
SATO-TATE DISTRIBUTIONS

ANDREW V. SUTHERLAND

ABSTRACT. In this expository article we explore the relationship between Galois representations, motivic
L-functions, Mumford-Tate groups, and Sato-Tate groups, and give an explicit formulation of the Sato-Tate
conjecture for abelian varieties as an equidistribution statement relative to the Sato-Tate group. We then
discuss the classification of Sato-Tate groups of abelian varieties of dimension g ≤ 3 and compute some
of the corresponding trace distributions. This article is based on a series of lectures presented at the 2016
Arizona Winter School held at the Southwest Center for Arithmetic Geometry.

1. AN INTRODUCTION TO SATO-TATE DISTRIBUTIONS

Before discussing the Sato-Tate conjecture and Sato-Tate distributions for abelian varieties, we first
consider the more familiar setting of Artin motives, which can be viewed as varieties of dimension zero.

1.1. A first example. Let f ∈ Z[x] be a squarefree polynomial of degree d; for example, we may take
f (x) = x3 − x + 1. Since f has integer coefficients, we can reduce them modulo any prime p to obtain
a polynomial fp with coefficients in the finite field Z/pZ' Fp. For each prime p define

N f (p) := #{x ∈ Fp : fp(x) = 0},

which we note is an integer between 0 and d. We would like to understand how N f (p) varies with p.
The table below shows the values of N f (p) when f (x) = x3 − x + 1 for primes p < 60:

p : 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
N f (p) 0 0 1 1 1 0 1 1 2 0 0 1 0 1 0 1 3

There does not appear to be any obvious pattern (and we should know not to expect one, the Galois
group lurking behind the scenes is nonabelian). The prime p = 23 is exceptional because it divides
disc( f ), which means that f23(x) has a double root. As we are interested in the distribution of N f (p)
as p tends to infinity, we are happy to ignore such primes, which are necessarily finite in number.

Looking at such a small dataset does not tell us much, so let us increase the bound B on the primes p
that we are considering and count how often we see N f (p) = 0,1, 2,3. Define

ci(B) :=
#{p ≤ B : N f (p) = i}

#{p ≤ B}
,

for i = 0, 1,2,3. We may then compute the following statistics:
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B c0(B) c1(B) c2(B) c3(B)

103 0.323353 0.520958 0.005988 0.155689
104 0.331433 0.510586 0.000814 0.157980
105 0.333646 0.502867 0.000104 0.163487
106 0.333185 0.500783 0.000013 0.166032
107 0.333360 0.500266 0.000002 0.166373
108 0.333337 0.500058 0.000000 0.166605
109 0.333328 0.500016 0.000000 0.166656
1010 0.333334 0.500003 0.000000 0.166663
1011 0.333333 0.500001 0.000000 0.166666
1012 0.333333 0.500000 0.000000 0.166666

Based on these statistics we may conjecture that the limiting values of ci(B) as B→∞ are

c0 = 1/3, c1 = 1/2, c2 = 0, c3 = 1/6.

There is of course a natural motivation for this conjecture (which is, in fact, a theorem), one that
would allows us to correctly predict the asymptotic ratios ci without needing to compute any statistics.
Let us fix an algebraic closure Q of Q. The absolute Galois group Gal(Q/Q) acts on the roots of f (x) by
permuting them. This allows us to define the Galois representation (a continuous homomorphism)

ρ f : Gal(Q/Q)→ GLd(C),

whose image is a subgroup of the permutation matrices in Od(C) ⊆ GLd(C); here Od denotes the orthog-
onal group (we could replace C with any field of characteristic zero). Note that Gal(Q/Q) and GLd(C)
are topological groups (the former has the Krull topology), and homomorphisms of topological groups
are understood to be continuous. In order to associate a permutation of the roots of f (x) to a matrix in
GLd(C) we need to fix an ordering of the roots; this amounts to choosing a basis for the vector space Cd ,
which means that our representation ρ f is really defined only up to conjugacy.

The value ρ f takes on σ ∈ Gal(Q/Q) depends only on the restriction of σ to the splitting field L of f ,
so we could restrict our attention to Gal(L/Q). This makes ρ f an Artin representation: a continuous
representation Gal(Q/Q)→ GLd(C) that factors through a finite quotient (by an open subgroup). But
in the more general settings we wish to consider this may not always be true, and even when it is, we
typically will not be given L; it is thus more convenient to work with Gal(Q/Q).

To facilitate this, we associate to each prime p an absolute Frobenius element

Frobp ∈ Gal(Q/Q)

which may be defined as follows. Fix an embedding Q in Qp and use the valuation ideal P of Qp (the
maximal ideal of its ring of integers) to define a compatible system of primes qL :=P∩L, where L ranges
over all finite extensions of Q. For each prime qL , let DqL

⊆ Gal(L/Q), denote its decomposition group,
IqL
⊆ DqL

its inertia group, and FqL
:= ZL/qL its residue field, where ZL denotes the ring of integers of L.

Taking the inverse limit of the exact sequences

1→ IqL
→ DqL

→ Gal(FqL
/Fp)→ 1

over finite extensions L/Q gives an exact sequence of profinite groups

1→ Ip→ Dp→ Gal(Fp/Fp)→ 1.
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We now define Frobp ∈ Dp ⊆ Gal(Q/Q) by arbitrarily choosing a preimage of the Frobenius automor-
phism x → x p in Gal(Fp/Fp) under the map in the exact sequence above. Note that we have actually
made two arbitrary choices in our definition of Frobp, since we also chose an embedding of Q into Qp.
Our absolute Frobenius element Frobp is thus in no way canonical, but it certainly exists. Its key property
is that if L/Q is a finite Galois extension in which p is unramified, then the conjugacy class conjL(Frobp)
in Gal(L/Q) of the restriction of Frobp : Q→ Q to L is uniquely determined, independent of the choices
we made. One can think of Frobp as defining a map L→ conjL(Frobp) that assigns to each finite Galois
extension L/Q the conjugacy class of Gal(L/Q) corresponding to the Frobenius automorphism when
p is unramified in L. Everything we have said applies mutatis mutandi if we replace Q by a number
field K: put K := Q, replace p by a prime p of K (by which we mean a nonzero prime ideal of ZK), and
replace Fp by the residue field Fp := ZK/p.

We now make the following observation: for any prime p that does not divide disc( f ) we have

(1) N f (p) = trρ f (Frobp).

This follows from the fact that the trace of a permutation matrix counts its fixed points. Since p is
unramified, the inertia group Ip ⊆ Gal(Q/Q) acts trivially on the roots of f (x), and the action of Frobp on
the roots of f (x) coincides (up to conjugation) with the action of the Frobenius automorphism x → x p

on the roots of fp(x), both of which are described by the permutation matrix ρ(Frobp). The Chebotarev
density theorem implies that we can compute ci by applying (1) and simply counting the number of
matrices in ρ f (Gal(Q/Q)) that have trace i; it is enough to determine the trace and cardinality of each
conjugacy class.

Theorem 1.1. CHEBOTAREV DENSITY THEOREM Let L/K be a finite Galois extension of number fields with
Galois group G := Gal(L/K). For every subset C of G stable under conjugation we have

lim
B→∞

#{N(p)≤ B : conjL(Frobp) ⊆ C}
#{N(p)≤ B}

=
#C
#G

,

where p ranges over primes of K and N(p) := #Fp is the cardinality of the residue field Fp := ZK/p.

Proof. See Corollary 2.13 in Section 2. �

Remark 1.2. In Theorem 1.1 one can assume C is a single conjugacy class (the general result follows
easily from this case). The asymptotic ratio depends on the left hand side depends only on primes with
inertia degree 1 (those with prime residue field), since these make up all but a negligible proportion of
the primes p for which N(p)≤ B (this follows from density results that preceded Chebotarev’s theorem).
In our statement of the theorem we do not exclude primes of K that are ramified in L because no matter
what value conjL(Frobp) takes on these primes it will not change the limiting ratio.

In our example with f (x) = x3− x +1, one finds that G f := ρ f (Q/Q) is isomorphic to S3 (the Galois
group of the splitting field of f (x)). Its three conjugacy classes, represented by the matrices





0 1 0
0 0 1
1 0 0



 ,





1 0 0
0 0 1
0 1 0



 ,





1 0 0
0 1 0
0 0 1



 ,

with traces 0, 1, 3. The corresponding conjugacy classes have cardinalities 2, 3, 1, respectively, thus

c0 = 1/3, c1 = 1/2, c2 = 0, c3 = 1/6,

as we conjectured.
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If we endow the group G f with the discrete topology it becomes a compact group, and therefore
has a Haar measure µ that is uniquely determined once we normalize it so that µ(G f ) = 1 (which
we always do). Recall that the Haar measure of a compact group G is a translation-invariant Radon
measure (so µ(gS) = µ(Sg) = µ(S) for any measurable set S and g ∈ G), and is unique up to scaling.1

For finite groups the Haar measure µ is just the normalized counting measure. We can compute the
expected value of trace (and many other statistical quantities of interest) by integrating against the
Haar measure, which in this case amounts to summing over the finite group G f :

E[tr] =

∫

G f

tr µ=
1

#G f

∑

g∈G f

tr(g) =
d
∑

i=0

ci i.

The Chebotarev density theorem implies that this is also the average value of N f (p), that is,

lim
B→∞

∑

p≤B N f (p)
∑

p≤B 1
= E[tr].

This average is 1 in our example, because f (x) is irreducible; see Exercise 1.1.
The quantities ci define a probability distribution on the set {tr(g) : g ∈ G f } traces that we can also

view as a probability distribution on the set {N f (p) : p prime}. Picking a random prime p in some
large interval [1, B] and computing N f (p) is the same thing as picking a random matrix g in H f and
computing tr(g). More precisely, the sequence (N f (p))p indexed by primes p is equidistributed with
respect to the pushforward of the Haar measure µ under the trace map. We will discuss the notion of
equidistribution more generally in the next section.

1.2. Moment sequences. There is another way to characterize the probability distribution on tr(g)
given by the ci; we can compute its moment sequence:

M[tr] := (E[trn])n≥0,

where

E[trn] =

∫

G f

trnµ.

It might seem silly to include the zeroth moment E[tr0] = E[1] = 1, but in Section 4 we will see why
this convention is useful. In our example we have the moment sequence

M[tr] = (1,1, 2,5, 14,41, . . . , 1
2(3

n−1 + 1), . . .).

The sequence M[tr] uniquely determines2 the distributions of traces and thus captures all the informa-
tion encoded in the ci . It may not seem very useful to replace a finite set of rational numbers with
an infinite sequence of integers, but when dealing with continuous probability distributions, as we are
forced to do as soon as we leave our weight zero setting, moment sequences are a powerful tool.

If we pick another cubic polynomial f ∈ Z[x], we will typically obtain the same result as we did in
our example; when ordered by height almost all cubic polynomials f have Galois group G f ' S3. But
there are exceptions: if f is not irreducible over Q then G f will be isomorphic to a proper subgroup
of S3, and this also occurs when the splitting field of f is a cyclic cubic extension (this happens precisely

1For locally compact groups G one distinguishes left and right Haar measures, but the two coincide when G is compact;
see [22] for more background on Haar measures.

2Not all moment sequences uniquely determine an underlying probability distribution, but all the moment sequence we
shall consider do (because they satisfy Carleman’s condition [52, p. 126], for example).
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when disc( f ) is a square in Q; the polynomial f (x) = x3−3x−1 is an example). Up to conjugacy there
are four subgroups of S3, each corresponding to a different distribution of N f (p):

f (x) G f c0 c1 c2 c3 M[tr]

x3 − x 1 0 0 0 1 (1,3, 9,27, 81, . . .)
x3 + x C2 0 1/2 0 1/2 (1,2, 5,14, 41, . . .)
x3 − 3x − 1 C3 2/3 0 0 1/3 (1,1, 3,19, 27, . . .)
x3 − x + 1 S3 1/3 1/2 0 1/6 (1,1, 2, 5,14, . . .)

One can do the same thing with polynomials of degree d > 3. For d ≤ 19 the results are exhaustive:
for every transitive subgroup G of Sd the database of Klüners and Malle [51] contains at least one
polynomial f ∈ Z[x] with G f ' G (including all 1954 transitive subgroups of S16). The non-transitive
cases can be constructed as products (of groups and of polynomials) of transitive cases of lower degree.
It is an open question whether this can be done for all d (even in principle). This amounts to a strong
form of the inverse Galois problem over Q; we are asking not only whether every finite group can be
realized as a Galois group over Q, but whether every permutation group of degree d can be realized as
the Galois group of the splitting field of a polynomial of degree d.

1.3. Zeta functions. For polynomials f of degree d = 3 there is a one-to-one correspondence between
subgroups of Sd and distributions of N f (p). This is not true for d ≥ 4. For example, the polynomials
f (x) = x4− x3+ x2− x+1 with G f ' C4 and g(x) = x4− x2+1 with Gg ' C2×C2 both have c0 = 3/4,
c1 = c2 = c3 = 0, and c4 = 1/4, corresponding to the moment sequence M[tr] = (1, 1,4, 16,64, . . .).

We can distinguish these cases if, in addition to considering the distribution of N f (p), we also consider
the distribution of

N f (p
r) := #{x ∈ Fpr : fp(x) = 0}

for integers r ≥ 1. In our quartic example we have Ng(p2) = 4 for almost all p, whereas N f (p2) is 4
or 2 depending on whether p is a square modulo 5 or not. In terms of the matrix group G f we have

(2) N f (p
r) = tr

�

ρ f (Frobp)
r
�

for all primes p that do not divide disc( f ). To see this, note that the permutation matrix ρ f (Frobp)r

corresponds to the permutation of the roots of fp(x) given by the rth power of the Frobenius automor-
phism x 7→ x p. Its fixed points are precisely the roots of fp(x) that lie in Fpr ; taking the trace counts
these roots, and this yields N f (pr).

This naturally leads to the definition of the local zeta function of f at p:

(3) Z fp
(T ) := exp

�∞
∑

r=1

N f (p
r)

T r

r

�

,

which can be viewed as a generating function for the sequence (N f (p), N f (p2), N f (p3), . . .). This par-
ticular form of generating function may seem strange when first encountered, but it has some very nice
properties. For example, if f , g ∈ Z[x] are squarefree polynomials with no common factor, then their
product f g is also square free, and for all p - disc( f g) we have

Z( f g)p = Z fp gp
= Z fp

Zgp
.

5
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Remark 1.3. The identity (2) can be viewed as a special case of the Grothendieck-Lefschetz trace for-
mula. It allows us to express the zeta function Z fp

(T ) as a sum over powers of the traces of the image
of Frobp under the Galois representation ρ f . In general one considers the trace of the Frobenius endo-
morphism acting on étale cohomology, but in dimension zero the only relevant cohomology is H0.

While defined as a power series, in fact Z fp
(T ) is a rational function of the form

Z fp
(T ) =

1
Lp(T )

where Lp(T ) is an integer polynomial whose roots lie on the unit circle. This can be viewed as a
consequence of the Weil conjectures in dimension zero,3 but in fact it follows directly from (2). Indeed,
for any matrix A∈ GLd(C) we have the identity

(4) exp

�∞
∑

r=1

tr(Ar)
T r

r

�

= det(1− AT )−1,

which can be proved by expressing the coefficients on both sides as symmetric functions in the eigen-
values of A; see Exercise 1.2. Applying (2) and (4) to the definition of Z fp

(T ) in (3) yields

Z fp
(T ) =

1
det(1−ρ f (Frobp)T )

,

thus
Lp(T ) = det(1−ρ f (Frobp)T ).

The polynomial Lp(T ) is precisely the polynomial that appears in the Euler factor at p of the (partial)
Artin L-function L(ρ f , s) for the representation ρ f :

L(ρ f , s) :=
∏

p

Lp(p
−s)−1,

at least for primes p that do not divide disc( f ); for the definition of the Euler factors at ramified primes
(and the Gamma factors at archimedean places), see [60, Ch. 2].4 We shall not be concerned with the
Euler factors at ramified primes, other than to note that they are all holomorphic and nonvanishing. We
should note that the L-function L(ρ f , s) is not primitive, because ρ f is not irreducible; indeed, one can
always remove at least a factor of ζ(s) (the Riemann zeta function).

