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Introduction 

This expose represents an attempt to understand some of the recent work 

of Atkln~ Swinnerton-Dyer, and Serre on the congruence properties of the 

q-expansion coefficients of modular forms from the point of view Of the theory 

of moduli of elliptic curves, aS developed abstractly by Igusa and recently 

reconsidered by Dellgne. In this optic, a modular form of weight k and level 

®k 
n becomes a section of a certain line bundle ~ on the modular variety M 

- n 

which "classifies" elliptic curves with level n structure (the level n structure 

is introduced for purely technical reasons). The modular variety M n is a 

smooth curve over Z[1/n], whose "physical appearance" is the same whether we 

view it over C (where it becomes ~(n) copies of the quotient of the upper half 

plane by the principal congruence subgroup l~n) of SL(2,Z)) or over the algebraic 

closure of Z/p~ ~ (by "reduction modulo p") for primes p not dividing n. 

This very fact rules out the possibility of obtaining p-adic properties of 

modular forms simply by studying the geometry of M n ® ~pE and its llne bundles 

®k 
w ; we can only obtain the reductions modulo p of identical relations which 

hold over C . 

The key is instead to isolate the finite set of points of M n ® ~/pZ 

corresponding to supersingular elliptic curves in characteristic p, those whose 

Hasse invarlant vanishes. One then considers various "rigid-analytic" open 

subsets of M ® ~ defined by removing p-adic discs of various radii around 
n p 

the supersingular points in characteristic p. This makes sense because the 

Hasse invariant is the reduction modulo p of a true modular form (namely Ep_l) 

® Z by taking over %, so we can define a rigid analytic open subset of M n P 

only those p-adic elliptic curves on which Ep_ 1 has p-adic absolute value 

greater than some ¢ > 0. We may then define various sorts of truly p-adic 

modular forms as functions of elliptic curves on which IEp_ll > ~, or equivalent- 

ly as sections of the line bundles ~k restricted to the above-constructed 
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rigid analytic open sets of M ® ~ [The role of the choice of s is to 
n p 

specify the rate of growth of the coefficients of the Laurent series 

development around the "missing" supersingular points]. 

The most important tool in the study of these p-adic modular forms is 

the endomorphism they undergo by a "canonical lifting of the Frobenius 

endomorphism" from characteristic p. This endomorphism comes about as follows. 

Any elliptic curve on which IEp.ll > E for suitable ~ carries a "canonical 

subgroup" of order p, whose reduction modulo p is the Kernel of Frobenius. 

The "canonical lifting" above is the endomorphism obtained by dividing the 

universal elliptic curve by its canonical subgroup (over the rigid open set 

of M ®~ where it exists). 
n p 

This endomorphism is related closely to Atkin's work. His operator U 

i times) the trace of the canonical lifting of Frobenius, and is simply (~ 

certain of his results on the q-expansion of the function j may be interpreted 

as statements about the spectral theory of the operator U. 

The relation to the work of Swinnerton-Dyer and Serre is more subtle, 

and depends on the fact that the data of the action of the "canonical lifting 

of Frobenius" on -i _ over the rigid open set tEp°ll ~ i is equivalent to the 

knowledge of the representation of the fundamental group of the open set of 

M ® Z~ where the Hasse invariant is invertible on the p-adic Tate module 
n 

Tp (which for a non-supersingular curve in characteristic p is a free 

Z -module of rank one). Thanks to Igusa, we know that this representation is 
P 

as non-trivial as possibl% ~nd this fact, interpreted in terms of the action 

®k 
of the canonical Frobenius on the ~ , leads to certain of the congruences 

of Swinnerton-Dyer and Serre. 

In the first chapter, we review without proof certain aspects of the 

moduli of elliptic curves, and deduce various forms of the "q-expansion 

principle." This chapter owes much (probably its very existence) to discussions 

with Deligne. It is not"p-adic"~ and may be read more or less independently 
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of the rest of the paper. 

The gecond chapter develops at length various "p-adic" notions of modular 

form~ in the spirit described above. A large part of it (r ~ 1 ) was included 

with an eye to Dwork-style applications to Atkin's work, and may be omitted by 

the reader interested only in Swinnerton-Dyer and $erre style congruences. 

The idea of working 8t such "p-adic modular forms" is due entirely to $erre, 

who in his 1972 College de France course stressed their importance. 

The third chapter develops the theory of the "canonical subgroup." 

This theory is due entirely to Lubin, who has unfortunately not published 

it except for a tiny hint [33]. The second half of the chapter interprets 

certain congruences of Atkin in terms of p-adic Banach spaces, the spectrum 

of the operator U, etc. The possibility of this interpretation is due to 

Dwork. through his realization that not only is p U integral, but U itself is 

"essentially" integral (of[14]). 

The fourth chapter explains the relation between the canonical Frobenuis 

and certain congruences of Swinnerton-Dyer and Serre. It begins by recalling 

a "coherent sheaf" description of p-adic representations of the fundamental 

group of certain schemes on which p is nilpotent. This description is certainly 

well-known, and basically due to Hasse and Witt, but does not seem to be re- 

corded elsewhere in the form we require. Using it, we show that the representa- 

tion corresponding to ~ with its canonical Frobenuis is that afforded by 

the (rank-one) p-adic Tate module T of non-supersingular elliptic curves. 
P 

We then prove the extreme non-triviality of this representation in "canonical 

subgroup" style. This non-triviality is due to Igusa, whose proof is finally 

mot so different from the one given. We then apply this result of non- 

triviality to deduce certain of the congruences of Swinnerton-Dyer and Serre. 

In the first sppendix, which is a sort of "chapter zero", we explain the 

relation between the classical approach to elliptic curves via their period 
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lat~cices and the "modern" one, the relation of DeRham cohomology of elliptic 

curves to modular forms~ and the relation between the Gauss-Manln connection 2 

Ramsnujan's function P(q), and Serre's B-operator on modular forms. The results 

are due to Weierstrass and Deligne. It is concluded by a "table" of formulas. 

The second appendix explains the relation between the canonical Frobenuis 

on p-adic modular forms and the Frobenuis endomorphism of the DeRham cohomology 

of elliptic curves. It may also be read as an appendix to [25]. 

The third appendix relates Hecke pol~lomisls mod p to L-series, coherent 

cohomology and the Fredholm determinant of U. 

As should by now be obvious, this expose owes its very existence to Lubin, 

Serre, Deligne, Atkin, and Dwork. It is a pleasure to acknowledge my debt 

to them~ and to thank M. Rapoport for many helpful discussions. 
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Chapter l: Moduli schemes and the q-expansion principle 

In this chapter, we will recall s~ne of the definitions and main results 

of the theory of moduli of elliptic curves, and deduce from them various forms 

of the "q-expansion principle" for modular forms. 

1.O. By an elliptic curve over a scheme S ~ we mean a proper smooth morphism 

p: E > S , whose geometric fibres are connected curves of genus one, together 

with a section e: S > E . 

E 

e 

S 

We denote by ~E/S the invertible sheaf p,(~/S ) 

dual (Serre duality) to the invertible sheaf Rl~%(~E ) on S . 

1.1 Modular forms of level 1 

on S , which is canonically 

We denote by M(Z;l,k) the Z-module of such forms. 

Equivalently, a modular form of weight k and level i is a rule f which 

assigns to every pair (E/E,~) consisting of an elliptic curve over (the spec- 

trum of) a ring R together with a basis to of ~--~E/R (i.e., a nowhere vanish- 

ing section of ~/R on E ), an element f(E/R,~) c R , such that the follow- 

ing three conditions are satisfied. 

A modular form of weight k ¢ E and level one is a rule f which 

assigns to any elliptic curve E over any scheme S a section f(E/S) of 

--~E/S over S such that the following two conditions are satisfied. 

1. f(E/S) depends only on the S-isomorphism class of the elliptic 

curve E/S . 

2. The formation of f(E/S) confutes with arbitrary change of base 

g: S ..... ~ S (meauing that f(Es,/S' ) = g*f(E/S)). 
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f(E/R,e) depends only on the R-isomoz~hism class of the pair 

(E /R ,o>)  . 

2. f is homogeneous of degree -k in the "second variable"; for 

any k ~ R x (the multiplieative group of R ), 

f (E ,~ .~ , )  = ~ , - ~ f ( E , < o )  . 

3. The formation of f(EIR,~) commutes with arbitrary extension 

of se~ars g: R > R' (meaning f(ER,/R',½,) = ~(f(E/R,~))). 

(The correspondence between the two notions is given by the formula 

f(E/Spec(R)) = f (E/R,~)-~®k 

valid whenever S = Spec(R) and --~/R is a free R-module, with basis ~ .) 

If~ in the preceding definitions we consider only schemes S (or 

rings R) lying over a fixed ground-ring R ° ~ and only changes of base by 

Ro-morphisms, we obtain the notion of a modular form of weight k and level one 

defined over R ° ~ the Ro-module of which is noted M(Ro~l,k ). 

A modular form f of weight k and level one defined over R can be 
o 

evaluated on the pair (Tare(q), Wcan)Ro consisting of the Tare curve and its 

canonical differential, ~iewed as elliptic curve with differential over 

Z((q))~ R 0 (and not just over Ro((q)) ). 

The q-expansion of a modular form f is by definition the finite-tailed 

Laurent series 

f((Tate(q), ~Ocan)Ro ) ~ Z((q))~ R O . 

The modular form f is called holomorphic at ~ if its q-expansion lies in the 

subring Z[[q]]® Z R ° ; the module of all such is noted S(Ro;I,k ) . Notice 

that the q-expansion lies in ~,,((q))~ R ° ~ Ro((q)) , i.e., it is finite 

R -linear combination of elements of 7..((q)) . This implies, for example, 
o 

that if R is the field of fractions of a discrete valuation ring, then the 
o 

q-expansion coefficients of any modular form of weight k and level one over R 
o 
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have bounded denominators. 

i. 2. Modular forms of level n 

For each integer n ~ 1 ~ we denote by E the kernel of "multiplication 
n 

by n" on E/S ; it is a finite flat commutative group-scheme of rank n 2 over 

S , which is ~tale over S if and only if the integer n is invertible in 

F(S, ~S) i.e., if and only if S is a scheme over Z[n I-] . A level n struc- 

ture on E/S is an isomorphism 

2 
n: mE ~ (Z/nZ)S . 

It cannot exist unless n is invertible on S , and in that case there always 

exists one onSc~e finite 6tale covering S' of S . If a level n structure 

on E/S exists, and if S is connected, the set of all such is principal 

homogeneous under GL<2, ZInz> = Aut<<~nZ) 2) . 

A modular form of weight k and level n is rule which assigns to each 

pair (E/S, C~n) consisting of an elliptic curve together with a level n 

structure a section f(E/S, ~n) of (-~E/S over S , in a way which depends 

only on the isomorphism class of (E/S, ~n) , and which commutes with arbitrary 

base-change g: S' > S . Equ~valently~ it is a rule which assigns to all 

triples (E/R,~,C~n) , consisting of an elliptic curve over a ring R together 

with a base ~ of -~E/R and a level n structure Jn ' an element 

f(E/R,~,~n) c R which depends only on the isomorphism class of (E/R,~,~n) , 

which commutes with arbitrary change of bas% and which is homogeneous of 

degree -k in the "second variable"~ meaning that for any k e R x ~ we have 

f(E/R, k~, ~n) = k'kf(E/R,~,Jn) . Exactly as for level one, we define the 

notion of a modular form of weight k and level n defined over a ring R 
o 

The Ro-module of all such is noted M(Ro,n,k ) . 

A modular form of weight k and level n defined over a ring R which 
O 

contains i/n an__~d a primitive n'th root of unity ~n may be evaluated on 

the triples (Tate(qn), Wean, ~n)Ro consisting of the Tate curve Tate(q n) 
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with its canonical differential, viewed as defined over Z((q)) ~ R ° , together 

with any of its level n structures (all points of E are rational over 
n 

Z((q)) ®Z Ro ; in fact, being the canonical images of the points ~nmq ~ , 

O < i, j < n-! from "G " they all have coordinates in Z[[q]] ~ Z[nl- , ~n ] , 

and the non-constant q-coefficients of their (x,y) coordinates even lie in 

7-[~n] (cf.[38]), as one sees using the explicit formulas of Jacobi-Tate. 

The q-exl0ansions of the modular form f are the finitely many 

finite-tailed Laurent series 

1.2.1 f((Tate(qn) ' ~can' ~n)Ro ) ~ Z((q)) @Z RO 

obtained by varying (~ over all the level n structures. 
n 

(N~ Though it makes sense to speak of a modular form of weight k and level n 

defined over any ring R ° , we can speak of its q-expansions over R ° only 

when R ° contains 1/n and a primitive n'th root ~n of 1 .) 

A modular form defined over any ring R is said to be holomorphic 
O 

at ~ if its inverse image on Ro[i/n , ~n ] has all its q-expansions in 

Z[[q]] ~ Ro[1/n , ~n ] . < If the ring R ° itself contains i/n and In 

equivalent to asking that a_~ the q-expansions lie in Z[[q]] ~ R ° . this is 

The module of such is denoted S(Ro;n,k ) . 

A modular form (resp: holo. at ~) of weight k and level n defined over 

a ring R ° , which does not depend on the "last variable" ~n is a modular 

a modular form (resp: holo. at ~) of weight k and level one defined over 

Ro[lln] • 

!.3. Modular forms on to(p) 

Analogously, for an integer n _~ 1 and a prime number p ~ n , a modular 

form of weight k and level n on Po(p) is a rule f which assigns to each triple 

(E/S, ~n' H) consisting of an elliptic curve, a level n structure, and a finite 

subgroup-scheme H C E of rank p , a section f(EIs, ~n' H) of (_~EIs ~k flat 

over S , which depends only on the isomorphism class of (E/S, ~n' H) , and 
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whose fo~uation conmutes with arbitrary change of base S' ) S . Equivalently, 

it is a rule which assigns to each quadruple (E/R, ~, ~n' H) an element 

f(E/R, ~, ~n' H) ~ R , which depends only on the isomorphism class of the quad- 

ruple, whose formation co,mutes with arbitrary change of base, and which is 

homogeneous of degree -k in the second variable. As before, we define the 

notion of a modular form of weight k and level n on Fo(p) being defined over 

a ring R 
o 

A modular form of weight k and level n on Po(P) , defined over a ring 

R ° which contains 1/n and ~n may be evaluated on each of the quadruples 

(Tate(qn) ' ~can' (Zn' {~P)Ro " We will call the values of f on these quad- 

ruples the q-expansions of f at the unramified cusps, and say that f is 

holomorphic at the unrsmified cusps if its q-expansions there all lie in 

Z [ [ q ] ]  ~ R ° . We can  a l s o  e v a l u a t e  f on each  o f  q u a d r u p l e s  

(Tate(qnp)' ~can' C~n' [qn]) , where [qn] denotes the flat rank-p subgroup 

scheme generated by (the image of) qn Its values there are called its 

q-expansions at the ramified cusps. We say that f is holomorphic at ~ if 

all of its q-expansions, at the ramified and unramified cusps~ actually lie in 

z[[qJ] o z R ° 

Remark. The distinction between r~mified and un~amified cusps on Fo(p) is 

quite a natural one - in the work of Atkin, one deals with modular functions 

(weight O) of level one on Po(P) ~fnich are hoiomorphic at the unramified 

cusp, but not at the ramified one. 

1.4. The modular schemes M n and Mn 

For each integer n _> 3 , the functor "isomorphism classes of elliptic 

curves with level n structure" is representable, by a scheme N n which is an 

affine smooth curve over Z[ l] , finite and flat of degree=#(GL2(7-/nZ)/+ !) 

1 over the affine j-line Z[~, j] , and @tale over the open set of the affine 

j-line where j and j-1728 are invertible. The normalization of the projective 
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1 
j-line ~Z[I/n] in Mn is a proper and smooth curve Mn over Z[i/n] , 

the global sections of whose structural sheaf are Z[i/n,~ n] . The curve 

Mn®ZKlln]Z[i/n,~ n] (resp. ~ ~Z[1/n]Z[i/n,~n]) is a disjoint union of ~(n) 

affine (resp. proper) smooth geometrically connected curves over Z[I/n, ~n ] , 

the partitioning into components given by the $(n) primitive n'th roots of 

one occurring as values of the e.m. pairing on the basis of E specified by 
n 

the level n struct~ure. The scheme M - M over Z[i/n] is finite and e~tale~ 
n n 

and over ~[1/n,~ n] ~ it is a disjoint union of sections, called the cusps of 

, which in a nattLralway are the set of isomorphism classes of level n 
n 

structures on the Tate curve Tate(q n) viewed over Z((q)) ~Z Z[1/n'~n] " 

The completion of %®Z[I/n,~ n] along any of the cusps is isomorphic to 

1 
Z[i/n~n][[q]] . The completion of the projective j-line ]Pz[i/n,~n ] 

is itself isomorphic to Z[I/n,~n][[q]] , via the formula 

j(Tate(q)) = 1/q + 744 + ... , and the endomorphism of Z[1/n,~n][[q]] 

from the projection M > ]pl is just given by q , > qn In fact, for 
n 

each cusp~ the inverse image of the universal elliptic curve with level n 

structure (E/Mn, ~n) over (the spectrum of) Z[i/n,~n]((q)) (viewed as a 

punctured disc around the cusp) is isomorphic to the inverse image over 

Z[i/n,~n]((q)) of the Tare curve Tate(q n) with the level n structure corre- 

sponding to that cusp. 

1.5. The invertible sheaf ! on Mn, and modular forms holomorphic at 

&long oo 

arising 

There is a unique invertible sheaf _~ on ~n whose restriction to M n 

is _~E/Mn ((E/Mn,Gn) the universal elliptic curve with level n structure), 

and whose sections over the completion Z[1/n~n][[q]] at each cusp are pre- 

cisely the Z[1/n,~n][[q]] multiples of the canonical differential of the 

Tare curve. The Kodaira-Spencer style isomorphism (cf. A1.3.17 and [7]) 

 lzClln] 



83 Ka- 1 5 

extends to an isomorphism 

- lz[llnJ (l°g(~n - ~ )  ) ' 

and, in fact, over Z[l/n~n][[q]] , the "square" of the canonical differential 

on Tate(q n) corresponds to n- dq 
can q 

It follows that a modular form of level n and weight k holomorphie at 

defined over any ring R ° ~ i/n is just a section of (_~ on 

% ®Z[!/n]Ro , or equivalently a section of the quasi-coherent sheaf 

1.6. ~he q-expansion principle 

For ~ Z[i/n]-module K , we define a modular form of level n and 

weight k, holomorphic at ~ ~ with coefficients in K , to be an element of 

H°(Mn,(;~) ®k ®Z[t /n]K).  At each cusp,  such a modular form has a q-expansion in 

K ®z[!l~]Z[lln,~n] ®Z Z[[q]] 

Theorem 1.6.1. Let n _> 3 , K a Z[I/n]-module, and f a modular form of 

level n and weight k, holomorphic at ~ , with coefficients in K . Suppose 

that on each of the q~(n) connected components of Mn ®~[i/n]~[i/n'~n ] ' 

there is at least one cusp at which the q-expsmsion of f vanishes identically. 

~l~en f = 0 . 

Before pro~-ing it, we give the main corollary. 

C0rolleJ.~ f 1.6.2. (The q-expansion principle). Let n > 3 , K a Z[i/n]-module, 

L C K a Z[I/n]-submoduie. Let f be a modular form of weight k, level n, 

holomor]>hic at ~ , with coefficients in K . Suppose that on each of the ~(n) 

connected components of % ®~[i/n]Z~I/n,~n] , there is at least one cusp at 

which si~ the q-coefficients of f lie in L ~[1/n]Z[i/n,~n] . Then f is 

a modular form with coefficients in L . 
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Proof of corollary. The exact sequence 0 ----> L ---> K ----> K/L 

7-[i/n]-modules gives an exact sequence of sheaves on M , 
n 

1.6.2.1 o ~ ~®(_~)®~ > K®<_~) ®~ 

hence a cohomology exact sequence 

1 . 6 . 2 . 2  o > ~o(~,~®_®~) _~o(~,K®(_~>®k ) 

The theorem (1.6.1) now applies to the ima~ 9 of f 

> 0 of 

_. ~o(~, (x/~,) ® (_~)®~) . 

in ~o(~,(K/T) ®_~®~) , 

showing that image to be zero, whence f ~ I{°(%,L@" "® "(_w) -k) by the cohomology 

exact sequence. QED 

We now turn to the proof of the theorem. By considering the rin~ of 

dual numbers on K , D(K) = ~.[i/n] OK ~ [multiplication 

(a,k)(a' ,k') = (aa',ak' +a'k)] we are reduced to the case where K is a rin~ 

over Z[1/n] . Because the formation of the cohomology of quasi-coherent 

sheaves on quasi-compact schemes commutes with inductive limits, we are first 

reduced to the case where K is a finitel~ generated ring over Z[i/n] , 

then to the case when K is a noetherian local ring. By faithfk~ flatness 

of the completion, we fu_~her reduce to the case when K is a complete 

Noetherian local ring, then by Grothendieck's comparison theorem 

to the case when K is an artin local ring. By Krtt]_l's intersection theorem~ 

f induces the zero-section of (~)®k over an open neighborhood of at least 

one cusp on each connected component of %®K®Z[I/n,{ n] , hence on an open 

dense set in M @K . If f is not zero, there exists a non-void closed 
n 

subset Z of %®K , containing no maximal point of %®K , on which f 

is supported. Over the local ring in M ® K of stay maximal point z of Z , 
n 

f becomes non-canonically a section of ~z,M~®K.. which is supported at the 

closed point, i.e. for any element g e ~ (the maximal ideal of <,~n® K ) , 

there exists a power gn of g such that gnf = 0 . Thus every element of 

~z is a zero-divisor, i.e. the point z e %®K has depth zero. As Mn®K 

> (K/z)®(_~)®~ > o , 



is smooth over an artin local ring 

its maximalpoints have depth zero. 

® K , a contradiction. Hence f 
n 
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K , it is Cohen-Macaulay, and hence only 

Thus z must be a maximal point of 

must be zero. QED 

1.7. Base-chan~e of modular forms of level n k 3 

Theorem 1.7.1. Let n ~ 3 ~ and suppose either that k ~ 2 o~r that k= i 

and n ! ii . Then for any Z[i/n]-module K , the canonical map 

~®H°<<,(~)®% > ~°(<,~®(~)®b 

is an isomorphism. 

Proof. By standard base-charging theorems, it suffices to show that 

~(%1,~ ®k) = 0 The isomorphism (~)®2 ~ 1 _ • _ ....... ~iZ[i/nj(log(~-Mn)) , 

together with the fact that each connected component of Mn ® Z[i/n, {n ] con- 

tains at least one cusp, shows that for k ~ 2 , the restriction of (~)®k 

to each connected component of %®Z[I/n, ~n ] has de~ree strictly greater 

than 2g-2 , g the (common) genus of any of these components, and hence 

~(~,(~)®~) = o b y  R i e m a n - R o c h .  F o r  S < n < ~ , e ~ l i c i t  c a l o ~ a t i o n  s h o w s  

that ~ restricted to each connected component of %®~I/n, ~n ] has degree 

strictly greater than 2g-2 , and we conclude as before. Q]KD 

Remark. When n ~ 12 , ! has degree ~ 2g-2 on each connected component 

of %®Z[i/n, ~n ] , and equality holds only for n = 12 . The author does 

not know whether or not the formation of modular forms of weight one and 

level n > 12 commutes with base change. 

1.8. Base change of modular forms of level i and 2 

Theorem 1.8. i. Let R be any ring in which 2 is invertible. For ever~g 
o 

integer k > i , the canonical map S(Z,2,k) ®~. R ° > S(Ro,2,k ) is an iso- 

morphism. 
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Proof. First we should remark that there are no non-zero modular forms of 

level two and odd weight k over R ° , because the automorphism "-i" of an 

elliptic curve transforms (E,w,~2) into (E,-~,~2) , hence 

f(E~0,~2) = f(E~-~,-~2) , but 6 2 = "~2 ' hence f(E,-~,-~2) = f(E,-~,~2) = 

= (-i) -k f(E,~,J2) , hence 2f(E,~,~2) = O for k odd . 

In any case, modular forms of level two and weight k, holomorphic at 

infinity, over any ring R ° 9 1/2 , are precisely those modular forms of level 

four and weight k holomorphic at ~ , defined over R , which are invariant 
O 

under the action of the subgroup of GL2(Z/4 Z) consisting of the matrices 

I mod 2 . As this group has order 167 a power of two, we may simply apply 

i 
the projector ~ E g to the base-changing isomorphism (1.7.1) in 

g=-l (2) 
level four to produce the desired isomorphism in level two. 

Theorem 1.8.2. Let R be any ring in which 2 and 3 are invertible. For every 
O 

integer k > i , the canonical map 

is an isomorphism. 

Proof. The proof is similar to the previous one. We view a modular form of 

level one over a ring R O 9 1/6 as a modular form of level four (resp. three) 

invaris/lt under GL(2~Z/4 Z) (resp. GL(2~Z/3 Z) , defined over R O As 

GL(2,~4 7..) has order 96 = 32 × 3 (resp. GL(2,Z/3 Z) has order 48 = 16 × 3) , 

the projection technique (1.8.1) shows that the canonical map 

S(Z[I/6],I,~) ~[z/6]Ro > S(~o,l,~) 

is an isomorphism. Thus it remains only to handle the passage from Z[I/6] . 

