
TALK NOTES: p-ADIC MODULAR FORMS À LA SERRE

FRANCESCA BERGAMASCHI

1. Introduction

Goal: Defining p-adic modular forms so that they carry the p-adic topology,
by following Serre’s paper ”Formes modulaires et fonctions zêta p-adiques” ([Ser1]).
The subject of p-adic modular forms was introduced in the 70’s through the following
steps:

● Serre, Swinnerton-Dyer ([Ser1, Ser2, SD]): Understanding of modular forms
mod p (This was explained during Giulio’s talk).● Serre ([Ser1]): Definition of p-adic modular forms as limits of regular modular
forms.● Katz ([Katz]): Generalization of Serre’s definition to a geometric context
(Serre’s p-adic modular forms will be a particular case of a much wider class
of objects).

1.1. Motivation. - Motivation for Serre (and for this seminar): defining p-adic L-
functions through p-adic interpolation starting from the q-expansion of p-adic mod-
ular forms.

Given a number field K, we may define its zeta-function:

⇣K(s) ∶= �
a�OK

1

Norm(a)s = �p�OK
p prime

1

1 −Norm(p)−s , Re(s) > 1.
In order to find a p-adic analogue to regular L-functions, Kubota and Leopoldt,

looked fot a p-adic meromorphic function which takes the same value as regular
L-functions on negative integers. They relied on the following result:

Given K is an abelian extension of Q:

⇣K(1 − k) =�
�

L(�,1 − k) =�
�

(−bk(�)�k), k ≥ 1,
where � runs through the set of rational characters attached to K. This identity
allows us to deduce relations for ⇣K(1 − k) for various values of k and hence to
construct by interpolation a p-adic ⇣-function for K.

Serre’s aim is to extend this strategy to any totally real number field. His results
are inspired by methods of Klingen and Siegel. They hold on the fact that ⇣K(1−k)
appears as the constant term of a certain modular form whose higher coe�cients
are easy to compute. The method consists essentially in transferring the properties
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of coe�cients of higher degree to the constant term. An example is the proof by
Siegel of the following result:

⇣K(1 − k) ∈ Q,

for k a positive integer.
Another motivation for Serre was to construct p-adic analytic families of modular

forms. He had in mind connections to Galois representations and Iwasawa theory.

2. p-adic modular forms

´

a la Serre

Fix a prime p.

Remark. The exposition by Serre is done for modular forms over Q of level 1, but
the theory can be developed more generally for modular forms over number fields of
any level. We will hence denote by Mk the space of modular forms over Q of level
1 and weight k.

Serre starts by defining a notion of p-adic valuation of a formal series with rational
coe�cients f = ∑n anq

n ∈ Q[[q]]:
vp(f) ∶= inf

n
vp(an).

Definition 2.0.1 (Serre). A p-adic modular form is a formal power series

f =�
n

anq
n ∈ Zp[[q]]⊗Q

such that there exists a sequence fi ∈Mki such that vp(f − fi) =∞, for i →∞ (that
is, if {fi} converges uniformly with respect to the p-adic topology).

3. Is this a ’good’ definition?

Remark. It is not required that the fi’s have the same weight (in fact they need to
be di↵erent in order to obtain a new, non-trivial notion). We will soon be able to
define a notion of weight as the p-adic limit as the ki’s. In order to do so, we shall
define a new environment by studying congruences of regular modular forms.

3.1. Modular forms modulo p

m.

3.1.1. Recall: the algebra of modular forms mod p. I will briefly recall the results
on congruences of modular forms modulo a prime p, which have been explained
in detail during Giulio’s talk. As already remarked by him, the following results
are due to Swinnerton-Dyer ([SD]). We want to study the reduction modulo p of
modular forms:

Mk
⇡�→ Fp[[q]],

we denote by M̃k ∶= ⇡(Mk). We want namely to study the following object:

M̃ ∶=�
k∈Z

M̃k ⊂ Fp[[q]],
the algebra of modular forms modulo p. Recall that Q = E4 and R = E6 generate the
graded algebra of modular forms. We have various cases. For p ≥ 5, for any element
↵ ∈ Z�(p − 1)Z, set

M̃

↵ = �
k≡p−1↵

M̃k.
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Swinnerton-Dyer proved that M̃ is the graded algebra

M̃ = �
↵∈Z�(p−1)Z

M̃

↵
.