Returning to our interest in equidistribution, the Haar measure µ on G f = ρ f (Gal(Q/Q)) allows us
to determine the distribution of L-polynomials Lp(T ) that we see as p varies. Each polynomial Lp(T )
is the reciprocal polynomial (obtained by reversing the coefficients) of the characteristic polynomial of
ρ f (Frobp). If we fix a polynomial P(T ) of degree d = deg f , and pick a prime p at random from
some large interval, the probability that Lp(T ) = P(T ) is equal to the probability that the reciprocal
polynomial T d P(1/T ) is the characteristic polynomial of a random element of G f (this probability will
be zero unless P(T ) has a particular form; see Exercise 1.3).

Remark 1.4. For d ≤ 5 the distribution of characteristic polynomials uniquely determines each sub-
group of Sd (up to conjugacy). This is not true for d ≥ 6, and for d ≥ 8 one can find non-isomorphic
subgroups of Sd with the same distribution of characteristic polynomials; the transitive permutation

3Provided one accounts for the fact that f (x) = 0 does not define an irreducible variety unless deg( f ) = 1; in this case
Nf (pr) = 1 and Lp(T ) = 1− T , which is consistent with the usual formulation of the Weil conjectures (see Theorem 1.7).

4The alert reader will note that primes dividing the discriminant of f need not ramify in its splitting field; we are happy to
ignore these primes as well, just as we may ignore primes of bad reduction for a curve that are good primes for its Jacobian.
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groups 8T10 and 8T11 which arise for x8 − 13x6 + 44x4 − 17x2 + 1 and x8 − x5 − 2x4 + 4x2 + x + 1
(respectively) are an example.

1.4. Computing zeta functions in dimension zero. Let us now briefly address the practical question
of efficiently computing the zeta function Z fp

(T ), which amounts to computing the integer polynomial
Lp(T ). It suffices to compute the integers N f (pr) for r ≤ d, which is equivalent to determining the
degrees of the irreducible polynomials appearing in the factorization of fp(x) in Fp[x]; these determine
the cycle type, and therefore the conjugacy class, of the permutation of the roots of fp(x) induced by the
action of the Frobenius automorphism x 7→ x p, which in turn determines the characteristic polynomial
of ρ f (Frobp) and the L-polynomial Lp(T ) = det(1− ρ f (Frobp)T ); see Exercise 1.3. To determine the
factorization pattern of fp(x), one can apply the following algorithm.

Algorithm 1.5. Given a squarefree polynomial f ∈ Fp[x] of degree d > 1, compute the number ni of
irreducible factors of f in Fp[x] of degree i, for 1≤ i ≤ d as follows:

1. Let g1(x) be f (x) made monic and put r0(x) := x .

2. For i from 1 to d:
a. If i > deg(gi)/2 then for i ≤ j ≤ d put n j := 1 if j = deg(gi) and n j := 0 otherwise, and

then proceed to step 3.

b. Using binary exponentiation in the ring Fp[x]/(gi), compute ri := rp
i−1 mod gi .

c. Compute hi(x) := gcd(gi , ri(x)− x) = gcd(gi(x), x pi
− x) using the Euclidean algorithm.

d. Compute ni := deg(hi)/i and gi+1 := gi/hi using exact division.

e. If deg(gi+1) = 0 put n j := 0 for i < j ≤ d and proceed to step 3.

3. Output n1, . . . , nd .

Algorithm 1.5 makes repeated use of the fact that the polynomial

x pi
− x =

∏

a∈Fpi

(x − a)

is equal to the product of all monic polynomials of degree i in Fp[x]. By starting with i = 1 and removing
all factors of degree i as we go, we ensure that each hi is a product of irreducible polynomials of degree i.
Using fast algorithms for integer and polynomial arithmetic and the fast Euclidean algorithm (see [29,
§8-11], for example), one can show that this algorithm uses O((d log p)2+o(1)) bit operations, a running
time that is quasi-quadratic in the O(d log p) bit-size of its input g ∈ Fp[x], and in practical terms it is
extremely efficient.5 In practical terms, it is extremely efficient. For example, the table of ci(B) values
for our example polynomial f (x) = x3− x+1 took less than two minutes to create using the smalljac
software library [48, 85], which includes an efficient implementation of basic finite field arithmetic.
The NTL [80] and FLINT [33, 34] libraries incorporate variants of this algorithm, as do the computer
algebra systems Sage [67] and Magma [11].

Remark 1.6. Note that Algorithm 1.5 does not output the factorization of f (x), just the degrees of
its irreducible factors. The algorithm can be extended to a probabilistic algorithm that outputs the
complete factorization of f (x) (see [29, Alg. 14.8], for example), with an expected running time that
is also quasi-quadratic. But no deterministic polynomial-time algorithm for factoring polynomials over
finite fields is known, not even for d = 2. This is a famous open problem. One approach to solving it

5One can improve this to O
�

d1.5+o(1)(log p)1+o(1)+d1+o(1)(log p)2+o(1)
�

via [50]. In our setting d is fixed and log p is tending
to infinity, so this is not an asymptotic improvement, but it does provide a constant factor improvement for large d.
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is to first prove the generalized Riemann hypothesis (GRH), which would address the case d = 2 and
many others, but it is not known whether the GRH is sufficient to address all cases.6

1.5. Arithmetic schemes. We now want to generalize our first example. Let us replace the equation
f (x) = 0 with an arithmetic scheme X , a scheme of finite type over Z; the case we have been considering
is X = Spec A, where A = Z[x]/( f ). For each prime p the fiber Xp of X → SpecZ is a scheme of finite
type over Fp, and we let NX (p) := Xp(Fp) count its Fp-points; equivalently, we may define NX (p) as
the number of closed points (maximal ideals) of X whose residue field has cardinality p, and similarly
define NX (q) for prime powers q = pr . The local zeta function of X at p is then defined as

ZXp
(T ) := exp

�∞
∑

r=1

NX (p
r)

T r

r

�

.

These local zeta functions can then be packaged into a single arithmetic zeta-function

ζX (s) :=
∏

p

ZXp
(p−s).

In our example with X = SpecZ[x]/( f ), the zeta function ζX (s) coincides with the Artin L-function
L(ρ f , s) =

∏

Lp(s)−1 up to a finite set of factors at primes p that divide disc( f ).
The definitions above generalize to any number field K: replace Q by K , replace Z by ZK , replace p

by a prime p of K (nonzero prime ideal of ZK), replace Fp ' Z/pZ by the residue field Fp := ZK/p. When
considering questions of equidistribution we order primes p by their norm N(p) := Fp (we may break
ties arbitrarily), so that rather that summing over p ≤ B we sum over p for which N(p)≤ B.

1.6. A second example. We now leave the world of Artin motives, which are motives of weight 0,
and consider the simplest example in weight 1, an elliptic curve E/Q. This is the setting in which the
Sato–Tate conjecture was originally formulated. Such a curve E can always be written in the form

E : y2 = x3 + Ax + B,

with A, B ∈ Z. This equation is understood to define a smooth projective curve in P2 (homogenize the
equation by introducing a third variable z), which has a single projective point P∞ := (0 : 1 : 0) at
infinity that we take as the identity element of the group law. Recall that an elliptic curve is not just a
curve, it comes equipped with a distinguished rational point; after applying a suitable automorphism
of P2 we can always take this to be the point P∞.

The group operation on E can be defined via the usual chord-and-tangent law (three points on a line
sum to zero), which can be used to derive explicit formulas with coefficients in Q, or in terms of the
divisor class group Pic0(E) (divisors of degree zero modulo principal divisors), in which every divisor
class can be uniquely represented by a divisor of the form P− P∞, where P is a point on the curve. This
latter view is more useful in that it easily generalizes to curves of genus g > 1, whereas the chord-and-
tangent law does not. The Abel–Jacobi map P 7→ P − P∞ gives a bijection between points on E and
points on Jac(E) that commutes with the group operation, so the two approaches are isomorphic.

For each prime p that does not divide the discriminant ∆ := −16(4A3 + 27B2) we can reduce our
equation for E modulo p to obtain an elliptic curve Ep/Fp; in this case we say that p is a prime of
good reduction for E (or simply a good prime). We should note that the discriminant∆ is not necessarily

6But if you succeed with even part of this first step, the Clay institute will help fund the remaining work.
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minimal, the curve E may have another model that has good reduction at primes that divide∆ (including
the prime 2), but we are happy to ignore any finite set of primes, including all those that divide ∆.7

For every prime p of good reduction for E we have

NE(p) := #Ep(Fp) = p+ 1− tp,

where the integer tp satisfies the Hasse-bound |tp| ≤ 2
p

p. In contrast to our first example, the integers
NE(p) now tend to infinity with p: we have NE(p) = p + 1+ O(pp). In order to study how the error
term varies with p we want to consider the normalized traces

xp := tp/
p

p ∈ [−2, 2].

We are now in a position to conduct the following experiment: given an elliptic curve E/Fp, compute xp

for all good primes p ≤ B and see how the xp are distributed over the real interval [−2, 2].
One can see an example for the elliptic curve E : y2 = x3 + x + 1 in Figure 1, which shows a

histogram whose x-axis spans the interval [−2, 2]. This interval is subdivided into approximately
p

π(B)
subintervals, each of which contains a colored bar whose height is proportional to the number of xp

(for p ≤ B) that lie in the subinterval. The gray line shows the height of the uniform distribution for
scale (note that the vertical and horizontal scales are not the same, they were chosen judiciously). For
0≤ n≤ 10, the moment statistics

Mn :=

∑

p≤B xn
p

∑

p≤B 1
,

are shown below the histogram. They appear to converge to the integers 1, 0,1, 0,2, 0,5, 0,14, 0,42,
which is the start of sequence A126120 in the Online Encyclopedia of Integer Sequences (OEIS) [64]).

The Sato–Tate conjecture for elliptic curves over Q (now a theorem) implies that for almost all E/Q,
whenever we run this experiment we will see the asymptotic distribution of Frobenius traces visible
in Figure 1, with moment statistics that converge to the same integer sequence. In order to make
this conjecture precise, let us first explain where the conjectured distribution comes from. In our first
example we had a compact matrix group G f associated to the scheme X = SpecZ[x]/( f ) whose Haar
measure governed the distribution of N f (p). In fact we showed that more is true: there is a direct
relationship between characteristic polynomials of elements of G f and the L-polynomials Lp(T ) that
appear in the local zeta functions Z fp

(T ).
The same is true with our elliptic curve example. In order to identify a candidate group GE whose

Haar measure controls the distribution of normalized Frobenius traces xp we need to look at the local
zeta functions ZEp

(T ). Let us recall what the Weil conjectures [96] (proved by Deligne [18, 19]) tell us
about the zeta function of a variety over a finite field. The case of one-dimensional varieties (curves) was
proved by Weil [94], who also proved an analogous result for abelian varieties [95]. This covers all the
cases we shall consider, but let us state the general result. Recall that for a compact manifold X over C,
the Betti number bi is the rank of the singular homology group Hi(X ,Z), and the Euler characteristic χ
of X is defined by χ :=

∑

(−1)i bi .

7All elliptic curves over Q have a global minimal model for which the primes of bad reduction are precisely those that
divide the discriminant, but this model is not necessarily of the form y2 = x3 + Ax + B. Over general number fields global
minimal models do not always exist (they do when the class number is one).
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FIGURE 1. Click image to animate (requires Adobe Reader), or visit this web page.

Theorem 1.7 (WEIL CONJECTURES). Let X be a geometrically irreducible non-singular projective variety
of dimension n defined over a finite field Fq and define the zeta function

ZX (T ) := exp

�∞
∑

r=1

NX (q
r)

T r

r

�

,

where NX (qr) := #X (Fqr ). The following hold:

(i) Rationality: ZX (T ) is a rational function of the form

ZX (T ) =
P1(T ) · · · P2n−1(T )
P0(T ) · · · P2n(T )

,

with Pi ∈ 1+ TZ[T].
(ii) Functional Equation: the roots of Pi(T ) are the same as the roots of Tdeg P2n− j P2n− j(1/(qnT )).8

(iii) Riemann Hypothesis: the complex roots of Pi(T ) all have absolute value q−i/2.

(iv) Betti Numbers: if X is the reduction of a non-singular variety Y defined over a number field K ⊆ C,
then the degree of Pi is equal to the Betti number bi of Y (C).

8Moreover, one has ZX (T ) = ±q−nχ/2T−χZX (1/(qnT )), where χ is the Euler characteristic of X , which is defined as the
intersection number of the diagonal with itself in X × X .
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The curve Ep is a curve of genus g = 1, so we may apply the Weil conjectures in dimension n = 1,
with Betti numbers b0 = b2 = 1 and b1 = 2g = 2. This implies that its zeta function can be written as

(5) ZEp
(T ) =

Lp(T )

(1− T )(1− pT )
,

where Lp ∈ Z[T] is a polynomial of the form

Lp(T ) = pT2 + c1T + 1,

with |c1| ≤ 2
p

p (by the Riemann Hypothesis). If we expand both sides of (5) as power series in Z[[T]]
we obtain

1+ NE(p)T
2 + · · ·= 1+ (p+ 1+ c1)T + · · · ,

so we must have NE(p) = p+ 1+ c1, and therefore

c1 = NE(p)− p− 1= −tp.

It follows that the single integer NE(p) completely determines the zeta function ZEp
(T ).

Corresponding to our normalization xp = tp/
p

p, we define the normalized L-polynomial

L̄p(T ) := Lp(T/
p

p) = T2 + a1T + 1,

where a1 = c1/
p

p = −xp is a real number in the interval [−2, 2] and the roots of L̄p(T ) lie on the unit
circle. In our first example we obtained the group G f as a subgroup of permutation matrices in GLd(C).
Here we want a subgroup of GL2(C) whose elements have eigenvalues that

(a) are inverses (by the functional equation);
(b) lie on the unit circle (by the Riemann hypothesis).

Constraint (a) makes it clear that every element of GE should have determinant 1, so GE ⊆ SL2(C).
Constraints (a) and (b) together imply that in fact GE ⊆ SU(2). As in the weight zero case, we expect
that GE should in general be as large as possible, that is, GE = SU(2).

We now consider what it means for an elliptic curve to be generic.9 Recall that the endomorphism ring
of an elliptic curve E necessarily contains a subring isomorphic to Z, corresponding to the multiplication-
by-n maps P 7→ nP. Here

nP = P + · · ·+ P

denotes repeated addition under the group law, and we take the additive inverse if n is negative. For
elliptic curves over fields of characteristic zero, this typically accounts for all the endomorphisms, but
in special cases the endomorphism ring may be larger, in which case it contains elements that are not
multiplication-by-n maps but can be viewed as “multiplication-by-α" maps for some α ∈ C. One can
show that the characteristic polynomials of these extra endomorphisms are necessarily quadratic, with
negative discriminants, so such an α necessarily lies in an imaginary quadratic field K , and in fact
End(E) ⊗Z Q ' K . When this happens we say that E has complex multiplication (CM) by K (or more
precisely, by the order in ZK isomorphic to End(E)).

We can now state the Sato-Tate conjecture, as independently formulated in the mid 1960’s by Mikio
Sato (based on numerical data) and John Tate (as an application of what is now known as the Tate
conjecture [88]), and finally proved in the late 2000’s by Richard Taylor et al. [6, 7, 32].

9The criterion given here in terms of endomorphism rings suffices for elliptic curves (and curves of genus g ≤ 3 or abelian
varieties of dimension g ≤ 3), but in general one wants the Galois image to be as large as possible, which is a strictly stronger
condition for g > 3. This issue is discussed further in Section 3.
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Theorem 1.8 (SATO–TATE CONJECTURE). Let E/Q be an elliptic curve without C M. The sequence of
normalized Frobenius traces xp associated to E is equidistributed with respect to the pushforward of the
Haar measure on SU(2) under the trace map. In particular, for every subinterval [a, b] of [−2, 2] we have

lim
B→∞

#{p ≤ B : xp ∈ [a, b]}
#{p ≤ B}

=
1

2π

∫ b

a

p

4− t2 d t.