But for an~ ring R ~ S(R,I~k) is the fibre product of the diagram: 
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h.8.2.1) 

~o (~3 ® ~' (-~)®~) 

~o (~12 ® R, (_~)®~) < ~°(~ 4 ®R, (_~)®~) 

(i.e. a modular form of level one over R i_~s a modular from f3 of level three 

over R[I/3] together with a modular form f4 of level four over R[I/2] , 

such that f3 and f4 induce the s~e modular form of level 12 over R[1/12]). 

As the formation of the diagram (1.8.2.1) and of its fibre product cc~mutes 

with any flat extension of scalars R ---> R' taking R = Z , R' = Z[I/6] 

gives the desired result. 

Remark 1.8.2.2. The above theorem becomes f~se when we do not exclude the 

primes 2 and 3. For over the finite field l~p , the Hasse invariant A i_ss a 

modular form of level one and weight p-I , holomorphic at ~ . But over ~- 

there are no non-zero modular forms over Z of level one, holomorphic at ~, 

of weight either one or two. Similarly, A.A is a cusp form of level one 

and weight 13 (resp. 14) over ~2 (resp. ~3 ) ' which cannot be the reduction 

rood p of a modular form over Z . See [9] for the full determination of 

modular forms over ~,, . 

1.9. 

level n and weight k , hoiomorphic at ~ , with coefficients in K 

for n = i: an element of the fibre-product of the diagram 

~°(~3'(-~)®k %~113] (~ ®z zEI/3])) 

(1.9.o.o) 1 

H°(MI2' (--m)®k %[1/12] (K ®Z[i/12]g[i/12]) < 

Modular forms of level i and 2: q-ex?ansion principle 

For n = !, 2, and any Z[i/n]-module K , we define a modular form of 

to be 
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(i. 9.0. i) for O -- (~)®k invariant n= 2: an element of H (M4, _ QZ[I/4]K) by 

the subgroup of GL2(Z/4 Z) consisting of matrices 

I rood 2 . 

The module of all such is noted S(K,n,k) . 

(In the case K is a rin~, this notion coincides with that already 

introduced.) An exact sequence 0 .... > L > K > K/L----> 0 gives an exact 

sequence (without the final 0 ) of modules of modular forms, analogous to 

(1.6.2.2). 

As a corollary of (1.6.1), we have 

Corollary 1.9.1. (q-expansion principle) Let n=l or 2, K a Z[1/n]-module, 

and L C K a Z[1/n] submodule. Let f be a modular form of weight k , 

level n , holomorphic at ~ , with coefficients in K . Suppose that at one 

of the cusps (for n=l , there is only one, j =~ , while for n=2 there 

are three, k = O,l,~ ), the q-coefficients of f all lie in L . Then f 

is a modular form with coefficients in L . 

i.i0. Modular schemes of level i and 2 

They don't exist, in the sense that the corresponding functors are 

not representable. However, for each n > 3 we can form the quotients 

Mn/GL2(Z/n ~) = the affine j-line ]~[1/n] 

1 
~/GL2(~n Z) = the projective j-line ]PZ[1/n] 

which fit together for variable n to form the affine and projective j-lines 

t~ ! The over Z . We define M 1 = , the affine j-line, and ~ = ]Pz " 

invertible sheaf _~ on Mn ' n _> 3 , does not "descend" to an invertible 

~ ®12 
sheaf on , but its 12 th power _~ does descend, to ~(1) , the inverse 

of the ideal sheaf of ~ . 
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In particular, modular forms over any ring 

o 1 
12"k holomorphic at ~ , are just the elements of H (IPR~ #(k)) 

formation does cc~nnute with arbitrary change of base. 

Analogously for n = 2 , we define 

The scheme 

1 
~ Z[I/2 ] " 

R of level one and weight 

, and their 

M 2 = Mjthe subgroup of a~2(~/~ Z> 

M2 = jthe subgroup of GL < 4 Z> 

M 2 is Spec Z[kJ[i/2k(l-k)]) , an~ 

The invertible sheaf 

of matrices ~ i mod 2 

of matrices ~ I mod 2 . 

M2 is the projective k-line 

does not descend to M2 ' but its square 

does descend, to ~ (I) = the inverse of the ideal sheaf of the cusp k = ~ . 

In particular, modular forms of level two over s_ny ring R ~ 1/2 , of (neces- 

sarily') even weight 2k and holomorphic at all three cusps, are just the 

o i 
elements of H (~PR' ~(k)) ; hence their formation commutes with arbitrary 

change of base. 

i.ii. Hecke o~erators 

Let ~ be a prime number, R a ring in which ~ is invertible, and 

n an integer prime to ~ . For any elliptic curve E/R , the group-scheme 

~E of points of order ~ is finite e~tale over R , and on a finite ~tale 

over-ring R' it becomes non-canonically isomorphic to (Z/~Z) 2, . Thus 

over R' , the elliptic curve ER,/R' has precisely £+i finite flat sub- 

groups-(schemes) of rank ~ . For any such subgroup H , we denote by 

v 

7[: ER, > ER,/H the projection onto the quotient and by 7[: ER,/H > ER, 
v 

the dual map, which is also finite @tale of degree ~ . The composition 7[.7[ 

v 

is multiplication by £ on ER,/H , and the composition 7[07[ is multipli- 

cation by ~ on ER, . 

If ~ is a nowhere vanishing differential on E/R , then 

7[ (~R,) = traceTr(~R,) is a nowhere vanishing differential on ER,/H . If 

Gn: nE "~ (~n Z) 2 is a level n structure on E/R , there is unique level n 
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structure 7r(~n) on ER,/H such that the diagram 

(l.ll.O.O) 

(~n Z)R, 

nER, 7< > n(ER,/H) 

is commutative. (N.B. There is another "natural" choice of level n structure 

on ER,/H_ , namely ~n °~ = ~.~(~n )_ , which we will not use.) 

Given a modular form over R of level n and weight k, for each triple 

we may form the sum over the ~+i subgroups H of order ~+! (E/~,~,~n) 
of E R, , 

(I. Ii. 0. l) ~ f(ER,/H,~* (~) ,~(~ ) ) 
H 

which~ while apparently an element of R' ~ is in fact an element of R ~ and 

does not depend on the auxiliary choice of R' . Normalizing this sum by the 

factor 2k-i ~ we define the Hecke operator TI on modular forms of level n 

and weight k by the formula 

(i. Ii. O. 2) 

the sum extended to the ~+i subgroups of order ~ . 

We now consider the effect on the q-expansions. 

of the Tate curve Tate(q n) over Z((q)) ~[i/n ~ ] 

over Z((ql/~)) ~ - ®~ Z[i/n~,~] , and the ~+i subgroups of order 

following: 

The E-division points 

all become rational 

are the 

r~ ~ generated by 

H i ~ generated by 

For the subgroup I~£ ~ the quotient 

induced by the ~'th power map on 

(~ ql/~) n for i:O,1,...,~-i . 

Tate(qn)~ is Tate(q n~) (the projection 

Gm) and the dual isogeny consists of dividing 
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Tate(q n~) by the subgroup generated by qn For the subgroups H i , the 

quotient Tate(qn)/Hi is Tate((~ ql/~) n) , and the dual isogeny consists 

of dividing (Tate((~ ql/#) n) by its subgroup I~# " 

v~ 

Thus for the subgroup iP~ , we have v (~can) = ~can on Tate(q n~) , 
vW 

while for the subgroups H i , ~ (~can) = 2.(Wcan) on Tate((~ ql/~) n) 

( b e c a u s e  i n  t h e  l a t t e r  e a s e  ~ i s  i n d u c e d  b y  t h e  ~ ' t h  power  m a p p i n g  on G , 
m 

on which ~cau is dt/t) . 

The  quotient Tate(qn)/j~ Tate(q n~) may be viewed as obtained 

from Tate(q n) by the extension of scalars ~: Z((q)) > Z((q)) sending 

q ' > q~ We denote by ~' the unique level n structure on Tate(q n) 
n 

* ' by the ~ro- such that q01(~n) = 7[i(C~n) , v~(~n) denoting the image of C~ n .... 

jeetion of Tate(~ n) onto Tate(@)/I~ ---~ Tate(@ ~) 
The quotients Tate(qn)IHi ~'~ Tate(q n/# ni - -  ~# ) ~ i=O~...~/-i over 

Z[i/n~nl]((J/~)) ~ may each be viewed as obtained from 

Tate(qn)/Ho ~ Tate(q n/~) by the extension of scalars 

~i: Z[i/n#, ~n#]((ql/I)) > Z[i/n#, ~ni]((ql/#)) which sends ql/~ > ~#ql/%. 

Under this identification, we have (noting Iri: Tate(q n) > rate(qn)/Hi , 

i=O~... ~-I the projections) the relation vi(~n) = ~i(~o(~n) ) , as an 

immediate explicit calculation shows. We denote by ~" the level n structure 
n 

~6 

i£(TTo(~n)) on Tate(q n) obtained from 7[o(~n) on Tate(q n/~) by the exten- 

sion of scalars i#: Z[1/n2,~n#]((ql/#)) % Z[I/n%, ~n#]((q)) sending 

ql/~ to q . 

Thus we have 

n vg~ 9~ T f(Tate(q ) / l~,~(~c~) ,~(~n) ) = f(Tate(~ ~) ,%an,m/~n)) 
(1. l l .  O. 3 )  = q0# ( f ( T a t e  ( q n )  , ~ ,c~' ) )  

csiq n " 
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f(Tate(qn)/Hi,vi(~can),vi(~n)) = f(Tate((~ i ql/~) n) ,~.~can,~i(Vo(~n))) 

----- ~i(f(Tate(qn/~),~'~can,~o(~n) ) 

= 9i°(i~ )-l(f(Tate(qn)'I'wcan'~''h)n J 

: ~-l'gi°(i~)-l(f(Tate(qn) ' ~can'~n )) .... " 

Combining these~ we have the following formula for T~ . 

Formula i. ii.i. Let f be a modular form of level n and weight k over a 

ring R ~ and suppose ~ is a prime number not dividing n which is invertible 

in R . Let f be a modular form of level n and weight k, with q-expansions 

qi 
(i.I!.i.0) f(Tate(q n) ,~can,~n) = ai(~n)" . 

i>-~ 

Then 

(l. ll.l.!) (T~f)(Tate(qn),0~can,~n) -~- ~ bi(C~n)qi , 
i>-~ 

where the coefficients bi(~n) are given by the formula 

(i.11.i.2) bi(~ ~) = ~k-lai//~ i) + a~i(~ ~) 

(with the convention that ai/I = O unless ~li). 

Corollary 1.11~2. ' If f is holomorphic at ~ , so is T~(f) • If f is a 

cusp-form (meaning that its q-expansions all start in degree ~ 1), then so is 

T2(f) . If all the q-expansions of f are polynomials in q , the same is 

true of T~(f) . 

Proof. These follow directly from the explicit formulae - we note that if f 

has polynomial q-expansions of deg ~ n , then Tl(f) has expansions of 

degree < n~ . 

Proposition !.11. 3 . Let n > 2 and k _> 2 , or 3 < n < ii and k _> i . 

For any prime I not dividing n , and any E[i/n]-module K , there is a 

necessarily unique endomorphism of the space of modular forms of weight k and 
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level n, holomorphic at ~ , with coefficients in K , whose effect on 

q-expansions is that given by the formulas (1.]_1.1.0-2). 

Proof. By the base-changing theorem, we are reduced to the case 

For a modular form f over 2Z[i/n] , T~ exists ~ priori over 

x = z[lln] . 

E[i/n~] , but 

its q-expansions all have coefficients in Z[I/n,~ n] , so by (1.6.2) and (1.9.1), 

T~(f) is in fact a modular form over Z[i/n] . @]{D 

Corollarg 1.11.4. Let k > 2 . For any prime ~, and any Z-module K, there 

is a necessarily unique endomorphism of the space of modular forms of weight k 

and level one, holomorphic at ~ , whose effect on the q-expansion is that 

given by the formulas (1.11.1.O-2). 

Proof. Choose relatively prime integers n,m _> 3 , both prime to ~, and view 

the module of level one modular forms as the fibre-product of the diagram 

(1. n.4.1) 

H o(%, @k®(K®Z[i/n])) 

~o(~n, (s)ok ® (~®~EI/~])) < 

The desired T~ is the fibre product of the T~ constructed above on this 

diagram. QED 

1.12. Applications to polynomial q-exl0ansions~ the strong q-exl0ansion principle 

In this section we will admit the following result, a special case 

of Swinnerton-Dyer's structure theorem (ef. [41], [43]), which will be proven 

later (cf. 4.4.1). 

Result 1.12.O. Let n > i be an integer, K a field of characteristic p ~ n , 

and f a modular form over K of level n and weight k > 1 , holomorphic at 

infinity. Suppose p-i i k . Then if all the q-expansions of f at the cusps 



Ka-26 94 

of %®K(~ n) are constants, f = 0 . 

Using this result, we will now prove 

Theorem 1.12.1. Let n, k _~ i be integers~ sad suppose that f is a modular 

form of level n and weight k, holomorphic at ~ , with coefficients in a 

Z[i/n]-module K . Suppose that for every prime p such that p-!Ik , the 

endomorphism "multiplication by p" is injeetive on K . Then if all the 

q-expansions of f are polynomials in q , f = 0 . 

Proof. We begin by reducing to the case n _> 3 , using the diagram (1.9.0.0) 

to handle the case n=! , and the interpretation (1.9.1.1) for n=2 . We 

then reduce to the case in which n is divisible by a = H. p ; by hypothesis 
p-I 1 k 

K C K[i/a] ~ so we may reolace K by K[i/a] (using the cohomolo~ ~ sequence 

(1.6.2.2)), then view f as a modular form of level a-n with coefficients 

in K[i/a] . Next we reduce to the case in which K is an artin local ring 

over Z[!/n] , as explained in the proof of (1.6.1). We ~ill proceed by 

induction on the least integer b > I such that ~b = 0 ~ ~ denoting the 

maximal ideal. Thus we begin with the case in which K is a field. 

Consider the finite-dimensional K-space V of such modular forms, and 

choose a basis fl ~''" 'fr of V . Let N be the maximum of the degrees of 

the q-expansions of the f. at any of the cusps. At each cusp~ record the 
! 

q-expansion of F = 

r 

F (Tare (qn)'°~°In'O~n):$-~--o Ai(~n)  q i  ' Ai:<ai,n(c~n ) ] "  

Let ~ be a prime number such that ~ ~ n , ~ > N . Because V is stable 

under the Hecke operator T~ (ef.l.ll) ~ we have a matrix equation (C denoting 

an r × r matrix with coefficients in K), 

T ~ ( F )  : C . F  . 
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Passing to q-expansions gives the equation 

(Ai(~ ~) + ~k-lAi/~(~i))qi= C- ~ Ai(~n)q i 
i i 

whence, comparing coefficients of q , we find the relation 

A 2 (~") + ~-lAi(~) i n ---- C'Ai~(~n) " 

But for i > 1 , i~ > N and i~ 2 > N , hence Ai~(Jn) = 0 and A 2i(Jn) =0 

(by definition of N). As ~ is invertible, we have Ai(~n) = 0 for each 

level n structure ~ Hence each q-expansion of each f. is a constant, 
n 1 

hence by (I.12.0) each f. = 0 . This concludes the proof in case K is a 
l 

field, and implies the case in which K is a vector space over a field, 

as vector spaces have bases. 

Now consider the case of an Artin local ring K whose maximal ideal 

satisfies )TL b+! = 0 . By induction, f becomes 0 in K/~ b , hence by 

the exact cohomology sequence (1.6.2.2) associated to the exact sequence of Z[i/n]- 

modules 0 > ~b > K 9 K/~b b ....... .> 0 , f comes from a form with 

coefficients in ~b . But as ~L h+l = 0 , ~b is a (finite-dimensional:) 

vector space over the residue field K/~ , and the previous case of a field 

applies. QED 

Corollary 1.12.2. (Strong q-expansion principle) Let n, k _> i , and let 

a = II p . Let K be a •[i/an]-module of which L C K is a Z[i/an]-sub- 
p-ilk 

module, and f a modular form of level n and weight k, holomorphic at ~ , 

such that at each cusp, all but finitely many of its q-expansion coefficients 

lie in L ®Z[i/n]~[i/n, ~n ] . Then f is a modular form with coefficients 

in L . 

Proof. Apply the theorem to the image of f as modular form with coefficients 

in ~/T, .  ~ D  
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1.13. Review of the modular scheme associated to Fo(p) 

For each integer n _~ 3 prime to p , the ±hnactor "isomorphism classes 

of elliptic curves w~th level n structure and a finite flat subgroup (scheme) 

of rank p" is representable, by a scheme M ~ which is an affine curve 
n,p 

over Z[1/n] ; it is a regular scheme, but it fails to be smooth over Z[1/n] 

precisely at the finitely closed points on M corresponding to su~0er- 
n,p 

singular elliptic curves in characteristic p . The projection "forget the 

subgroup of rank p" makes M finite and flat over M of degree p+l . 
n~p n 

We define M to be the normalization of M in M ; it is a 
n,p n n,p 

regular scheme, proper and flat over Z[1/n~ . The difference M - M 
n,p n~p 

is finite and ~tale over Z[1/n] ~ and over Z[1/n, ~n ] it is a disjoint union 

of sections, called the cusps of M , two of which lie over each cusp of 
n,p 

, and exactly one of which is @tale over 
n n 

The completion of M ®Z[1/n, ~n ] along amy of the cusps is iso- 
n~p 

morphic to Z[1/n~ ~n][[q]] . The universal elliptic curve with level n 

structure and subgroup of order p over Z[1/n~ ~n]((q)) , viewed as a pUnc- 

tured disc around an unramified cusp ~ is the Tare curve Tate(q n) with the 

level n structure corresponding to the underlying cusp of Mn ~ and the sub- 

group t~p " Over one of the ramified cusps, the inverse image is the Tare 

curve (qnp) , with the induced (q ! ~ qP) level n structure from the cusp 

n 
of M below, and with the subgroup generated by q 

n 

The automorphism of Mn~ p given by (E~n,H) ~ ~ (E/H,~(~n),pE/H) 

(~: E > E/H denoting the projection, and ~(~n) the level n structure 

explained in (1.11.0.0)) extends to an automorphism of M which inter- 
n,p 

changes the two sorts of cusps. 
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Chapter 2: p-adic modular forms 

This chapter is devoted to the study of various properly p-adic general- 

izations of the notion of modular form, as "functions" of p-adic elliptic curves 

whose Hasse invariant is not too near zero. 

2.0 The Hasse invariant A as a modular form} its q-expansion 

Let R be any ring in which p = 0 (i.e., R is an 1 ~ -algebra) and 
P 

consider an elliptic curve E/R . The p'th power mapping Fab s is an additive 

p-linear endomorphism of ~E ' hence induces a p-linear endomorphism of the 

R-module HI(E, 0E) . If m is a base of --~E/R ' it determines the duai base 

of HI(E, (~E) , and we define A(E,~) e R by setting Fabs(q) = A(E,e).q . 

Replacing ~ by k~ , k e R x has the effect of replacing N by k-iN , and 

* -i * 
Fabs(k ~) = k -p Fabs(q) = k-P.A(E,w)-~ = kl-PA(E,~).K-I~ , whence A(E,k~) = 

KI-P.A(E,~) , which shows that A(E,~) is a modular form of level one and 

weight p-i defined over ]Fp More intrinsically, we may interpret Fab s as 

an R-linear homomorphism Fabs: Fabs(Hi(E , OE)) = (HI(E, OE)) ~p > ~(E, ~E) , 

)~-i 
so as a section of (_mE/R . In terms of the base ~ of ~ ~ this section 

is A(E,~)'~ @p-I . To see that A is holomorphic at ~ , we simply note that 

the Tate curve over ]Fp((q)) is the restriction of a plane cu_~ze C over 

]Fp[[q]] , and that it canonical differential ~csn is the restriction of a 

base over IF [[q]] of the dualizing sheaf of C . Thus ~ determines the 
p can 

dual base qcan of HI(C, ~C) as IF [[q]]-module~ and A(Tate (q) ~can) p 

is just the matrix of Fab s on HI(C, ~C) ~"ith respect to the base qcan " 

In particular, A(Tate (q), ~Ocan e ]Fp[[q]] . 

An alternative method of establishing holomorphy is to use the fact that 

for any elliptic curve E/R over any base ring R , HI(E, ~E ) is the tangent 

space of E/R at the origin, which is to say the R-module of all translation- 

invariant derivations of E/R , and that when R is an l~p-algebra, the action 

of Fab s on HI(E, ~ E) consists of taking the p'th iterate of an invariant 
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derivation. Now we use the fact that there is a local parameter t on the com- 

pletion of the Tate curve along its identity section in terms of which ~can = 

dt/l+t . Let D be the invariant derivation dual to Wcan Then D(t) = l+t , 

_ • D p hence D(l+t) = l+t , hence Dn(l+t) = l+t for all n > i Over ~p , 

is an invariant derivation, and it agrees with D on ~can ' hence DP = D , 

hence Fabs(~can) = ~can ' and A(Tate (q), ~can) = i . 

2.1 De!igne's congruence A m Ep_ I mod p 

For any even integer k ~ 4 , the Eisenstein series ~ is the modular 

form over C of level one and weight k whose q-expansion is 

2k n = dk-i 
1 - ~k Z ~k_l(n)q , ~k-l(n) d~n " 

d>! 

As its q-expansion coefficients all lie in Q , ~ is defined over ~ (by 

1.9.1) For k = p-l, p > ~ , the p-adic ordinal of ,2(p-l) is i henc~ 
p-i 

Ep_ I has q-expansion coefficients in Q G Zp Thus it makes sense to reduce 

Ep-i modulo p , obtaining a modular form over ]Fp , whose q-expansion is the 

constant I. Hence A = Ep_ I mod p , because both are modular forms of the 

same weight with the same q-expansions. 

For p = 2 and 3, it is not possible to lift A to a modular form of 

level one~ holomorphic at ~ ~ over Q A ~p However, for p = 2 and 

3 < n < ii~ 2~ n we may lift A to a modular form of level n and weight i, 

holomorphic at ~ , over Z[i/n] (by 1.7.1). For P = 3 and any n _> 3 , 

3 ~ n we may lift A to a modular form of level n and weight 2, holomorphic 

at ~ , over Z[I/n] (by 1.7.1). 

For p = 2 and 3 < n < ii~ n odd (resp. for p = 3 and n > 2 , 

3~ n), we choose a modular form Ep_ I of weight p-I and level n~ holo- 

morphic at ~ , defined over ~l/n] , which lifts A . 
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Remark. For p = 2 , there exists a lifting of A to a modular form of level n 

over Z[i/n] for n = 3, 5, 7, 9, ii, and hence for any n divisible by one 

of 3, 5~ 7, ii. But the author does not know whether A lifts to a form of 

level n for other n (even for n=13:). An alternative approach to the 

difficulties caused by p = 2 and 3 might be based on the observation that 

the Eisenstein series E 4 = I÷ 240 E ~3(n)q n provides a level i lifting to ~. 

of A 4 if p=2 (resp. of A 2 if P=3). 

2.2 ~-adic modular forms with 5rowth conditions 

2.2.0 Let R ° be a p-adically complete ring (i.e. R ° -'2" I~ Ro/pNR o) , and 

choose an element r e R For any integer n > i , prime to p , (resp. 
o 

3 < n < ii for p=2, and n _> 2 for p=2) we define the module M(Ro,r,n,k ) 

of p-adie modular forms over R ° of growth r~ level n and weight k: An element 

f ¢ M(Ro,r~n,k) is a rule which assigns to 8/iV triple (E/S, <Zn, Y) consist- 

ing of: 

(2.2.1) an elliptic curve E/S , where S is a Ro-SCheme on which p is nil- 

potent (i.e. pN=0 for N >> O) ; 

(2.2.2) a level n structure 
n ; 

(2.2.3) a section Y of _ ~(l-p) satisfying Y.Ep_l=r ; 

section f(E/S, ~n' Y) of (~E/S)®k over S , which depends only on the a 

isomorphism class of the triple, and whose formation commutes with arbitrar~j 

change of base of R -schemes S' > S . 
o 

Equivalently~ we may interpret f as a rule which attaches to each 

quadruple (E/R, ~, ~n' Y) consisting of: 

(2.2.4) an elliptic curve E/R , R an Ro-algebra in which p is nilpotent; 

(2.2.5) abase ~ of -~E/R ; 

(2.2.6) a level n-structure; 
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(2.2.7) an element Y e R 

an element f(E/R, ~, C~n, Y) 

100 

satisfying Y.zp_l(z,~) :r 

in R , which depends only on isomorphism class 

of the quadruple, whose formation commutes with extension of scalars of 

V-algebras, and which satisfies the ftmetional equation: 

(2.2.8) f(E/R, k~, Gn' kP'~) =k-kf(E/R' m' Gn' Y) for k s R x . 

By passage to the limit, we can allow 

algebra in the above definition. 