One has moreover the following identification:

M̃ = Fp[Q,R]�(Ã − 1).
I would like to remark that this description allows us to interpret M̃ geometrically,
as the a�ne algebra of a smooth algebraic curve, see [Ser2] for details.

Fof p = 2,3, one has that
M̃ = Fp[�̃].

(Where I recall � = 2−63−3(Q3 −R2)).
Theorem 3.1.1. [Modulo p

m congruences] Let m ≥ 1 be an integer. Let f and f

′
be two modular forms of weight k and k

′ respectively. Suppose that f ≠ 0 and that

vp(f − f ′) ≥ vp(f) +m.

Then
k

′ ≡ k mod (p − 1)pm−1 if p ≥ 3
k

′ ≡ k mod 2m−2 if p = 2
Proof. Suppose first m = 1. By (in case) multiplying f by a scalar, we may suppose
vp(f) = 0, so that the hypothesis of the theorem becomes:

f

′ ≡ f mod p

m
.

In particular the coe�cients of both f and f

′ will be p-integers, and f̃ = f̃ ′ ≠ 0 ∈ M̃ .
If p ≥ 5, it follows that f and f

′ belong to the same component M̃↵ of M̃ , that is
k ≡ k′ mod (p − 1). Since k and k

′ are even, the same holds for p = 2,3.
See Theorem 1, section 1.3 of [Ser1] for the general proof. ⇤

Indeed, let m ≥ 1 be an integer (m ≥ 2 if p = 2). We define the following group

Xm = � Z�(p − 1)pm−1Z = Z�pm−1Z ×Z�(p − 1)Z if p ≠ 2
Z�2m−2Z if p = 2

Note that the Xm’s form a projective system and hence we define

X ∶= lim←�
m

Xm = � Zp ×Z�(p − 1)Z if p ≠ 2
Z2 if p = 2

We remark that the natural map Z→X is injective and through this we shall think
of the integers as a dense subgroup of X

3.2. Weights of a p-adic modular form. Let f be a non-zero p-adic modular
form and let (fi)i be a sequence of rational modular forms of weights ki, converging
to f . Then the ki’s converge to a number in the group X. Such a limit depends on
f , but not on the fi’s.

Proof. Since vp(fi − fj) →∞, we may apply the theorem above, obtaining that for
any m ≥ 1, the image of (ki) in Xm is stationary. Hence we may set k = lim←� ki. ⇤
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Definition 3.2.1. We call k = lim←� ki as above the weight of f . It is an even element

(being the limit of even elements).

The p-adic modular forms of a given weight form a Qp-vector space.

4. First properties

We expect p-adic modular forms to satisfy properties similar to those satisfied by
regular modular forms.

Theorem 4.0.2. Let m ≥ 1 be an integer and let f and f

′ be two non-zero p-adic
modular forms, of weight k and k

′ respectively. If
vp(f − f ′) ≥ vp(f) +m,

then k = k′ in Xm.

Proof. By definition f and f

′ can both be written as limits of regular modular forms
fi (resp f

′
i ) of weight ki (resp k

′
i). For i big enough one has that

vp(fi − f ′i) ≥ vp(f) +m,

and hence, by the theorem above, it follows that ki = k

′
i in Xm and hence the

conclusion. ⇤
This theorem has a certain number of corollaries.

Corollary 4.0.3. Let f = ∑anq
n be a p-adic modular form of weight k ∈ X and m

is a positive integer such that the image of k in Xm+1 is non-zero. Then

vp(a0) +m ≥ inf
n≥1 vp(an).

Proof. Note that we may suppose a0 ≠ 0. Indeed if a0 = 0 then vp(a0) =∞ and the
assertion holds obviously. Hence we define the constant modular form of weight 0:
f

′ = a0 and we have
vp(f − f ′) = inf

n≥1 vp(an).
Since the weights of f and f

′ have di↵erent images inside Xm+1, by Theorem (4.0.2)

vp(f) +m + 1 > vp(f − f ′),
hence the conclusion since vp(a0) ≥ vp(f). ⇤
Remark. In case p−1 ≠ �k (i.e. it does not belong to Zp ≤X) we may choose m = 0
in the corollary above. Id est:

Corollary 4.0.4. Under the hypotheses in the Remark, if the coe�cients ai are
integral for every i ≥ 1, then a0 is also integral.

This result can be seen as an integral analog to the rationality theorem by Siegel,
and it is an example of the Klingen-Siegel method I referred to in the beginning.
There is a concrete example to have in mind. (In Serre’s paper it is stated as a
Theorem).