We have not defined xp for primes of bad reduction, but there is no need to do so; this theorem is
purely an asymptotic statement. To see where the expression in the integral comes from, we need to un-
derstand the Haar measure on SU(2) and its pushforward onto the set of conjugacy classes conj(SU(2))
(in fact we only care about the latter). A conjugacy class in SU(2) can be described by an eigenangle
θ ∈ [0,π]; its eigenvalues are then e±iθ (a conjugate pair on the unit circle, as required). In terms of
eigenangles, the pushforward of the Haar measure to conj(SU(2)) is given by

µ=
2
π

sin2 θ dθ

(see Exercise 2.4), and the trace is t = 2cosθ ; from this one can deduce the trace measure 1
2π

p
4− t2d t

on [−2,2] that appears in Theorem 1.8. We can also use the Haar measure to compute the nth moment
of the trace

(6) E[tn] =
2
π

∫ π

0

(2cosθ )n sin2 θdθ =

¨

0 if n is odd,
1

m+1

�2m
m

�

if n= 2m is even,

and find that the 2mth moment is the mth Catalan number.10

1.7. Exercises.

Exercise 1.1. Let f ∈ Z[x] be a nonconstant squarefree polynomial. Prove that the average value of
N f (p) over p ≤ B converges to the number of irreducible factors of f in Z[x] as B→∞.

Exercise 1.2. Prove that the identity in (4) holds for all matrices A∈ GLd(C).

Exercise 1.3. Let fp ∈ Fp[x] denote a squarefree polynomial of degree d > 0 and let Lp(T ) denote the
denominator of the zeta function Z fp

(T ). We know that the roots of Lp(T ) lie on the unit circle in the
complex plane; show that in fact each is an nth root of unity for some n ≤ d. Then give a one-to-one
correspondence between (i) cycle-types of degree-d permutations, (ii) possible factorization patterns of
fp in Fp[x], and (iii) the possible polynomials Lp(T ).

Exercise 1.4. Construct a monic squarefree quintic polynomial f ∈ Z[x] with no roots in Q such that
fp(x) has a root in Fp for every prime p. Compute c0, . . . , c5 and G f .

Exercise 1.5. Let X be the arithmetic scheme SpecZ[x , y]/( f , g), where

f (x , y) := y2 − 2x3 + 2x2 − 2x − 2, g(x , y) := 4x2 − 2x y + y2 − 2.

By computing ZXp
(T ) = Lp(T )−1 for sufficiently many small primes p, construct a list of the polynomials

Lp ∈ Z[T] that you believe occur infinitely often, and estimate their relative frequencies. Use this data
to derive a candidate for the matrix group GX := ρX (Gal(Q/Q), where ρX is the Galois representation
defined by the action of Gal(Q/Q) on X (Q). You may wish to use of computer algebra system such as
Sage [67] or Magma or [11] to facilitate these calculations.

10This gives a way to define the Catalan numbers that does not appear to be among the 214 listed in [84].
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2. EQUIDISTRIBUTION, L-FUNCTIONS, AND THE SATO-TATE CONJECTURE FOR ELLIPTIC CURVES

In this section we introduce the notion of equidistribution in compact groups G and relate it to analytic
properties of L-functions of representations of G. We then explain (following Tate) why the Sato-Tate
conjecture for elliptic curves follows from the holomorphicity and non-vanishing of a certain sequence
of L-functions associated that one can associate to any elliptic curve over Q (or any number field).

2.1. Equidistribution. We now formally define the notion of equidistribution, following [71, §1A]. For
a compact Hausdorff space X , we use C(X ) to denote the Banach space of complex-valued continuous
functions f : X → C equipped with the sup-norm ‖ f ‖ := supx∈X | f (x)|. The space C(X ) is closed under
pointwise addition and multiplication and contains all constant functions; it is thus a commutative C-
algebra with unit 1X (the function x 7→ 1).11 For any C-valued functions f and g (continuous or not),
we write f ≤ g whenever f and g are both R-valued and f (x)≤ g(x) for all x ∈ X ; in particular, f ≥ 0
means im( f ) ⊆ R≥0. The subset of R-valued functions in C(X ) form a distributive lattice under this
order relation.

Definition 2.1. A (positive normalized Radon) measure on a compact Hausdorff space X is a continuous
C-linear map µ: C(X )→ C that satisfies µ( f )≥ 0 for all f ≥ 0 and µ(1X ) = 1.

Example 2.2. For each point x ∈ X the map f 7→ f (x) defines the Dirac measure δx .

The value of µ on f ∈ C(X ) is often denoted using integral notation
∫

X
f µ := µ( f ),

and we shall use the two interchangeably.12

Having defined the measure µ as a function on C(X ), we would like to use it to assign values to
(at least some) subsets of X . It is tempting to define the measure of a set S ⊆ X as the measure of its
indicator function 1S , but in general the function 1S will not lie in C(X ); this occurs if and only if S is
both open and closed (which we note applies to S = X ). Instead, for each open set S ⊆ X we define

µ(S) = sup
�

µ( f ) : 0≤ f ≤ 1S , f ∈ C(X )
	

∈ [0, 1],

and for each closed set S ⊆ X we define

µ(S) = 1−µ(X − S) ∈ [0, 1].

If S ⊆ X has the property that for every ε > 0 there exists an open set U ⊇ S of measure µ(U) ≤ ε,
then we define µ(S) = 0 and say that S has measure zero. If the boundary ∂ S := S − S0 of a set S has
measure zero, then we necessarily have µ(S0) = µ(S) and define µ(S) to be this common value; such
sets are said to be µ-quarrable.

For the purpose of studying equidistribution, we shall restrict our attention to µ-quarrable sets S. This
typically does not include all measurable sets in the usual sense, by which we mean elements of the Borel
σ-algebraΣ of X generated by the open sets under complements and countable unions and intersections
(see Exercise 2.1). However, if we are given a regular Borel measure µ on X of total mass 1, by which
we mean a countably additive function µ: Σ→ R≥0 for which µ(S) = inf {µ(U) : S ⊆ U , U open} and
µ(X ) = 1, it is easy to check that defining µ( f ) :=

∫

X f µ for each f ∈ C(X ) yields a measure under
Definition 2.1; see [41, §1] for details. This measure is completely determined by the values µ takes on

11In fact it is a commutative C∗-algebra with complex conjugation as its involution, but we will not make use of this.
12Note that this is a definition; with a measure-theoretic approach one avoids the need to develop an integration theory.
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µ-quarrable sets; see [99]. In particular, the Haar measure of a compact group uniquely determines a
measure in the sense of Definition 2.1.

Definition 2.3. A sequence (x1, x2, x3, . . .) in X is said to be equidistributed with respect to µ, or simply
µ-equidistributed, if for every f ∈ C(X ) we have

µ( f ) = lim
n→∞

1
n

n
∑

i=1

f (x i).

Remark 2.4. When we speak of equidistribution, note that we are talking about a sequence (x i) of ele-
ments of X in a particular order; it does not make sense to say that a set is equidistributed. For example,
suppose we took the set of odd primes and arranged them in the sequence (5,13, 3,17, 29,7, . . .) where
we list two primes congruent to 1 modulo 4 followed by one prime congruent to 3 modulo 4. The se-
quence obtained by reducing this sequence modulo 4 is not equidistributed with respect to the uniform
measure on (Z/4Z)×, even though the sequence of odd primes in their usual order is (by Dirichlet’s the-
orem on primes in arithmetic progressions). However, local rearrangements that change the index of an
element by nor more than a bounded amount do not change its equidistribution properties. This applies,
in particular, to sequences indexed by primes in a number field ordered by norm; the equidistribution
properties of such a sequence do not depend on how we order primes of the same norm.

If (x i) is a sequence in X , for each f ∈ C(X ) we define the kth-moment of the sequence ( f (x i)) by

Mk[( f (x i)] := lim
n→∞

1
n

n
∑

i=1

f k(x i).

If these limits exist for all k ≥ 0, we then define the moment sequence

M[ f (x i)] := (M0[( f (x i)],M1[( f (x i)], M2[( f (x i)], . . .).

If (x i) is µ-equidistributed, then we have Mk[ f (x i)] = µ( f k) and the moment sequence

(7) M[ f (x i)] = (µ( f
0),µ( f 1),µ( f 2), . . .)

is independent of the sequence (x i); it depends only on the function f and the measure µ.

Remark 2.5. There is a partial converse that is relevant to some of our applications. To simplify matters,
let us momentarily restrict our attention to real-valued functions and for the purposes of this remark, let
C(X ) denote the Banach algebra of real-valued functions on X and replace C with R in Definition 2.1.
Let (x i) be a sequence in X and let f ∈ C(X ). Then f (X ) is a compact subset of R, and we may
view ( f (x i)) as a sequence in f (X ). If the moments Mk[ f (x i)] exist for all k ≥ 0, then there is a
unique measure on f (X ) with respect to which the sequence ( f (x i)) is equidistributed; this follows
from the Stone-Weierstrass theorem. If µ is a measure on C(X ), we define the pushforward measure
µ f (g) := µ(g ◦ f ) on C( f (X ), and we see that the sequence ( f (x i)) is µ f -equidistributed if and only if
(7) holds. This gives a necessary (but in general not sufficient condition) for (x i) to be µ-equidistributed
that can be checked by comparing moment sequences. If we have a collection of functions f j ∈ C(X )
such that the pushforward measures µ f j

uniquely determine µ, we obtain a necessary and sufficient
condition involving the moment sequences of the f j with respect to µ. One can generalize this remark
to complex-valued functions using the theory of C∗-algebras.

More generally, we have the following lemma.
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Lemma 2.6. Let ( f j) be a family of functions whose linear combinations are dense in C(X ). If (x i) is
a sequence in X for which the limit limn→∞

1
n

∑n
i=1 f j(x i) converges for every f j , then there is a unique

measure µ on X for which (x i) is µ-equidistributed.

Proof. See [71, Lemma A.1, p. I-19]. �

Proposition 2.7. If (x i) is a µ-equidistributed sequence in X and S is a µ-quarrable set in X then

µ(S) = lim
n→∞

#{x i ∈ S : i ≤ n}
n

.

Proof. See Exercise 2.2. �

Example 2.8. If X = [0, 1] and µ is the Lebesgue measure then a sequence (x i) is µ-equidistributed if
and only if for every 0≤ a < b ≤ 1 we have

lim
n→∞

#{x i ∈ [a, b] : i ≤ n}
n

= b− a.

More generally, if X is a compact subset of Rn and µ is the normalized Lebesgue measure, then (x i) is
µ-equidistributed if and only if for every µ-quarrable S ⊆ X we have limn→∞

1
n#{x i ∈ S : i ≤ n}= µ(S).

2.2. Equidistribution in compact groups. We now specialize to the case where X := conj(G) is the
space of conjugacy classes of a compact group G, obtained by taking the quotient of G as a topological
space under the equivalence relation defined by conjugacy; let π: G→ X denote the quotient map. We
then equip X with the pushforward of the Haar measure µ on G (normalized so that µ(G) = 1), which
we also denote µ. Explicitly, π induces a contravariant map of Banach spaces

C(X )→ C(G)

f 7→ f ◦π,

and the value of µ on C(X ) is defined by

µ( f ) := µ( f ◦π).

We say that a sequence (x i) in X or a sequence (gi) in G is equidistributed if it is µ-equidistributed (when
we speak of equidistribution in a compact group without explicitly mentioning a measure, we always
mean the Haar measure).

Proposition 2.9. Let G be a compact group with Haar measure µ, and let X := conj(G). A sequence (x i)
in X is µ-equidistributed if and only if for every irreducible character χ of G we have

lim
n→∞

1
n

n
∑

i=1

χ(x i) = µ(χ).

Proof. As explained in [71, Prop. A.2], this follows from Lemma 2.6 and the Peter-Weyl theorem, since
the irreducible characters χ of G generate a dense subset of C(X ). �

Corollary 2.10. Let G be a compact group with Haar measure µ, and let X := conj(G). A sequence (x i)
in X is µ-equidistributed if and only if for every nontrivial irreducible character χ of G we have

lim
n→∞

1
n

n
∑

i=1

χ(x i) = 0.

Proof. For the trivial character we have µ(1) = µ(G) = 1, and for any nontrivial irreducible character χ
we must have µ(χ) =

∫

G χµ=
∫

G 1 ·χµ= 0, by Schur orthogonality; the corollary follows. �
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To illustrate these results, let us apply Corollary 2.10 to prove an equidistribution result for elliptic
curves over finite fields that will be useful later. We first recall some basic facts. Let E be an elliptic
curve over a finite field Fq; without loss of generality, assume E/Fq is given by a projective plane model.
The Frobenius endomorphism πE : E→ E is defined by the rational map

(x : y : z) 7→ (xq : yq : zq).

Like all endomorphisms of elliptic curves, πE has a characteristic polynomial of the form

T2 − (trπE)T + degπE

that is satisfied by both πE and its dual π̂E , where trπE = πE + π̂E and q = degπE = πEπ̂E are both
integers.13 The set E(Fq) is, by definition, the subset of E(Fq) fixed by πE , equivalently, the kernel of
the endomorphism πE − 1. One can show that πE − 1 is a separable, and therefore

#E(Fq) = # ker(πE − 1) = deg(πE − 1) = (πE − 1)(π̂E − 1) = π̂EπE + 1− (π̂E +πE) = q+ 1− trπE .

It follows that tq := q + 1−#E(Fq) is the trace of Frobenius trπE . As we showed in Section 1.6 for the
case q = p, the zeta function of E can be written as

ZE(T ) =
qT2 − tqT + 1

(1− T )(1− qT )
,

where the complex roots of qT2 − tqT + 1 have absolute value q−1/2. This implies that we can write
tq = α+ ᾱ for some α ∈ C with |α|= q1/2, and we have #E(Fq) = q+ 1− (α+ ᾱ).

We now observe that for any integer r ≥ 1, the set E(Fqr ) is the subset of E(Fq) fixed by πr
E , which

corresponds to the qr -power Frobenius automorphism; it follows that

#E(Fqr ) = qr + 1− (αr + ᾱr),

and therefore αr + ᾱr is the trace tqr of the Frobenius endomorphism of the base change of E to Fqr .
As an application of Corollary 2.10, we now prove the following result, taken from [24, Prop 2.2].

Recall that E/Fq is said to be ordinary if tq is not zero modulo the characteristic of Fq.

Proposition 2.11. Let E/Fq be an ordinary elliptic curve and for integers r ≥ 1, let tqr := qr+1−#E(Fqr )
and define

xr := tqr/qr/2.

The sequence (xr) is equidistributed in [−2, 2] with respect to the measure

µ :=
1
π

dz
p

4− z2
,

where dz is the Lebesgue measure on [−2,2].

Proof. Let α be as above, with |α|= q1/2 and trπE = α+ ᾱ. Then xr = (αr + ᾱr)/qr/2 for all r ≥ 1. Let
U(1) := {u ∈ C× : uū = 1} be the unitary group. For u = eiθ , the Haar measure on U(1) corresponds
to the uniform measure on θ ∈ [−π,π], this follows immediately the translation invariance of the
Haar measure. Let us compute the pushforward of the Haar measure of U(1) to [−2, 2] via the map
u 7→ z := u+ ū= 2cosθ . We have dz = 2sinθdθ , and see that the pushforward is precisely µ.

13By the dual of an endomorphism of a polarized abelian variety we mean the Rosati dual (see [54, §13]), which for elliptic
curves we may identify with the dual isogeny.
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The nontrivial irreducible characters U(1) → C× all have the form φa(u) = ua for some nonzero
a ∈ Z. For each such φa we have

lim
n→∞

1
n

n
∑

r=1

φa(α
r/qr/2) = lim

n→∞

1
n

n
∑

r=1

(α/q1/2)ra = lim
n→∞

1
n
(α/q1/2)a(n+1) − (α/q1/2)a

(α/q1/2)a − 1
= 0.

The hypothesis that E is ordinary guarantees that α/q1/2 is not a root of unity (see Exercise 2.3), thus
(α/q1/2)a − 1 is nonzero for all nonzero a ∈ Z. Corollary 2.10 implies that (αr/qr/2) is equidistributed
in U(1), and therefore (xr) is µ-equidistributed. �

See [2] for a generalization to smooth projective curves C/Fq of arbitrary genus g ≥ 1.