R to be a p-adically complete R - 
o 

(2.2.9) We say that f is holomorphic at ~ if for each integer N ~ i , 

its value on (Tate (qn)~ ~can' ~n' r(Ep-l(Tate (qn)~ ~can))-l) , considered 

Z((q)) ® (R~NRo)[ q] lies in ~[[q]] ® (Ro/pNRo)[~n] , for each level over n 

structure ~n We denote by S(Ro~r,n,k ) the submodule of M(Ro~r~n,k) 

consisting of forms holomorphic at 

2.2.10 

2.2.3_1 

As formal consequence of the definitions~ we have 

M(Ro,~,n,~) : l~M(~o/P~Ro,r,n,~) . 

S(Ro,r,n,k) :l~S(Ro/P~Ro,r,n,~) . 

2.3 Determination of M(Ro,r,n,k ) when p is nilpotent in R ° 

2.3.0 

ing that p 

let's denote 

We begin by determining the universal triple (E/S, ~n' Y) suppos- 

is nilpotent in R ° , and n ~ 3 • For notational convenience, 

®l-p by ~ . By the definition of M n , the functor 

> S-isomorphism classes of triples (E/S, ~n,Y) i~s the functor 

I ®R together with a section > Ro-morphisms g: S > Mn o 

~y * . Ep_l of g (~) verifying Y-g ( ) = r 

Which we may view as a sub-functor of the functor 

JRo~n: s ~ > [Ro-morphisms g: S ---> M n , plus a section 

® R -scheme This last functor is representable, by the M n o 

Y of g*(~)] . 
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v 

S;pe% ® R ( s ~ (  X )) 
n o 

t 
M ® R  

n o 

Indeed, we may cover Mn®R ° by affine opens Spec(Bi) over which ~ admits 
v 

an invertible section li ' and cover S by affine opens Spec(Aij ) such that 
v 

giSpec(Aij ) factors through Spec(Bi) . Over Spec(Bi) , Spec (STmm(~)) 
v ~ v 

is Spec(Bi[~i] ) . A section Y of g*(~) determines an element Y-g (li) 

of Aij , and then a lifting of the given homomorphism g: B i ---> Aij to a 
v 

homomorphism ~ij: Bi[~i] > Aij by the formula 

~ i j ( z  bk(T i )~  : ~ g (b~(Y.g* (~ i ) )k  . 

These ~i piece together to define a morphism from S to S•ec (S~(~)) " 

The subfunctor ~Ro~r~ n is then represented by the closed subscheme 

of S~ee (S~mm( k )) defined by the vanishing of Ep_ I- r . Thus the uni- 

versal triple (E/S, ~n' Y) is just the inverse image on S~ec (S~(k)) 

of the universal elliptic curve with level n structure over Mn®R ° , hence 

Proposition 2.3.1. When p is nilpotent in R ° , and n ~ 3 is prime to p, 

there is a canonical isomorphism 

M(Ro,r,n,k ) = H°(SpeCMn®R ° (S~/um(~)(Ep. l -  r ) ,  _®k) 

(because M 
n 

= H° (Mn® Ro, ~> (~ (k+J (P-I))/(Ep_l - r) ) 
j o - -  

is affine) = H°(Mn®Ro, @ (~0)®(k+j(p-r)))/(Ep_l - r) 
j >o - -  

= (9 M(Ro,  n ,  k + j ( p - 1 ) ) t ( E  _ 1 _ ~  - r )  . 
j > o  
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2.4 Determination of S(Ro,r,n,k ) when p is nilpotent in R ° 

Proposition 2.4.1. Let n ~ 3, p~ n . Under the isomorphism (2.3.1), the 

suhmodule S(Ro,r,n,k ) C M(Ro,r,n,k ) is the submodule 

H°(Spec M ®R (Ssrmm(~)/(Ep_ I -r)), _w ®k) of H°(Sp@c M @R (Symm(~)/(Ep-i-r))" 
n O n o 

Proof. It suffices to treat the case in which Ro ~ ~n " Then the ring of 

the completion of ~n®R ° along ~ is a finite number of copies of Ro[[q]] , 

hence the ring of the completion of Spec ~ QR (Symm(~)/(Ep_ I- r)) along 
n o 

the inverse image of ~ is isomorphic to a finite number of copies of 

Ro[[q]] -- Ro[[q]][Y]/(Y'Ep-l(Tate(qn)' ~Can' an) "r)  

(an isomor~0hism because Ep_l(Tate(qn), Wcan, an) is invertible in Ro[[q]] ) . 

Th~s the condition that an element f e H°(S~oec ~ ®R (Symm( k )/(Ep_!_r)), _®k) 
n o 

have ho!omor~hic q-expansions is precisely the condition that it extend to a 

® k , _ . QED section of ~ over Spec ~ ®R (Sy~m(~)/(Ep_ I- r) w ®k) 
n o 

Remark 2.4.1.1. Analogously to (2.3.1), we have 

H°(Spec M ®R (Sy~m(k)/(Ep-l- r)), _®k) 
n o 

v 

= ~o(~®%, _®~ ® s~( £ )I(~_I -~)) 

= ~°(<®~o, e ~+J(P-l)/(~p_ I- r)) . 
j E o 

2.5 Determination of S (Ro,r,n,k) in the limit 

Theorem 2.5.1. Let n ~ 3 , and suppose either that k ~ 2 o_~r that k= i 

and n ~ ii , o_~r that k=O and p ~ 2 , o__rr that k=O, p=2 , and n ~ ii . 

Let R ° be any p-adically complete ring (R ° ~> lim Ro/pNRo) , and suppose 

r e R is not a zero divisor in R Then the homomorphism 
O O 
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2.5.1.0 

!ira H O (~, 
~-- j>o 

~+j (p-l)) ® (RolPN~o)I(~-I- r) 
- m[~In] 

s (~o ,r,n,~) = ~i~ s (~o/~o ,~,a,k) 

is an isomorphism. 

Proof. Let ~5 denote the quasicoherent sheaf @ ~k+j(p-l) on M , 
j > o -- n 

Ro/pNRo and put ~N = ~ ® . The inverse system of exact sequences 

2.5.Li 0 ~ 7~EP- 1-r ~ > ~/(Ep. l-r) >0 

gives an inverse system of six-term cohomology sequences 

o > H°(\'~? ~ r>~o(~,~> >~°<%,41(~_ ~ r~ 

2.5.1.2 
-r 

%-~- ; ? < % ,  ~> . > ÷(%, x/(%_~- r)> > o .  

Suppose first that k > 0 . Under our hypotheses, the base-changing theorem 

(1.7.1) applies, according to which H°(~,~N ) = H°(~,~ ) ® (RolpNRo) , and 

HI(%, ~N ) = 0 . Thus the H ° terms in (2.5.1.2) form a short exact sequence 

of inverse systems, the first of which has surjective transition morphisms. 

Hence the inverse limits of these inverse systems form the desired short exact 

sequence. 

In case k=0 and p ~ 2 or k=0~ p=2 and n < II ~ we have 

Hl(~n ' _®k) = 0 for k > 1 , hence HI(Mn,~ ) : HI(%, ~ ) , and by (1.7.1)), 

H°(Mn~N) = H°(Mn~) ® Ro/PNR O . ~qle exact sequence (2.5.1.2) becomes 
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For variable N ~ these form a six-term exact sequence of inverse systems. If 

the sequence of their inverse limits were exact, the theorem would follow, be- 

cause the m%p lira H°(~in , ~) ® Ro/pNR ° -r > lira H°(Mn , ~) ® R°/pNR is injec- 
4-- ~-- O 

tire (this because H°(Mn,~) is a finite free ~[1/n]-medule, and r is not a 

~ N 
zero divisor in R ° > lira Ro/p Ro) . To prove the exactness we apply a 

general lemma. 

Lemma 2.5.2. Let 0 > K ° > ~ > K 2 > ... be a (long) exact sequence 

in the category of projective systems of abelian groups indexed by the positive 

integers. Suppose that for all i ~ i ° , the projective system K i has sur- 

jective transition morphisms, and that the sequence 

i +i i +2 i +3 
lira K o > lira K o > lira K o is exact. Then the sequence 
e- <-- +- 

0 > lira K ° > lira 7k_ > lira K 2 > ... 
~- <-- {-- 

is exact. 

Proof. 

l : ~  . 

Consider the 2 spectral sequences of hypercohomology for the functor 

~'q : ~P(~q(lim)(x-)) --=> ~P~(im)(x-> 

: ~P(l~)(~q(~-)) =:> mP+q(zi=)(r> 

~2 'q = 0 for all values of q , hence ~n(lim)(K') =0 By hypothesis, we have I 

for all n . According to ([48 ]), we have Ri(lim) = 0 for i > 2 , hence 

~2 'q = 0 for q > 2 . By ~48]), we have Rl(lim)(K i) = 0 for i ~ i , 
-- 4- O 

h e n c e  

• P 2  'q = 0 unless and p=i ° q=O or q=l 

i +2,0 
AS we have also supposed that ~2 ° = 0 ~ we have degeneration: 

for all p,q . As EP'q-0 for all p,q , we get in particular 
oo -- 

all p , which is the desired conclusion. 

EP,q = ~'q 

for 

QED 
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2.~ Determination of a "basis" of S(Ro,r,n,k ) in the limit 

Lemma 2.6.1. Under the numerical hypotheses of theorem (2.5.1), for each 

the inj ective homomorphism 

2 . 6 . ! . 1 HO ( ~  * ~  ,~ *k+j (p ' I ) )  E~ 11 >i HO(~ ~ ,~ ~k+( j +1) (p-l)) 

j>O 

admits a section. 

Proof. We must show that the cokernel of (2.6.1.1) is a finite free ~ - 
P 

module. By the base-changing theorem (1.7.1), we have for each j > 0 an 

exact sequence of finite free ~ -modules 
P 

. ~+(j +l) (p-l)) 2.6.1.1.1 0-~ H°(~®%,d ~+j(p'I)) Ep.~ H°(~®~ '-~ 

whose formation commutes with arbitrary change of base (for 

_~®k+(j+l)(p-1)/Ep_l_~®k+j(p-l) , remark that it's 7..p-flat by igusa's theorem 

(cf[17]), and modulo p , it becomes a skyscraper sheaf on M @IF , hence has 
n p 

vanishing ~) . Hence the cokernel of the map (2.6.1.1) is the kernel of a 

surjective map of finite free ~ -modules, hence is itself a finite free 
P 

~. -module. QED 
P 

For each n, k satisfying the hypotheses of (2.5.1), and each j > O 

we choose once and for all a section of (2.6.1.1) ,. and denote its image by 

B(n,k,j+l) . Thus for j _~ O , we have a direct sum decomposition 

2.6.1.2 

and 

2.6.1.3 

~o (~n'~® k+(j +l) (p-l)) _~ Ep_l. Ho (~n'~+J (p-l)) 

HO(~, ®~)_ ~_~_n B(n,~,o) • 

@ B (n,k,j+l) 

We define B(Ro,n,k,j ) = B(n,k,j) ® R 
Z o 

42.6.1.2) gives a direct sum decomposition p 

Iterating the R -analogue of 
O 
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2.6.1.3 

S(Ro,n,k+j(p-l) < ~ 

rigid 
Let B (Ro,r,n,k) 

J 
G B(Ro,n,k,a ) 

a=o 

denote the R -module consisting of all formal sums 
O 

co 

Z b a , b a C B(R,n,k,a) 
a:o 

whose terms tend to zero in the sense that given any N > 0 , ~M> 0 such that 

b a ~ pN-B(R,n,k,a) for a ~ M , the M all~ged to depend both upon N and 

upon the series Z b a (Notice that Brigid(Ro,r,n,k ) does no__~t depend upon r~) 

Proposition 2.6.2. Hypotheses as in (2.5.1), the inclusion of Brigid(Ro,r,n~k ) 

p-adic completion of H°(%, ® w k+j(p-l)) induces (via (2.6.1.3)) in the 
j > o 

an isomorphism 

2.6.2.1 

Brigid(Ro,r,n,k ) > S(Ro,r~n,k) 

a 

Z b ~ " E r "~a 

a a>o_ (Ep_l)a 

r a- b 
where " E a " has the value E ba(E/S, C~n)'Ya on (E/S, C~n,Y ) . 

a_>o (~_l) a ~_o 

Proof. For injectivity~ we must show that if Z b a ~ Brigid(R~n,k) can be 
a>o 

w~itten (Ep_l-r). E s with s ~ S(R~n~k+a(p-1)) , and s tending to 
a>o a a a 

zero as a--->~ , then all ba=O . It suffices to show that for any N > 0 , 

ba-=0 rood pN . But rood pN , both zb a and Es a become finite sums. To fix 

-= s ~ 0 mod pN V a >M Let's show b M - s M = 0 rood pN . ideas~ suppose b a a 

As 0 =-bM+ 1 - Ep.lS M rood pN s M --- 0 rood pN hence b M = Ep_ISM. I rood pN 

hence bM-O rood pN by (2.6.1.3). Now start again with M-I .... 

For surjectivity, we just use the decomposition (2.6.1.3). Given E s 
a 

= z (~p_l)i bj(a) , s a e S(R~n,k+a(p-1)) tending to zero, we ma~ decompose s a i+j=a 

with bj(a) ~ B(R,n~k,j) , and bj(a) tends to zero as a--@~ , uniformly in j . 
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Then Z~a=Z Z (Ep.l)%j(a) --z ~ r~oj(a) + 
a a i+j=a a i+j=a 

+ (Ep_l-r) Z E b.(a) Z (Ep l)u-r v , hence Zs a and Z E r%j(a) 
a ikj=a J u+v=i-i - a i+j=a 

have the same image in S(Ro,r,n,k ) . But for each j , ~ r~j(i+j) converges 

to an element b! g B(R~n,k~j) , and b! tends to zero as j --->~ , and 
J J 

Z b~ has the same image in S(Ro,r,n~k) as Z s a QED 
j~o ~ a > o 

Corol!ar 7 2.6.3. Hypotheses as in (2.5.1)~ the canonical mapping 

S(Ro~r~n,k ) > S(Ro~l~n~k ) defined modularly by composition with the trans- 

formation of func$ors: (E/S~ ~n~Y) ---> (E/S~n~rY) , is injective; the corre- 

sponding map 

is given by 

Brigid(Ro,r,n,k) > Brigid(Ro,l,n,k ) 

Eb >Er~ 
a a 

2"7 Banach norm and q-expansion for r =i 

Proposition 2.7.1. Hypotheses as in (2.5.1), let x e R ° be any element which 

divides a power pN N >_ I, of p . Then the following conditions on an ele- 

ment f e S(Ro,l,n~k ) are equivalent, for k _> O : 

(1) f ~ x'S(Ro,l,n,k) , 

(2) the q-expansions of f all lie in X'Ro[~n][[q]] , 

(3) on each of the ~(n) connected components of % ® ~[i/n,~ n] 
z[i/n] 

there is at least one cusp where the q-expansion of f lies in 

X'Ro[~n]K[q]] • 

Proof. C!e~ (1) ===> (2)--==> (B). We wi~ prove (3) ===> (m). Because 

r=l , we have 

rigid rigid 
S(Ro/XRo,l,n,k ) --~ Brigid(Ro/X-~o,l,n,k) --~ B (Ro,l,n~k)/x'B (Ro,l~n,k) , 



Ka-40 108 

so replacing R o by Ro/XR ° , we are reduced to the case x= 0 , and p nil- 

potent in R ° In that case f e Brigid(Ro,l,n,k ) is a finite sum 
M 
Z ba, b a c B(Ro,n,k,a ) , and it's q-expansion at (Tate(qn),~can,~n,(Ep_l)'l) 

a=o 

is that of 

N 
N g b a" (Ep_l)N-a 

Z ba" (Ep.1)-a= a=o 
a=o ( Ep -I ) N ' 

N 
ba(Ep_l)N'a has q-expansion zero at one or more cusps hence by hypothesis, Z 

a=o 

on each geometric connected component of Mn ' hence by the q-expansion prin- 
N 

eiple (1.6.2), Z ba(Ep_l )N-a = 0 . By (2.6.1.3), each b =0 QED I 

a=o a 

Pro~ositio n 2.7.2. Let n,k,R satisfy the hypotheses of (2.5.1). Suppose 

given for each cusp ~ of ~n a power series f~(q) e Ro[~n][[q]] . The fol- 

lowing conditions are equivalent: 

i. The f~ are the q-expansions of an (necessarily unique) element 

f e S(Ro,i,n,k ) . 

N 
2. For every power p of p , there exists a positive integer 

Mm0 nod pN-1 ~ and a "true" modular form gN c S(Ro,n,k+M(p-1)) 

whose q-expansions are congruent nod pN to the given f(~ . 

Proof. (i) ===> (2). Replacing R O by Ro/pNR ° , we may suppose p nilpotent 

in R ° We must show that the q-expansion of f is the q-expansions of a true 

modular form of level n and weight k' _> k, k' -= k mod pN-!(p-l) . But as 

we saw above [c~2.7.i )], for M >> 0 , and p nilpotent in R , f has the 
o 

same q-expansions as g/(Ep.l)M , g truly modular of weight k+M(p-l) . 

Multiplying top and bottom by a suitable power of %-1 ' we may suppose 

N-1 
M ~ 0 nod p Then the q-expansion congruence Ep_l(q) m 1 nod(p) at each 

cusp gives (Ep_l)~{-l(q) -= 1 mod (pN) , hence (Ep_l)M(q) m ! mod(p N) , and 

hence f nod pN has the same q-expansion as g . 
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N-I 
(2) =--=> (1). Multiplying necessary gN by a power of (Ep_l)P , 

we may assume that the weights k~(p-l) of the gN are increasin~ with N . 

~et ~ :~+I-~" ~en (g~+l- ~'(~p-I )%) lies in 

pN-S(Ro~n,k~N+l(P-l)) by the q-expansion principle (1.6.2), hence 

Z (gN+l - gN" (Ep 1 )~N) "converges" to an element of S(Ro~!,n,k) whose 

q-expansions are congruent modulo pN to those of gN " QED 

2.8. Bases for levels one and two 

Suppose p ~ 2,3 . Then Ep_ I is a modular form of level on__~e which lifts 

the Hasse invariant, and hence for any p-adically complete ring R ~ r and 
o 

integer n > 3 prime to p , the group GL2(~nZ) acts on the functor 

~Ro,r,n [by g(E/S, ~n' Y) = (E/S, g~n' Y) on the set JRo,r,n(S)] , 

hence on M(Ro,r,n,k) and on S(Ro,r~n,k ) . Clearly M(Ro,r,l,k ) is just 

the submodule M(Ro,r,n,k ) GL2(~n~) of invariants under this action, and 

S(Ro,r,l,k) is the submodule S(Ro,r,n,k) GL2(~/n~) of S(Ro,r,n,k) . Now 

suppose n=3 or n=4 . This choice has the advantage that GL2(~n~ ) 

I 
then has order prime to p (because p ~ 2,3) , and P = #GL2(~r~ ) Z g is 

then a projection onto the invariants. Using P we may also make the chosen 

section of (2.6.1.1) invariant by GL2(~E ) , and define 

B(l,k,j) = B(n,k,j) Gz2(Z/~z) = P(B(n,~,j)) , 

B(Ro,I,k,j ) = B(l,k,j) ® R = B(Ro,n,k,j ) GL2(7/nZ) Similarly, we define 
~[i/n] o 

Brigid(Ro,r,l,k ) = p(Brigid(Ro,r,n,k ) > = (Brigid(Ro,r,n,k) ) GL2(z/nZ> ; it is 

the subspace of Brigid(Ro,r,n,k ) consisting of the elements Z b a each of 

whose terms b a is invariant by GL2(~n~ ) . 

Applying the projector P to (2.6.2) gives: 
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Proposition 2.8.1. Let p ~ 2,3 , 

not a zero-divisor. Then for each 

B r i g i d  (R 0 , r ,  1 ,k)  

2.8.1.0 

Eb 
a 

is am isomorphism. 

R ° a p-adicalZJ: complete ring and 

k > 0 ~ the canonical mapping 

> S (Ro~r~l,k) 

tab 
> ,, Z _ ~  a 

(Ep.l) 

reR 
O 

Now suppose p ~ 2 , and consider level two. Let Ep_ le S(Z[~],2,p-I) 

a lifting of the Hasse invariant. Because the subgroup G I has order prime to p , 

G I = Kernel: GL (Z/4Z) > GL(2,~2Z) ~ considerations similar to the above 

I 
provide a projector PI =~ii Z gl from level 4 to level 2. We have 

H(~o,r,2,~) = M(~o,r,4,~)~l = Pl(M(Ro,r,4,k)) , S(Ro,~,2,k ) = S(Ro,r,4,~) G1 = 

= Pl(S(Ro,r,4,k)) , Brigid(Ro,r,2,k ) = Brigid(Ro,r,4,k)Gl , the subspace of 

Br~gid(Ro,r,4,k ) of elements Z b a with each b a invariant by G I . Applying 

P! to (2.6.2) we get: 

Propositign 2.8.2. Let p ~ 2 ~ R ° a p-adically complete ring and r e R ° 

not a zero-divisor. For each k > 0 , the canonical mapping 

2.8.2.0 

is an isomorphism. 

Brigid(Ro,r,2,k ) 

Eb 
a 

> S(Ro,r,2,k) 

r% 
a . 

> " E - -  
(Ep.1)a 

Applying the projectors P or PI to (2.7.1) gives 

Proposition 2.8.3. Let R ° be a p-adically complete ring. 

that p ~ 2 and n=2 o_~r that p ~ 2,3 and n=! . Let 

N 
element which divides a power p ~ N > i of p . 

on an element f e S(Ro,l,n,k ) are equivalent: 

(i) f ~ x.S(Ro,l,n,~) , 

Suppose either 

x e R be any 
O 

The following conditions 

(2) the q-expansions of f all lie on XRo[[q]] . 
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2.~. !nte~retation via formal schemes 

Let n ~ 3, p @n , R ° a p-adically complete ring, and r ¢ R ° 

We denote by Mn(Ro,r ) (resp. %(Ro,r)) the formal scheme over Ro given 

R N the compatible family of o/p Ro-SChemes Spec Mn@Ro/pNRo(Symm(~ )/(Ep. ! -r)) 

v 

(resp. S~ec~®Ro/pNRo(Symm(~)/(Ep_l-r))).±,in We have 

M(~o,r,n,~) = ~°(Mn(Ro,r),~®k) 

S(Ro,r,n,~) = K°(~(Ro,r),~®~) 

Equivalently, we may view Mn(Ro,r ) (resp. %(Ro,r)) as the completion 
v 

along p= 0 of the usnal scheme S~ec M~@Ro(SY~I(~)/(Ep - r)) 

(resp. S~ec %®Ro(Symm(~)/(Ep_ l-r)) . For any r , the first of these 

schemes is affine~ because M is~ and when r = i both schemes are a~fine. n 

The p-adic completions of their coordinate rings are just the rings M(R~r,n~O) 

and S(Ro,l,n,O ) respectively. 
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Cha2ter 3. Existence of the Canonical Subgroup: Applications 

In this chapter we study the "c~nonical subgroup" of an elliptic curve 

whose Hasse invaria2t is "not too near zero." For simplicity, we assume 

throughout this chapter that the groundring R is a complete discrete valu- 
O 

ation ring of residue characteristic p and generic characteristic zero. We 

normalize the ordinal function by requiring that ord(p) = i . 

'l~leorem 3.1. (Lubin) I. Let r e R have ord(r) < p/p+l . 'lhere is one 
O 

and only one way to attach to every r-situation (E/R, G , Y) (R a p-adically 
n 

complete Ro-algebra , p @ n, n ~ I if p ~ 2,3, n ~ 3 if p = 2,3 , 

Y'Ep_ I =r) a finite flat rank p subgroup scheme HE E , called the canonical 

subgroup of E/R , such that: 

H depends only on the isomorphism class of (E/R, Gn' Y) ' 

and o n l y  on t h a t  o f  (E/R,  Y) i f  p ~ 2 ,3  . 

the formation of H commutes with arbitrary change of base 

R --->R' of p-adically complete R -algebras. 
O 

If p/r = 0 in R , H is the kernel of Frobenius: E ---->E (p). 

If E/R is the Tate curve Tate(q n) over Ro/pNRo((q)) , 

then H is the subgroup ~p of Tate(q n) . 

II. Suppose r e R has ord(r) < 1/p+l . 
o 

one way to attach to every r-situation 

Ro-algebra , p~ n, n _~ 1 if p ~ 2,3, 

an rP-situation (E'/R, ~n' Y') ' where 

I 
E '  = E/H 

~n =~(~n ) ' ~: E - - - > E '  

~ , -E  . ( E , / R ,  ~n ) = C ~--.u 

Then there is one and only 

(E/R, ~n' Y) (R a p-adically complete 

n ~ 3 if p = 2,3, Y Ep_ l=r) 

denoting the projection 
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such that 

Y' depends only on the isomorphism class of (E/R, ~n' Y) ' 

and only on that of (E/R, Y) if p ~ 2,3 • 

The formation of Y' commutes with arbitrary change of 

base R > R' of p-adieally complete R -algebras. 
O 

If p/r = 0 in R , Y' is the inverse image Y(P) of 

Y on E (p) = E' 

Before giving the proof, we give some applications. 