Corollary 4.0.5. Let K be a totally real number field of degree g and let k ≥ 2 be
an integer.

(1) If kg �≡ 0 mod p − 1, we have that ⇣K(1 − k) is p-integral.
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(2) If kg ≡ 0 mod p − 1, we have that vp(⇣K(1 − k)) ≥ −1 − vp(gk).
Proof. For every m there is a modular form of weight mg:

fk = ⇣K(1 − k)
2g

+ ∞�
n=1

ak(n)qn,
where

ak(n) = �
⌫∈(D−1K )+
Tr(⌫)=n

�(⌫)DK⊆a⊆OK

Norm(a)k−1,
(where DK denotes the di↵erent of K, Tr(⌫) ≥ 1). This modular form is related
to the diagonal curve. The higher coe�cients of fk are p-integers (in fact they are
really integers), and hence if kg �≡ 0 mod p − 1, then also the leading coe�cient is
p-integral. Suppose now kg ≡ 0 mod p − 1. Put k̃ = kg and m = vp(k̃) + 1. By
hypothesis k̃ ∉Xm+1 and hence

vp(⇣K(1 − k)) +m ≥ infl{vp(al)} ≥ 0.
⇤

This last corollary is the essence of the result by Serre.

Corollary 4.0.6. Let

f

(i) = ∞�
n=0

a

(i)
n q

n

a sequence of p-adic modular forms of weights k

(i). Suppose that

(1) the a

(i)
n converge uniformly to a number an ∈ Qp for n ≥ 1,

(2) the k

(i) converge in X to a limit k.

Then the a

(i)
0 converge to a limit a0 ∈ Qp and the series

f = ∞�
n≥0

anq
n

is a p-adic modular form of weight k.

4.1. Examples. Using this result we may construct the first example of p-adic mod-
ular form.

Recall the definition of the Eisenstein series of weight k:

Gk = −Gk

2
Ek = − bk

2k
+ ∞�

n≥1
�k−1(n)qn.

Consider now a sequence (ki)i of even numbers converging p-adically to a number
k ∈ X and such that �ki� → ∞, where � ⋅ � denotes the archimedean norm. Then we
have that dki−1 → 0 if p�d and

d

ki−1 → d

k−1
, if (p, d) = 1.

Hence it follows that
�(n)ki−1 → �

∗
k−1(n) ∶= �

d�n(d,p)=1
d

k−1
,
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p-adically and uniformly in n. We have obtained the following: the �ki−1(n) are the
coe�cients of index i ≥ 1 of the Eisenstein series

Gki = − bki2ki
+ ∞�

n≥1
�ki−1(n)qn.

We apply hence Corollary (4.0.6) and obtain that the Gki converge to a p-adic
modular form of weight k:

G

∗
k = a0 + ∞�

n=1
�

∗
k−1(n)qn,

(where a0 is the limit of the Bernoulli number, which exists by Corollary (4.0.6)).
Clearly this limit does not depend on the choice of (ki). We call this the p-adic
Eisenstein series of weight k.

I would like to underline another important consequence of this result. I recall
that the Bernoulli numbers are related to the zeta function in the following way:

− bki
2ki
= 1

2
⇣(1 − ki).

The result above tells us that the series ⇣(1 − ki) has p-adic limit. This defines a
function ⇣

∗ on the odd elements of X − {1}.
Theorem 4.1.1 (Serre). In fact ⇣∗ is the Kubota-Leopoldt p-adic zeta function ⇣p.
More precisely

(1) If p ≠ 0 and if (s, u) is an odd element of X = Zp ×Z�(p− 1)Z di↵erent from
1, we have

⇣

∗(s, u) = Lp(s;!1−u),
(2) if p = 2 and s is an idd element of Z2 di↵erent from 1, one has

⇣

∗(s) = L2(s,�0).
This results holds on the principles on the base of p-adic interpolation of L-

fuctions, found by Kubota and Leopoldt.
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5. The Kubota-Leopoldt p-adic L-function

We followed mainly Iwasawa’s book [Iwa].

5.1. What does interpolation mean? Suppose we have a function

f ∶ Z→ R,

find a continuous function F ∶ R→ R such that F (n) = f(n) for every n ∈ Z. There
are of course many ways of doing that (it means essentially connecting the dots).
This has to do with the fact that Z is discrete in the reals. Already with the ratio-
nals it’s di↵erent.