2.3. Equidistribution for L-functions. As above, let G be a compact group and let X := conj(G). Let K
be a number field, and let P := (p1,p2,p3, . . .) be a sequence consisting of all but finitely many primes p
of K ordered by norm; this means that N(pi)≤ N(p j) for all i ≤ j. Let (xp) be a sequence in X indexed
by P, and for each irreducible representation ρ : G→ GLd(C), define the L-function

L(ρ, s) :=
∏

p∈P

det(1−ρ(xp)N(p)−s)−1,

for s ∈ C with Re(s)> 1.

Theorem 2.12. Let G and (xp) be as above, and suppose L(ρ, s) is meromorphic on Re(s) ≥ 1 with no
zeros or poles except possibly at s = 1, for every irreducible representation ρ of G. The sequence (xp) is
equidistributed if and only if for each ρ 6= 1, the L-function L(ρ, s) extends analytically to a function that
is holomorphic and nonvanishing on Re(s)≥ 1.

Proof. See the corollary to [71, Thm. A.2], or see [24, Thm. 2.3]. �

A notable case in which the hypothesis of Theorem 2.12 is known to hold is when L(ρ, s) corresponds
to an Artin L-function. As in Section 1.1, to each prime p in K we associate an absolute Frobenius
element Frobp ∈ Gal(K/K), and for each finite Galois extension L/K we use conjL(Frobp) to denote the
conjugacy class in Gal(L/K) of the restriction of Frobp to L.

Corollary 2.13. Let L/K be a finite Galois extension with G := Gal(L/K) and let P be the sequence
of unramified primes of K ordered by norm (break ties arbitrarily). The sequence (conjL(Frobp))p∈P is
equidistributed in conj(G); in particular, the Chebotarev density theorem (Theorem 1.1) holds.

Proof. For the trivial representation, the L-function L(1, s) agrees with the Dedekind zeta function ζK(s)
up to a finite number of holomorphic nonvanishing factors, and, as originally proved by Hecke, ζK(s) is
holomorphic and nonvanishing on Re(s)≥ 1 except for a simple pole at s = 1; see [62, Cor. VII.5.11], for
example. For every nontrivial irreducible representation ρ : G→ GLd(C), the L-function L(ρ, s) agrees
with the corresponding Artin L-function for ρ, up to a finite number of holomorphic nonvanishing
factors, and, as originally proved by Artin, L(ρ, s) is holomorphic and nonvanishing on Re(s) ≥ 1; see
[14, p.225], for example. The corollary then follows from Theorem 2.12. �

2.4. Sato–Tate for CM elliptic curves. As a second application of Theorem 2.12, let us prove an
equidistribution result for CM elliptic curves. To do so we need to introduce Hecke characters, which
we will view as (quasi-)characters of the idèle class group of a number field.
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Definition 2.14. Let K be a number field and let IK denote its idèle group. A Hecke character is a
continuous homomorphism

ψ: IK → C×

whose kernel contains K×. The conductor ofψ is the ZK -ideal f :=
∏

p p
ep in which each ep is the minimal

nonnegative integer for which 1+ p̂ep ⊆ Z×Kp
,→ IK lies in the kernel of ψ (all but finitely many ep are

necessarily zero because ψ is continuous).

Each Hecke character ψ has an associated Hecke L-function

L(ψ, s) :=
∏

p-f (1−ψ(p)N(p)
−s)−1,

where ψ(p) :=ψ(πp̂) for any uniformizer πp̂ of p̂ (we have omitted the gamma factors at archimedean
places). We now want to consider the sequence of unitarized values

xp :=
ψ(p)
|ψ(p)|

∈ U(1)

indexed by primes p - f ordered by norm.

Lemma 2.15. The sequence (xp) is equidistributed in U(1).

Proof. As in the proof of Proposition 2.11, the nontrivial irreducible characters of U(1) are those of
the form φa(z) = za with a ∈ Z nonzero, and in each case the corresponding L-function is a Hecke
L-function (if ψ is a Hecke character, so is ψa and its unitarized version). If ψ is trivial then, as in
the proof of Corollary 2.13, L(1, s) is holomorphic and nonvanishing on Re(s) ≥ 1 except for a simple
pole at s = 1 because the same is true of ζK(s). Hecke proved [40] that when ψ is nontrivial L(ψ, s) is
holomorphic and nonvanishing on Re(s)≥ 1, and the lemma then follows from Theorem 2.12. �

As an application of Corollary 2.15, we can now prove the Sato-Tate conjecture for CM elliptic curves.
Les us first consider the case where K is an imaginary quadratic field and E/K is an elliptic curve with
CM by K (so K ' End(E)⊗Z Q). As explained below, the general case (including K = Q) follows easily.

Let f be the conductor of E; this is a ZK -ideal divisible only by the primes of bad reduction for E; see
[81, §IV.10] for a definition. A classical result of Deuring [81, Thm. II.10.5] implies the existence of a
Hecke character ψE of K of conductor f such that for each prime p - f we have |ψE(p)|= N(p)1/2 and

ψE(p) +ψE(p) = tp,

where tp := trπE = N(p) + 1−#Ep(Fp) ∈ Z is the trace of Frobenius of the reduction of E modulo p.

Proposition 2.16. Let K be an imaginary quadratic field and let E/K be an elliptic curve of conductor f

with CM by K. Let P be the sequence of primes of K that do not divide f ordered by norm (break ties
arbitrarily), and for p ∈ P let xp := tp/N(p)1/2 ∈ [−2,2] be the normalized Frobenius trace of Ep. The
sequence (xp) is equidistributed on [−2,2] with respect to the measure

µcm :=
1
π

dz
p

4− z2
.

Proof. By the previous lemma, the sequence (ψE(p)/N(p)1/2)p∈P is equidistributed in U(1). As shown
in the proof of Proposition 2.11, the measure µcm is the pushforward of the Haar measure on U(1) to
[−2,2] under the map u 7→ u+ ū. For each p ∈ P the image of ψE(p)/N(p)1/2 under this map is

ψE(p)
N(p)1/2

+
ψE(p)

N(p)1/2
=

tp

N(p)1/2
= xp. �
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Figure 2 shows a trace histogram for the CM elliptic curve y2 = x3 + 1 over its CM field Q(
p
−3).

FIGURE 2. Click image to animate (requires Adobe Reader), or visit this web page.

Let us now consider the case of an elliptic curve E/Q with CM by F . For primes p of good reduction
that are inert in F , the endomorphism algebra End(Ep)Q := End(Ep) ⊗Z Q of the reduced curve Ep

contains two distinct imaginary quadratic fields, one corresponding to the CM field F ' End(E)Q and
the other generated by the Frobenius endomorphism (the two cannot coincide because p is inert in F but
the Frobenius endomorphism has norm p in End(Ep)Q). It follows that End(Ep)Q must be a quaternion
algebra, Ep is supersingular, and for p > 3 we must have tp = 0, since tp ≡ 0 mod p and |tp| ≤ 2

p
p;

see [82, III,9,V.3] for these and other facts about endomorphism rings of elliptic curves.
At split primes p = pp̄ the reduced curve Ep will be isomorphic to the reduction modulo p of its base

change to F (both of which are elliptic curves over Fp = Fp), and will have the same trace of Frobenius
tp = tp. By the Chebotarev density theorem, the split and inert primes both have density 1/2, and it
follows that the sequence of normalized Frobenius traces xp := tp/

p
p ∈:= [−2,2] is equidistributed

with respect to the measure 1
2δ0 +

1
2µcm, where we use the Dirac measure δ0 to put half the mass at 0

to account for the inert primes. This can be seen in Figure 3, which shows a trace histogram for the CM
elliptic curve y2 = x3 + 1 over Q; the thin spike in the middle of the histogram at zero has area 1/2
(one can also see that the nontrivial moments are half what they were in Figure 2).

A similar argument applies when E is defined over a number field K that does not contain the CM
field F . For the sake of proving an equidistribution result we can restrict our attention to the degree-1
primes p of K , those for which N(p) = p is prime. Half of these primes p will split in the compositum KF ,
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FIGURE 3. Click image to animate (requires Adobe Reader), or visit this web page.

and the subsequence of normalized traces xp at these primes will be equidistributed with respect to the
measure µcm, and half will be inert in KF , in which case xp = tp = 0.

2.5. Sato–Tate for non-CM elliptic curves. We can now state the Sato-Tate conjecture in the form
originally given by Tate, following [71, §1A]. Tate’s seminal paper [88] describes what is now known as
the Tate conjecture, which comes in two conjecturally equivalent forms T1 and T2, the latter of which
is stated in terms of L-functions. The Sato-Tate conjecture is obtained by applying T2 to all powers of
a fixed elliptic curve E/Q (as products of abelian varieties); see [66] for an introduction to the Tate
conjecture and an explanation of how the Sato-Tate conjecture fits within it.

Let G be the compact group SU(2) of 2 × 2 unitary matrices with determinant 1. The irreducible
representations of G are the mth symmetric powers ρm of the natural representation ρ1 of degree 2
given by the inclusion SU(2) ⊆ GL2(C). Each element of X := conj(G) can be uniquely represented by a
matrix of the form

�

eiθ 0
0 e−iθ

�

,

where θ ∈ [0,π] is the eigenangle of the conjugacy class. It follows that each f ∈ C(X ) can be viewed
as a continuous function f (θ ) on the compact set [0,π]. The pushforward of the Haar measure is

(8) µ=
2
π

sin2 θ dθ
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(see Exercise 2.4), which means that for each f ∈ C(X ) we have

µ( f ) =
2
π

∫ π

0

f (θ ) sin2 θ dθ .

Let E/Q be an elliptic curve without CM, let P := (p) be the sequence of primes that do not divide
the conductor N of E, in order, and for each p ∈ P let xp ∈ X to be the element of X corresponding to
the unique θp ∈ [0,π] for which 2 cosθp

p
p = tp := p + 1 −#Ep(Fp) is the trace of Frobenius of the

reduced curve Ep.
We are now in the setting of §2.3. We have a compact group G := SU(2), its space of conjugacy classes

X := conj(G), a number field K = Q, a sequence P containing all but finitely many primes of K ordered
by norm, a sequence (xp) in X indexed by P, and for each integer m≥ 1, an irreducible representation
ρm : G→ GLm+1(C). The L-function corresponding to ρm is given by

L(ρm, s) :=
∏

p-N det(1−ρm(xp)p
−s)−1 =

∏

p-N
m
∏

k=0

(1− ei(m−2k)θp p−s)−1.

For each p - N , let αp and ᾱp be the roots of T2 − tpT + p, so that αp = eiθp p1/2. If we now define

L1
m(s) :=

∏

p -N
m
∏

r=0

(1−αm−r
p ᾱr

pp−s)−1,

then for m≥ 1 we have

L(ρm, s) = L1
m(s−m/2).

Tate conjectured in [88] that L1
m(s) is holomorphic and nonvanishing on Re(s)≥ 1+m/2, which implies

that each L(ρm, s) is holomorphic and nonvanishing on Re(s)≥ 1. Assuming this is true, Theorem 2.12
implies that the sequence (xp) is µ-equidistributed, which is equivalent to the Sato-Tate conjecture.

We now recall the modularity theorem for elliptic curves over Q, which states that there is a one-to-one
correspondence between isogeny classes of elliptic curves E/Q of conductor N and modular forms

f (z) =
∑

n≥1

ane2πinz ∈ S2(Γ0(N))
new (an ∈ Z with a1 = 1)

that are eigenforms for the action of the Hecke algebra on the space S2(Γ0(N)) of cuspforms of weight 2
and level N and new at level N , meaning that it does not lie in S2(Γ0(M)) for any M properly divid-
ing N . Such modular forms f are called (normalized) newforms, of weight 2 and level N , with rational
coefficients. The modularity theorem was proved for squarefree N by Taylor and Wiles [91, 98], and
extended to all N by Breuil, Conrad, Diamond, and Taylor [12].

The modular form f is a simultaneous eigenform for all the Hecke operators Tn, and the normalization
a1 = 1 ensures that for each prime p - N , the coefficient ap is the eigenvalue of f for Tp. Under the
correspondence given by the modularity theorem, the eigenvalue ap is equal to the trace of Frobenius
tp of the reduced curve Ep, where E is any representative of the corresponding isogeny class. Here we
are using the fact that if E and E′ are isogenous elliptic curves over Q they necessarily have the same
conductor N and the same trace of Frobenius tp at ever p - N .

There is an L-function L( f , s) associated to the modular form f , and the modularity theorem guar-
antees that it coincides with the L-function L(E, s) of E. So not only does ap = tp for all p - N , the Euler
factors at the bad primes p|N also agree. We need not concern ourselves with Euler factors at these
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primes, other than to note that they are holomorphic and nonvanishing on Re(s)≥ 3/2. After removing
the Euler factors at bad primes, the L-functions L(E, s) and L( f , s) both have the form

∏

p-N (1− app−s + p1−2s)−1 =
∏

p-N
1
∏

r=0

(1−α1−r
p ᾱr

pp−s)−1 = L1
1(s),

where αp and ᾱp are the roots of T2 − apT + p = T2 − tpT + p.
The L-function L( f , s) is holomorphic and nonvanishing on Re(s) ≥ 3/2; see [21, Prop. 5.9.1]. The

modularity theorem tells us that the same is true of L(E, s), and therefore of L1
1(s). Thus the modularity

theorem proves that Tate’s conjecture regarding L1
m(s) holds when m = 1. To prove the Sato-Tate

conjecture we need this for all m≥ 1.

Theorem 2.17. Let f (z) :=
∑

n≥1 ane2πizn ∈ S2(Γ0(N)new be a normalized newform without CM. For each
prime p - N let αp, ᾱp be the roots of T2 − apT + p. Then

∏

p-N
m
∏

r=0

(1−αm−r
p ᾱr

pp−s)−1 = L1
m(s)

is holomorphic and nonvanishing on Re(s)≥ 1+m/2.

Proof. Apply [7, Theorem B.2] with weight k = 2, trivial nebentypus ψ= 1, and trivial character χ = 1
(as noted in [7], this special case was already addressed in [32]). �

Corollary 2.18. The Sato-Tate conjecture (Theorem 1.8) holds.

Remark 2.19. The Sato-Tate conjecture is also known to hold for elliptic curves over totally real fields,
and over CM fields (imaginary quadratic extensions of totally real fields). The totally real case was
initially proved for elliptic curves with potentially multiplicative reduction at some prime in [32, 90]; it
was later shown this technical assumption can be removed (see the introduction of [6]). The general-
ization to CM fields was obtained at a recent IAS workshop [3] and still in the process of being written
up in detail. As a consequence of this result the Sato-Tate conjecture for elliptic curves is now known
for all number fields of degree 1 or 2 (but not for any higher degrees).

2.6. Exercises.

Exercise 2.1. Let X be a compact Hausdorff space. Show that the a set S ⊆ X is µ-quarrable for every
measure µ on X if and only if the set S is both open and closed.

Exercise 2.2. Prove Proposition 2.7.

Exercise 2.3. Let E an elliptic curve over Fq and let α be a root of the characteristic polynomial of the
Frobenius endomorphism πE . Prove that α/

p
q is a root of unity if and only if E is supersingular.

Exercise 2.4. Show that the set of conjugacy classes of SU(2) is in bijection with the set of eigenangles
θ ∈ [0,π]. Then prove that the pushforward of the Haar measure of SU(2) onto [0,π] is given by
µ := 2

π sin2 θ dθ (hint: show that SU(2) is isomorphic to the 3-sphere S3 and use this isomorphism
together with the translation invariance of the Haar measure to determine µ)

Exercise 2.5. Compute the trace moment sequence for SU(2) (that is, prove (6)). Embed U(1) in SU(2)
via the map u 7→

�

u 0
0 ū

�

and compute its trace moment sequence (compare to Figure 2). Now determine
the normalizer N(U(1)) of U(1) in SU(2) and compute its trace moment sequence (compare to Figure 3).
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3. SATO-TATE GROUPS

In the previous section we showed that there are three distinct Sato-Tate distributions that arise for
elliptic curves E over number fields K (only two of which occur when K = Q). All three distributions
can be associated to the Haar measure of a compact subgroup G ⊆ SU(2), in which we embed U(1) via
the map u 7→

�

u 0
0 ū

�

. We are interested in the pushforward µ of the Haar measure onto conj(G), which
can be expressed in terms of the eigenangle θ ∈ [0,π]. The three possibilities for G are listed below.