Theorem 3.2. Suppose n > 3, p @ n . Let f be a modular form of level n 

and weight k on Fo(p) , defined over Ro , and which is holomorphie at the 

unrsmified cusps of M There exists a (necessarily unique) element 
n ~p 

¢ S(Ro,l,n,k ) whose q-expansions at each cusp of % is that of ~ at 

the overlying unramified cusp of ~ Furthermore, if r e R has 
n,p o 

ord(r) < p/p+l , then in fact ~ ~ S(Ro,r,n,k ) . 

Proof .  Simply de f i ne  ~(E/R,W,~n,Y ) = f(E/R,(O,~n,H ) • 

Theorem 3.3. Suppose n > 3, p ~ n , and that either 

n < ll , or that k=O~ p ~ 2 , or that k=O, p=2 

r~R 
O 

element 

k > 2 or k=l and 

and n < ii . Let 

have ord(r) < I/p+l . For any f c S(Ro,rP,n,k ) , there is a unique 

q0(f) ~ S(Ro~l,n,k) whose q-expansions are given by 

<p(f) (Tate (qn), ~can'C~n) = f(Tate (qnp) 'aJcan'Tr(C~n) ) 

[where 7T: Tate(q n) ----> Tate(q np) is the map "dividing by ~p ", and 7F((~n) 

is the induced level n-structure]. Furthermore, ~(f). (Ep_l)k ~ S(Ro,r,n,pk ) . 

Proof .  Def ine  9 ( f )  (E/R,~,~n,Y) = f ( E ' / R ,  ~*(~o),(~n,Y') , [E'  = E/H, w: E ----> E'  

is the projection]. This makes sense if Y.Ep_ 1 =l , for then ~ is Stale 

v96 

and so 7r (~) is a nowhere vanishing differential on E' = E/H . To see that 

~p_l.~(f) actually lies in S(Ro,r,n,~ ) , notice that its value on 
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(E/R,~,~n,Y), Y'Ep_I= r p , is given formally by 

(Ep_I(E/R,~,~n))k.f(E'/R,~*(~) '~'n'~V'~ . [In fact this expression has no meaning, 

because ~*(~) may well fail to be nowhere-vanishing on E' .] However, if 

we write w*(~) = k-u' with k ~ R and ~' nowhere-vanishing on E' then 

- ~ n' " 

But a simple tangent calculation (cf. 3.6.5 ) shows that k and E are 
p-1 

essentially equal; they differ multiplicatively by a unit of R . By "reduction 

to the universal case"~ in which R is flat over ~. , we can make sense of 
P 

the r~tio Ep_l/k , and interpret it as a unit in any R ; this permits us to 
/ ~  ~(z/~,~,~x )'x k 

define (Ep_l)k-q(f)(E/R,U,~n,Y)) =~ '-± k n ~ f(E',u',~n,Y') . QED 

3.4 Construction of the canonical subgroup in case r =i 

Let us first note that for r = i the theorem is very simple. Given 

(E/R,C~n) with Ep_I(E/R~n) invertible, the curve E ®R/pR over R/pR has 

invertible Hasse invariant, hence Ker(F: E ® R/pR > (E ® R/pR) (p)) is a 

finite flat subgroup-scheme of E ® R/pR of rank p whose Cartier dual, the 

kernel of Verschiebung, is ~tale. Since R is p-adically complete, Hensel's 

lemma allows us to uniquely lift Ker F to the desired subgroup-scheme H of 

E/R (by taking for H the Cartier dual of the unique lifting of its ~tale dual). 

Since the Tate curve Tate(q n) over IFp((q)) has ker F = ~p , the above 

argument shows that the canonical subgroup of Tate(q n) over Ro/pNRo((q) ) is 

~p . This concludes the proof of part I of the Theorem. For part II~ still 

only in the case r= i , we simply note that E' = E/H reduces mod p to 

(E®R/pR)/Ker F -~ (E ® R/pR) (p) , which certainly has invertible Hasse invar- 

iant if E ® R/pR does - indeed Ep_I((E ® R/pR)(P),u(P),~(P)) = 

:(Ep_I(E ®R/pR,u,~n))P . Hence Ep_l(E',~n) is invertible in R . This 

concludes the proof of (3.1) in the case r =i . 
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3.5.0 The "general case" is unfortunately more difficult, and involves a 

somewhat detailed study of the formal group of an elliptic curve. Our method 

of constructing the canonical subgroup will be to first construct a finite 

flat subscheme of the formal group, then to show that it is in fact a subgroup 

which has the desired properties. We begin with some lemmas on the formaA group. 

3.6 Lemmas on the formal group 

Lemma 3.6.1. Let R be an • -algebra, E/R an elliptic curve, and ~ a 
P 

nowhere vanishing differential. Let X be a parameter for the formal group 

of E/R (i.e., the completion of E along the identity section), which is 

dual to ~ in the sense that the expansion of m along the formal group is 

Let A(E,~) 

Proof. Let 

the endomorphism 

may calculate 

n>l 

denote the Hasse invariant. Tg~en we have the identities 

pn-i 

apnl = (i(~,~))P'l for n- 1,2,.... 

~: ~/R ..... ~ (D~/R) (p)~ denote the Cartier operator, "dual" to 
t \ 

D >~ of T~/R. Weha~e 6(~) =A(~,~)'~ ~p) ,bu~we 

"locally" : 

I 0 , p~ n+l 

[~n(X P ~)(P) if pln+i 

~anoe C, (~) -- z ap(~.l)_i(f~dz) (p) , and 
m >o 

£ (~) = A(E,~J)'~ ®p = Z A(E,w)(am)P(xmdx) (p) , whence 

ap(m+l)_l = A(E,~). ( am )p . As ao =i , the result follows easily. QEn 

Lemma 3.6.2. Let R be any %-algebra, and let G be a one-parameter formal 

group over R . Then 

(i) End~(G]m~ - D Z and Z lies in the center of EndR(G)_ _ 
P P 
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(2) Given any parameter X ° , there exists a (non-uniqueT) parameter 

X = X + higher terms such that for any p-l'st root of unity 
O 

~ Zp , we h a v e  [ ~ ] ( X )  = ~X . 

Proof. ~Thanks to Lazard~ we're reduced to the universal situation, which has 

R flat over Z So we may use log, ex~, and continuity to get (!). As 
P 

for (2), it is proven directly in ([31], lemma 4.12), or we can remark that 

any choice of a "p-typical coordinate" X 

X rood degree two terms will do the job. 
O 

Lemma 3.6.3. Let R be an IF -algebra, G 
P 

In terms of any parameter 

(el.[5], [6]) which is congruent to 

a one-parameter formal group over R. 

X , [p](X) is a IkLuction of xP: i.e. 

3.6.3.0 [p](X) =v(x p) = z vX ~p. 
n 

n>l 

Proof. m E~%(G), p=VoF, F: G >G (p), V: G (p)-~a. Q~D 

L~a 3.6.4. Let 

X a parameter on 

~ Z Then [p](X) = X'(a series in X p-I) . 
P 

R be a Z -algebra~ G a one-parameter formal group over R, 
P 

G such that [~](X) = ~X for any p-l'st root of unity 

Lemma 3.6.~. Let R be a Ep-algebra, 

X a parameter, ~ = (i+ Z a Xn)dX 
n 

n>l 
we have 

Proof. [p]([~](X)) = [~]([p](X)) because p-~ = ~'p in Z Thus 
P 

n 
[p](~X) = ~'([p](X)) , so writing [p](X) = Z enXn , we have en~ = en~ , 

hence (~-~n)en=O . But for n ~ i (p-l), ~_~n is invertible in ~p , hence 

e =0. QED 
n 

G a one-parameter formal group over R, 

the dual invariant differential. Then 

3.6.5.o [p](x) ~ ap_z-X~ + higher terms ~od(p) . 
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Proof. [In the application to elliptic curves, we have aO_ I = A(E,o)) , and 

[p](X) = V(X p) = tangent(V)-X p + higher terms, so the assertion is that 

A(E,w) = tangent(V) = action of F on ~(E, ~ ) , which is true:] 

By Lazard, we are reduced to the universal case, in which R 

over Z . 
P 

~(X) = X + 

is flat 

Over R[1/p] , we have ~ = d~@(X), 9(X) g R[i/p][[X]] , 

p-2 x~+i x p 
E a -- + + higher terms. Let ~(X) be the inverse 

n=2 n n+l ap-i p- 

series to q~: @(X)= X + ...,@(cp(X)) = X . ~qen [p](X) = %,(p.~(X)) . 

Because q0(X) mod degree p lies in X+X2R[[X]] , for each n > 2 , 

q0(X) n rood degree D+I lies in X n + Xn+~[[X]] . If we write 

~(X) = X + E b.X z , we see from this and the requiI~nent ~(~(X)) = X 
i>2 m 

-= -ap'l modulo R . Now the term of degree p b2~...,bp_ I ~ R , while bp P 

[p](X) = ~(p~(x)) is given hy 

that 

in 

p-I i 
g p bipi'(coef of X p in (o?(X)) i) = ap_ I + iZ2 biP (coef of X p in <p(X) i) +bp-P p , 
i=l 

and as pbp ~ R , we see that all the terms save ap_ I lie in pR . QED 

We may stu~arize our findings in a proposition. 

Proposition 3.6.6. Let R be a Z -algebra, G a one-parameter formal group 
P 

over R , X a coordinate on G which satisfies [~](X) = ~X for every p-l'st 

root of unity ~ ~ % , and ~ the "dual" differential. Then 

X~( 
3.6.6.0 [p](X) : pX + ax p + z c • p-l)+z 

~1=2 m 

where a,c2,c3,... , ~ R , and Cr e pR unless m(p-1)+l ~O(p) , i.e., 

c ¢ pR unless m -- 1 (p) . Further, if G is the formal group of an ellip- 
m 

tie curve E/R , then a ~A(E,~) mod pR . 

Proof. By (3.6.4)~ [p](X)=X.(a series in X p-I) , but modulo pR, [p](X) is 

also a series in X p , by (3.6.3). The congruence for a is by (3.6.1). 



118 
Ka-50 

3.7 Construction of the canonical subgrou~ as a subscheme of the formal grou~ 

Suppose we are given (E/R, ~n' Y) with R a p-adically complete 

Ro-algebra , n _> i if p ~ 2,3, n > 3 for p = 2,3, Y'Ep_l=r, ord(r) < p/p+l. 

Because it suffices to treat the case when p is nilpotent in R , we may, by 

ordinary localization on R ~ suppose that the for~rlal group of E/R is given 

by a one-parameter formal group law over R , with formsfL paramter X ; 

we demote by ~ the "dual" differential. By reduction to the universal case, 

we m%3r now reduce to the case ~Knen R is a flat Zp-algebra. By (3.6.2), we 

may suppose that [~](X) = ~X for all p-l'st roots of unity ~ e Z 
P 

By (3.6.6), the endomorphism [p] on the formal group looks like 

#(p-l)+l 
(3.7.0) [p](X) = pX + sX p + Z c m 

m>2 

ia -= Ep_l(E/R~e,@n) hod pR 
with 

~Cm~O hod pR unless m-=l (p) . 

We first give a heuristic for the method to be used. 

Naive]@- speaking, the kernel of [p] is an ~' -%~ector space, and the 
P 

canonical subgroup is just a nice choice of a line in this ~p-Space~ i.e., 

it is an orbit of IT x in this vector space. But the action of IF x on 
P P 

Ker([p]) is induced by the action of ~p-i C Zp on the formal group. Thus 

we must write do~u~ the equation for the orbits of the action of ~p-i on 

Ker([p]) , and somehow solve this equation in a "canonical" way. Because 

~ ~p-i acts on X by [~](X) = {X , it is natural to take T d~h xP-i as 

a parameter for the space of orbits of the action of IF on Ker([p]) . 
P 

The formal identity (obtained from (3.6.6.0) by su?0stituting T = X p-I ) 

(3.7.1) [p](X) = X'(p + aT + Z cmTm) 
m>2 

suggests that in fact the equation for the orbits is 

(3.7.2) g(T) ~ p + aT + Z c ~ = 0 , 
m>2 r 
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and that the canonical subgroup is nothing more than a canonical zero of g(T). 

We now implement the above heuristically-motivated procedure. Let 

r I e R be the element -p/r ; we have 
O 

ord(r) < p/p+l by hypothesis). 

Y-Ep_I(E/R,~n) = r . Because 

Ep_I(E/R,~,~n) = a+pb, b ~ R . 

lation shows that if we p~t 

fly 
(3.7.4) t 

o i + rlbY 

(which makes sense~ because r I 

p+at =0 . 
O 

Let's define gl(T) = g(toT) ; 

ord(rl) = I - oral(r) > i/p+l , (because 

Let Y = Y(E/R,~,~n) c R ; we have 

a ~ Ep_l(E/R,w~n) modulo pR , we may write 

Thus Y-(a+pb) = r , and an immediate calcu- 

is topologically nilpotent in R) , then 

(3.7.5) gi(T) = p + atoT + Z Cm(to)mT m 
m>2 

p- pT + Z Cr(to)m~i • 
r>2 

Let r 2 = (rl)P+i/p ~ an element of R ° having ord(r2) > 0 . 

be any generator of the ideal (r2,(rl)2) of R ° 

Lemma 3.7.6. We may write gl(T) = p.g2(T) , with 

Let r 3 R 
o 

(3.7.6.1) 
m>2 

with dm ~ r3R ' and d m-~ 0 as m -~o~ . 

Proof. We have dm = Cm(to)m/P " Because em/p lies in R if m ~ I mod p , 

and because (to)P+!/p lies in r2R , we have d m c r3R for all m > 2 ~ am_d 

d m > 0 as m ---->~ . We next apply Newton's lemma to R~ l=r3R and h=g 2 . 

Lemma 3.7-7- (Newton) Let R be a ring complete and separated with respect 
oo 

to powers of an ideal iC R . Let h(T) = I-T + Z dmTm , with d c T , 
m=2 m -- 
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and d > 0 as m 
m 

function h: R---> R . 

h(l - %) = o . 

> ~ . By "substitution"~ h gives rise to a continuous 

There exists a unique element t e T such that 

Proof. Making the substitution T = I-S , we introduce 

~(S) = h(l-S) = e + (l+el)S + Z e S m with coefficients e i e I 
o m>2 m ' 

For s e I, hl(S) = h(l- s) ~ so our problem is to show that h I has a unique 

zero s~ in I . For any s e I, hi(s ) e i+I , hence is invertible in R 

while hi(s) e I . The Newton process of successive approximations: 

s o = O,...,Sn+ 1 = s n - hl(Sn)/h~(Sn) is easily seen to converge to a zero of 

h I . If s and s + A are two zeros of h I in I , we have 

0 = hl(S+a) = hl(S ) + h~(s)-A + (A 2) = h~(s)'~ + (~2) , hence as hi(s ) is 

invertible, we have ~ ~ (~2) . Because ~ e I and R is l-adically sepa- 

rated, this implies A = 0 . QED 

Tracing back our steps, we have constructed a zero tca n = to(l- t ) 

of g(T) . Because tca n lies in rlR , we may expand g in powers of T-t 

and conclude that g(T) is divisible by T-t in R[[T]] . We define the 
Can 

canonical subscheme to be the finite flat rank p subscheme of Ker([p]) 

defined by the equation X p- t X. (It may be verified that this subscheme 
CSd% 

is independent of the choice of coordinate X on the formal group satisfying 

[tJ(x) = tx for alz p-l'st roots of unity ~ e z .) 

3.8 The canonical subscheme is a subgrou~ 

Let's begin by remarking that if E/R modulo p has invertible Hasse 

invarisnt, then [p](X) = pX + (unit) X p + .... By the formal version of 

the Weierstrass Preparation Theorem, we see that in R[[X]] , we have 

[p](X) = (X p- tca n X)-(a unit in R[[X]]) . Thus when Hasse is invertib!e mod p, 

the canonical subscheme is all of Ker([p]) in the formal group, hence in 

particular it's a subgroup-scheme of the formal group. 
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In the general case, the condition that the subscheme of equation 

X P- t X be a subgroup-scheme of the formal group is that, noting by G(X,Y) 
can 

the group law, we have 

(3.8.1) G(X,Y)P-tca n G(X,Y) = 0 in R[[X,Y]]/(xP-tca n x,YP-tcanY) • 

Because tca n lies in rlR , it is topologica//y nilpotent in R , hence the 

R-algebra A = R[[X,Y]]/(X p-tca nX, YP- tca nY) is finite and free of rank 

2 
p with basis X~ j , 0 _< i, j _< p-I . The condition that G(X,Y)P-tG(X,Y) 

A is simply that the p2 "coefficients" gij ¢ R defined by the vanish in 

equation 

(3.8.2) G(X,Y) p - t G(X,Y) = ~ gijX~J in A 
O S j, j _< p-1 

all vanish in R . Thus it suffices to find a p-adical!y complete Ro-algebra 

R' ~ R such that, over R' , the canonical subscheme is a subgroup (for then 

the gij vanish in R' hence vanish in R). But in the universal situation, 

R = M(Ro,r,n,o ) C R' = M(Ro,l,n,o ) , and over R' , Ep_ 1 is invertible, 

hence Hasse rood p is invertible, and so as noted above the canonical sub- 

scheme is a subgroup over R' . This concludes the proof of part I of the 

main theorem (3.1). 

(3.9) We now turn to proving part II of 3.1, by constructing Y' . As be- 

fore we may suppose R flat over ~ . Let r ~ R have ord(r) < I/p+l . 
p o 

Then r I = p/r has ord(rl) > p/p+l , and hence r I is divisible by r p , 

and r 4 = rl/rP has ord(r4) > 0 . Since tea m e fir , modulo rlR the 

canonical subgroup is just the kernel of F: E > E (p) . Hence E' mod riR 

is E (p) . Let ~' be any nowhere vanishing one-form on E' which reduces 

modulo rlR to ~(P) on E (p) . Hence we have the congruence 

(3.9.1) Ep_I(E'/R,~',(~ n) -= (Ep_I(E,~,(~n))P modulo rlR . 
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Because r I : r 4"r p , we may write 

(s.9.2) ~_1(s ' /R ,~ ' ,%)  = (zp_l(B/R,~,,%))~° +~r~ j  , j eR. 

Using the equation 

(3-9.3) Y ( E / R , ~ , ~ n ) ' E p _ t ( E / R , ~ , ~ n )  = r 

one ~mmediately checks that if we define 

(3.9.4) Y'(E'/R,w',~) = (Y(E/R,w,~n))P/I + r4J-(Y(E/R,w,~n)) p , 

T then Z'(Z'/R,~',%).~_!(S'/R,~', %) = rP This concludes the proof of 

part II. QED 

3. i0 Finiteness properties of the Frobenius endomorphism of p-adic modular 

functions. 

Throughout the rest of this chapter, we denote by R a complete dis- 
O 

crete valuation ring of mixed characteristic with perfect residue field Ro/m 

The Frobenius endomorphism ~ of S(Ro,l,n,k) is defined by 

-1) f(Z/H,~.(~ ) ~(f) (E,~,~n,Y = (Ep_ I) = ,V(~n ) ,Y' = i/Ep_l) where H 

the canonical subgroup of E ~ v: E > E/H denotes the projection. 

have seen above, for r e R ° having ord(r) < i/p+l , the composite 

"extends" to give a commutative diagram 

3.10.0 

S(Ro,l,n,k ) ~ > S(Ro,l,n,k) (Ep-l)k . ~ S(Ro,l,n,pk ) 

J j 
S (Ro,rP,n,k) . . . . . . . . . . . . . . . . . . . . . . . .  ]--~ S (R o,r,n,pk) 

For k--O, we find simply that the endomorphism ~ maps S(Ro,rP,n,0 ) 

S(Ro,r,n,O) for any r e R having ord(r) < I/p+l . 
O 

denotes 

As we 

(Sp_z)k" 

to 
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'l~eorem 3.10.1. 

i. 

II. 

III. 

Suppose n ~ 3 and p~ n , and n _~ i! if p=2 . Then 

For r e R with ord(r) < i/p+l , the Frobenius morphism 
o 

~1S(Ro,rP,n,0 ) > S(Ro~r,n,0 ) is a finite morphism (but not in 

general flat). 

If r=l , then ~ is a finite flat morphism of degree p . 

For any r with ord(r) < i/p+l , the homomorphism (K the fraction 

field of R o) 

~®K: S(Ro,rP,n,O)®K > S(Ro,r,n,0)®K 

is finite and etale of rank p . 

Proof. (I). Because the ring S(Ro,r~n,O) 

p-adic topology, to prove finiteness of 

induced homomorphism 

3.10.2 

is finite. 

is complete and separated in the 

it suffices to prove that the 

~®Ro/m : S(Ro,rP,n,O)®Ro/~ > S(Ro,r,n,0)®Ro/m 

Interpreting S(Ro,r,n,O) as H°(~(Ro,r),0) (cf. 2.9), and 

noting that ~(Ro~r ) is flat over R ° , we see (by "tuaiversal coefficients") 

that the canonical homomorphism S(Ro,r,n,O)®Ro/m > S(Ro/m,r,n,O) is 

injective, with cokernel of finite dimension over Ro/~ . Thus S(Ro/m,r,n,O) 

is a finite module over S(Ro,r,n~O)®Ro/m ~ and we have a commutative diagram 

of ring homomorphisms 

S(~o/~_,~,n,O ) ~ > S(Ro/~,~,n,O) 

3.10.3 ] q0® Ro/m t 
S (R ° ,r p ,n,O) ® R/m_ > S (R ° ,r ,n,O) ® Ro/m 

in which the vertical arrows are finite. Thus the finiteness of the lower 

horizontal arrow (which is what we wish to prove) follows from the finiteness 

of the upper horizontal arrow. 
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Notice that if r=l , both S(Ro/m,r,n~O ) and S(Ro/m,rP,n,O ) are 

S(Ro/m,l,n,O) , while if 0 < ord(r) , both S(Ro/m,r,n,O) and S(Ro/m,rP,n,O ) 

are S(Ro/m,O,n,O ) . Because ord(r)< i/p+l, both p/r and p/r p lie in m_ , 

and hence over Ro/m the eanonic~ subgroup over ~n(Ro/m,r) and over 

% (Ro/m,n,rP) is just the kernel of Frobenius. It follows immediately that in 

either case (i.e., r =I o_rr 0 < ord(r) < i/p+l) , the endomor~hism ~ of 

S(Ro/m,r,n,O) is precisely the p'th power mapping (because 

~(f)(E,~,(~n,y ) = f(E (p) ,~(P),an(P),Y' = Y(E,~0,~n)P ) = (f(E,w,(Zn,Y))P) . But 

Mi(Ro/m,r) is a scheme of finite type over Ro/m , hence S(Ro/m,r,n,O) is 

a finitely generated Ro/m_-algebra , hence finite over itself by the p'th power 

endomorphism, which proves (I). 

For (Ii), we remark that when r=l , the scheme %(Ro/m,1 ) is simply 

the open set of %®Ro/m where Ep_ I is invertible, hence is a smooth affine 

curve over Ro/m - . Hence the p'th power endomorphism of its coordinate ring 

S(Ro/m,l,n,O ) makes that ring finite and flat over itself of rank p . Because 

S(Ro,l,n,O ) is p-adical/y complete and flat over R ° , it follows that 

makes S(Ro,!,n,O ) into a finite flat module over itself of degree p. 

The proof of (IIl) is more difficult, and requires Tate's theory of 

rigid analytic spaces. The ring S(Ro~r,n,O ) is the p-adic completion of 

H°(%®Pb'Symm(--~®P-I))/(%-I-r) , and this last algebra is finitely generated 

over R ° (because _~ has positive degree~ hence is ample). Thus noting by K 

the fraction field of R ° , we see that S(Ro,r,n,O)®K is a rigid alsebra in 

the sense of Tate, and contains as dense subalgebra the K-algebra 

H°(~®K,S~m(_~®P'I))/(E_I- r) ~-- H°(~®K,Symm(_~®P-1))/(Ep_l - l) 

H°(%®K, Symm(_~®P-l)/(Ep_ I- i)) , which is precisely the coordinate ring 

Dn®K of the open subset of Mn®K where Ep_ I is invertible. Tham_ks to 

Tate, the ideals of S(Ro,r,n,O)®K are all closed, hence are the closures of 

their intersections with D ®K . But as D ®K is the coordinate ring of a 
n n 

smooth affine curve over K , its prime ideals are either minima& (corresponding 



125 Ka-57 

to irreducible components) or maximal (corresponding to oonjugacy classes of 

points with values in finite extensions of K ). Indeed, the closed points of 

S(Ro,r,n,O)®K are conjugacy classes of homomorphisms 7[: S(Ro,r,n,0 ) > K' , 

K' a finite extension of K , or equivalently they are homomorphisms 

7[: D n®K ----> K' which satisfy the continuity conditions 17[(Dn) I _< 1 , 

i _> 17[(Ep_l) I _> Irl (i.e., that the images of Ep_ 1 and of Y = r/Ep_ 1 be 

"power bounded"). Further, the completions of the local rings at corresponding 

closed points are isomorphic~ hence are regular local rings of dimension one, 

hence S(Ro,r~n,O)®K is a regular rin~ of dimension one. Thus the map 

3.10.4 S(Ro,rP n,O)®K ~®K > S(Ro,r,n,O)® K 

is a finite morphism between regtular rings of the same dimension, hence (of. EGA 

IV, 17.3.5.2) is flat. To see that it has rank p , it suffices to note that by 

(II), it has rank p over the dense open set where IEp.iI = i . It remains 

only to see that (3.10.4) is @tale. For this, it suffices to show that the 

fibre over each point with values in fl , the completion of the algebraic 

closure of K , consists of p distinct points. Over a point at infinity 

corresponding to Tate(q n) over K((q)) , the fibre consists of the p curves 

Tate(~pq n/p) over K((q)) , each of which gives rise to Tate(q n) upon 

division by its canonical subgroup ~p . A finite point is an elliptic curve 

E/D [with level n structure ~ ] having good reduction, such that for any 
n 

differential ~ which extends to a nowhere vanishing differential over the 

valuation ring of ~ , we have 1 _> IEp_I(EIK, )I m Irl p . The curve E has 

p+l subgroups of order p , sa~ Ho,HI,... ~Hp , of which H ° is the canonical 

subgroup. 