It is easy to see that p-adic interpolation is a richer fenomenon: given f ∶ Z→ Zp

continuous we look for F ∶ Zp → Zp extending f . F will have to satisfy some
continuity properties:it has to do with the fact that Z is dense in Zp(for instance it
will have to map 1 and 1 + p1000000 very close together).

5.2. The normed space PK. Fix an algebraic closure Qp of Qp and for an elements

⇠ ∈ Qp denote by �⇠� the absolute value normalized so that �p� = p−1. The topology

induced on Qp is of course the p-adic topology. Consider Qp ⊂ K ⊂ Qp a finite
extension and denote by K[[x]] the algebra of formal power series with coe�cients
in K. Recall that A = ∑n≥0 anxn converges at ⇠ if and only if �an⇠n�→ 0 as n→∞.

This is the general idea. We want to interpolate power series..

Lemma 5.2.1 (Unicity). Let A(x),B(x) ∈ K[[x]], convergent in a neighbourhood
of 0 ∈ Qp. Suppose that there exists a sequence ⇠n ≠ 0, n ≥ 0 in Qp, with limn→0 ⇠n = 0
such that

A(⇠n) = B(⇠n).
Then

A(x) = B(x).
Proof. Let

A(x) −B(x) =�
n

cn ∈K[[x]],
and suppose by absurd A(x) ≠ B(x). Denote by n0 the smallest natural such that
cn0 ≠ 0. Then one has

−cn0 = ⇠i �
n>n0

cn⇠
n−n0−1
i

for every i. Since ⇠i → 0 for i → ∞, and since, by hp, the sum on the right is
bounded, we get the contradiction

cn0 = 0.
⇤

For any A = ∑akx
k ∈K[[x]], we set the sup-norm �A� = supk �ak�. Denote by PK

the K-subalgebra of power series A(x) such that �A� <∞. Note that � ⋅ � defines a
norm on PK , which is complete with respect to it.
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Definition 5.2.2. For n ≥ 0 we define through the Newton Binomial a polynomial
in K[x]:

�x
n

� = x!

n!(x − n)! .
One has (see [Iwa, Lemma 3, Chap. 3])

��x
n

�� ≤ � 1
n!
� ≤ �p�− n

p−1
.

Let (bn) be a sequence K, and put

cn = n�
i

(−1)n−i�n
i

�bi.
Since cn

n! = ∑n
i=0(−1)n−i 1

i!(n−i)!bi one has

e

−t ∞�
n=0

bn
t

n

n!
= ∞�

n=0
cn

t

n

n!
.

Then it follows that cn ∈K,n ≥ 0 and that

bn = n�
i

�n
i

�ci.
With this notations we have

Lemma 5.2.3 (Interpolation). Let 0 < r < �p� 1
p−1 and �cn� ≤ Cr

n, for some C > 0.

Then there exists a unique A ∈ PK convergent for ⇠ < � = �p� 1
p−1
r such that for all n

A(n) = bn.
Proof. Put Ak(t) = ∑k

i=0 �ti�ci ∈ PK . Of course

Ak(n) = bn,∀n ≥ 0.
Using the estimate on the Newton binomial:

�
ci�t

i

�� ≤ �ci�� 1
i!
� ≤ �ci��p� −ip−1 ≤ Cri(�p�) −ip−1 = C�

−i
.

Hence

(5.1) �Aj −Ak−1� ≤max
k≤i≤j �ci�t

i

�� ≤ C�

−k
.

Since by hypothesis �−1 < 1, it follows that (Ak) is Cauchy and hence convergent to
an A ∈ PK with respect to the sup-norm, since PK is complete. We need to verify
that such an A converges for ⇠ such that �⇠� < �. Put A ∶= ∑ajt

j and Ak ∶= ∑aj,kt
j

with aj,k → aj. By definition, Ak is a polynomial of degree k, and hence ak,k−1 = 0,
whenever j ≥ k, therefore

�aj,k� = �aj,k − ak,k−1� ≤ �Aj −Ak−1� ≤ C�

−1
.

Hence for j →∞ one has that �ak� ≤ C�

−k
.



TALK NOTES: p-ADIC MODULAR FORMS À LA SERRE 9

Hence A(⇠) converges for �⇠� < �.
If we show now that for a fixed ⇠ such that �⇠� < � one has Ak(⇠) → A(⇠) we are
done. For any k, put

A(⇠) −Ak(⇠) =� bj,k⇠
j
,

where of course bj,k = aj − aj,k. To prove our claim it is enough to show that
supj �bj,k⇠k�→ 0. We will distinguish two cases.
If j > k, then �bj,k⇠j � = �aj⇠j � ≤ C(�−1�xi�)j ≤ C(�−1�⇠�)k. If on the other hand j ≤ k:�bj,k⇠j � ≤ �A −Ak��⇠j � ≤ C�

−(k+1)�⇠j � ≤ C(max{�−1, �−1�⇠�}k. Hence in any case

sup
j
�bj,k⇠j � ≤ C(max{�−1, �−1�⇠�}k.