• U(1): we have µ(θ ) = 1
πdθ and trace moments: (1, 0,2, 0,6, 0,20,0, 70,0, 252, . . .).

This case arises for CM elliptic curves defined over a field that contains the CM field.

• N(U(1)): we haveµ(θ ) = 1
2πdθ+1

2δπ/2 and trace moments: (1,0, 1,0, 3,0, 10,0, 35,0, 126, . . .).
This case arises for CM elliptic curves defined over a field that does not contain the CM field.

• SU(2): we have µ(θ ) = 2
π sin2 θ dθ and trace moments: (1, 0,1, 0,2,0, 5,0, 14,0, 42, . . .).

This case arises for all non-CM elliptic curves (conjecturally so when K not totally real or CM).

We have written µ in terms of θ , but we may view it as a linear function on the Banach space C(X ),
where we identify X := conj(G)with [0,π], by defining µ( f ) =

∫ π

0 f (θ )µ(θ ), as in §2.1. In particular, µ
assigns a value to the trace function tr: X → [−2,2], where tr(θ ) = 2cosθ , and to its powers trn, which
allows us to compute the trace moment sequence (µ(trn))n≥0.

Our goal in this section is to define the compact group G as an invariant of the elliptic curve E, the
Sato-Tate group of E, and to then generalize this definition to abelian varieties of arbitrary dimension.
This will then allow us to state the Sato-Tate conjecture for abelian varieties as an equidistribution
statement, relative to the Haar measure of the Sato-Tate group.

3.1. The Sato-Tate group of an elliptic curve. Thus far the link between the elliptic curve E and the
compact group G whose Haar measure is claimed (and in many cases proved) to govern the distribution
of Frobenius traces has been made via the measure µ. That is, we have an equidistribution claim for the
sequence (xp) of normalized Frobenius traces associated to E that is phrased in terms of a measure µ
that happens to be induced by the Haar measure of a compact group G. We now want to establish a
direct relationship between E and G that defines G as an arithmetic invariant of E, without assuming
the Sato-Tate conjecture.

In Section 1.1 we considered the Galois representation ρ f : Gal(Q/Q)→ GLd(C) defined by the action
of Gal(Q/Q) on the roots of a squarefree polynomial f ∈ Z[x]. We thereby obtained a compact group G f

and a map that sends each prime p of good reduction for f to an element of conj(G f ) (namely, the map
p 7→ ρ f (Frobp)). We were then able to relate the image of p under this map to the quantity N f (p) of
interest, via (1). This construction did not involve any discussion of equidistribution, but we could then
prove, via the Chebotarev density theorem, that the conjugacy classes ρ f (p) are equidistributed with
respect to the pushforward of the Haar measure to conj(G f ).

We take a similar approach here. To each elliptic curve E over a number field K we will associate a
compact group G that is constructed via a Galois representation attached to E, equipped with a map
that sends each prime p of good reduction for E to an element xp of conj(G) that we can directly relate
to the quantity NE(p) := p + 1− tp whose distribution we wish to study. We may then conjecture (and
prove, when E has CM or K is a totally real or CM field), that the sequence (xp) is equidistributed in
X := conj(G) (with respect to the pushforward of the Haar measure of G).

The group G is the Sato–Tate group of E, and will be denoted ST(E). It is a compact subgroup of
SU(2), and our construction will make it easy to show that ST(E) is always one of the three groups
U(1), N(U(1)), SU(2) listed above, depending on whether E has CM or not, and if so, whether the
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CM field is contained in the ground field or not. None of this depends on any equidistribution results.
This construction will be our prototype for the definition of the Sato-Tate group of an abelian variety of
arbitrary dimension g, so we will work out the g = 1 case in some detail.

In order to associate a Galois representation to E/K , we need a set on which Gal(K/K) can act.
For each integer n ≥ 1, let E[n] := E(K)[n] denote the n-torsion subgroup of E(K), a free Z/nZ-
module of rank 2 (see [82, Cor. III.6.4]). The group Gal(K/K) acts on points in E(K) coordinate-wise,
and E[n] is invariant under this action because it is the kernel of the multiplication-by-n map [n], an
endomorphism of E that is defined over K; one can concretely define E[n] as the zero locus OF the n-
division polynomials, which have coefficients in K . The action of Gal(K/K) on E[n] induces the mod-n
Galois representation

Gal(K/K)→ Aut(E[n])' GL2(Z/nZ).

This Galois representation is insufficient for our purposes, because the image Mp of Frobp in GL2(Z/nZ)
does not determine tp, we only have tp ≡ tr Mp mod n; we need to let Gal(K/K) act on a bigger set.

So let us fix a prime ` (any prime will do), and consider the inverse system

· · ·
[`]
−→ E[`3]

[`]
−→ E[`2]

[`]
−→ E[`].

The inverse limit
T` := lim←−

n

E[`n]

is the `-adic Tate-module of E; it is a free Z`-module of rank 2. The group Gal(K/K) acts on T` via its
action on the groups E[`n], and this action is compatible with the multiplication-by-` map [`] because
this map is defined over K (it can be written as a rational map with coefficients in K). This yields the
`-adic Galois representation

ρE,` : Gal(K/K)→ Aut(T`)' GL2(Z`).

The representation ρE,` enjoys the following property: for every prime p - ` of good reduction for E the
image of Frobp is a matrix Mp ∈ GL2(Z`) that has the same characteristic polynomial as the Frobenius
endomorphism of Ep, namely, T2− tpT+N(p), where tp := trπEp

. Note that the matrix Mp is determined
only up to conjugacy; there is ambiguity both in our choice of Frobp (see §1.1) and in our choice of a
basis for T`, which fixes the isomorphism Aut(T`) ' GL2(Z`). We should thus think of ρE,`(Frobp) as
representing a conjugacy class in GL2(Z`).

We prefer to work over the field Q`, rather than its ring of integers Z`, so let us define the rational
Tate module

V` := T` ⊗Z Q,

which is a 2-dimensional Q`-vector space equipped with an action of Gal(K/K). This allows us to view
the Galois representation ρE,` as having image G` ⊆ GL2(Q`). We also prefer to work with an algebraic
group, so let us define Gzar

`
to be the Q`-algebraic group obtained by taking the Zariski closure of G` in

GL2(Q`); the group Gzar
`

is the `-adic monodromy group of E (it may also be denoted Galg
`

).

Background 3.1 (Algebraic groups). An affine (equivalently, linear) algebraic group over a field k is a
group object in the category of (not necessarily irreducible) affine varieties over k. The only projective
algebraic groups we shall consider are smooth and connected, hence abelian varieties, so when we use
the term algebraic group without qualification, we mean an affine algebraic group.14 The canonical

14There are interesting algebraic groups (group schemes of finite type over a field) that are neither affine nor projective
(even if we restrict our attention to those that are smooth and connected), but we shall not consider them here.
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example is GLn, which can be defined as an affine variety in An2+1 (over any field) by the equation
t det M = 1 (here det M denotes the determinant polynomial in n2 variables Mi j), with morphisms
m: GLn × GLn → GLn and i : GLn → GLn defined by polynomial maps corresponding to matrix multi-
plication and inversion (one uses t as the inverse of det A when defining i). The classical groups SLn,
Sp2n,Un, SUn, On, SOn are all affine algebraic groups (assume char(k) 6= 2 for On and SOn), as are the
groups USp2n := Sp2n ∩ U2n and GSp2n that are of particular interest to us (see below); the R and C
points of these groups are Lie groups (differentiable manifolds with a group structure). If G is an affine
algebraic group over k and L/k is a field extension, the Zariski closure of a subgroup H ⊆ G(L) of the
L-points of G is an affine variety over L (the minimal one containing H), and it turns out to also be a
group under the morphisms m and i defining G; this makes it an algebraic group, even though H need
not be. The connected and irreducible components of an algebraic group G coincide, and are necessarily
finite in number. The connected component G0 of the identity is itself an algebraic group, and it is a
normal subgroup of G that is invariant under base change. For more on algebraic groups see any of the
classic texts [10, 42, 83], or see [55] for a more modern treatment.

Having defined the Q`-algebraic group Gzar
`

, we now restrict our attention to the subgroup G1,zar
`

obtained by imposing the symplectic constraint

M tΩM = Ω, Ω :=
�

0 −1
1 0

�

,

which corresponds to putting a symplectic form (a nondegenerate bilinear alternating pairing) on the
vector space V` (we could of course choose anyΩ that defines such a form). This condition can clearly be
expressed by a polynomial (a quadratic form in fact), thus G1,zar

`
is an algebraic group over Q` contained

in Sp2. We remark that Sp2 = SL2, so we could have just required det M = 1, but this is an accident of
low dimension: the inclusion Sp2n ⊆ SL2n is strict for all n> 1.

Finally, let us choose an embedding ι : Q`→ C and let G1,zar
`,ι be the C-algebraic group obtained from

G1,zar
`

by base change to C (via ι). The group G1,zar
`,ι (C) is a subgroup of Sp2(C) that we may view as a

Lie group with finitely many connected components. It therefore contains a maximal compact subgroup
that is unique up to conjugacy [63, Thm. IV.3.5], and we take this as the Sato–Tate group ST(E) of E
(which is thus defined only up to conjugacy). It is a compact subgroup of USp(2) = SU(2) (this equality
is another accident of low dimension).

For each prime p - ` of good reduction for E, let Mp denote the image of Frobp under the maps

Gal(K/K)
ρE,`
−→ G` ,→ Gzar

` (Q`) ,→ Gzar
`,ι (C),

where the map in the middle is inclusion and we use the embedding ι : Q`→ C to obtain the last map.
We now consider the normalized Frobenius image

M̄p := N(p)−1/2Mp;

it is a matrix with trace tp/N(p)−1/2 ∈ [−2, 2] and determinant 1, and its eigenvalues e±iθp lie on the
unit circle.15 The eigenangle θp determines a unique conjugacy class in ST(E), which we take as xp. The
characteristic polynomial of xp is the normalized L-polynomial L̄p(T ) := Lp(N(p)−1/2T ), where Lp(T ) is
the numerator of the zeta function of Ep, and Lp(N(p)−s) is the Euler factor at p in the L-series L(E, s).

The Sato–Tate conjecture then amounts to the statement that the sequence (xp) in X := conj(ST(E))
is equidistributed. Notice that the statement is the same in both the CM and non-CM and CM cases, but

15Note that we embed Gzar
`
(Q`) in Gzar

`,ι (C) before normalizing by N(p)−1/2; as pointed out by Serre [77, p. 131], we want

to take the square root in C where it is unambiguously defined.
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the measure on X is different, because ST(E) is different. Indeed, there are three possibilities for ST(E),
corresponding to the three distributions that we noted at the beginning of this section.

Theorem 3.2. Let E be an elliptic curve over a number field K. Up to conjugacy in SU(2) we have

ST(E) =











U(1) if E has CM defined over K ,

N(U(1)) if E has CM not defined over K ,

SU(2) if E does not have CM,

where U(1) is embedded in SU(2) via u 7→
�

u 0
0 ū

�

.

Proof. If E has CM defined over K then G` is abelian, because the action of Gal(K/K) on V` factors
through the abelian group Gal(L/K), where L := K(E[`∞]) is obtained by adjoining the coordinates
of the `-power torsion points of E (this follows from [81, Thm. II.2.3]). Therefore G` lies in a Cartan
subgroup of GL2(Q`) (a maximal abelian subgroup), which necessarily splits when we pass to Gzar

`,ι (C),
where it is conjugate to the group of diagonal matrices. This implies that ST(E) is conjugate to U(1),
the subgroup of diagonal matrices in SU(2).

If E has CM not defined over K , then G` lies in the normalizer of a Cartan subgroup of GL2(Q`),
but not in the Cartan itself, and ST(E) is conjugate to the normalizer N(U(1)) of U(1) in SU(2); the
argument is as above, but now the action of Gal(K/K) factors through Gal(F L/K), where F is the CM
field and Gal(F L/K) contains the abelian subgroup Gal(F L/FK) with index 2.

If E does not have CM then Serre’s open image theorem (see [71, §IV.3] and [72]) implies that G` is
a finite index subgroup of GL2(Z`); we therefore have G1,zar

`
= SL2, which implies ST(E) = SU(2). �

It follows from Theorem 3.2 that (up to conjugacy), the Sato–Tate group ST(E) does not depend
on our choice of the prime ` or the embedding ι : Q` → C that we used. We should also note that
ST(E) depends only on the isogeny class of E; this follows from the fact that we used the rational Tate
module V` to define it (indeed, two abelian varieties over a number field are isogenous if and only if
their rational Tate modules are isomorphic as Galois modules, by Faltings’ isogeny theorem [23], but
we are only using the easy direction of this equivalence here).

3.2. The Sato–Tate group of an abelian variety. We now wish to generalize our definition of the
Sato–Tate group of an elliptic curve to abelian varieties. Recall that an abelian variety is a smooth
connected projective variety that is also an algebraic group, where the group operations are now given
by morphisms of projective varieties; on any affine patch they can be defined by a polynomial map.
Remarkably, the fact that abelian varieties are commutative algebraic groups is not part of the definition,
it is a consequence; see [54, Cor 1.4]. We also recall that an isogeny of abelian varieties is simply an
isogeny of algebraic groups, a surjective morphism with finite kernel.

Abelian varieties of dimension g arise naturally as the Jacobian Jac(C) of a smooth projective curve
C/k of genus g. If C has a k-rational point (as when C is an elliptic curve), one can functorially identify
Jac(C) with the divisor class group Pic0(C), the group of degree-zero divisors modulo principal divisors,
but one can unambiguously define Jac(C) in any case; see [54, Ch. III] for details.

If C is a smooth projective curve over a number field K and A := Jac(C) is its Jacobian, then for
every prime p of good reduction for C , the abelian variety A also has good reduction at p,16 and the

16For g > 1 the converse does not hold (in general); this impacts only finitely many primes p and will not concern us.
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L-polynomial Lp(T ) appearing in the numerator of the zeta function ZCp
(T ) is reciprocal to the charac-

teristic polynomial χp(T ) of the Frobenius endomorphism πAp
of Ap, which acts on points of A via the

N(p)-power Frobenius automorphism (coordinate-wise). In particular, we have the identity

(9) Lp(T ) = T2gχp(T
−1),

in which both sides are integer polynomials of degree 2g whose complex roots have absolute value
N(p)−1/2. As with elliptic curves, one can consider the L-function L(A, s) attached to A, which is defined
as an Euler product with factors Lp(N(p)−s) at each prime p where A has good reduction.17 Studying
the distribution of the normalized L-polynomials L̄p(T ) associated to C is thus equivalent to studying
the distribution of the normalized characteristic polynomials of πAp

, and also equivalent to studying the
distribution of the normalized Euler factors of L(A, s).

Remark 3.3. Each of these three perspectives is successively more general than the previous, the last
vastly so. There are abelian varieties over K that are not the Jacobian of any curve defined over K , and
L-functions that can be written as Euler products over primes of K that are not the L-function of any
abelian variety. One can more generally consider the distribution of normalized Euler factors of motivic
L-functions, which we also expect to be governed by the Haar measure of a Sato-Tate group associated
to the underlying motive, as defined in [76, 77]; see [26] for some concrete examples in weight 3.

The recipe for defining the Sato-Tate group ST(A) of an abelian variety A/K of genus g is a direct
generalization of the g = 1 case. We proceed as follows:

1. Pick a prime `, define the Tate module T` := lim←−n
A[`n], a free Z`-module of rank 2g, and the

rational Tate module V` := T` ⊗Z Q, a Q`-vector space of dimension 2g.