Let E (i) = E/H i . The points lying over E are among the p+l 

curves E (i) (E (i) carrying the induced level n structure) ~ indeed, 

E(i) lies over if and only if E (i) is a point of S(Ro,r,n,0)®~ whose 

canonical subgroup is pE/H i . 
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Consider first the case in which IEp_I(E/K,~) I =i , i.e., a formal 

group of height one. Then H is the kernel of p in the formal group~ 
o -- 

while the Hi, i ~ i , meet the formal group only in [0] . The quotient 

E (°) = E/H ° again has a formal group of "height one" hence its canonical sub- 

group is the kernel of p in its formal group, while the image of E in 
P 

E (°) meets the formal group only in [0} . Thus E (°) does not lie over E . 

For i ~ i , the quotient E (i) also has a formal group of height one, but 

now the image of H ° in E (i) = E/H i i__{s the kernel of p in the formal 

group, i.e., it is the canonical subgroup, and hence the E (i) , i= I,... ,p , 

do lie over. 

It remains to treat the case of "supersingular reduction"~ which we 

do by Imbin's original method, and show (part 9 of theorem3.10.7) that again 

only E(1),...,E (p) lie over. 

(3.10.5) Let ~ be an algebr~cally closed complete (under a rank one valu- 

ation) field of characteristic zero and residue characteristic p . Let 

R CK be the valuation ring, and let E/R be an elliptic curve over R , and 

X a parameter for the formal group of E/R , normalized by the condition 

[~](X) = ~X for every p-!'st root of unity in Z Suppose that the Hasse 
P 

invariant of the special fibre vanishes. Then in the formal group~ we have 

P ~xp 2 f~(p-l) +I (3.10.6) [p](X) = px+u p+ z c f~(~-l)+l + Cp+~ + Z C 
m:2 m m ~ p+2 m 

with ord(a) > 0 , ord(Cm) ~ I for m ~ i mod p , and ord(Cp+l) = O , 

(this last because we suppose height two for the special fibre). [If ord(a) < I , 

we have ord(a) = ord Ep_I(E/R,w) for any nowhere vanishing differential ~ on 

E/R, by (2.1). ] 
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Theorem 3. i0.7" (Lubin) 

i. If ord(a) < p/p+l , the canonical subgroup H ° consists of [0] 

and the p-I solutions X of (3.10.6) whose ordinal is l-ord(a) The p2 p--~:T--- " -P 
l-ord(a) ). 

other solutions of (3.10.6) all have ordinal ) (which is < p-i 
p -P 

If ord(a) > p/p+l , then all non-zero solutions of (3.10.6) have ordinal i/p2-1 . 

2. If ord(a) < I/p+l , then the quotient E' = E/H ° has as normalized 

coordinate for its formal group X' = ]I G(X~x) , where G(X,Y) denotes 
xeH 

o 
the formal group law on E . The expression of [p] on E/H °- is 

[p](X') --pX' + a'(X') p + ... 

~th ord(a') -- p ord(a) . 

3. If i/p+l < ord(a) < p/p+l , then ord(a') = i - ord a , and the 

canonical subgroup of ~I~ ° is pZlHo, and (~IHo)11~o(Z/~ o) is just E, 

(but a level n structtu'e c~ becomes p'l-c~ after two divisions by the 
n n 

canonical subgroup - (compare Dwork [ Ii ] ,8.]_1)). 

4. If oral(a) > p/p+l , there exist p+l curves E (i) each having 

ord(a (i)) = I/p+l , such that E = E(i)IHo(E (±)) , where Ho(E(i) ) denotes 

the canonical subgrou~ of E (i) . These curves are E (i) = E/Hi, i= 0,i~... ,p . 

5. If O < ord(a) < p/p+l , there exist precisely p curves E (i) having 

ord(ai) < I/p+l such that E = E(i)/Ho(E (i)) , namely the curves E (i) = E/H i , 

i ord(a) i : l,...,p (cf. 3.10.4~'f) , ~d o~d(~ i) : 7 

Proof. i. follows from looking at the Newton polygon of [p] (X) , which is 

(I,i) 

f ord(a) _> p/p+l 
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and remarking that the construction of the canonical subgroup as subscheme of 

the formal group consisted 10recisel~ of isolating the factor of [p] (X) 

corresponding to the first slope, when there is a first slope. 

2. By Lubin ([32]), we know that if H is any finite subgroup of a one- 

parameter formal group over Ro, then X > H G(X,x) i_~s the projection 
x 6 H 

onto the quotient. Thus the non-zero points of order p on E/H ° are of 

two sorts, the points H G(y,x) with [p](y) = 0, ord(y) = ord(a) 
2 

x~ H o p -p 

and the points H G(z,x) where [p](z) e Ho, [p](z) % 0 The first sort 

xe~ o 

of point has ordinal given by Z ord(G(y,x)) , aud as ord(y) < ord(x) 
x eH o 

for any x e H ° , this sum is just p(ord y) = °rdla) The second sort of 
p-1 

point has ordinal Z ord(G(z,x)) . From the equation [p](z) ~ Ho-{O] , 
x eH o 

we see that ord([p](z)) = 1-ord(a) The Newton polygon of [p](z)=xeH - {0] 
p-1 o 

is thus 

(0, l-oral(a) ) 
p-i 

(p,ord(a)) 

(p2,0) 

and hence z has either ordln~ ord(a)/p2-p or l-p ord(a) ~ either case, 
-- 2 p-p 

ord(z) < ord(x) for any x ~ H Hence the second sort of point has ordin~ 
O 

either ord(a)/p-1 or (l~ ord(a~p-I . ~ among the non-zero points of 

order p on E/H o , there ~e two distinct ordin~s which occ~ n~ely 

ord(a)/p-! and ~ ord(a~p-1, of which the greater is ~-p ord(a~p-i . 

Thus by I, E/H ° h~ ord(a') < p/p+l ~d 1-ord(a')= I~ ord(a) 
' p-I p-1 

which proves 2. We note th~ the im~e of E is not the canonlc~ subgroup. 
P 
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3. I f  we suppose 1 / p + i  < o rd (a )  < p / p + l  , then on E/H 0 the  f i r s t  

sort of points of order p are the points ~ G(y,x) for each y such 
xeH o 

that [p](y) = 0, y # H ° . As in 2, these points have ordinal ord(a)/p-! . 

The second sort are the points H G(z,x) where [p](z) ~ H - [0} , 
x ~ H o o 

hence [p](z) has ordinal 1-ord(a) They hypothesis ord(a) > 1/p+l in- 
p-1 

sures that the Newton polygon of [p](Z) = x e H ° - [0) is 

(0 1-°rd(a)) 
p-i 

• (p,ord(a)) 

~ ~  (p2,0) 

hence ord(z) = l-ord(a) < ord(x) for any x ~ H ° , hence the second sort of p2(p-i) 
point has ordinal l-~rd(a)/p(p-l)) . Thus E/H O has a canonical subgroup, 

namely its points of order p of largest ordinal = ord(a)/p-1 . Hence 

1-ord(a') = ord(a)/p-1 ~ whence ord(a') = 1- ord(a) , and the canonical sub- 
p-1 

group is the image of all the points of order p on E . 

4. If ord(a) _> p/p+l , the Newton polygon of [p](X) is 

(l.1) 

p2,0 

Hence all non-zero points of order p have the same ordinal l/p2-1 . The 

points z such that [p](z) = x, [p](x) = 0, x ~ 0 , have ordinal i/p2(p2-1) , 
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because the Newton polygon of [p](Z) = x , ord(x) = i/p2-1 , is 

(o,1/p%l) 
, (p,ord a) 

~ ~ P 2 ,  O) 

Thus for any subgroup H. of order p of E , the first sort of point of 
i 

order p has ord = E ord(G(y,x)) > p ord(y) : p/p2-1 (since ord(y) = 
x c H .  

1 
= ord(x) if x ~ 0 ). The second sort of point has ordinal p.ord(z)= I/p(p2-1) , 

(because ord(z) < ord(x) for any x e H. ). But p/p2-1 > i/p(p2-1) , hence 
i 

each E / H .  h a s  a c a n o n i c a l  s u b g r o u p ~  w h i c h  i s  t h e  i m a g e  o f  E . L o o k i n g  a t  
1 p 

the ordinals of the no__nn-canonical points of order p on E/H i , we have by 

(~.I0,7.1) the equality ord(a')/p2-p = l/p(p2-1) ~ hence ord(a') = I/p+l . 

5. We first re, hark that if ord(a) < p/p+l ~ then E' = E/H either 

has ord(a') > i/p+l , or its canonical subgroup is not the image of E and 
P 

hence E'/H(E') ~ E . In_deed, if ord(a) < i/p+l ~ then as noted in the proof 

of 2., the canonical subgroup is not the image of E . If ord(a) = i/p+l -- p 

then as proven in 4., ord(a') ~ p/p+l . If ord(a) > i/p+l , then 

ord(a') = l-ord(a) ~ and l-ord(a) > i/p+l because oral(a) < p/p+l . It re- 

mains to see that for each non-canonical subgroup Hi, i = l,...,p , E (i) = E/H i 

i ord(ai ) E. has ord(a (i)) = ~ , and its canonical subgroup is the ~mage of P 

Again we calculate the ordinals of the points of order p on E/H i . 

The first sort of points are all images of points of the canonical subgroup 

H ° of E (because E = H ®H. for i=l,...,p) . For y ~ H ° - [0} , 
p o m 

l-ord(& while ord@@,x)) = ord x = or d(a) because 
2 ord G(y~O) = ord y = p-i ~ P -P 

ord(y) > ord x if x e H i - [O] . Hence the image of ¥ e H O - {0} has 
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o r d i n a l  = o rd (y )  + ~ /  o rd (x )  = 1 - ° rd (a )  + p-1.  ord(a)  = 1 -ord(a)  + ord(a)  
2 p-I p 

X ~ .-[0] p-1 P -P 

What about the image of a point z such that [p](z) ~ H i - [0] ? 

The Newton polygon of [p](Z) = x, x e H. - [0] , is 
1 

p -p 

• (p,ord a) 

....... (p2,O) 

hence ord(z) = or~(a)/p2(p2-p) = ord(x)/p 2 for x c ~i - {03 • Th~ 

ord(z) < ord(x) , hence the second sort of points of order p on E (i) have 

or~n~:p.ord(z) = ord(a>/p(p2-p) . But l-ord a + ord(a) > or~(a)/p(p2_p) 
p-i p 

(because ord(a) < p/p~ < p2/p+l) ~ hence E (i) has a c~onical subgroup, 

~d l-°rd(a(i)) - l-ord a + ord(a) hence ord(a (i)) = ord(a)/p . ~is con- 
p-i p-1 p ' 

eludes the proof of 5., ~d also of theorem (3.10.7). 

3.11 Ap21ieations to the congruences of Atkin - the U o~erator 

We maintain the notations of the previous section. As we have seen, 

for each r e R ° having ord(r) < I/p+l , the homomorphism 

S(Ro,rP,n~O ) > S(Ro,r,n,O ) is finite, and becomes finite and flat of 

degree p when we tensor with K . Thus there is defined the trace morphism 

3.11.i try: S(Ro,r,n,O)®K ~ > S(Ro,rP~n,O)®K • 

For r= i , ~ is itself finite flat of degree p , hence there is defined 

3.11.2 trq0: S(Ro,l,n,O) > S(Ro,l,n,O) . 
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In terms of q-expansion, we have 

3.11.3 (tr (f))(Tate({n),~can,C~ n) = ~_ f(Tate({qn/p),~ca n, iz{((~n)) 
{P=I 

~here ~{ (~n) denotes the imduoed level n struot~e on ~ate({q n/p) , ~ewed 

as a quotient of Tate(q n) . Equivalently, if we vrzite 

3.11.3.1 f(Tate(q n) ,~can~n) = ~Ai((~n)q i 

then we have the formula (in which 6" is the level n structure on Tate[~-) 
n 

obtained as the inverse image of ~o(~n) on Tate(q n/p) by the extension 
! 

of scalars ql/p > q , compare pp.32-33) 

~T- A (i ,, i 
3.11.3.2 (tr$(f~(Tate(qn)'~can'~n) = P'~pi pGn )q " 

Notice that we have the relation, for any f e S(Ro,r,n~O)®K 

3.11.3.3 p'Tp(f) = tr (I~(f)) + 9(f) 

(where I~(f)(E/R,~,Gn) dfn f(E/R,~,p.Gn)) , which should be viewed as the 

"canonical p-adic lifting" of the Eichler-Shimura congruence relation (compare 

Deligne [7]). 

integrality Le~ma 3.11.4. For any r e R ° with ord(r) < i/p+l , we have 

tr (S(Ro~r,n,O)) C S(Ro,rP~n,O ) (although ~: S(ro,rP,n,O) > S(Ro,r~n,O) 

is finite but not fiat if oral(r) > 0 :). 

Proof. We may suppose ord(r) > 0 , the case r = i being trivial. It fol- 

lows (frmm Tare [45]) that for any finite flat morphism ~: A > B of rigid 

algebras over K , we have tr (power-bounded elements of B ) C power-bounded 

elements of A . Thus we must show that the power-bounded elements of 

S(Ro,r,n,O)®K are precisely S(Ro,r,n,O ) . For this, we introduce the 

finitely generated Re-algebra B = H°(%@Ro, Symm(_~ ®p-I) )/(Ep_ I- r) . Its 

p-adic completion B df_nn i~_ B/pNB i_~s S(Ro,r,n,O ) , and indeed via the 
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isomorphism (2.6.2.1), B corresponds to the Ro-SUbmodule of Brigid(Ro,r,n,0) 

consisting of all finite sums, which shows incidentally that B is a (free 

and hence) flat Ro-module, and that B/_mB ~ ~/_~ . The fact that Ep_ 1 mod- 

ulo m has simple zeros implies that B/mB is reduced. (Indeed, B/_mB is 

sy=(®p_!))/(Ep_l) N H°(Mn®Ro/m, ) and if Z fi represents a nilpotent 
O 

element, with minima& N , then a power of fN is divisible by Ep_ I , hence 

fN is divisible by Ep. I , which contradicts the minimaiity of N . ) We may 

thus conclude by the following !emma. 

Le~mma ~.iI.~. Let R ° be a complete discrete valuation ring~ B a flat 

finitely-generated Ro-algebra such that B/_mB is reduced. Then the set of 

power-bounded elements of B®K is B . 

Proof. Since B is flat over B , hence over R ° , we have B CB®K , so 

the statement makes sense. By Tate, we know that at@- power-bounded element of 

B®K is intesral over B , so we must show that B is integrally closed in 

B®K . Let ~ be a uniformizing paremeter of R O If f e B and f/w is 

intesral over B , then clearing the denominators in the equation shows that 

f is a nil~otent element of , hence f ¢ ~_ = ~B . QED 

3.11.6. We now define Atkin's operator U: S(Ro,rP,n,O)®K > S(Ro,rP,n,0 ) 

to be the composite 

i tr 

S(Ro,r~n,O)® Kc > S(~o,r ,n,O)® x P • > S(Ro,~,n,O)®K . 

Thus if 

3.11.6.1 

f c S(Ro,rP,n,0 ) has q-expansions 

f(Tate(q n) ,~ean,~n ) =~iAi(~n)q i 

then U f ~ S(Ro)r~,n,O)®K has q-expansions 

i ,, i 
3. ii. 6.2. ~U f) (Tate (qn), Wean~n) = Z%i(p ~n )" q " 

[This formula shows that U (S(Ro,I,n,O)) C S(Ro,i,n,O)] . It is not true in 
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general that U (S(Ro,rP,n,O)) C S(Ro,rP,n,0 ) , but the situation is as good 

as if it were true, as Dwork was the first to realize. 

Le~ma 3.11.7. (Dwork) Suppose P > 7 , and suppose r e R satisfies the 
-- o 

inequaliSg 

2 i < ord(r) < p+!  O k P - ± )  

Then the R -submodule 
o 

is U-stable. 

S(Ro,~°,n,o) + u (S(Ro,rP,~,o)) of S(Ro,rP,n,o)®x 

Remark 3.11.8. The point is that the submod~JLe S(Ro,rP,n,O ) + U (S(Ro~rP,n,O)) 

contains S(Ro,rP,n,O ) and is contained in ~ S(Ro,rP,n,O ) , hence it defines 
P 

the same topology on S(Ro,rP,n,O) ®K as S(Ro,rP,n,O ) . Thus in an equivalent 

norm on S(Ro,rP,n,O)®K , U has operator noz~. ~ i . 

Proof. Let's use the representation (2.6.2.1) of elements of S(Ro,rP,n,O) 

in the form f = a ~q~..e ~vpothesis insures that for a > 2 , 

a ~ o (~p_l)a 
or<(~°a/p-r  a) > 0 , an~ hence 

r<b I r2(p-Z) 
3.11.9. f = b 0 + ~ + p'(sm element of S(Ro,r,n,O)) . 

Ep. I P 

Because p U = tr maps S(Ro,r,n,O ) to S(Ro,rP,n,O ) ~ we have 

rPb l  r2 (p -1 )  S (Ro, rP,n ,0)  . 3 .11.10.  U ( f )  = U(b0) + U ( - ~ _ 1 ) _  + an elmaent o f  P 

Since b 0 is just a constant, we have U(bo) = b 0 , and hence it suffices to 

show that for any b I e H°(%®Ro,~ ®p-I) , we have 

3.1!.i1 ~ 2 ( ~ )  c S(Ro,~°,~,o) + u ( S ( R o , ] , n , o )  . 

For this, notice that rbl/Ep_ ! lies in S(Ro,r,n~O ) , hence 
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rbl ~ rPaba 

3.11.12. tr~(~p-i) = a ~ i (~_i) a 

The hypotheses insure that ord( rp'l -rPa/p-r a) > 0 
P 

if a _> 2 , and hence 

rP bl rP-i rb~l rP'! (bg + rpb{ ) + 
3.11.13 u( Ep-l) = P @ Ep-i p-i 

r3(p-l) 
+ p (an element of 2 

P ~P~ 
Notice that U (~i) has q-expansions divisible by r p , as does 

--p 1 -- 

p. (any element of S(Ro,rP,n,O)) , and hence so does 

( ~ - l / p ) ( b  8 + __~_~_l) : 7 - -  ( P%_~ ....... ) ' 

rp-1 ~ d  hence so does - - p  (b~ ~p-1 + ~%1) . ~y the  q - e ~ a n s i o n  p ~ m o i p l e ,  

there exists an element b' i g H°(%®Ro,~®P-1 ) such that 

P (b 0 Ep_ I + rPb{) = rPb i , hence --p (bo + ~Ep-I ) = ~p-I ' hence 

9% i 9%,~ r3 (p-l) 
+ p-(an element of 2 S(Ro'r'n'O)) " 

(~-~-i) : ~p-i p 

S(Ro,r,n,O). 

= ~aps S ( R o , r , . , O )  to  S ( R o , ~ , n , O )  , Again using the fact that pU tr@ 

we find 

2 rp bl rPb" 
U (-~p.l) = U(~) + an element of S(Ro,~,n,O) , 

p-± 

which proves (3.11.!i) and the lemma. QED 
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5.12 p-adic Hecke ol)erators 

For any prime number ~ which is prime to both p and to the level n 

we may define T~ on S(Ro,r,n,k ) by the usual formula 

~- . 

3.12.1 (T~f)(E/R,~,~n,Y) = ~X-I±f(ER,/K,~ (~),~(~n), ~*(Y)) 

t h e  sum e x t e n d e d  t o  t h e  ~+1 s u b g r o u p s  K o f  o r d e r  £ . The v a r i o u s  T~ 

commute w i t h  e a c h  o t h e r ,  and  f o r  k = O  t h e y  a l l  commute w i t h  U . 

We may c o n s i d e r  t h e  " s p e c t r a l  d e c o m l ~ o s i t i o n "  o f  t h e  K-Banach  s p a c e  

S ( R o ~ r P , n ~ O ) ® K  w i t h  r e s p e c t  t o  U ( w h i c h  i s  c o m p l e t e l y  c o n t i n u o u s ,  b e c a u s e  

the inclusion S(Ro~rP,n~O)®K into S(Ro,r,n,O)®K is). For any rational 

number v ~ the subspace 

U m 
m > 1 (~ EK all'el'of ordinal v 

of S(Ro,rP~n~0)®K is finite-dimensional~ and is stable by U and the T~ u 

By Dwork's lemma (3.11.7), this subspaee is reduced to [0] unless v > 0 . 

~qlt-root The first interesting case is thus to take v=0 ~ the so-called " " 

subspace" of S(Ro,rP,n,O)®K . [Notice that this unit root subspace is 

independent of the choice of r e R with i/p+l > ord(r) > 0 ~ because U 
O 

S (Ro,r,n~O) ® K to S(Ro,rP,n,O~tK, i.e. it improves gro~th conditions. maps 

Thus if f e S(Ro,r,n,O)®K is annihilated by ( U _~)m ~ and ~ ~ O , 

then f is a K((~)-lineam combination of u(f), u2(f),..., Urn(f) , hence 

in fact f ~ S(Ro,rP,n,O)®K , .... ] 

Lemma 3.12.4. (Dwork) Hypotheses as in (3.11.7), the dimension of the unit 

subpsace of S(Ro,rP,n,0)®K is at most dlmKH°(%®K,_~ ®p-I) . root 

Proof. The dimension of the unit root subspace is the number of unit zeros of 

the Fredholm determinant of U , which by (3.11.8) lies in Ro[[T]] , hence 

this dimension is also the degree of this Fredholm determinant reduced modulo m , 

which is to say the degree of the determinant of U on 

(S(Ro,rP,n,0) + U (S(Ro,rP n,O))®R ° Ro/_ m . 
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But for f e S(Ro,rP,n,O) , f = a a > 0 ( )a ' we have 
-- Ep.l 

U(f) - b 0 + U (Ep_l) modulo m-S(Ro,rP,n,0 ) and 

rPb I~ 
U2(f) = U (Ep -I)I modulo m S(Ro,rP,n,0 ) . Thus the image of U on 

(S (Ro,rP,n,O) + 

all elements b 0 

U (S(Ro,rP,n,O))®R/m - is spanned by the images under U 

-- with c ~°(~n®R o, 0 ) and ~p-1 

o f  

b I ~ B(Ro,n,k,l ) ~> H°(%®Ro,_~®P-I)/Ep.IH°(%®Ro, ~ ) . T h u s  t h e  r a n k  

o f  U on (S(Ro,rP,n,0) + U (S(Ro',rP,,n,O))®Ro/~ is at most the K-dimension 

o~ ~o(<®~,®p-!) . 

3.13 luter~retation of Atkin's consequences on 

We denote by j the absolute j-invariant, viewed as a modular function 

of level one, defined over E , having a first order pole at infinity. As is 

well known, p.Tp(j) lies in Z[J] . By inverse image we may view both j 

and p-%(j) as elements of M(Ro,r,n,O) for any r e R . We may also view 

9(j) as an element of M(Ro,r,n,0 ) , for any r e R ° having ord(r) < p/p+l 

[indeed, ~(J)(E,Y) = J(E/H) , H the canonical subgroup]. Subtracting~ 

we define p.U(j) = p. Tp(j) --~(j) e M(Ro~r,n,0) . Because j has only a 

first order pole at ~ , U(j) is holomorphic at infinity, indeed its 

q-expansion is 

3.13.1 U(j)(Tate(q)) = ~- e(pn)q n ~ where 
n>O 

3.13.2 j(Tate(q)) = c(n)q n = ~ + 744 + 
n > -i 

Thus U(j) lies in S(%,l,n,0), and p.U (j) lies in S(Ro,r,n,0) for 

any r e R having ord(r) < p/p+l . Combining this observation with the 
O 



Ka-70 138 

remark (3.11.8), we see that for ever~ m _> i , we have 

Urn(j) e S(Zp,!,n,0) 0 p-2"S(Ro,r,n,O) . 