⇤

5.2.1. Generalized Bernoulli numbers. Recalls on Dirichlet characters:

Definition 5.2.4. Let n be a positive integer. A function

� ∶ N→ C

is called a Dirichlet character of modulus n if

(1) �(a) depends only on the class of a mod n,
(2) � is completely multiplicative,
(3) �(a) ≠ 0 if and only if (a,n) = 1.
The notion of primitive character and conductor are particularly important.

Definition 5.2.5. A Dirichlet character � mod n is primitive if it is not induced
by any Dirichlet character of modulus m�n. We say that � is induced by �̃ modulus
m if

�(a) = �̃(a) if (a,n) = 1,�(a) = 0 otherwise.

Recall the definition of the classical Bernoulli numbers: we are given a function

F (t) = te

t

e

t − 1 ,
and this can be expanded into a power series of t:

F (t) = ∞�
n=0

Bn
t

n

n!
.

One may generalize the above definition as follows: given a Dirichlet character � of
conductor f = f� we define

F�(t) = f�
a=1

�(a)eat
e

ft − 1 , F�(t, x) = F�(t)etx = f�
a=1

�(a)te(a+x)t
e

ft − 1 ;
expanding these into power series of t one has

F�(t) = ∞�
n=0

Bn,�
t

n

n!
, F�(t, x) = ∞�

n=0
Bn,�(x) tn

n!
.
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The generalized Bernoulli numbers satisfy the following relations

Bn,�(x) = n�
i=0
�n
i

�Bi,�x
n−i

, n ≥ 0,(5.2)

kf�
a=1

�(a)an = 1

n + 1{Bn+1,�(kf) −Bn+1,�}.(5.3)

This gives us a somehow p-adic characterization of Bernoulli numbers: set

Sn,�(x) = 1

n + 1(Bn+1,�(x) −Bn+1,�).
We know that for n ≥ 0, Bn,� are algebraic numbers in Q(�). Fixed a prime p,

we may consider them as elements in Qp(�). One has the following result:

Lemma 5.2.6. In Qp(�)
Bn,� = lim

h→∞
1

p

h
f

Sn,,�(phf).
Proof. Note that we have

Sn,�(phf) = 1

n + 1(Bn+1,�(phf) −Bn+1,�) ≡ Bn,� mod p

2h
.

Indeed, by the property shown above:

Bn+1,�(x) = Bn+1,� + (n + 1)Bn,�x mod (x2).
⇤

Why are these numbers important? Recall that we are interested in values of
L-functions at negative integers.

Theorem 5.2.7. For any Dirichlet character � and for any n ≥ 1
L(1 − n,�) = −Bn,�

n

.

For a proof, see [Iwa, Theorem 1, Chap. 2].

5.3. Definition of the p-adic L-function. Let � be a Dirichlet character of con-
ductor f and K = Qp(�). Consider ! ∶ Z→ C a fixed embedding of the Teichmueller
character in C.

Let U is the multiplicative group of all p-adic units. (p ≠ 2) Topologically it is a
direct product U = V ×D, where D = {1 + pa}, a ∈ Zp and V is a finite cycliic group
of order (p − 1) ((p − 1) roots of unity of Qp). Each a ∈ U can be written uniquely i
the form

a = !(a) < a >,
(they are the various projections). By putting !(a) = 0 when (a, p) ≠ 1, we define a
Dirichlet character of conductor p.

Recall that for any n we may define the twisted character

�n(a) = �(a)!−n(a).
Let

bn = (1 − �n(p)pn−1)Bn,�n
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and

cn = n�
i=0
�n
i

�bi(−1)n−i.
Lemma 5.3.1. For any n ≥ 0 one has that with the notation above

�cn� ≤ 1�p2f � �p�n.
Proof. We will use the stated properties on generalized Bernoulli numbers.