2. Use the Galois representation ρA,` : Gal(K/K)→ Aut(V`)' GL2g(Q`) to define G` := imρA,`.

3. Let Gzar
`

be the Zariski closure of G` in GL2g(Q`) and define G1,zar
`

by adding the symplectic

constraint M tΩM = Ω, so that G1,zar
`

is a Q`-algebraic subgroup of Sp2g .

4. Pick an embedding ι : Q`→ C and use it to define G1,zar
`,ι as the base-change of G1,zar

`
to C.

5. Define ST(A) ⊆ USp(2g) as a maximal compact subgroup of G1,zar
`,ι (C), unique up to conjugacy.

6. For each good prime p - `, let Mp be the image of Frobp in Gzar
`,ι (C) and define xp ∈ conj(ST(A))

to be the conjugacy class of Mp := N(p)−1/2Mp, in ST(A).

Step 6 requires some justification; it is not obvious why Mp should necessarily be conjugate to an element
of ST(A). Here we are relying on two key facts.

First, the image G` of ρA,` in GL2g(Q`) actually lies in GSp2g(Q`), the group of symplectic similitudes.
The algebraic group GSp2g is defined by imposing the constraint

M tΩM = λΩ, Ω :=
� 0 −Ig

Ig 0

�

,

where λ is necessarily an element of the multiplicative group Gm := GL1, since M is invertible. The
morphism GSp2g → Gm defined by λ is the similitude character, and we have an exact sequence of
algebraic groups

1→ Sp2g ,→ GSp2g
λ
−→ Gm→ 1.

17Determining the Euler factors at bad primes is difficult when dim A > 1. Practical methods are known only in special
cases, such as when A is the Jacobian of a hyperelliptic curve (even in this case there is still room for improvement).
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The action of Gal(K/K) on the Tate module is compatible with the Weil pairing, and this forces the
image G` of ρE,` to lie in GSp2g(Q`); see Exercise 3.1. By fixing a symplectic basis for V` in step 1 we
can view ρA,` as a continuous homomorphism

ρA,` : Gal(K/K)→ GSp2g(Q`) ⊆ GL2g(Q`)

For g = 1 we have GL2 = GSp2, but for g > 1 the algebraic group GSp2g is properly contained in GL2g .
Second, we are relying on the fact that Mp, and therefore Mp, is semisimple (diagonalizable, since

we are working over C). This follows from Tate’s proof of the Tate conjecture for abelian varieties
over finite fields (combine the main theorem and part (a) of Theorem 2 in [89]). The matrix Mp is
thus diagonalizable and has eigenvalues of absolute value 1; it therefore lies in a compact subgroup of
G1,zar
`,ι (C) (take the closure of the group it generates). This compact group is necessarily conjugate to a

subgroup of the maximal compact subgroup ST(A), which must contain an element conjugate to Mp.

Remark 3.4. When defining the Sato-Tate group in more general settings one instead uses the semisim-
ple component of the (multiplicative) Jordan decomposition (see [10, Thm. I.4.4]) of Mp to define xp,
as in [77, §8.3.3]. This avoids the need to assume the conjectured semisimplicity of Frobenius, which is
known for abelian varieties but not in general.

Background 3.5 (Weil pairing). If A is an abelian variety over a field k and A∨ is its dual abelian variety
(see [54, §I.8]), then for each n≥ 1 prime to the characteristic of k, the Weil pairing is a nondegenerate
bilinear map

A[n]× A∨[n]→ µn(k)

that commutes with the action of Gal(k/k); here µn denotes the group of nth roots of unity (the algebraic
group defined by xn = 1). Letting n vary over powers of a prime ` 6= char(k) and taking inverse limits
yields a bilinear map on the corresponding Tate modules:

e` : T` × T∨` → µ`∞(k) := lim←−
n

µ`n(k).

Given a polarization, an isogeny φ : A→ A∨, we can use it define a bilinear pairing

eφ
`

: T` × T`→ µ`∞(k)

(x , y) 7→ e`(x ,φ(y))

that is also compatible with the action of Gal(k/k). One can always choose a polarization φ so that the
pairing eφ

`
is nondegenerate and skew symmetric, meaning that eφ

`
(a, b) = eφ

`
(b, a)−1 for all a, b ∈ T`;

see [54, Prop. I.13.2]. When A is the Jacobian of a curve it is naturally equipped with a principal
polarizationφ, an isomorphism A

∼
→ A∨, for which this automatically holds; in this situation it is common

to simply identify e` with eφ
`

without mentioning φ explicitly.

We should note that our definition of the Sato-Tate group ST(A) required us to choose a prime `
and an embedding ι : Q` → C. Up to conjugacy in USp(2g) one expects the Sato-Tate group to be
independent of these choices; this is known for g ≤ 3 but open in general. We will nevertheless refer to
ST(A) as “the” Sato-Tate group of A, with the understanding that we are fixing once and for all a prime `
and an embedding ι : Q`→ C (note that these choices do not depend on A or even its dimension g).
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3.3. The Sato-Tate conjecture for abelian varieties. Having defined the Sato-Tate group of an abelian
variety over a number field we can now state the Sato-Tate conjecture for abelian varieties.

Conjecture 3.6. Let A be an abelian variety over a number field K, let ST(A) denote its Sato-Tate group, and
let (xp) be the sequence of conjugacy classes of normalized images of Frobenius elements in ST(A) at primes p
of good reduction for A, ordered by norm (break ties arbitrarily). Then the sequence (xp) is equidistributed
(with respect to the pushforward of the Haar measure of ST(A) to its space of conjugacy classes).

3.4. The identity component of the Sato-Tate group. There are two algebraic groups that one can
associate to an abelian variety A over a number field K that are closely related to its Sato–Tate group, the
Mumford–Tate group and the Hodge group, both of which conjecturally determine the identity component
of the Sato–Tate group (provably so whenever the Mumford–Tate conjecture is known, which includes
all abelian varieties of dimension g ≤ 3). In order to define these groups we need to recall some facts
about complex abelian varieties and their associated Hodge structures.

Background 3.7 (complex abelian varieties). Let A be an abelian variety of dimension g over C. Then
A(C) is a connected compact Lie group and therefore isomorphic to a torus V/Λ, where V ' Cg is a
complex vector space of dimension g and Λ' Z2g is a full lattice in V that we view as a free Z-module;
one can obtain Λ as the kernel of the exponential map exp: T0(A(C))→ A(C), where T0(A(C)) denotes
the tangent space at the identity. While every complex abelian variety corresponds to a complex torus,
the converse is true only when g = 1. The complex tori X := V/Λ that correspond to abelian varieties
are those that admit a polarization (or Riemann form), a positive definite Hermitian form H : V ×V → C
with Im H(Λ,Λ) = Z (here Im means imaginary part). Given a polarization H on X , the map v 7→ H(v, ·)
defines an isogeny to the dual torus X∨ := V ∗/Λ∗, where V ∗ := { f ∈ Hom(V+,C+) : f (αv) = ᾱ f (v)}
and Λ∗ := { f ∈ V ∗ : Im f (Λ) ⊆ Z}. This isogeny is a polarization of X as an abelian variety; conversely,
any polarization on A (one always exists) can be used to define a polarization on the complex torus
A(C). One can then show that the map A 7→ A(C) defines an equivalence of categories between complex
abelian varieties and polarizable complex tori. For more background on complex abelian varieties, see
the overviews in [54, §1] or [59, §1], or see [8] for a comprehensive treatment.

Let us fix an embedding K ,→ C so that we can work with the complex abelian variety AC (the base
change of A to C), and let Cg/Λ be the corresponding complex torus. We may identify Λ with the
singular homology group H1(AC,Z), and we similarly have ΛR := Λ⊗Z R' H1(AC, R) for any ring R.

The isomorphisms AC ' Cg/Λ and AC ' R2g/Λ of complex and real Lie groups allow us to view

ΛR ' H1(AC,R)

as a real vector space of dimension 2g equipped with a complex structure, by which we mean an R-algebra
homomorphism h: C→ End(ΛR). In the language of Hodge theory, this amounts to the statement that
(Λ, h) is an integral Hodge structure (pure of weight −1).

We can also view h as morphism of R-algebraic groups h: S→ GL(ΛR). Here S denotes the Deligne
torus, obtained by viewing C× as an R-algebraic group (this amounts to taking the restriction of scalars
of Gm := GL1 from C to R; see Exercise 3.2), and we view GL(ΛR) as an R-algebraic group by taking
its Zariski closure in GL2g . The fact that h can be defined over R follows from the fact that Cg/Λ is a
polarizable torus, since it comes from an abelian variety (in general this need not hold). The real Lie
group S(R) ' C× is generated by R× and U(1) = {z ∈ C× : zz̄ = 1}, which intersect in {±1}; taking
Zariski closures yields R-algebraic subgroups Gm and U1 of S that intersect in µ2. Restricting h to U1 ⊆ S
yields a map U(1)→ GL(ΛR) with the following property: the image of each u ∈ U(1) is an element of
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GL(ΛR) with eigenvalues u, u−1, each of multiplicity g; see [8, Prop. 17.1.1]. The image of such a map
is known as a Hodge circle.

The rational Hodge structure (ΛQ, h) is obtained by replacing Λ with ΛQ := Λ⊗Z Q and can be used
to define the Mumford-Tate group.

Definition 3.8. The Mumford–Tate group MT(A) as the smallest Q-algebraic group G in GL(ΛQ) for
which h(S) ⊆ G(R); equivalently, it is the Q-Zariski closure of h(S) in GL(ΛR). The Hodge group Hg(A)
is similarly defined as the Q-Zariski closure of h(U1) in GL(ΛR).

As defined above, the Mumford–Tate group MT(A) is a Q-algebraic subgroup of GL2g . But the complex
torus Cg/Λ is polarizable, which means that we can put a symplectic form on ΛR that is compatible
with h, and this implies that in fact MT(A) is a Q-algebraic subgroup of GSp2g . Similarly, the Hodge
group Hg(A) is a Q-algebraic subgroup of Sp2g , and in fact Hg(A) = MT(A) ∩ Sp2g ; this is sometimes
used as an alternative definition of Hg(A). Much of the interest in the Hodge group arises from the fact
that it gives us an isomorphism of Q-algebras

End(AC)Q ' End(ΛQ)
Hg(A),

where End(AC)Q := End(AC)⊗Z Q and Hg(A) acts on End(ΛQ) by conjugation; see [8, Prop. 17.3.4]. To
see why this isomorphism is useful, let us note one application.

Theorem 3.9. For an abelian variety A of dimension g over a number field K, the Hodge group Hg(A)
is commutative if and only if the endomorphism algebra End(AK)Q contains a commutative semisimple
Q-algebra of dimension 2g.

Proof. See [8, Prop. 17.3.5]. �

For g = 1 the abelian varieties A that satisfy the two equivalent properties of Theorem 3.9 are CM elliptic
curves. More generally, such abelian varieties are said to be of CM-type. For abelian varieties of general
type one has the opposite extreme: End(AK)Q = Q and Hg(A) = Sp2g ; see [8, Prop. 17.4.2].

In the previous section we defined two Q`-algebraic groups Gzar
`
⊆ GSp2g and G1,zar

`
⊆ Sp2g associated

to A. It is reasonable to ask how they are related to the Q-algebraic groups MT(A) and Hg(A). Unlike
the groups Gzar

`
and G1,zar

`
, the algebraic groups MT(A) and Hg(A) are necessarily connected (by con-

struction).18 Deligne proved that the identity component of Gzar
`

is always a subgroup of MT(A)⊗Q Q`,
equivalently, that the identity component of G1,zar

`
is a subgroup of Hg(A)⊗Q Q`); see [20]. It is conjec-

tured that these inclusions are in fact equalities.

Conjecture 3.10 (MUMFORD–TATE CONJECTURE). The identity component of Gzar
`

is equal to MT(A)⊗QQ`;
equivalently, the identity component of G1,zar

`
is equal to Hg(A)⊗Q Q`.

This conjecture is known to hold for abelian varieties of dimension g ≤ 3; see [4, Th. 6.11] where it
is shown that this follows from [57]. When it holds, the Mumford–Tate group (and the Hodge group)
uniquely determines the identity component of the Sato–Tate group, up to conjugation in USp(2g);
see [25, Lemma 2.8]. Neither the Mumford–Tate group nor the Hodge group tell us anything about
the component groups of Gzar

`
, G1,zar

`
, ST(A) (the three are isomorphic; see [77, §8.3.4]), but there is a

closely related Q-algebraic group that conjecturally does.

18This is true more generally for all motives of odd weight. For motives of even weight the situation is more delicate;
complications arise from the fact that we are then working with orthogonal groups rather than symplectic groups; see [4, 5].
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Conjecture 3.11 (ALGEBRAIC SATO–TATE CONJECTURE). There exists a Q-algebraic subgroup AST(A), of
Sp2g such that G1,zar

`
= AST(A)⊗Q Q`.

Banaszak and Kedlaya [4] have shown that this conjecture holds for g ≤ 3 via an explicit description
of AST(A) using twisted Lefschetz groups.

3.5. The component group of the Sato-Tate group. We have seen that the Mumford–Tate group con-
jecturally determines the identity component ST(A)0 of the Sato–Tate group ST(A) of an abelian variety A
over a number field K (provably so in dimension g ≤ 3). The identity component ST(A)0 is a normal
finite index subgroup of ST(A), and we now want to consider the component group ST(A)/ST(A)0. As
above, for any field extension L/K , we use AL to denote the base change of A to L.

Theorem 3.12. Let A be an abelian variety over a number field K. There is a unique finite Galois extension
L/K with the property that ST(AL) is connected and Gal(L/K) ' ST(A)/ST(A)0. The extension L/K is
unramified outside the primes of bad reduction for A, and for every subextension F/K of L/K we have
Gal(L/F)' ST(AF )/ST(AF )0.

Proof. As explained in [77, §8.3.4], the component groups of Gzar
`

and ST(A) are isomorphic. Let Γ be
the Galois group of the maximal subextension KS` of Gal(K/K) that is unramified away from the set S`
consisting of the primes of bad reduction for A and the primes of K lying above `. The `-adic Galois
representation ρA,` : Gal(K/K)→ Aut(V`) induces a continuous surjective homomorphism

Γ → Gzar
` /(G

zar
` )

0,

whose kernel is a normal open subgroup Γ0 of Γ . The corresponding fixed field L is a finite Galois
extension of K , and it is the minimal Galois extension of K for which ST(AL) is connected. It is clearly
uniquely determined and unramified outside S`, and we have isomorphisms

Gal(L/K)' Γ/Γ0 ' Gzar
` /(G

zar
` )

0 ' ST(A)/ST(A)0.

As shown by Serre [75], the component group of Gzar
`

, and therefore of ST(A), is independent of `,
and the above argument applies to any choice of `. Thus L/K can be ramified only at primes of bad
reduction for A. For any subextension F/K of L/K , replacing A by AF in the argument above yields the
same field L, with Gal(L/F)' ST(AF )/ST(AF )0. �

3.6. Exercises.

Exercise 3.1. Let A be an abelian variety of dimension g over a number field K . Show that one can
choose a basis for V` = T` ⊗Z Q so that the matrix M describing the action of any σ ∈ Gal(K/K)
on V` satisfies M tΩM = λΩ for some λ ∈ Q×

`
, where Ω :=

�

0 −I
I 0

�

. Conclude that the image of the
corresponding Galois representation lies in GSp2g(Q`) and describe the map Gal(K/K)→ Q×

`
induced

by the similitude character λ.

Exercise 3.2. Define the Deligne torus S as an R-algebraic group in A4 (give equations that define it
as an affine variety and polynomial maps for the group operations), and then express the R-algebraic
groups Gm and U1 as subgroups of S that intersect in µ2. Prove that S(R) and C× are isomorphic as real
Lie groups (give explicit maps in both directions).

Exercise 3.3. Let L/K be a finite separable extension of degree d, with L = K(α). Given an affine
L-variety Y defined by polynomials Pk ∈ L[y1, . . . , yn], we can construct an affine K-variety ResL/K(Y )
by writing each yi =

∑d−1
j=0 x i jα

j in terms of the K-basis {1,α, . . . ,αd−1} for L and using the minimal
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polynomial of α to replace each Pk(y1, . . . , yn) by a polynomial in K[x11, . . . , x1d , . . . , xn1 . . . , xnd]. The
K-variety ResL/K(Y ) is the Weil restriction (or restriction of scalars) of Y . Prove that the R-algebraic
group S (the Deligne torus) is the Weil restriction of the C-algebraic group Gm, that is, S= ResC/R(Gm).