Let us examine explicitly the congruence consequences of the innocuous 

statement " U (j) e S(%,l,n,0) n p-i S(R,ro,n,O ) whenever ord(r) < p/p+l " 

Suppose that p ~ 2,3 , so that we may work directly with S(Ro~r,l,0 ) via 

its basis as constructed in (2.6.2.1). We may write 

3.13.3.0 U(j) = a , b a ~ B(~,1,o,a) 
a _ > 0 (Ep_l) a 

For r e Ro with ord(r) < p/p+i , we have p-b a e rSB(Ro,!,0,a ) , hence we 

have pb a e p{ap/p+l] B(%,l,0,a) , where [ap/p+l} denotes the least 

i~teger _> ap/p+l . ~us b o e ~, b I ~ B(~,l,0,1), b a ~ pa'~(~,l,0,a) 

for 2 < a < p, bp+ l ~ pp-~(~ n+~(z ,l~O~a)~..., certainly b a e p ,0,a) 

if a > pn for n > i Thus 

pn b 
3.13.3.1 u(j) -: z a ~od~o pn+is(z ,1,I,o) 

a:0 (Ep_l) a 

3.13.3.2 

n 
p n 
z ta .(EP_I)P -a 

u(j) --- a=o 
n 

(~p_l) p 
_n+is- ~ modulo ~ (p,l,l,O) - 

Using the fact that Ep_ I has q-expansion m I (p) , and hence that (Ep_I)P 

has q-expansion m i (pn+l) , we deduce that for p ~ 2,3 , the q-expansion of 

U (j) is congruent mod p n+l to the q-expansion of a true modular form of 

level one, defined over ~ , ho!omorphic at ~ , of weight pn(p-l) . In fact, 
n 

using (Ep.I)P to kill the eonstant term, we find that U(j) - 744 has q-expansion 

congruent mod pn+l to the q-expansion of a cusp form of level one and weight 

pn(p-l) , defined over E , a result obtained independently by Koike [28]. 

We n o w  return to the properly Atkinesque aspects of the un(j) , and 

their interpretation. 
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Lemma $.13.4. Suppose there exists a p-adicunit 

every m ~ i , we have the q-exp~ision congruences 

a e Z such that for 
P 

i.e. , 

Dm+l(j-744 ) ~ a U re(j-744) 

o(pm+l i) -= ao(~k) 

modulo pm in q-expansion 

modvdLo pm for all m ~ I . 

c(i) = lim a-mc(pmi) . Then for r e R having ord(r) < p/p+l , there Let 
oo- " m o 

is a unique element " lim " a-mU m(j-744) e S(Zp,l~n,O) n p-2 S(Ro,r,n,O ) 

which is of level one (i.e., invariant under GL2(~n Z)) , whose q-expansion 

is Z c (i)q i , and which is fixed by a-iU 
m>l 

Proof. By (2.7), the h~pothesis is in fact equivalent to the congruences 

3 .13 .4 . !  ( a ' l u ) m + l ( j - 7 4 4 )  =- ( a - l u ) m ( j - 7 4 4 )  modulo pm S ( % , l , n , O )  . 

in terms of the base of Let's write the expression of (a-iU)re(j-744) 

S(~, ! ,n ,O)  : 

3.13.4.2 (a-~)m(j-744) = >-- ba(m) 

a _> 0 (Ep_l) a 

ba(~) e B(~,n,O,a) 

Then we have the congruences ba(n+l) ~ ba(n) modulo pn B(Zp,n,O,a) , we may 

define ba(~) = l~m ba(m ) e B(~,n,0,a) . But for any r e R ° with 

ord( r )  < l / p + l  , we have p%a(m) e raB(Ro,n,O,a) , hence 

p~a(OO) e r a B(Ro,n,O,a) . Varying (Ro,r) , we see that in fact p~a(~) 

lies in p{ap-/p+l}B(~p,n~O,a) , where {x} denotes the least integer > x , 

( i . e . ,  Ix }  = - I - x ] )  . Hence ~ bJco) d_fn ,,! im,,(a-lU )m(j .744 ) l i e s  in  

~- (~p_l)a 
S(%,l,n,O) N p-2 S(Ro,r,n,O ) , and in S(%,l,n,O) it is the limit (in the 

Ba~lach space topology of (a-Iu)re(j-744) . 

The last two assertions are obviously true for r= i , by passage to 

the limit, and follow for any r of ord(r) < p/p+l because the canonical 

map S(Ro,r,n~O) > S(Ro,l~n,O ) is injective. 0)ED 
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Remark 3.13.5. The hypotheses of the lemma are in fact satisfied for p = 13 , 

a striking result due to Atkin. 

(3.13.6) Using the fact that the twelfth power ®12 of w descends to the 

invertib!e sheaf ~ (i) on the projective j-line over ~ , one can copy the 

construction of a basis of S(Ro,r,n,O ) , n ~ 3 , to get a basis of 

S(Ro,r,l,0 ) dfn S(Ro,r,n,O ) GL2(7./n2Z ) for primes p m I mod 12. Then one can 

copy the proof given in ([14]) to show that the dimension of the unit root sub- 

space of S(Ro,r,I,0)®K is at most 

dim ~o(pl _®p-l) _- d~ ~o(~i ~(~>) = 1 + ~ , for p -: 1 rood 12. m 

particular, for p = 13, the unit root space has a base consisting of the 

constant function and the function "lim"(a-Iu )n(j-744) , and this latter 

function is necessarily the unique "unit root cusp forra" in S(Ro,r,l,O ) . 

This unicity, together with the stability of the space of unit root cusp forms 

under the Hecke operators T~, I ~ 13 , gives a startling result of Atkin. 

Theorem 3.13.7- (Atkin) The 13-adic modular function 

"lira" ( a-lu )re(j-744) = ~ c (i)q i is a simultaneous eigenlkmction of all 
i--> i 

the Hecke operators TI, I ~ 13 • 

@2 
(3.13.8) Using the fact that e descends to the invertible sheaf ~ (i) 

on the projective k-line M2 over ~[1/2] , one may construct as above a base 

of S(Ro,r,2,0 ) , and prove as above that the unit root subspace of 

S(Ro,r,2,0)®K has dimension at most 

~= ~°(~2,~®P-1)_ = dim ~o(~l, ~(2~!)) : 1 + ~A2 , for p odd. 

has proven that in this case the dimension is exactly ! + p-1 
2 

in this volume). 

(3.13.9) Dwork's result implies that for p = i rood 12, the dimension of the 

unit root s~bspaee of S(Ro,r,l,0) is precisely 1 + ~ ~ and hence that 

there are precisely ~ independent unit root cusp forms in S(Ro,r,l~O) . 

In fact, Dwork 

, (cf. his expose 
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For p = 13 , this fact together ~ith the "accident" C(13) ~ 0 rood 13 ~ implies 

Atkin's result that a and "!im"(a-~)m(j-744) exist. 
m 
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Chapter 4. p-adic representations and consruences for modular forms 

4.1 ~-adic representations and loc~ free sheaves 

Let q be a power of p , k a perfect field containing ~q , Wn(k ) 

its ring of Witt vectors of length n , and S n a flat mffine Wn(k)-scheme 

whose special fibre is normal, reduced and irreducible. Suppose that S 
n 

admits an endomorphism @ which induces the q-th power mapping on the special 

fibre. [If Sn is affine arid smooth over Wn(k ) , then such a ~ always 

exists.] 

Proposition 4.1.1 There is s~ equivalence of categories between the category 

of finite free Wn(~ q)- mod~01es M on which ~l(Sn) acts contLnuouSly, and 

the category of pairs (H,F) consisting of a locally free sheaf of finite 

rsmk H on S n together with an isomorphism F: ~*(H) ....... ~ H 

Construction-proof. Given a representation M of ?rl(Sn) , let T n be a 

finite ~tale galois Sn-SCheme such that the representation factors through 

Aut(Tn/Sn) . Because T n is etale over S n , there is a unique <~-linear 

endomorphism of T which induces the q-th power endomorphism of T X k , 
n n Wn(k) 

which we denote by ~T " By unicity, ~T commutes with Aut(T~Sn) . Let H T 

be the Tn-module M Wn®( i~ q ) OT n , and let F T be the 9T-linear endomorl0hism 

of ~2 defined by FT(m®f) = m~T(f) . For e a c h  g c Aut(Sn) , we define 

g(m®f) = g(m)® (g-l)*(f) , thus defining an action of Aut(Tn/Sn) on (HT,F T) . 

By descent, it follows that there is a unique (H~F) on S n whose inverse 

image on T n is Aut(Tn/Sn) -isomorphic to (HT,FT) . The construction 

M ~ (H,F) defines the functor we will prove to be an equivalence. Notice 

that we can recover M as the fixed points of F T acting as ~-linear endo- 

morphisms of the module of global sections of % , hence our functor is fully 

faithful. To show that it is an equivalence, we must show that any (H,F) 

arises in this way, or, in concrete terms, we must show that given (H,F) 

there exists a finite @tale covering T n of S n over which H admits a basis 
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of F-fixed points. We proceed by induction on the integer n . 

Suppose first n= I . Then S is a k-scheme, and (H,F) is a locally 

free finite rank S-module H together with a q-linear endomorphism F of H 

which gives an isomorphism F : H (q) ........ > H . For any S-scheme T , the inverse 

image module ~ carries the inverse image q-linear map F T ~ defined by 

(FT(h @ t) = F(h) ® t q , which gives an isomorphism FT: H$ q) > }~ • 

Notice that the functors on S-schemes 

i f X(T) = global sections of H T 

I Y(T) = bases of ~ (~T-isomorphisms (~T)r ----> H T , where 

r = ram_k(H))  

Z(T) = bases of ~ consisting of fixed points of F T 

are all representable, the first by S~ecs(Symm(H)) , the second by the open 

subset of the r = rank(H)-fold product X (r/S) = X XsX ... x B X over which 

the tautogical map (~x(r/S)) r > ~(r/S) is an isomorphism, the third 

by the closed subscheme of Y over which the universal basis is fixed by Fy . 

We must show that Z is finite and 6tale over S . 

on S ~ hence we may assume S affine and H free. 

of H , and let (aij) be the invertible matrix of 

Consider the fanctor on S-schemes 

This problem is local 

Choose a basis hi,... ,h r 

F : F(h i]. . =Z a..h. jl j 

Y'(T) = sections of H T fixed by F T . 

It is representable by a scheme finite and 6tsle of rank qr over S ~ because 

a section Z Xih i of H is F-fixed if and only if E X.h. = Z (xi)qE 8 i aj ihj , 

thus Y' is the closed subscheme of A~or defined by the equation 

Xj =~i aJ i(Xi)q ' j =l,...,r . 

Because the matrix (aij) is invertible, if we denote by (bij) its inverse, 

the equations are the same as the equations 



144 
Ka-76 

V 
(Xi)q =~j bijX j i =l,...,r , 

which define a finite 4tale S-scheme of rank qr 

The scheme Z is the open subscheme of y,(r/S) = y, Xs ... x Y' where 

the universal r-tuple of F-fixed sections form a base of H , and hence Z is 

~tale over S . It remains to check that Z is proper over S , and non-void. 

By the valuative criterion, we must show that for ~hy valuation ring V over 

S ~ any F-fixed basis of H K (K the fraction field of V) prolongs to an 

F-fixed basis of H V . Because the scheme Y' of fixed points is finite over 

S ~ each basis element prolongs to a unique F-fixed section of P~ . To see 

that the corresponding may V r ----> H V is an isomorphism, we look at its 

determinant, which reduces us to the case of a rank one module. Then the 

matrix of F is F(hl) = ah I , with a invertible in V , and an F-fixed basis 

of II K is a vector k-h I , with k ¢ K satisfying k = ak p . As a e V is 

invertible in V , any such k 

"is" an F-flxed base of H V f 

It remains to see that 

with arbitrary change of base 

is an invertible element of V , hence k-h I 

Z is non-empty. As its formation commutes 

S' ---> S , it's enough to check the case when 

S is the spectrum of an algebraically closed field. But a finite-dlmensional 

vector space over an algebraically closed field with a q-linear automorphism 

is always spanned by its fixed points (Lang's trick; cf. [23]) and the set of 

fixed bases is a GLr(]Fq)-torseur. Thus Z is finite 6tale of rank = ~GLr(]Fq) 

over S , and the action of GLR(~Fq) on Z (induced by its action on the 

functor of F-fixed bases) makes Z into a GLr(~q)s-tOrseur. The eohomology 

class of this torseur is an element of <t(S,GLr(~Fq)) = Hom(7[l(S),GLr(~Fq)) 

which is none other than the desired representation. This concludes the 

construction-proof for n = i . 

Suppose the result known for n-i . Then there is a finite ~tale 

covering Tn_ 1 of Sn_ I = S × W n l(k) over which H/pn-iH admits a 
n Wn(~ ) - 
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basis of F-fixed points. There is a unique finite 6tale covering T of S 
n n 

× is and replacing S n by T we may suppose such that Tn S n Sn-1 Tn-1 ' n 

that H/pn-~ admits a basis of F-fixed points. Let hl,...,h r be a basis 

of H which lifts an F-fixed basis of H/pn-~ (S n is affine!). Writing 

= , we have F(h) = (i + pn-l~)h . In order for (i + pn-%).~ to 

r 

be an F-fixed basis, we must have 

(i+ pn-l-~(E))'(l+pn-lA>h : (l+pn-~)h 

or equivalently (S n being flat over Wn(k)) 

~(~) + a ~ ~ mod (p) , 

which is a set of r 2 Artin-Schreier equations (eij)q - eij = -~ij over 

S I = Sn Wn(k )× k . On a finite ~tale covering T I of S I , these equations 

admit solutions, and hence on the unique finite $tale covering T n of S n 

such that T n ~ S I = T I , the module H T admits an F-fixed basis. QED 
°n n 

Remarks 4.1.2.1 The operation "tensor product" in the category of repre- 

sentations of 7rl(Sn) in finite free Wn(~ q) modules corresponds to the 

tensor product (H,F)® (H' ,F') = (H~® H,F®F') , defined by 

S n 
(F®F)(heh') = F(h)®F'(h') . 

(4.1.2.2) The "internal Horn" in the category of representations corresponds 

to the internal Ham defined by Hom((H,F),(HI,FI) ) = (IIom~(H,~),F2) where 

F 2 is the unique ~-linear endomorphism of Homo(H,HI) such that for 

h ~ ~, f ~ ~o~(~,H l) , we have F2(f)(F(h)) = Fl(f(h)) . In p~tic~ar, 

Hom((H,F),(0,q0)) is the"contragredient" (H,F), defined by the requirement 

that for h e H, h e H , we have <F(h),F(h)> = ~(<h,h>) . 

(4.1.2.3) Because S I is normal, reduced and irreducible, a representation 

of Wl(Sm) = ~I(SI) is just a suitably unrsraified representation of the Galois 

group of the function field of S 1 . Thus for any non-void open set U c S n , 
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the functor "restriction" from the category of ~epresentations of ~l(Sn) to 

the category of representations of ~I(U) is fully faithful. Hence the fum~ctor 

"restriction" from the category of (H~F)'s over S n to the category of those 

over U is fully faithful. 

4.2. A~lication to modular schemes 

4.2.0. Let n > 3 , p a prime not dividing n , q a power of p such 

that q ~ ! nod n , and choose an isomor~his m between l~ n and ~r~Z over 

W(]Fq) , i.e. choose a primitive n'th root of unity ~ . Let S<~m (resp. S-~m) 

be the open subset of Mn®Wm(]Fq) (resp. of Mn®Wm(]Fq)) where Ep_ l is 

invertible and where the e.m. pairing on the basis of E has the value ~ 
n 

i.e. where the determinant of the level n structure is the chosen isomorphism 

of ~/nZ with ~n " The schemes Stm (resp. S-~m) are smooth mf'fine Wm(i~q) 

schemes with geometrically connected fibres. In the notation of (2.9), we 

have Mn(Wm(IFq),I) = U S tm ' the union taken over the primitive n'th roots of 

Let ~ denote the Frobenius automorphism of __Wm(~i'q) . We have 

~({) = {P and hence Sg = (Sm) , S-~J = (S~m)(O) The endomorphism ~ of 

~ (Wm(]Fq) ,I) defined by "division by the canonical subgroup" does not respect 

the various S -~ , but rather it maps S -~ to S -~p (because mod~Cko p, the 

m m m S-~J S-~m) (~) 
canonicaA subgroup is the kernel of absolute rrobenius). As = ( 

we may and will vie~ ~ as a o-linear endomorphism of each S~ m ~ which modulo p 

becomes the p'th power mapping. In a similar fashion, the endomorphism 9 of 

®k -- (Wm(~q),l) , defined the invertib!e sheaf _~ on M n by 

= f(E/H,~ (~),~(~n)) [where H denotes the canonical subgroup 

and z: E ----> E/H the projection]~ may be viewed as a q0-1inesm endomorphism 

of ®k for each primitive n'th root of unity ~ [Notice that 

®k ®k 
is generated by ~(_ ) as a sheaf; indeed for a local section f of _~0 

a glance at q-expansions shows that q0(f) -- fP~Ep_l)k , hence 9(f) is an 
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invertib!e section wherever f is. ] 

We wish to determine which representation of ~l(S-~m ) in a free 

Z/p~ = Wm( ]F p) -module of rank one corresponds via (4.11) to (_®k) on 

S ~ . Of course it suffices to do this for k=l , by (4.1.2.1). There is an 
m 

obvious candidate, namely the representation of ~l(S~m ) on the ~tale ~uotient 

of the kernel of pm on the universal curve E . [Noting by 

7: E > E (9) = E/H the projection onto the quotient by the canonical sub- 

group, the composite ~ : E > E (~m) induces an isomorphism of the @tale 
m ~m v m E(~ n) 

quotient mE/ mE = mE/Ker(~ m) ~'-> Ker(~) in . ] If this candidate is 
P P P 

to "work"~ we must have: 

Lemma 4.2.1. The representation of 711(S~m) on Ker(~) m extends to a repre- 

sentation of ~l(S-~m ) , i.e., it is "unramified at ~ ". 

Proof. Since the 6tale topology cannot distinguish ~ and ~ , it is 
m 

equivalent to show that the representation of ~l(S~) on Ker(V m) extends 

to a representation of wI(S~ I) on Ker(V m) . Let K denote the function 

field of S~ I ; we must see that the inertia group of GaI(KseP/K) at each 

cusp acts trivislly on Ker(V m) in E (pm) (K sep) . To decide, we may replace 

K by its completion at each cusp, which is just k((q)), k = ]Fq:, and the 

inverse image of E over this completion is the Tate curve Tate(qn)/k((q)) . 

The curve E (pro) becomes Tate(qnpm), and (~)m is the map 

Tate(qnPm) ....... > Tate(q n) given by "division by the subgroup generated by qn,,. 

As this subgroup consists entirely of rational points, the inertial group 

(and even the decomposition group) at each cusp acts trivially. 

Theorem 4.2.2. The representation of ~l(S~m ) on Ker(~) TM (--~ to the ~tale 

quotient of Ker pm on the vmiversal eu_~ve) corresponds, via the eq~.ivalence 

(4.i.i), to (~,9) . 

Proof. By the "iklll-faithfulness" of restriction to open sets, it suffices 

to prove this over S { . Let's take a finite @tale covering T of S which 
m m 
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ential is 

and hence 

between 

of pm E . 

trivializes the representation - in concrete terms~ we adjoin the coordinates 

of a point of Ker(~) TM of order precisely pm Over T , each point of 

~ > (Ker(~)m)T whose Cartier dual is a Ker(~) ~ gives a ~o~his~ (~/p%)~ 

morphism (Ker pm in E)T = (Ker ~m)T > (~pm) T g > (~m) T . The inverse 

image of the invari~nt differential dt/t on (Gm) T furnishes an invariant 

differential on the kernel of pm in E . Since T is killed by pm, the 

first infinitesma! neighborhood of the identity section of E lies in the 

kernel of pm in E , and hence there is a unique invari~nt differential on 

E whose restriction to the kernel of pm in E is the given one. Thus we 

have defined a morl~hism from (Ker(~)m)T to --~T " Further, if we take a 

point of Ker(~) m of order precisely pm , the map (z/pm~)T > (Ker(~)m)T 

is an isomorphism, hence the Cartier dual is an isomorphism, and hence the 

inverse image of dt/t on Ker pm in E is nowhere vanishing. Thus the 

v m 

induced map (Ker(~))T z/pm~® ~T > -~T is an isomorphism of invertible 

sheaves on T . It is clear that this map commutes with the obvious action 

of Aut(T/s~) [m concrete te=s, and loc~ly on S , Ker(p ~) in ~ has 

coordinate ring free on laX , ~X pm-I )m) T ... , a point P of (Ker(~ gives 

rise to a map ~pn defined by f(X) = X ai(P)Xi , the corresponding differ- 

~p = df/f , and for any g e Aut(T/Sm) , we have ai(g(P) ) = g(ai(P)) , 

~g(p) = g(~p) .] By descent, we have constructed an isomorphism 

and the invertible sheaf on S { associated to the @tsAe quotient 
m 

It remains to see that this isomorphism is compatible with the ~-linear 

endomorphisms. Tensoring one with the inverse of the other, we obtain a 

~-linear endomorphism on ~Sm ; we must show that it carries "i" to "!" . 

To check this~ it suffices to do so in a "ptLncttLred disc at ~", over 

Wm(IFq) ((q)) when we look at the Tate curve Tate(q n) . The morphism 
m 

~: Tate(q n'p ) ~ Tate(q n) has kernel the subgroup generated by qn The 

point qn is a rational point of Ker(~) TM , and the corresponding differential 
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is precisely the Tate differential ~can = dt/t . As n is a rational point, 
v 

the section [qn]®l of Ker(~) m ~pnZi ~ is fixed by the canonical F , and 

the corresponding section ~can of ! is fixed by 9 (because Scan has 

q-expansion identically "i"). Hence our isomorphism respects the ~-linear 

endomorphisms in a punctured disc around ~ ~ and hence respects it everywhere. 

Remark 4.2.2.1. One may prove this theorem in a non-constructive way by 

showing that both of the associated p-adic characters Xi: 7[l(S~m) > (~pm~)x 

have the same value on all Frobenius elements, namely the reciprocal of the 

"unit root" of the ordinary elliptic curve which is the fibre over the corre- 

sponding closed point of S t • 
m 

Theorem 4.3. (Igusa [21]) The homomorphism 

Zl(S~m ) ' > Aut(Ker(~)T) - (~pmz)x is sttrjective, and for evel~j non-void 

open set U C ~ ~ the composite 7rI(U ) > h(S-~m ) > (z/pmz) x remains 

surO ective. 

Proof. It suffices to show that~ denoting by K the function field of 

S~m Wm(IFq)X ]Fq , the homomorphism GaI(KseP/K) > Aut(Ker V m in E (pro) (Ksep)) 

is surjective. In fact, we will prove that the inertial group of GaI(KSeP/K) 

at any supersingular elliptic curve already maps surjectively. Let 9o be any 

closed point of S~ 1 where Ep_ I vanishes; replacing IF q by its algebraic 

closure k ~ we may assume ~o is a rational point. The completion of S~l®k 

at ~ is isomorphic to Spec(k[[A]]) , and the inverse image of the universal 

curve over k[ [A]] admits a nowhere vanishing differential ~ such that 

Ep_I(E,~ ) = A . [This is just Igusa's theorem that the Hasse invsmiant has 

only simple zeros. ] So we must prove 

Theorem 4.3 bis(Igusa). Let E,~ be an elliptic curve over k[[A]] with 

Hasse invariant A , k being an algebraically closed field of characteristic p. 

Then the extension of k((A)) obtained by adjoining the points of 

Ker vm: E (pro) ----> E is fully ramified of degree pm'l(p-l) , with Galois group 
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canonically isomorphic to Aut(~pm~) . 

Proof. The first statement implies the second, since Ker V m is cyclic of 

order pm over k((A)) sep . In terms of a normalized parameter X for the 

formal group (i.e. [~](X) = ~X for any p-l'st root of unity ~ e ~p) ~ the 

endomorphism [p] has the shape 

2 
4.3.1 [p](X) = V(X p) =AX p +~X p + ... 

with cz invertible in k[[A]] (because modulo A , we have a supersingular 

curve by hypothesis~ hence its formal group is of height two). Thus 

V(X) = AX + C~X p + . .. , and the composite Vm: E (pm) ----> E is the composite 

~ ( ~ )  v ( ~ - b  ~(pm-J_) v ( ~  -2) v (p) E(p) v 
> > ... > >E . 

The expression of V (pv) is 

with values in k((A)) sep of order precisely pm 

y0~...,ym_ 1 of elements of the maximal ideal of 

successive e, nations 

v(PV)(x) =APVx + ~PVxP + .... A point of Xer V m 

may be viewed as a sequence 

k((A)) sep which satisfy the 

0 =v@ o) -~Ay 0 +a@o )p +... 

Y0 : v(p) (~l) = iPYl + aP@PP + "'" 

Ym-2 = V(pm-1)(Y~ 1 ) : Apm-1 m-1 
- ~ - i  + ~p (:~m-1)p + . . . .  

But a glance at the Newton polygons of these equations shows successively that 

the ordinals of 70''' ' 'Ym-i are given by (noting by ord the ordinal normalized 

so that ord(A) = i): 

ord(Yl). = i/p(p-l) 

I, o rdem_ l) -~ 1 / ~ ' l ( p _ l )  . 

flED 
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4.4. Applications to congruences between modular forms ~ la Serre 

Corollary 4.4.1. 

conditions are equivalent: 

i) k ~ 0 mod(p-l).~ -I if p ~ 2 , and 

where ~(i) = O, ~(2) = i , and ~(m) = m-2 if 

2) The k'th (tensor) power of the representation of 

$tale quotient of ~m E is trivial. 