Bn�n = lim
h→∞

1

p

h
fn

Sn,�n(phfn) = lim
h→∞

1

p

h
f

Sn,�n(phf)
= lim

h→∞
1

p

h
f

phf�
a=1

�n(a)an.
We obtain hence a description for bn:

(1 − �n(p)pn−1)Bn,�n = Bn,�n − lim
h→∞

�n(p)pn−1
p

h−1
f

ph−1f�
a=1

�n(a)an

= lim
hto∞

1

p

h
f

phf�
c=1

�(c)cn − lim
h→∞

1

p

h
f

ph−1f�
a=1

�n(ap)(ap)n

= lim
h→∞

1

p

h
f

phf�
a=1(a,p)=1

�n(a)an = lim
h→∞

1

p

h
f

phf�
a=1(a,p)=1

�(a)�a�n.
And hence, by definition of cn

cn = n�
i=0
�n
i

�(−1)n−i lim
h→∞

1

p

h
f

phf�
a=1(a,p)=1

�(a)�a�i = lim
h→∞

1

p

h
f

phf�
a=1(a,p)=1

�(a) n�
i=0
�n
i

�(−1)n−i�a�i

= lim
h→∞

1

p

h
f

phf�
a=1(a,p)=1

�(a)(�a� − 1)n = lim
h→∞

1

p

h
f

cn(h).
Claim: cn(h) ≡ 0 mod p

n+h−2
. (See [Iwa, Lemma 4, Chap. 3] for a proof,)

Then cn(h) = ph+n−2✓n(h), where �✓n(h)� ≤ 1 and henve

�cn� = lim
h→∞

1�phf � �ph+n−2✓n(h)� ≤ 1�p2f � �pn�.
⇤

From this we obtain the following

Corollary 5.3.2. There exists A� ∈K[[T ]] convergent ⇣ < �p�− 1
p−1 such that

A�(n) = (1 − �n(p)pn−1)Bn,�n .

Proof. One needs to apply the Interpolation Lemma with r = �p�, C = 1�p2f � . ⇤

Theorem 5.3.3 (Kubota-Leopoldt). There exists a p-adic meromorphic function
Lp(s,�) with the following properties:
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(1)

Lp(s,�) = a−1
s − 1 +

∞�
n=0

an(s − 1)n, an ∈ Qp(�),
where

a−1 = 1 − 1

p

, if � = �0
, a−1 = 0, if � ≠ �0

and where the power series converges in the domain

{s ∈ ⌦p � �s − 1� < r, r = �p� 1
p−1 �q�−1 > 1}.

(2) For n ≥ 1 one has

Lp(1 − n,�) = −(1 − �n(p)pn−1)Bn,�n

n= (1 − �n(p)pn−1)L(1 − n,�n).
As a p-adic meromorphic function defined on the domain defined above, Lp(s,�) is
completely characterized by these two properties.

Proof. Let

Lp(s,�) = 1

s − 1A�(1 − s)
as above. The uniqueness follows from the unicity Lemma. The value of a−1 follows
from [Iwa, Theorem 2, Chap. 2]. ⇤

We call Lp(s,�) the p-adic L-function for the Dirichlet character �.

5.3.1. Conclusion. We want hence to prove the result by Serre.

Theorem 5.3.4 (Serre). In fact ⇣∗ is the Kubota-Leopoldt p-adic zeta function ⇣p.
More precisely

(1) If p ≠ 0 and if (s, u) is an odd element of X = Zp ×Z�(p− 1)Z di↵erent from
1, we have

⇣

∗(s, u) = Lp(s;!1−u),
(2) if p = 2 and s is an idd element of Z2 di↵erent from 1, one has

⇣

∗(s) = L2(s,�0).
I recall that Lp(s,�) is a p-adic meromorphic function such that for n = 1,2,3, . . .

Lp(1 − n,�) = (1 − �n(p)pn−1)(−Bn,�n

n

).
Denote by ⇣

′ the function (s, u)� Lp(s,!1−u).
By results of Iwasawa, ⇣ ′ is continuous and for k even, positive.

⇣

′(1 − k) = (1 − pk−1)⇣(1 − k).
Indeed: !

k
k(p) = 1 (primitive character..). Now, if k ∈ 2X, di↵erent from 0 and if(ki) is a sequence converging to k it follows that

⇣

′(1 − k) = lim
i→∞ ⇣

′(1 − ki) = lim
i→∞(1 − pki−1)⇣(1 − ki).
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Now, since �ki�→∞, we have that (1 − pki−1) tends p-adicaly to 1 and hence

⇣

′(1 − k) = ⇣∗(1 − k).
The results really holds on the unicity result.
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