4. SATO–TATE AXIOMS AND GALOIS ENDOMORPHISM TYPES

In this section we present the Sato-Tate axioms and consider the problem of classifying Sato-Tate
groups of abelian varieties of a given dimension g. We then compute trace moment sequences of all
connected Sato-Tate groups of abelian varieties of dimension g ≤ 3 and present formulas for the trace
moment sequence of USp(2g) (the generic case) that apply to all g,

4.1. Sato–Tate axioms. In [77, §8.2] Serre gives a set of axioms that any Sato–Tate group is expected
to satisfy. Serre considers Sato–Tate groups in a more general context than we do here, so we will state
the axioms as they apply to Sato–Tate groups of abelian varieties. As in §3.4, for a Lie group G we define
a Hodge circle to be a subgroup H of G that is the image of a continuous homomorphism θ : U(1)→ G0

whose elements θ (u) have eigenvalues u and u−1 with multiplicity g (note that H necessarily lies in the
identity component G0 of G).

Definition 4.1. A group G satisfies the Sato–Tate axioms (for abelian varieties of dimension g) if and
only if the following hold:

(ST1) (Lie condition) G is a closed subgroup of USp(2g).
(ST2) (Hodge condition) The Hodge circles in G generate a dense nontrivial subgroup of G0.19

(ST3) (rationality condition) For each component H of G and irreducible character χ of GL2g(C), we
have

∫

H χµ ∈ Z, where µ is the Haar measure on G normalized so that µ(1H) = 1.

Remark 4.2. Definition 4.1 generalizes easily to self-dual motives with rational coefficients. Given an
integer weight w ≥ 0 and Hodge numbers hp,q ∈ Z≥0 indexed by p, q ∈ Z≥0 with p + q = w such that
hp,q = hq,p when w is odd, let d :=

∑

hp,q. For abelian varieties we have w = 1 and h1,0 = h0,1 = g.
In axiom (ST1) we require G to be a closed subgroup of USp(d) (resp. O(d)) when w is odd (resp.
even), and in axiom (ST2) we require elements θ (u) of a Hodge circle to have eigenvalues up−q with
multiplicity hp,q; axiom (ST3) is unchanged.

Axiom (ST1) implies that G is a compact Lie group, and (ST2) rules out finite groups, since G must
contain at least one Hodge circle and therefore contains a subgroup isomorphic to U(1). When G is
connected, (ST3) holds automatically and only (ST1) and (ST2) need to be checked; this is an easy
application of representation theory, see [49, Prop. 2]. Axiom (ST3) plays no role when g = 1 (see
the proof of Proposition 4.4 below), but for g > 1 it is crucial. When g = 2, for example, for every
integer n ≥ 1 we can diagonally embed U(1)×U(1)[n] in USp(4) to get infinitely many non-conjugate
closed groups G ⊆ USp(4) whose identity component is a Hodge circle. All these group satisfy (ST1)
and (ST2), but only finitely many satisfy (ST3). Indeed, if we take χ and let C be a component on
which the projection to U(1)[n] has order n, we have

∫

C
χµ= ζn + ζ̄n ∈ Z

only for n ∈ {2, 3,4,6}. More generally. we have the following theorem.

19The statement of (ST2) in [25] inadvertently omits the requirement that the Hodge circles generate a dense subgroup.
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Theorem 4.3. Up to conjugacy, for any fixed dimension g ≥ 1 the number of subgroups of USp(2g) that
satisfy the Sato–Tate axioms is finite.

Proof. See [25, Rem. 3.3] �

Theorem 4.3 motivates the following classification problem: given an integer g ≥ 1, determine the
subgroups of USp(2g) that satisfy the Sato–Tate axioms. The case g = 1 is easy.

Proposition 4.4. For g = 1 the three groups U(1), N(U(1) and SU(2) listed in Theorem 3.2 are the only
groups that satisfy the Sato–Tate axioms (up to conjugacy).

Proof. Suppose G satisfies the Sato–Tate axioms. Then G0 contains a conjugate of U(1) embedded in
USp(2) via u 7→

�

u 0
0 ū

�

, as in Theorem 3.2, and it must be a compact connected Lie group. The only
compact connected Lie groups in USp(2) = SU(2) are U(1) and SU(2) itself (this follows from the
classification of compact connected Lie groups but is easy to see directly). Thus either G0 = SU(2), in
which case G = SU(2), or G0 is conjugate to U(1) and must be a normal subgroup of G (the identity
component of a compact Lie group is always a normal subgroup of finite index). The group U(1) has
index 2 in its normalizer, so U(1) and N(U(1)) are the only possibilities for G when G0 = U(1). �

Corollary 4.5. For g = 1 a group G satisfies the Sato–Tate axioms if and only if it is the Sato–Tate group
of an elliptic curve over a number field.

The classification problem for g = 2 is more difficult, but it has been solved.

Theorem 4.6. Up to conjugacy in USp(4) there are 55 groups that satisfy the Sato–Tate axioms for g = 2.
Of these 55, the following 6 are connected:

U(1)2, SU(2)2, U(1)×U(1), U(1)× SU(2), SU(2)× SU(2), USp(4),

were U(1)2 denotes U(1) =
��

u 0
0 ū

�

: u ∈ C×
	

diagonally embedded in USp(4), and similarly for SU(2)2.

Proof. See [25, Thm. 3.4], which also gives an explicit description of the 55 groups. �

Remark 4.7. Those familiar with the classification of connected compact Lie groups may notice that
the group U(2), which can be embedded in USp(4), is missing from Theorem 4.6. This is because it fails
to satisfy the Hodge condition (ST2); it contains subgroups isomorphic to U(1), but there is no way to
embed U(1) ,→ U(2) ,→ USp(4) and get eigenvalues u and u−1 with multiplicity 2; see [26, Rem. 2.3].
However, for motives of weight 3 and Hodge numbers h3,0 = h2,1 = h1,2 = h0,3 = 1 the modified Hodge
condition noted in Remark 4.2 is satisfied by a subgroup of USp(4) isomorphic to U(2); see [26] for
details, including two examples of motives with Sato-Tate group U(2).

Corollary 4.5 does not hold for g = 2.

Theorem 4.8. Of the 55 groups appearing in Theorem 4.6, only 52 arise as the Sato–Tate group of an
abelian surface over a number field. Of these, 34 arise for abelian surfaces defined over Q.

Proof. See [25, Thm. 1.5]. �

The three subgroups of USp(4) that satisfy the Sato–Tate axioms but are not the Sato–Tate group of
any abelian surface over a number field are the normalizer of U(1)×U(1) in USp(4), whose component
group is the dihedral group of order 8, and two of its subgroups, one of index 2 and one of index 4. The
proof that these three groups do not occur is obtained by first establishing a bijection between Galois
endomorphism types (defined in the next section) and Sato–Tate groups. and then showing that there
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are only 52 Galois endomorphism types of abelian surfaces. Explicit examples of genus 2 curves whose
Jacobians realize these 52 possibilities can be find in [25, Table 11], and animated histograms of their
Sato–Tate distributions can be found at

http://math.mit.edu/~drew/g2SatoTateDistributions.html
The classification problem for g = 3 remains open, but the connected cases have been determined

(see Table 2 in the next section). Before leaving our discussion of the Sato–Tate axioms, it is reasonable
to ask whether Sato–Tate groups necessarily satisfy them. Of course we expect this to be the case, but it
is difficult to prove in general. However, it can be proved to hold in all cases where the Mumford–Tate
conjecture is known, including all cases with g ≤ 3.

Proposition 4.9. Let A be an abelian variety of dimension g over a number field K for which the Mumford–
Tate conjecture holds. Then ST(A) satisfies the Sato–Tate axioms.

Proof. See [25, Prop. 3.2]. �

4.2. Galois endomorphism types. Recall from Section 3.4 that, at least in cases where the Mumford–
Tate conjecture is known, the identity component of the Sato-Tate group can be related to an R-algebra
(the R-algebra End(ΛR) that we used to define the Mumford–Tate group), and the component group of
the Sato–Tate group can be related to a Galois group (the group Gal(L/K) given by Theorem 3.12). We
now want to associate to each abelian variety A an R-algebra equipped with a Galois action that will
allow us to completely determine the Sato-Tate group ST(A) in many cases.

We will work in the abstract category C whose objects are pairs (G, E) of a finite group G and an
R-algebra E equipped with an R-linear action of G, and whose morphisms Φ: (G, E)→ (G′, E′) are pairs
(φG ,φE), where φG : G → G′ is a morphism of groups, and φE : E → E′ is an equivariant morphism of
R-algebras, meaning that

(10) φE(e
g) = φE(e)

φG(g) for all g ∈ G and e ∈ E.

To each abelian variety A/K we now associate an isomorphism class [G, E] inC as follows. The minimal
extension L/K for which End(AL) = End(AK) is a finite Galois extension of K; we shall take G to be
Gal(L/K) and E to be the real endomorphism algebra End(AL)R := End(AL) ⊗Z R. The Galois group
Gal(L/K) acts on End(AL) via its action on the coefficients of the rational maps defining each element
of End(AK); this induces an R-linear action of Gal(L/K) on End(AL)R via composition with the natural
map End(AL)→ End(AL)R. The pair (Gal(L/K), End(AL)R) is thus an object of C .

Definition 4.10. The Galois endomorphism type GT(A) of an abelian variety A/K is the isomorphism
class of the pair (Gal(L/K), End(AL)R) in the category C , where L is the minimal extension of K for
which End(AL) = End(AK).

Example 4.11. Let E be an elliptic curve over a number field K . If E does not have CM, or if it has CM
defined over K , then its endomorphisms are all defined over L = K; otherwise, its endomorphisms are
all defined over its CM field L, an imaginary quadratic extension of K . The real endomorphism algebra
End(EL)R is isomorphic to R when E does not have CM, and isomorphic to C when E does have CM. We
therefore have

GT(E) =











[C1,C] if E has CM defined over K

[C2,C] if E has CM not defined over K

[C1,R] if E does not have CM
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Here Cn denotes the cyclic group of order n; in the case [C2,C] the action of C2 on C corresponds to
complex conjugation.

The three Galois endomorphism types listed in Example 4.11 correspond to the three Sato-Tate groups
listed in Theorem 3.2. Under this correspondence, the real endomorphism algebra End(EL)R determines
the identity component ST(E)0 (up to conjugacy), and the Galois group Gal(L/K) is isomorphic to the
component group ST(E)/ST(E)0. Moreover, the field L is precisely the field L given by Theorem 3.12.

Theorem 4.12. Let A be an abelian variety A of dimension g ≤ 3 defined over a number field K and let L
be the minimal field for which End(AL) = End(AK). The conjugacy class of the Sato-Tate group ST(A)
determines the Galois endomorphism type GT(A); moreover, the conjugacy class of the identity component
ST(A)0 determines the isomorphism class of End(AL)R and ST(A)/ST(A)0 ' Gal(L/K). For g ≤ 2 the
converse holds: the Galois endomorphism type GT(A) determines the Sato–Tate group ST(A) up to conjugacy.

Proof. See Proposition 2.19 and Theorem 1.4 in [25]. �

It is expected that in fact the Sato–Tate group always determines the Galois endomorphism type,
and that the converse holds for g ≤ 3. For g = 3 we at least know that the real endomorphism algebra
End(AL)R determines the identity component ST(A)0 and that Gal(L/K)' ST(A)/ST(A)0. At first glance
it might seem that this should determine ST(A), but it does not, not even when g = 2. One needs to
also understand how Gal(L/K) acts on End(AL)R and relate this to the Sato-Tate group ST(A). In [25]
this is accomplished for g = 2 by looking at the lattice of R-subalgebras of End(AL)R fixed by subgroups
of Gal(L/K) and showing that this is enough to uniquely determine ST(A); see [25, Thm. 4.3]. To
apply the same approach when g = 3 we need a more detailed classification of the possible Galois
endomorphism types and Sato–Tate groups for g = 3 than is currently available.

For g = 4 the Galois endomorphism type does not always determine the Sato–Tate group. This follows
from an exceptional counterexample constructed by Mumford in [58], in which he proves the existence
of an abelian four-fold A for which End(AK) = Z but MT(A) 6= GSp8. The fact that MT(A) is properly
contained in GSp8 implies that ST(A) must be properly contained in USp(8) (this does not depend on
the Mumford–Tate conjecture, we are only using the inclusion proved by Deligne). On the other hand,
for an abelian variety of general type one has End(AK) = Z and ST(A) = USp(2g); see [31, 100] for an
explicit criterion that applies to almost all Jacobians of hyperelliptic curves.

For g > 4 one can construct exceptional examples as a product of an abelian variety with one of
Mumford’s exceptional four-folds, so in general the Galois endomorphism type cannot determine the
Sato–Tate group for any g ≥ 4. However, such examples will not be simple and will have End(A) 6= Z.
In [74] Serre proves an analog of his open image theorem for elliptic curves that applies to abelian
varieties of dimension g = 2,6 and g odd. For these values of g, if End(AK) = Z then ST(A) = USp(2g)
and no direct analog of Mumford’s construction exists.

Remark 4.13. For g ≤ 3, the field L in Theorem 3.12 (the minimal L for which ST(AL) is connected) is
the same as the field L in Theorem 4.12 (the minimal L for which End(AL) = End(AK)). In any case, the
former always contains the latter: if ST(AL) is connected then we necessarily have End(AK) = End(AL).
This can be seen as a consequence of Bogomolov’s theorem [9], which states that G` is open in Gzar

`
(Q`),

and Faltings‘ theorem [23] that End(A)Q` ' End(V`(A))G` . If ST(A) (and therefore Gzar
`

) is connected,
then End(A) is invariant under base change (now apply this to A= AL).
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geometric type of abelian surface End(AK)R ST(A)0

square of CM elliptic curve M2(C) U(1)2
QM abelian surface M2(R) SU(2)2
square of non-CM elliptic curve

CM abelian surface C×C U(1)×U(1)
product of CM elliptic curves

product of CM and non-CM elliptic curves C×R U(1)× SU(2)

RM abelian surface R×R SU(2)× SU(2)
product of non-CM elliptic curves

abelian surface of general type R USp(4)

TABLE 1. Real endomorphism algebras and Sato–Tate identity components for abelian surfaces

geometric type of abelian three-fold End(AK)R ST(A)0

cube of a CM EC M3(C) U(1)3
cube of a non-CM EC M3(R) SU(2)3
product of CM EC and square of CM EC C×M2(C) U(1)×U(1)2
product of CM EC and QM abelian surface C×M2(R) U(1)× SU(2)2
product of CM EC and square of non-CM EC

product of non-CM EC and square of CM EC R×M2(C) SU(2)×U(1)2
product of non-CM EC and QM abelian surface R×M2(R) SU(2)× SU(2)2
product of non-CM EC and square of non-CM EC

CM abelian threefold C×C×C U(1)×U(1)×U(1)
product of CM EC and CM abelian surface

product of three CM ECs

product of non-CM EC and CM abelian surface C×C×R U(1)×U(1)× SU(2)
product of non-CM EC and two CM ECs

product of CM EC and RM abelian surface C×R×R U(1)× SU(2)× SU(2)
product of CM EC and two non-CM ECs

RM abelian threefold R×R×R SU(2)× SU(2)× SU(2)
product of non-CM EC and RM abelian surface

product of 3 non-CM ECs

product of CM EC and abelian surface C×R U(1)×USp(4)

product of non-CM EC and abelian surface R×R SU(2)×USp(4)

quadratic CM abelian threefold C U(3)

generic abelian threefold R USp(6)

TABLE 2. Real endomorphism algebras and Sato–Tate identity components for abelian threefolds
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A complete list of the 52 Galois endomorphism types and corresponding Sato-Tate groups that arise
when g = 2 can be found in [25, Theorem 4.3] and [25, Table 9]. Here we list only the 6 connected
cases, which are determined by the correspondence between End(AK)R and ST(A)0. These appear in
Table 1, which also lists the types of abelian surfaces for which they arise. Table 2 lists the same data
for the 14 connected Sato-Tate groups that arise for g = 3.