3) The sheaf @k on S ~ admits a nowhere vanishing section fixed 
-- m 

Let k be an integer, and suppose m ~ i . The following 

by ~ . 

k ~0 mode ~(m) if p=e , 

m 3 3 • 

~l(S~) on the 

S•m ®k 
4) Over a non-void open set U C , _w 

section fixed by q0 . 

admits a nowhere vanishing 

5) Over Z{ o k  w admits a section whose q-expansion at one of the 
m 

cusps of S ~ is identically i. 
m 

6) Over a n o n - v o i d  open  s e t  U C ~ wh ich  c o n t a i n s  a c u s p ,  ~o ® k  

admits a section whose q-ex]par~sion at that cusp is identically I. 

Further, if i) holds, then any section verifying either 4) or 6) extends 

uniquely to a section over all of S -~ verifying 3) and 5), and is in fact the 
m 

k/p-l'st power of Ep_ I • 

i) <===> 2), because the image of 7~l(S~m) is all of Proof. 

m-l( i ~ Aut(~) = (~)* , a group of exponent p p- ~ for p ~ 2 ~d of 

exponent 2 ~(m) for p =2 . By (4.3), 2) <===> 3) equivalence 3) <===> 4) 

is by full-faithfu]_ness of "restriction to U"~ ef.(4.1.2.3). By the explicit 

formula for ~ and the q-expansion principle, we have 3) <==:> 5) and 4) <==> 6). 

When i) holds, the unicity of the section satisfying 4) or 6) or 3) or 5) follows 

from the full-faithfulness of restriction to U ; that this section is 

(Ep_l)k/p-i follows from the q-expansion principle. 
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CoroAlary 4.4.2. (Serre) Suppose fi' i=1,2 are elements of S(W(~q),l,n,ki) , 

i= 1,2 , and that k I _~ k 2 . Suppose that the q-expansions of fl and f2 at 

at least one cusp of ~m(W(Fq) ,i) are congruent modulo pm , and that 

fl(q) ~ 0 mod p at that cusp. Then k I -= k 2 modulo pm-l(p-1) if p ~ 2 , 

and kl-=~2m°d~°2 ~(m) i~ p=2 ,where ~(i) ~0, ~(~) =l , and 

~(m) = m-2 for m _~ 3 • If these congruences hold at at least one cusp on each 

(Ep_l)k2-kl/p-z 
irreducible component, then f2 -= fl" modulo pms (W(]F q) ,1,n,k2) . 

Proof. Once we prove the congruence on the k i , the final assertion results 

from the q-expansion principle. To prove the congruence on the weights, we 

reduce the situation modulo pm . Then fl and f2 are sections of _~ Qkl 

and _~ @k2 respectively over S -~m " By hypothesis, fl and hence f2 are 

invertible on a non-void open set U of S~ m , and the ratio f2/fl is thus 

k 2 -k 1 
an invertible section of _~ over U , and by hypothesis f2/fl has 

q-expansion identically one at at least one cusp on each S ~ . By (4.4.1), we 
m 

have the desired congruence on kl-k 2 . QED 

Corollary 4.4.3. (Serre) Let f be a true modular form of level n and 

weight k on Fo(p) , holomorphic at the unramified cusps, and defined over the 

fraction field K of W(~Fq) . Suppose that at each tmramified cusp, the 

q-expansion has all its non-constant q-coefficients in W(IFq) . Then the 

constant terms of the q-expansions lie in p-m-W(]Fq) , where, for p ~ 2 , 

m is the largest integer such that ~(pm) = #(~pmz)x divides k , and for 

p=2 , m=l if k is odd, and m = ord2(k ) +2 if k is even. 

Proof. For N >> 0 , pNf is a true modular form of level n and weight k on 

ro(p) , defined over W(~q) . By (3.2),there is a unique el~nent g of 

S(W(~ q),1,n,k) whose q-expansions are those of pNf at the corresponding 

unramified cusps. If -m denotes the minimt~n of the ordinals of the constant 
o 

terms of these q-expansions, then g is divisible by p N-too in S(W(]Fq),l,n,k), 

by (2.7). Thus we may write g = pN'm°h , with h ~ S(W(~q),l,n,k ) having the 
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same q-expansions as does m pOf at the corresponding unramified cusps. Then 

m O 
h has integral q-expansions, and at least one of them is congruent modulo p 

to a constant which is a unit on W(]Fq) . Multiplying f by the reciprocal 

of this unit, we get a q-expansion which is congruent nod pN to "i" . As 

the consta~it function "i" is modular of weight zero, we must have 

k - 0 nod pm°-l(p-l) if p ~ 2 , k -= 0 nod 2 ~(mo) for p=2 . QED 

Remark 4.4.4. If we apply these estimates to the constant terms of the class- 

ical level one Eisenstein series E k , we get 10recisel~ the correct bounds for 

the denominators of the Bernoulli numbers (cf. [42], [43] for more on Bernoulli 

numb ers ). 

4.5. Applications to Serre's "modular forms of weight X" 

4.~.0. Let X e End(~) • For each power pm of p , X induces an endo- 

morphism of (z/pmz) x . For any primitive n'th root of unity ~ , and for any 

representation p of 7rl(S~) in a free ~p~ module of rank one~ we may 

define the representation pX ~ Xop . Taking for p the representation 

given by the 6t~e quotient of #E , we denote by (#,~) the invertible she~ 

with ~-linear endomorphism which corresponds to p%. For variable m , the sheaves 

× s t on are compatible, and we define a compatible family of global sections 
- m 

to be a p-adic modular form of weight X and level n , holomorphie at ~ , 

defined over W(~Fq) . If X = k e Z C End(~p) , we just recover the elements 

of S(W(~q),!,n,k) . For p ~ 2 , Z is dense in End(~p) , and indeed 

End(~p) < ,~ lim~__ Z/q0(pm)z ; for p= 2 , ~ has index four in the (non-commu- 

tative) ring End(~) . If p % 2 , then for any X (resp. if p= 2, for any 

X e Z2) , the pair (_wX,q0) on S~ m is isomorphic to (_~®km,~) for any 

~m ~ ~ suoh that ~m =- × modulo ~(~) (~e~p. if p : 2, modulo 2 o if m : • , 

if m= 2 , and 2 m-2 if m _> 3) • The isomorphism between (_~ @km,~) 

, ®kA . and ~w_ ,~) for different choices km, k'm c 7.. approximatirlg X is given 
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by multiplication by (Ep_l)(~[-km)/(p-1) AS this isomorphism leaves invariant 

the q-expansion modulo pm (resp. modulo 2 m-I for p= 2), it follows that a 

p-adic modular form of weight X and level n , holomorphic at ~ ~ defined over 

(W(~q) , has a well defined q-expansion in W[[q]] at each cusp, and that for 

given X , f is uniquely determined by its q-e~pansions. 

Theorem 4.5.1. Let X e End(~p) , and suppose X s Z 2 if p=2 . Let f be 

a modular form of weight X and level n , holomorphic at ~ , defined over 

W(~q) . Then there exists a sequence of integers 0 !k I J k 2 ! k 3 ! ... , 

satisfying 

{k ~ X mod <p(Pm) if P ~ 2 

X mod 2 m-2 if p=2 and m _> 3 

and a sequence of true modular forms f. of weight 
i 

morphic at oo , defined over W(IFq) , such that 

1~: -= f mod Pm in q-expansion, if P ~ 2 

f mod 2 m-I in q-expansion if p= 2, 

k. and level n, holo- 
i 

m_>3 • 

Conversely. Let [k]m > I be an arbitrary sequence of integers, and suppose 

given a sequence fm c S(W(IFq),l,n,km) of p-adic modular forms of integral 

weights k. such that 
l 

+i fm rood pm in q-expansion at each cusp 

0 mod pm in q-expansion. 

Then the sequence of weights converges to el ent X , 

there is a unique modular form f = "lira" f of weight X and level n , 
m 

holomorphic at co ~ defined over W(IFq) , such that 

m 
fm ~ f mob p in q-expansion. 
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Corollary 4.5.2. (Serre) If a collection of elements of W[[q]] is the set 

of q-expansions of a p-adic modular form f of weight X e End(~p) (resp. 

X e ~"2 if p=2) and level n , holomorphie at * and defined over W(]Fq) , 

then both f and X are uniquely determined. 

Proof of the theorem. The first part follows directly from the definitions. 

For the second part, we will reduce to the case in which the f are all true 

modular forms, whose weights satisfy 0 ~ k i _~ k 2 _~ .... Indeed, if we 

replace fn by f'm = fm(Ep-i ) (pn-1)Nm with Nm >> 0 , then we may suppose all 

k > 0 , and by (2.7.2), for N >> 0 , f' has q-expansion nod pm of a 
m -- m m 

true modular form. Rechoosing the N to be sufficiently increasing with m , 
m 

we have the desired reduction. Now consider the limit q-expansions. We may 

~ad will work on each irreducible component of %®W(W q) separate ly .  I f  on 

a given component, the limit q-expansion is identically zero at any cusp, it 

is so at every cusp, hence each f is -= 0 (pm) on that component, and there 
m 

is nothing to prove. In the contraz~£ case, the limit q-expansion is divisible 

pmo+l 
by p m° but  not by at  each cusp (m ° is  independent of the choice of 

m o 
cuSp on each irreducible component: cf.(2.7.1)). Then for m >mo, fm=p gm 

where gm is a true modular form with q-expansions ~ 0 (p) . So replacing 

the sequence fm by the sequence {f'}m = {gmo+m} , we may suppose that each 

f has all q-expansions ~ 0 nod p . T%en by (4.4.1), the congruence 
m 

m ~ k modulo q0(p m) for p ~ 2 , f + -= f nod p in q-expansion implies tha t  k + l  
ml m m 

and modulo 2 m-2 if p= 2 and m _~ 3 , and that fm+l ~ fro" (Ep-l)(km+l-km)/(P-l) 

modulo pm . Hence X = lira k exists in End(~ x) , and 
m P 

X 
define a compatible family of sections of the sheaves 

[f nod m} 
P m>l 

on the schemes S -~ . 
m 

QEo 

Corollary 4.5.3. (Serre) Let X e End(~p) , and suppose X e ~ if p=2 . 

Let 0 _~ k I _~ k 2 < ... be a sequence of integers such that k m ~ X modulo ~(pm) 

if p ~ 2 , and modulo 2 m'2 if p=2 and m > 3 • Let [fm ) be a sequence 

of true modular forms of weight k and level n on ro(p) , holomorphic at 
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the unramified cusps, and defined over the fraction field 

pose that the non-constant terms of all the q-expansions of the 

W(l~q) , and that at each cusp, 

m 
fm+l(q) - fm+l(O) -= fro(q) - %(0) mod p 

K of W(Fq) . 

f are in 
m 

Sup - 

Then if X ~ 0 , let m be the largest integer such that X ~ 0 mod ~(p m°) 
0 

if p # 2 , for p=2 , m o=l if X is invertible in Z 2 , and m o=2+ord2(X ) 

if X is not invertible in Z 2 . Then for m _> mo ' Pro°fro has integral 

(e W(]Fq)) q-expansions, and at each cusp we have the congruence on constant 

m m m-~l 

terms: p °fm+l(O ) -= p °fm(O ) rood p o for all m >m O if p ~ 2 ~ and 

m 2 m - m-l-m 
2 °fm(O) -= °fm(O) rood 2 o if m_> 3 and m _> m O 

follows from (4.4.3). 
m 

P of 
m 

Proof. The integrality of the q-expansions of the 

m 
Let gm= p of m ' which has integral q-expansions. Then gm and 

dfn ) (km+!-km) / (p-l) m 
hn ~ gin" (Ep i have q-expansions which are congruent modulo p 

if p>2, (resp. modulo~-i if p:2) ~d %(O) :~(0) . Thus %+l-hm 

has q-expansions congruent to the constants ~m+l(0) - hm(0 ) modulo pm if 

p ~ 2 , (resp. modulo 2 m-I if p=2) . Applying (4.4.3) to the function 

(gm+l " hm)Ipm for p ~ 2 , (resp. to gm+l - hml2m-i for p= 2) we find 

m 
that its constant term has denominator at most p o Thus 

~+i(o) -= ~(o) mod~o ~-mo if p ~ 2 , and ~-l-mo if ~=2 . Q~D 

Example 4.5.4. (Serre) Take fm = Gk m ' the classical Eisenstein series of 

level l, whose q-expansions are given by -(b k )/2k m + Z ~k -i (n)qn " 
m n>l m 

Choose the k to be strictly increasing with m , so that they tend archi- 
m 

m e d e a n l y  t o  co . One c h o c k s  i m m e d i a t e l y  t h a t  t h e  h y p o t h e s e s  o f  ( 4 . 5 . 3 )  a r e  

mo dfn mo * 
verified. The limit "lira" p fm ~ p G)< is thus a modular form of 

w e i g h t  X = ! i m  k , whose  q - e x p a n s i o n  i s  g i v e n  b y  
Ill  

x(q) : ~*(X) + n _Z> I qn dln,p@dZ X(d)/d 
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where ~(X) is the (prime to p part of the) Kubota-Leopoldt zeta function, 

in the notation of Serre [42 ]. We hasten to point out that even if the 

character X is an even positive integer 2k ~ 4 , the above defined G2k is 

a p-adic modular form of weight 2k , but it is not the usual Eisenstein series 

G2k . Indeed, the q-expsnsion of G2k is given by 

= ~> n~p d2k-1 

while the q-expansion of G2k is given by 

1 

n>l 

qn ~ d2k-I . 

dln 

Both G2k and G2k are p-adic modular forms of weight 2k , which, as Serre 

explained to me, are related as follows: 

2k-1 
= tP "~) ~2/~J • 

L@2k n > o 

Taking k= 1 , we obtain a p-adic modular form G 2 

define G 2 as a p-adic modular form by setting 

n > o  

An immed ia te  c a l c u l a t i o n  g i v e s  t he  q - e x p a n s i o n  o f  

G2(q) = 2-~ + 
n zl din 

of weight 2 , and we may 

G 2 

=~P(q) 

(cf. A1.3 for the series P) 

and shows that, for any prime p , the series P(q) is the q-expansion of a 

p-adic modular form of weight two and level one. We refer the reader to A2.4 

for an "intrinsic" proof of this fact for p ~ 2,3 , based on the classical 

interpretation of P as a ratio of periods (cf.Al. 3). 



Ka-90 15s 

Appendix i: Motivations 

In this "raotivational" appendix we will first recall the relation be- 

tween complex elliptic curves and lattices in C , then the relation between 

modular fozwas end the de Rahm cohomology of elliptic curves, and finally the 

relation between the Gauss-Martin connection and Serre's ~ operator on modular 

forms. These relations are due to Weierstrass and Deligne. 

AI.I Lattices and elliptic curves 

Given a lattice L C C ~ we may form the quotient C/L ~ a one-dimen- 

sional complex torus, and endow it with the translation-invariant one-form 

= dz (z the coordinate on C). Thanks to Weierstrass , we know that C/L 

"is" an elliptic curve, given as a cubic X °2 by the inhomogeneous equation 

AI.I.I y2 = 4x 3 _ g2 x _ g3 ' 

such that ~ is the differential dx/y . The isomorphism from C/L to this 

curve is explicitly given by the p -function: 

m _ . l . 2  z e C/L ..~ > ( x  = f ' ( z ; S ) ,  Y -- ~ ' ( z ; S ) )  

where 

z 
z .~ e L - [o] , Q 2  ' 

A1.i.2.2 
, d = ~ -2 

dz z--3 + cL-{O] (z-~) 3 

A_l.1.2.3 L v u,a, Z u,4. 
eL- (0] ~ L -  [o] 

Conversely, given an elliptic curve E over C to~ether with a non- 

zero everywhere holomorphic differential ~ ~ it arises in the above way from 

the lattice of periods of ~ , 
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Under this correspondence~ the effect of replacing (E,~) 

k e C , is to replace L by k-L : 

AZ.L2.5 L(E,k~) = k-L(E,~) . 

Recall that classically, a complex modular form of weight k (and level ! ) is 

a holomorphic function on the upper-hs:[f plane f(T) which satisfies the 

transformation equation 

f{a~ +hi = f(~).(c~+d)k AI.I.3 "cT + d" 

As explained in [42~a z], there is associated to f 

F(L) such that f(T) = F(~-T+E) , and which is homogeneous of degree 
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by (E,k~) , 

ab 
V(ed) e SZ2(Z) . 

a unique function of lattices 

-k in 

if z: r(~) = ~-~(~) for ~ ~ C (~licitm, F(~) : {~f(%/~2) 

=z~ l+z% ~d m(%/~2) >0.) 

By Weierstrass ~ we may now associate to f a "holomorphic" function 

IF of pairs (E,~) consisting of an elliptic curve/C together with a nowhere- 

vanishing differential which is homogeneous of degree -k 

(E,A¢) = k - k l  ~ (E,<0) , d e f i n e d  b y  IF (E ,¢ )  = F ( L ( E , ¢ ) )  . 

v iew t a k e n  i n  t h e  t e x t .  

A ! . 2  Homomorphy a t  ~ and t h e  Ta te  c u r v e  

Recall further that a complex modular form f(~) is said to be mero- 

m0rphic (resp. holomorphic) at ~ , if the periodic function f(T) = f(T+l) , 

when viewed as a function of q = exp(27riT) , holomorphic for 0 < lql < i , 

in fact extends to a meromorphic (resp. holomorphic) function of q in 

In terms of IF, we are asking about the behavior of 

IF (C/27riZ + 27riTZ, 2widz) = IF (C*/qZ,dt/t) 

in the second variable: 

This is the point of 

(where t = exp(2viz) is the parameter on ~* , and qZ denotes the subgroup 

of C generated by q ), as q tends to zero. B~£ standard calCulationS (cf. 

[ 3 8] ), the curve C/L, L = 27[i~ + 2wi~. with differential 21rldz is given 

lql <l . 
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as the plane cubic 

E 4 E 6 
y2 = 4X 3 - - ~ X  + ~ , w i th  d i f f e r e n t i a l  

AI.2.1 

(X = ~ ( ~ r - i z , L ) ,  Y = f ¢ ' ( ~ _ z , L ) )  

with coefficients the Eisenstein series 

AI.2.2 

I 12"(2Wi) 4 g2(~) = E 4 = i + 240 Z ~3(n)q n ~__ 

= 

216"(~i) 6 g3(T) = E 6 = i - 504 Z Os(n)qn d ~ i 

Thus to ask that the modular form f 

at ~ is to ask that • 2 = 4X 3 E4X + dX/ 
- 12 2--~ ' ! 

of finite-tailed Laurent series (resp., that it lie in 

formal power series in q ). 

The equation A!.2.1 in fact defines an elliptic curve over the ring 

~[i/6]((q)) ; in fact~ if we introduce 

i 
X = x + i-~ ~ Y = x + 2y 

be meromorphic (resp. holomorphic) 

lie in the ring C((q)) 

C[[q]] , the ring of 

then we may rewrite the equation in the form 

AI.2.3 y2 + rg = x 3 + B(q)x + C(q) 

with coefficients 

I B(q) =-Sk2--Ej6-- ) =-5 ~-- C3(n)qn 
n~l 

-5 \2-~1 -7 -5~I = -5°3(n) -7~5(n) 

c(q) = iz ' n_l 12 ........... / 

n q 

This last equation defines an elliptic curve over Z((q)) whose restriction to 

Z[~]((q)) is the above curve, and the nowhere vanishing differential dx/2y+x 

restricts to give dX/Y over Z[~]((q)) . 



161 Ka-93 

By definition, the Tate curve Tate(q) with its canonical differential 

mcan is the elliptic curve over Z((q)) defined by ~1.2.3 ), with differential 

~can = dx/2y+x . For each integer n _> i , the Tate curve Tate(q n) with its 

canonical differential ~can is deduced from (Tate(q), mcan) by the extension 

i > Z ni Explicitly, of scalars Z((q)) > Z((q)) given by Z aiq aiq 

(Tate(qn), ~can) is given by 

AI.2.5 2 -- ax/2y+x . y +xy = x3+B(qn)'x + C(q n) ; ~can 

Let In be a primitive n'th root of unity. The points of order n 

on C*/q nZ are clearly the (images of the) n 2 points 

AI. 2.6 (~n)lq $ , O J i, j _< n-i . 

Using the ex?licit expressions for x and y as functions of t = exp(27riz) 

AI.2.7 

/ 

I 
x(t) = 

y(t) = 

¢O 

Z (qnkt) 2 + i 
k C Z (l-q~Lkt) 3 k=l l-q nk ' 

one sees that each of the n2-1 points (~n)iq j , 0 i i, j i n-l, (i,j) ~ (0,0) 

has x and y coordinates in Z[[q]]® Z Z[~n,1/n] . Hence all level n struc- 

tures on Tate(q n) over Z((q)) are defined over Z((q))®Z[~n,1/n] (rather 

than just over Z[~n,i/n]((q) ) . This implies that the q-expansions of a 

modular form of level n have bounded denominators (cf.l.2.1). 

A!. 2 Modular forms and de Rham cohomolo~f 

We can now give a purely algebraic definition of modular forms of 

weight k , (meromorphic at ~ ) as being certain "function~' f(E,~) defined 

whenever 
E ; w 

R 



e P(E, ~/R) is a nowhere w 

f(E,~) are elements of the ground- 

K a - 9 4  162 

is smy elliptic curve over any ring R , and 

vanishing differential on E , whose values 

ring R . The conditions to be satisfied are 

O) f(E,k~) = k-kf(E,~) for all k e R x • 

I) f(E,w) depends only on the isomo~0hism class of (E,~) over R ; 

2) if ~: R ---> R' is a ring homomorphism~ then, denoting by (E ,~) 

the curve with differential over R' deduced by extension of scalars, 

we have f(E ,0~@) = ~(f(E,~)) . 

[Such modular forms are automatically meromorphic at infinity, simply because 

the Tate curve Tate(q) is an elliptic curve over Z((q)).] 

Given a modular form f of weight k , we may form the k-ple differ- 

ential f(E,w).~ ®k on E , which is independent of the choice of w , and 

(--~E/)®k where view it as a global section over R of the (invertible) sheaf R ' 

d_fn , i . ~/R ~*~%/~  " 

This permits us to interpret a (meromorphic at , ~  ) modular fo~n of weight k as 

a function f(E) , defined on any elliptic curve E over any ring R ~ with 

®k which satisfies values in the global sections of (--~E/R 

l) 

2) 

if ~: E ----> E' is an isomorphism of elliptic curves over R , then 

~*(f(E')) = f(E) 

if ~: R > R' is a ring homomorphism, then f(E ) = <p*(f(E)) m 

Why bother to look at the de Pdaam cohomology? Over ~_~ base ring R , 

the (1 s~) de B/~am cohomology of a~ elliptic cllrve E/R , noted %R(E/R) ~d 

defined as Z{I(E~ t/R) ~ sits in a short exaet setuenee, its "Hodge filtration") 

of R-modules 
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Al. 2.1 

0 > -~E/R > %R(E/R) > LIe(E/R) > 0 

Furthermore, when the integer 6 is invertible in R , this sequence has a 

canonical (but not functorial) splitting~ 

~R(~/R) ~/~ ~ (_~/R) ®-l 

~hich may be obtained as follows. Given (E~) over R , R 9 1/6 , then there 

are unique meromorphic functions with poles only along the identity section, 

of orders 2 and 3 respectively, X and Y on E such that ~= dX/Y and such 

that E is defined by (inhomogeneous) equation 

y2 = 4X 3 _ g2X _ g3 ' g2~ g3 e R 

(when R = C , we have X = ~(z;L), Y = ~'(z;L) , L the lattice of periods 

of ~ ) . To specify the dependence on ~ , let's write X(E,w), Y(E,~), 

g2(E,~), g3(E,~) . By uniqueness ~ we necessarily have 

A1.2.2 ~ Y(E,a~) ×-3.y(~,~) 
} g2(Z'X~) Z.-4g 2(~,~) 
< g3 (E'k~) k-6g3(E,~) 

But over ~_~ base-ring R ~ the first de Eham cohomology of an elliptic 

curve E/R is nothing other than the module of differentials on E/R having 

at worst double poles at ~ (i.e. along the identity section). More precisely, 

the inclusion of the de Rham complex ~E > ~/R in the complex 

i 
~E(~) > t/R( 2 ~ ) 
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• i 1 
induces an isomorl3hism on ~l Because Hi(E, SE(~))=0=H (E,~E/R(2~ )) =0 

for i > 0 , we have 

~1(~, 8E(~ ) 
AI.2.3 

If we suppose 

nowhere vanishing differential 

of HI(E,4/R(2~ )) , namely 

AI.2.4 and 

Replacing m by 

> 4 / R ( 2 ~ ) )  = Coker(H0(E, ~E(~))  > ~°(~,~/R(24) 
= Coker(R 0 > H0(Z,a~/R(2~))) 

0 1 
= H ( E , ~ / R ( 2 ~ ) )  • 

6 to be invertible in R ~ then as soon as we choose a 

u on E , we may canonically specify a basis 

x(z,m).~(z,~) 
: X(E,m)'w = Y(E,m) 

km , k e RX~ has the effect of replacing this basis by 

AI.2.5 km = and k-l~ = Y(E~Km) 

which is to say that we have defined an isomorphism 

given locally on R in terms of the choice of a nowhere vanishing m by 

am + bN < > am @ bu -I • 

For every integer 

provides an isomorphism 

k > i , the k'th symmetric power of this isomorphism 

.~_.2.7  s~= ~(~R(~/R)) ~ (_~/R)  ®~ • (_~/R/®~-2 e . . .  • ( ~ / R ~  ® - ~  . 
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A!.3 The Gauss-Manin connection~ and the function P 

We begin by computing the Gauss-Manin connection on HDIR(E/R) in the 

case where R is the ring of holomorphic functions of • , and E is the 

relative elliptic curve defined by the lattice Z + Z~ . The dual HI(E/R) of 

H!R(E/R) is R-free on the two families of paths 71 and 72 : 

T 

(AI. 3.1 71 on E 

/ 
0 72 >I 

The Gauss-Martin connection in this context is the action ~:V (d~) 

on H~R(E/R) given by the formula (cf.[26], 4.1.2) 

d 
of d--~ 

d (m_.3.2) I v ~ )  = ~  I ~ for  ~ ~ H R(E/R) , = d  i = l , 2  
7i 7 i 

(i.e., it is the dual of the connection on ~(E/R) for which 71 and 72 

are the horizontal sections). 

