\Phi_E(\tau_D) \in E(H_D)$. Define

$$P_D = \sum_{\operatorname{disc}(\tau)=D} \Phi_E(\tau) \in E(K).$$

Theorem 11 (Gross–Zagier). *In the situation above and if D is perfect square modulo N, then*

 $L'(E,1) \sim \operatorname{ht}_{\operatorname{NT}}(P_D).$

In particular, P_D has infinite order precisely when $L'(E, 1) \neq 0$.

Theorem 12 (Kolyvagin). *If* P_D *has infinite order, then* E(K) *is generated by* P_D *and* $III(E/K) < \infty$.

Corollary 13. If $\operatorname{ord}_{s=1}(L(E,s)) \leq 1$, then

 $\operatorname{rank}(E(\mathbb{Q})) = \operatorname{ord}_{s=1}(L(E,s))$ and $\operatorname{III}(E/\mathbb{Q}) < \infty$.

These are essentially the best known results towards a proof of the BSD conjecture, and they would not be available without the theory of complex multiplication.