It is worth noting that, as can be seen in the table, the Sato–Tate group is in some respects a rather
coarse arithmetic invariant; for example, it cannot distinguish a product of non-CM elliptic curves from
a geometrically simple abelian surface with real multiplication (RM). On the other hand, the Haar
measures of these 52 Sato–Tate groups all give rise to distinct distributions of characteristic polynomi-
als, which, under the Sato–Tate conjecture, match the distribution of normalized L-polynomials of the
abelian variety, and there are some rather fine distinctions among these distributions that the Sato–Tate
group detects. Fox example, there are only 36 distinct trace distributions among the 52 groups, one
needs to look at both the linear and quadratic coefficients of the characteristic polynomials in order to
distinguish them.

It is possible for two non-conjugate Sato–Tate groups to be isomorphic as abstract groups yet give
rise to distinct trace distributions. For example, the connected Sato-Tate groups SU(2) × U(1)2 and
U(1)×SU(2)2 that appear in Table 2 are both abstractly isomorphic to the real Lie group U(1)×SU(2),
but these two embeddings of U(1)× SU(2) in USp(6) have different trace distributions.

As shown by the example below, this phenomenon can also occur for disconnected Sato-Tate groups
with the same identity component.

Example 4.14. Consider the hyperelliptic curves

C1 : y2 = x6 + 3x5 + 15x4 − 20x3 + 60x2 − 60x + 28,

C2 : y2 = x6 + 6x5 − 15x4 + 20x3 − 15x2 + 6x − 1,

and let A1 := Jac(C1) and A2 := Jac(C2) denote their Jacobians. Over Q both A1 and A2 are isoge-
nous to the square of the elliptic curve y2 = x3 + 1, which has CM by Q(

p
−3). We necessarily have

ST(A1)0 = ST(A2)0 = U(1)2, and the component groups are both isomorphic to the dihedral group
of order 12. However, their Sato–Tate groups are different: in terms of the labels used in [25], we
have ST(A1) = D6,1, while ST(A2) = D6,2 (see [25, §3.4] for explicit descriptions of these groups in
terms of generators), and their normalized trace distributions are quite different. For C1 the den-
sity of zero traces is 3/4, whereas for C2 it is 7/12 (these ratios represent the proportion of Sato–
Tate group components on which the trace is identically zero), and their normalized trace moment
sequences are (1,0, 1,0, 9,0, 110,0, 1505,0, 21546, . . .) and (1,0, 2,0, 18,0, 200,0, 2450,0, 31752, . . .),
respectively. The Sato-Tate conjecture for these two curves was proved in [27], so this difference in
Sato-Tate groups provably impacts the normalized trace distributions of A1 and A2.

4.3. Sato–Tate measures. Once we know the Sato–Tate group ST(A) of an abelian variety A, we are
in a position to compute various statistic related to the distribution of its conjugacy classes, such as the
moments of characteristic polynomial coefficients (or any other conjugacy class invariant). We can then
test the Sato–Tate conjecture by comparing these to corresponding statistics obtained by computing
normalized L-polynomials L̄p(T ) for all primes p of good reduction for A up to some norm bound B.

The first step is to determine the Haar measure on ST(A)0. For g = 1 there are only two possibilities:
either ST(A)0 = U(1) or ST(A)0 = SU(2), where, as usual we embed U(1) in SU(2) via u 7→

�

u 0
0 ū

�

. In
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terms of the eigenangle θ , the pushforward measure on conj(ST(A)0) is one of

µU(1) := 1
πdθ ,

µSU(2) := 2
π sin2 θ dθ ,

with 0≤ θ ≤ π. This also addresses two of the possibilities for ST(A)0 that arise when g = 2, the groups
U(1)2 and SU(1)2 listed in the first two rows of Table 1; these denote two identical copies of U(1) and
SU(2) diagonally embedded in USp(4). When expressed in terms of the eigenangle θ , the measureµU(1)2
is exactly the same as µU(1) (and similarly for µSU(2)2), but note that we will get a different distribution
on characteristic polynomials (which now have degree 4 rather than degree 2), because each eigenvalue
now occurs with multiplicity 2; in particular, the trace becomes 4cosθ rather than 2cosθ .

For the groups ST(A)0 that appear in the next three rows of Table 1, the measure on conj(ST(A)0) is
a product of measures that we already know:

µU(1)×U(1) := 1
π2 dθ1 dθ2,

µU(1)×SU(2) := 2
π2 sin2 θ2 dθ1 dθ2,

µSU(2)×SU(2) := 4
π2 sin2 θ1 sin2 θ2 dθ1 dθ2.

To obtain the measure for the generic case ST(A) = ST(A)0 = USp(4), we use the Weyl integration
formula for USp(2g) (which includes the case SU(2) = USp(2) that we already know):

(11) µUSp(2g) :=
1
g!

 

∏

1≤ j<k≤g

�

2 cosθ j − 2 cosθk

�2

!

∏

1≤ j≤g

� 2
π sin2 θ j dθ j

�

,

with 0 ≤ θ j ≤ π, see [97, Thm. 7.8B] or [45, §5.0.4]. This covers all the g = 2 cases, and (by taking
appropriate products) all the g = 3 cases listed in Table 2 except for U(3), where we need the Weyl
integration formula for U(g):

(12) µU(g) :=
1
g!

 

∏

1≤ j<k≤g

�

�eiθ j − eiθk
�

�

!

∏

1≤ j≤g

1
2πdθ j ,

with 0≤ θ j ≤ 2π (note the 2π); see [97, Thm. 7.4B] or [45, §5.0.3].
With the measure µST(A)0 in hand, for any continuous class function f on ST(A), we can compute

µST(A)( f ) :=

∫

ST(A)
f (g)µST(A)(g) =

∑

g

∫

ST(A)0
f (gh)µST(A)0(h),

as a finite sum over a set of left coset representatives g ST(A)0 of ST(A)/ST(A)0; see [25, §5.1.1] for
details and explicit results in the case g = 2.

4.4. Trace moment sequences. As a particular application of our work in the previous section where
we determined Haar measures for various Sato–Tate groups, let us consider the problem of computing
the trace moment sequence of a connected Sato–Tate group; so assume ST(A) = ST(A)0. For each integer
n≥ 0 we wish to compute the nth moment

EST(A)[tr
n] =

∫ π

0

· · ·
∫ π

0

 

g
∑

j=1

2 cosθ j

!n

µST(A)(θ1, . . . ,θg).
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We have already done this computation for the groups U(1) and SU(2) that arise in dimension g = 1.
For U(1) we have

EU(1)[tr
n] =

1
π

∫ π

0

(2cosθ )n dθ = bn :=
�

n
n/2

�

,

where we adopt the convention that
� n

n/2

�

= 0 when n is odd, and for SU(2) we have

ESU(2)[tr
n] =

2
π

∫ π

0

(2cosθ )n sin2 θ dθ = cn :=
2

n+ 2

�

n
n/2

�

.

We thus obtain the moment sequences

MU(1)[tr
n] = (1, 0, 2, 0, 6, 0, 20, 0, 70, 0, 252, . . .),

MSU(2)[tr
n] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .).

For g = 2 we observe that for 5 of the 6 connected Sato–Tate groups listed in Table 1 we can com-
pute their trace moment sequences directly from the trace moment sequences for U(1) and SU(2); no
integration is required. For U(1)2 and SU(2)2 we simply have

EU(1)2[tr
n] = EU(1)[2

n trn] = 2n bn,

ESU(2)2[tr
n] = ESU(2)[2

n trn] = 2ncn,

and for U(1)×U(1), U(1)× SU(2), SU(2)× SU(2) we take binomial convolutions to obtain20

EU(1)×U(1)[tr
n] =

n
∑

r=0

�

n
r

�

EU(1)[tr
r]EU(1)[tr

n−r] =
n
∑

r=0

�

n
r

�

br bn−r = b2
n,(13)

EU(1)×SU(2)[tr
n] =

n
∑

r=0

�

n
r

�

EU(1)[tr
r]ESU(2)[tr

n−r] =
n
∑

r=0

�

n
r

�

br cn−r =
1
2 cn bn+2,(14)

ESU(2)×SU(2)[tr
n] =

n
∑

r=0

�

n
r

�

ESU(2)[tr
r]ESU(2)[tr

n−r] =
n
∑

r=0

�

n
r

�

cr cn−r = cncn+2.(15)

For the generic case USp(4) we apply (11) with g = 2 to obtain

EUSp(4)[tr
n] = 2n+3

π2

∫ π

0

∫ π

0

(cosθ1 + cosθ2)
n(cosθ1 − cosθ2)

2 sin2 θ1 sin2 θ2 dθ1dθ2 = cncn+4 − c2
n+2.

Here we have applied the general determinantal formula from [49, Thm. 1] that allows one to compute
the moment generating function of the kth eigenvalue power-sum in USp(2g). Recall that the moment
generating function of a moment sequence (m0, m1, m2, . . .) is the exponential generating function

M (z) :=
∞
∑

n=0

mn
zn

n!
.

One uses exponential generating functions so that products of moment generating functions correspond
to binomial convolutions of moment sequences; this means that ifM1(z) andM2(z) are the moment
generating functions of two independent random variable X1 and X2, then the moment generating
function of X1 + X2 is simplyM1(z)M2(z).

The determinantal formula for the first eigenvalue power-sum (the trace) is simply

MUSp(2g)[tr] = det
g×g

�

C i+ j−2
�

i j ,

20It is at this point we see the utility of including zeroth moments in our moment sequences.
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where C m is the moment generating function defined by

C m(z) :=
m
∑

r=0

�

n
r

�

(B2r−n −B2r−n+2) , Bs(z) :=
∞
∑

n=0

z2n+s

s!(n+ s)!
.

The functionBs(z) is related to a hyperbolic Bessel function of the first kind; see [49, p. 13] for details.
For the connected Sato–Tate groups that arise in dimension g = 2 we obtain the moment sequences

MU(1)2[tr] = (1, 0, 8, 0, 96, 0, 1280, 0, 17920, 0, 258048, . . .),

MSU(2)2[tr] = (1, 0, 4, 0, 32, 0, 320, 0, 3584, 0, 43008, . . .),

MU(1)×U(1)[tr] = (1, 0, 4, 0, 36, 0, 400, 0, 4900, 0, 63504, . . .),

MU(1)×SU(2)[tr] = (1, 0, 3, 0, 20, 0, 175, 0, 1764, 0, 19404, . . .),

MSU(2)×SU(2)[tr] = (1, 0, 2, 0, 10, 0, 70, 0, 588, 0, 5544, . . .),

MUSp(4)[tr] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

and for g = 3 we have

MU(1)3[tr] = (1, 0, 18, 0, 486, 0, 14580, 0, 459270, 0, 14880348, . . .),

MSU(2)3[tr] = (1, 0, 9, 0, 162, 0, 3645, 0, 91854, 0, 2480058, . . .),

MU(1)×U(1)2[tr] = (1, 0, 10, 0, 198, 0, 4900, 0, 134470, 0, 3912300, . . .),

MU(1)×SU(2)2[tr] = (1, 0, 6, 0, 86, 0, 1660, 0, 37254, 0, 916020, . . .),

MSU(2)×U(1)2[tr] = (1, 0, 9, 0, 146, 0, 2965, 0, 68334, 0, 1707930, . . .),

MSU(2)×SU(2)2[tr] = (1, 0, 5, 0, 58, 0, 925, 0, 17598, 0, 374850, . . .),

MU(1)×U(1)×U(1)[tr] = (1, 0, 6, 0, 90, 0, 1860, 0, 44730, 0, 1172556, . . .),

MU(1)×U(1)×SU(2)[tr] = (1, 0, 5, 0, 62, 0, 1065, 0, 21714, 0, 492366, . . .),

MU(1)×SU(2)×SU(2)[tr] = (1, 0, 4, 0, 40, 0, 570, 0, 9898, 0, 19521, . . .),

MSU(2)×SU(2)×SU(2)[tr] = (1, 0, 3, 0, 24, 0, 285, 0, 4242, 0, 73206, . . .),

MU(1)×USp(4)[tr] = (1, 0, 3, 0, 21, 0, 214, 0, 2758, 0, 41796, . . .),

MSU(2)×USp(4)[tr] = (1, 0, 2, 0, 11, 0, 94, 0, 1050, 0, 14076, . . .),

MU(3)[tr] = (1, 0, 2, 0, 12, 0, 120, 0, 1610, 0, 25956, . . .),

MUSp(6)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

Recall that for g = 1 the trace moment sequence (1,0, 1,0, 2,0, 5,0, 14,0, 42, . . .) of the generic Sato–
Tate group SU(2) corresponds to the sequence of Catalan numbers with 0’s inserted at the odd moments.
There is a standard combinatorial interpretation of this sequence: the nth moment counts the number
of returning walks of length n on a 1-dimensional integer lattice that stay to the right of the origin (there
are no such walks when n is odd, hence the odd moments are zero).

This combinatorial interpretation generalizes to higher genus. For g = 2 the trace moment sequence
for the generic Sato–Tate group USp(4) counts returning walks on a 2-dimensional integer lattice that
satisfy x1 ≥ x2 ≥ 0 (so now there are 3 walks of length 4, not just 2). In general, for any g ≥ 1
the trace moment sequence for the generic Sato–Tate group USp(2g) counts returning walks on a g-
dimensional integer lattice that satisfy x1 ≥ . . .≥ xg ≥ 0; this follows from a general result of Grabiner
and Magyar [30] that relates the decomposition of tensor powers of certain representations of classical
Lie groups to lattice paths that are constrained to lie in the closure of the fundamental Weyl chamber
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of the corresponding Lie algebra (which can be defined as an intersection of hyperplanes orthogonal to
elements of a basis for the root system).

This combinatorial feature has an interesting asymptotic consequence. For any integers g ′ ≥ g > 0,
the moment sequences MUSp(2g ′)[tr] and MUSp(2g)[tr] must agree up to the 2gth moment; see Exer-
cise 4.3. Thus the moments sequences MUSp(2g)[tr] converge to a limiting sequence as g →∞:

MUSp(2)[tr] = (1, 0, 1, 0, 2, 0, 5, 0, 14, 0, 42, . . .),

MUSp(4)[tr] = (1, 0, 1, 0, 3, 0, 14, 0, 84, 0, 594, . . .),

MUSp(6)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 104, 0, 909, . . .),

MUSp(8)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 944 . . .).

...

MUSp(∞)[tr] = (1, 0, 1, 0, 3, 0, 15, 0, 105, 0, 945, . . .).

The limiting sequence MUSp(∞)[tr] is precisely the moment sequence of the standard normal distri-
bution (mean 0 and variance 1); the nth moment is zero if n is odd, for even n it is simply

(n− 1)!! := n(n− 2)(n− 4) · · ·3 · 1.

Figure 4 shows the a1-distributions for g = 1,2, 3,4, normalized to the same scale, which illustrates
convergence to the Gaussian.

4.5. Exercises.

Exercise 4.1. Give combinatorial proofs of the identities used in (13), (14), (15).

Exercise 4.2. Using the combinatorial interpretation of the trace moment sequence MUSp(2g)[tr], prove
that for g ′ > g the moment sequences MUSp(2g ′)[tr] and MUSp(2g)[tr] agree up to the 2gth moment but
disagree at the (2g+2)th moment. Then show that the limiting trace moment sequence MUSp(∞)[tr] is
equal to the moment sequence of the standard normal distribution.

Exercise 4.3. Characterize each of the 6 trace moment sequences that arise for connected Sato–Tate
groups in dimension g = 2 by showing that each sequence counts returning walks on an 2-dimensional
integer lattice that are constrained to a certain region of the plane.

Exercise 4.4. Similarly characterize the 14 trace moment sequences that arise for connected Sato–Tate
groups in dimension g = 3 in terms of returning walks on a 3-dimensional integer lattice.

Exercise 4.5. For each of the 5 non-generic connected Sato–Tate groups that arise in dimension g = 2
compute the moment sequence for a2, the quadratic coefficient of the characteristic polynomial.
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