To actually compute, let's note by ~ (resp. q) the cohomology classes 

of dx and xdx Y Y respectively, and denote by ~i~ i =1,2 and ~i' i =1~2 

and fTlq , which we view simply as elements of R . We the periods ~7 i 

will also denote by 71 and 72 the elements of HER(E/R) defined by Poincar~ 

duality and the requirement that for any ~ ¢ ~R(E/R) , fTi~ = <~,7i> . 

Thus <72,71> = i = -<71,72 > , and <71~7i> = <72,72 > = 0 . We have 

~i = <~'7i> and qi = <~'7i> for i = 1,2 . Hence we necessarily have 

(AI.3.3) ii Ill qi72 q271 ql -~2/\Yl 

(because both sides have the s~ne periods over both 71 and 72 ) . 
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But the classical "period relation" of Legendre 

AI.3.4 qlW2 - qlal2 = 27ci 

[which expresses that the topological cup-product <w,~> is 27ci , or equiva- 

lently that the DR-cup-product <~'~>DR = i]. This allows us to express ~ and 

in terms of 71 and 72 : 

d 
Applying ~7 ~ we annihilate 71 and 72 , hence~ noting ~-~ by a prime ' 

A:. 3.6 

an equation we may solve using Legendre's relation: 

AI.3.7 

At this point we must recall that Wl=T , e2=l and Legendre's relation be- 

comes: ~i - Tq2 = 27Fi . Fed back into (AI. 3.7) , this information gives 

Am. 3.8 

Lem~na AI. 3.9. ~2 = -Z Z ' ~ -- P where 
mn (m~+n) 2 3 ' 

(m= O, n=O) is omitted, and P is the function of 

P(q) = 1 -- 24 Z ~l(n)q n , where ~l(n) = Z 
n _> i a _> l,dln 

Z' means that the term 

2viT 
q = e given by 

d . 
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Proof. The first follows from the definition of ~2 as a period of 

q = XdX/Y = ~(z)dz , and the fact that ~ = -d~ , where ~ is the Weierstrauss 

L-function 

(AI.3.10) {(z) : y + z-mY-n + m~--+n + ~(m~+ " 

Indeed 

(A1.3.11) 

q2 = $7p : 7oi (- ~ (~) = -zfZ+l (. d~ (z)) 

i 1 \-~- '~ i i 
~2 z z+l +Lml = -m-~-n z-m~-n+l tz 

= z - z+--f + + 0 (mY +n) 2 0 

: ~(z) - ~(Z+!) , and hence 

l, 1 
(m~+n) 2 

l} 
-i + i - z+l-n z,n 

m n (m~+n) 2 

The second equality is ubiquitous (cf.[42~21], pp.154-155). 

Remark AI.3.12. A similar calculation, based on the fact that the 

absolutely convergent double sum, hence also given by function 

(al. 3.12. Z) ~(z) = z + .... + + 
z -mT-n mT+n (mT+n 

is an 

shows that ql = ~(z) - ~(z+~) = -Z E' ~ Comparing these two formulas, 
nm (mT+n) 2 

we see that q2(-1/~) = T~l(~ ) , and hence Legendre's formula qI(~)-T~2(T) =2~i 

is equivalent to the transformation formula 

(AI.3.12.2) ~ - T~2(T ) = 27ri , 

i° e. 

or equivalently 
7F 
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Remark (A!.3.13). Viewing Legendre's relation as saying that <~'N>DR = I , 

one can prove it easily using Serre's cup-product formula, valid on any complete 

nonsingular curve over C : for any dfk ~ and any dsk q , the cup-product 

<~,a~DR iS given by the stun Z res~(f~ "0~) , where at each point ~ , f~ 

is an element of the ~-adic completion of the function field such that ~= df,~ . 

If one bears in mind that, analyticaD_ly, we have ~ = -d~ , then the usual proof 

of Legendre's relation on an elliptic curve (cf. [46], 20.4.11) just becomes 

an analytic proof of Serre's cup-product formula in that particular case. 

Returning to the relative elliptic curve C/Z + E • over R , we have 

(Ai.3.!4) V$~o) I -T 

\v(-~), /  p: 12 p, :2 - ~  - T  'q 

i 
~can = 2~i~ , "qcan = : h , and let 

is the canonical differential dt/t 

Consider now the differentials 

1 d d 
= ~ d-~ = q ~ Then ~can on the 

Tate curve Tate(q) over C((q)) ~ ~can is the d.s.k. "dual" to ~can in 

the sense of the splitting (A1.2.6)~ and the Gauss-Martin connection on 

i and ~ = 9~i ~can by R(Tate(q)/C((q))) is given in terms of ~ = ~ ~can 

I:) 
~z. 3.15) 

~ \ v ~ n ) J  =4--~ 2 -b (p2_:2op) _ 
7 

and hence is given in terms of ~can ' ~can by 

(A1.3.!6) 
COC a&q 

v(o) = 
\~ean/ P2-12eP 

\ z--T~-- 
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(AI.3.17) The isomorphism ~I~ _(92 

Let T be an arbitrary scheme, S a smooth T-scheme, and E/S an 

elliptic curve. For any derivation D e Der(S/T) and any nowhere vanishing 

invariant one-form ~ on E/S , we may apply V(D) to co , view ~(D) as an 

element of %R(E/S) , and compute the cup-product <~,~7(D)~> e ~S " We view 

this construction as defining a pairing between Der(S/T) and ®2 _ ~ co 

i 
denoting the line bundle f*~/S on S , or equivalently as a morphism from 

®2 i 
_~ to ~s/~ " The du~ m~ppi~ De__~(S/T) --~ (~If.(~)~®2 is preoisely 

the tangent mapping of the classifying map from S to the modular stack (or 

to the modular scheme M n , if we rigidify the situation with a level n 

structure). When this map is an isomorphism, the classifying map is etal~, 

and we say that E/S is "almost modular". 

Corollary AI.~.18. Consider the Tate curve Tate(q) over 

image of @2 is the differential d~q on ~((q)) ~0ea~l 

z((q)) The 

Proof. The assertion is that <~ean,V(@)~ean> = i . It suffices to cheek 

-P + . As this over C((q)) , where we have ~7(8)(~an) = ~-~ ~can Ncan 

<~can' ~°can> = 0 , and <~0can, Ncan> = i , QED. 

A1.4 The Gauss-Manin connection and Serre's 8 operator ([41]) : d'apr~s Deli~ne 

A series f(q) e C[[q]] is (the q-expansion of) a modular form of 

)Ok Ok 
weight k if and only if f(q)- (inca n extends to a "global" section of A , 

i.e. one which is "defined" for all families of elliptic curves /~ ~ or equiva- 

lently if there exist integers a,b with a-b =k such that 

f(q)-(~can)®a.(~ean)®b extends to a "global" section of S~unma+b(4R) , in 

the same s@nse. 

now view the Gauss-Manin connection on %R(E/S) , where S is a We 

smooth T-scheme, as an arrow V: %R(E/S) .. > %R(E/S)®~/T . Its k'th sym- 

metric power is a connection on Symmk(H ~) , so an arrow 
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®%/~ . If s/s is "~ost" modul~, we ha~-e iso- 
pl/ .~ @2 

morphism T --~ ~ so we may view this last arrow as an arrow 

Symmk(P~) > Symmk(~)®~ ®2 . Suppose now that 6 = 2"3 is invertible 

in S Then we have a splitting __ %R(E/S) ~ ~ ® 9 -1 • , whose k'th symmetric 

k 
power is a splitting Symmk(~R(E/S))~ ~ Z ®k-2j ~ _ , and we may interpret 

j--0 
the Gauss-Martin connection as an smrow 

k k k 
®k-2j ~ ®k-2j® ®2 ~ Q k+2-2j 

i l .  4.:]_ ~ . . . .  > _~ = _~ 
j=O j:© j=O 

Suppose that f is the q-expansion of a modular form of weight k . 

Then for arsr integers a and b such that a-b = k , f-(~can) ®a #9 (~can) Qb 

extends to a global section of Sy~a+b(K I) . Hence its im.a~.e ~der the Gauss- 

Manin connection extends to a globed section of Symma+b(~) ® ®2 . But its 

image under Gauss-Martin is 

o (f)-(~canP 2- (~c~p®< @o~)~. 
t ~®a-ii-P 

a" ~ e ~  ~ ~c~ + ~oan)®(~can ~2 ¢' (~oan)b 
, s  + f .  

. ,®a . ,®b-1,P%l~P (~can)02 
+ f" {~can) -b- {,~can] < l---i~[~ ~can + ~2 ~can )" 

which we group according to the decomposition S~ a+b{Hl).. ®2 

: _ 

[af}. (~can) ®a+l. (rlcan). .®b+! + 

Ib f. P2~eP] ® ~+3 ( , ®b-i 
m--lZZ- I (%an) • mea n) 

+ 

Thus we conclude that if f is modular of weight k = a-b ~ then 

Qb.f. rP 2-12 0P l 
L 144 

a+b 
a+b+2-2j 

Z 
j=o 

is modular of weight k+2 = a+2-b 

is modular of weight k = a-b 

is modular of weight k+4 = a+3 - (b-l) . 
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[Serre's ~ operator is ~(f) = 12 8(f) - k-P-f for f 

hence ~f is modular of weight k+2 .] 

Corollary AI.4.3. p2 _ 12 @P is modular of weight 4 , hence 

p2 _ 12 ~P = E 4 df_~n Q . 

Ka-103 

modular of weight k 

Proof. Take f =i which is modular of weight 0 = i-i , to see that p2_ 12 eP 

is modular of weight 4 . As it has constant term i, it is necessarily E 4 . 

OA 
Corollaz?/ AI.4.4. (Deligne) P = ~- ~ where A denotes the unique normalized 

cusp form of weight 12, the discrLminant (E~ - E4)/1728 . 

Proof. e(A) - A- P is a cus~ form of weight 14 and level I , and there are 

QED 

R of Tate(q) over 

X l o a n ,  , 

over Z(~)((q)) C C((q)) , and we 

c((q)) . 

none save zero. 

Corollary AI.4.5. The Gauss-Manin connection on 

Z[i/6]((q)) is given by 

(Az.4.6) <v(°) (~ean)~=/~ 

Proof. Wean, Gcan give a base of ~%R 

have the desired assertion by transcendental means over 

Remarks. 
~-1/!2 I ) 

i. The value at 0 of the connection matrix is \1/44 1/12 ' 

which is a nilpotent matrix. This shows that the canonical extension (in the 

sense of ( [ 8 ] ) of %R with its Gauss-Manin connection to ~ is given 

by the free module with base Wean, ~can " 

2. We have (~Y(8))2(~can) = O (because the •eriods of m are 1 and 

both killed by (d) 2) , hence by Igusa [17], the Hasse-invariant has a 

q-expansion f(q) ¢ ]Fp[[q]] which satisfies a2f = 0 , so writing f=Z anqn 

we have (an)2 = 0 , hence an=O , hence f = a 0 + apqP + .... By direct 
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calculation (of the coefficient of X p'I in the ~'th power of 

S~_(O) x S6(O) X l 
4X3 - T2 + ~ = 4X3 " --12 + 21-7 , (cf.[26], 2.3.7.14) , we compute 

a 0 = i , hence f ~ I mod(q p) . As the same is also true for the reduction 

rood p of Ep. I ~ we have Ep_ I ~ f mod(p,q p) , hence Ep_ I- f is a cusp form 

mod p of weight p-I and level i with a zero of order > p ~ hence vanishes 

rood p . Thus Ep_ I mod p is the Hasse invari~nt~ a~d f(q) is identically i . 

(We gave Deligne's original and more conceptual proof of this fact in 2.1.) 
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(A1.5) Formulas 

(A1.5.0) For n > 3 , % is proper and smooth over Z[1/n] , and its 

inverse image over Z[i/n, ~n ] is the disjoint union of ~(n) proper smooth 

schemes with geometrically connected fibres ~n ' one for each primitive n'th 

root of unity ~ (corresponding to the value of the e.m. pairing on the given 

basis of points of order n ). The 7.[i/n,~ n] schemes ~n are non-canonically 

isomorphic to each other. We give below the formulas for their (common) genus, 

the (common) number of their cusps~ and the d e~ree of the invertibie sheaf _~ . 

The method of deducing such relations is very simple: one notes that by flat- 

ness, the fact that ~ -M ~ is a disjoint union of sections, and the isomor- 
n n 

phism ®2~ ~i (log "cusps") , it suffices to calculate these 

~n/Z[ l /n ,  ~n] 
invarisnts for any geometric fibre ~ •k [k any algebraically closed field 

n 

containing i/n ]. One then applies the standard Hurwitz formula to the mor- 

1 
phism ~@kn ........ > ~ki provided by the j-invariant. A closed point of ~Pk 

other than ~ "is" an elliptic curve E over k , up to isomorphism. The 

points of ~ ®k lying over it are the set of all level n structures on E 
n 

such that the value of the e.m. pairing on the given basis of n E is ~ , 

modulo the natural action of Aut(E) of n E . The cardinalit[ of the fibre 

over the point "E" is thus #SL2(Z/n Z)/# Aut(E) . For j(E) ~ 0 , 1728~ 

1 [0~ 1728, co} , the projection is 4tale of Aut(E) = +l , and hence over IP k - 

degree ~SL2(Z/nZ)/2 . The fibre over 0 has #SL2(Z/n~)/6 points~ and that 

over 1728 has ~SL2(~nZ)/4 points. The points over ~ are the cusps, each 

of which is ramified of degree n, hence the number of cusps is ~L2(Z/nZ)/2n . 

Letting X denote the topological Euler characteristic, we thus have the 

formula: 

x(~ ®k) 

i . e .  , 

i = ~SL2(Z/n ~..) [~ * ~ * 7~] + #SL2(~n  Z ) [ 1 / 2 ] .  X(£ p l  - [0 ,  1728, o~]) , 

l l = #SL2(Z/n Z) 6-n 
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#SL2(~nZ) = n 3 K (i - i) , so we have fina//y 
Pln P 

(AI.5.3) 

F o r m u l a s  

l_genus(H~n ) _-- 6-n #8L2(~n~ ) ___ ~ K ( l -  ~ )  ; 
2 ~  pin P 

2 
# cusps on ~ =  TnZ ~SL2(~n~ ) = 2plnn ( Z - ~ )  ; p  

(AL ~. 4) degree(~) H~ n 1 1 ~(2g-2 + cusps) _ on = ~eg(~ (Zog cusps))= # 

n-6 Z # S L 2 ( ~ )  = (2-~ + ~ )  

(A!. p.>) Sample consequences 

M -~ has genus zero only for n = 3,4,5, and genus one only for n= 6 . 
n 

We always have deg(_~ ®2) > 2g-2 , but deg(_~) > 2g-2 on/7 for 3 < n < ii . 

For n 3,4,5, ~ is a IP I = , hence ~ is uniquely determined by its 
n 

degree; _~ : ~ (1) on M~3, _~ = ~(2) on <, _~ = ~(5) on M~ • 
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Appendix 2 - Frobenius 

In this appendix we will explain the relation between the Frobenius 

endomorphism on p-adic modular forms and the action of Frobenius on the de Rham 

cohomology of "the" universal elliptic curve. 

(A2.0) Let R be a p-adica!ly complete ring, E/R an elliptic curve which 

modulo p has invertible Hasse invariant, and H C E its canonical subgroup. 

Let E' = E/H , and let w: E ----> E' denote the projection. Then ~ induces 

an R-morphism 7r*: %R(E'/R) > ~R(E/R) . Suppose now that R:M(W(]Fq), l,n,0), 

the ring of p-adic modular functions of level n defined over W(l~q) , where q 

is a power of p such that q -= 1 mod n . Let E/R be the universal curve 

with level n strueture~ such that Hasse is invertible mod p . As E' = E/H 

is a curve over R ~rith level n structure and Hasse invertible rood p ~ it is 

"classified" by a unique homomorphism q0: R ---> R such that E' = E (~) 

This homomorphism ~ is precisely the Frobenius endomorphism of the ring 

M(W(]~ 9 ),l~n~0) defined in [Ii] (the "Deligne-Tate mapping"). ~e induced 

ho~o~o~his~ ~: R(~'/~) -- /R)--(~(~/R)) (~) > ~(~/R) gives a 

q0-1inear endomorphism of %R(E/R) ~ which we denote F(%0) : ~o-i (to be 

compatible ~ith the notations of [25]). Because ~ is induced by an R-morphism 

E ----> E' , the endomorphism F(~) respect~s the Hodge filtration 

0 ---> A ~ R(E/R) ~ A > 0 , and thus induces ~-linear endomorphisms 

-i 
(still noted F(~)) of _~ and of 

Lemma (A2.1). On _~ , F(@) = p~ ; on _o'l , F(9) : 9 • 

Proof. (We will suppress the level n structures, for simplicity.) Let f 

section of _~ . Then f(E,~)-~ is a section of fl/R . By definition, a 

i v 
~(f) is the section f(E/H, ~*(~))',~ of ~IR . Because ~ is 6t~e and 

E/H = E (~) , we have ~*(~) = k'~ (q0) with k invertible in R. ~ms 

f(E/H, ~*(~))'~ = f(E (~) , k~(~))-~ = k-l-q~(f(E,~))-~ . On the other hand, 

be 
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F(q~)(f(E,w) dfn IT*((f(E,~).~(co)) = q~(f(E,~)).VT*((q))) = ~(f(E,w))" k]~ , [the 

last equa3_ity because p~ = [p]*(~) = v*(~*(w)) = v*(k'~ (q°)) = k'v*(~($))] • 

Thus F(~) = p~ as (~-linear endomorphism. 

-I Similarly, for _~ , a section f is a section f(E,~)-~ -I of 

Hl(E, ~E) , and q0(f) is the section f(E/H,~*(~)).~ -I of ~(E, ~E ) . But 

as before E/H = E (~) , ~*(~) = k~ with k invertible in R, and so ~(f) 

is the section k-~(f(E,m))-~ -I . But 

F(~)(f(E,~).~ -1) = ~*.(~(f(E,w).(~-l) (~)) = ~(f(E,~)).~*(j1) (~) So we must 

show that 7[*(e-l) (~) = k-~ -1 , or by Serre duality, that ~*(~(~)) = A'~ 

O~D which was the definition of k • 

A2.2 Calculation at 

The canonical subgroup of Tare(q) over 7((q)) is l~p , and the 

quotient is Tate(q p) = Tare(q) (~) , where (~f) (q) = f(qP) . Thus we also 

have a 0~-linear endomo~ohism of ~R(Tate(q)/~-((q)) . Passing to C((q)) and 

viewing the situation analytica!ly~ ~can becomes the differential 27~_dz on 

1 Z/~- The quoti~t is C/Z + Z~ , and the canonical subgroup becomes ~ 

c/~ z + zT ~ > c/z + z-p~ . m ter~s o~ the bases ~i(T) , i-- 1,2 and 

7i(p~ ) , i=l,2 of H I , we have 7r71(~) : 71(P~) , 7T(y2(T)) = P72(PT) • 

it follows that 7r*(~can(qP)) = 7T*((Wcan(q))(~) ) = p. Wcan(q) because both 

have the same periods: 

I ~*(~can(qP)) Y2 ~can(qP) = / ~can(qP) = p " 
72(T) p-72(p~) 

By functionality, F(q0) respects the Gauss-Martin connection, and 

V(e) (~can) = ~ -P ~can + qcan is the unique (up to scalars) element of 

~(Tate(q)/7,,((q))) killed by XT(e) (as a direct calculation shows - indeed 
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by (A~4.6), this r~ two differential equation over C has non-trivial 

(unipotent) monodrony around q = 0 , hence has at most one solution which is 

single-valued at q = 0). It follows that 

~ 2 . 2 . 2 )  ~(qO)(V(e)(~Can)) = a-V(0)~ca n for some a ~ Z ; explicitly, 

~ 2 . 2 . 3 )  %0(P) Tr*(~ (@)) + *: (9)~ -aP + whence 
12 - can- ~ thcan: =-~ ~csn a'qcan ~ 

(A2.2 .4)  F ( 9 ) ( h c a n )  -~- P'~(P)12 - aP ~can + a'hcan " 

Because ~can and V(e)~ca n give a base of H 1 such that ~canAV(e)~can is 

a constant base of ~ , the fact that v has degree p shows that a=l , so 

(A2 .2 .5 )  F ( ~ ) ( h c a n )  = ~ '~ (P )  - P + 12 C°can ~can " 

Thus the matrix of F(~) on ~(Tate(q)/Z[i/6]((q))) is given by 

(~ .2 .6 )  
.®(~) - p 

\ F ( ~ )  (nc~)  / \ 12 l / \ n c a  n 

To give formulas valid over Z((q)) , we use the base Wean,V(@) (~can) of 

~R(Tate(q)/Z((q))) ; we have 

~2.2.7)  

F ( ¢  (v(o)(%an))/ l / \v(e) (%~,,)/ 

A2.3 The "canonical direction" in~R (a special case of [25], [13]) 

We return to the ttuiversal situation R = M(W(IFq),!,n,O) , E/R uni- 

versal. In terms of a base ~, ~ of ~R(E/R) adopted to the Hedge filtration~ 

the matrix of F(~) has the shape: 
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invertible 

An argument of successive approximation shows that there is a unique element 

f e R such that F(~)(~+f~) e R-(~ +f~) ; indeed 

(A2.3.2) F(~o)(G+ fco) : c~+ kB+~(f) p" w = [c + p ~(f)]co+k'q , 

so we want 

(A2.3.3) 

f e R to satisfy 

.e° 

f = g + ~(f) 

c ~-- ~(f) It is immediate Let us define a mapping T: R ----> R by T(f) = ~ + k2 

that T is a contraction mapping of R in its p-adic topology, so has a 

unique fixed point lim Tn(O) , which is explicitly given by 

n(n-l) 

c ~ ~ (i/~)-~(c) 
(A2.3.~) f : % + n _> i ~ ~(~) 

Of course, the choice of base is not canonical, nor need there exist a global 

basis (over all of R ), but the given construction does construct an F(~)-splitting 

of the Hodge filtration 

(A2.35) 0 > _~ > ~ ~(~/R) > _jl > O 

Looking at ~ , we see that in terms of the base ~can' ~7(8)(ecan) of 

R(Tate(q)/Z((q)) , we have simply "constructed" the vector ~7(8)(Wcan) , which 

is indeed fixed by F(~) . Hence we have proven 

Theorem A2.3.6. (Dwork) Let Mn(W(3Fq),I ) denote the formal scheme over 

W(]Fq) which rood pm is the open subset of Mn®Wm(~Fq) where Ep_ 1 is 

invertible. The locally free rar~k two module on Mn(W(~Fq,I)) given by 
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HD1R(E/~(W(]Fq) ,1))  admits a l o c a l l y  f r ee  extension ~R(E/Mn(W(]Fq) , I ) )  

which a long any cusp i s  the  W(IFq)[ [q] ]  submodule of  ~ (Ta t e (qn ) /WOFq) ( (q ) ) )  

spanned by ~can and by ~7(8) (~can) . The Gauss-Manin connection over 

Mn(W(]Fq) ,I) extends to a "connection with logarithmic poles" over Mn(W(Imq,l)) , 

and the ~-linear endemorphism F(9) over Mn(W(]Fq) ,i) extends to a q0-1inear 

endomorphism, still noted F(9) , over all of Mn(W(~ q) ,l) (cf(A2.2.6) and 

(A2.2.7) for the explicit formulas definin6 these extensions). There is a 

canonical F(~)-stable splitting of the Hodge filtration 

/%( - - 1  
0 .... > _~ ,,, > R(E W ( ),l)) > _~ > 0 , (the image of which we 

denote U C H~R(E~n(W(Imq),I )) ;  it is a horizontal (by unicity') F(q))-stable 

rank one submodule). 

A2.4. P as a 2-adic modular form of weitht 2 

Suppose now that p ~ 2~3 . Let R be any ring in which p is nil- 

potent~ E/R an elliptic curve whose Hasse invariant modulo p is invertible, 

4R(E/R) the inverse image of the canonical rank one submodule con- and U c 

st~acted above. (Strictly speaking~ we must first choose a level n str~.cture 

for some n > 3 prime to p defined over an itale over-ring R' of R , and 

check that the U obtained in ~(ER,/R' ) descends to a U c which  

i s  independent  o f  choices .  ) Let ~ be a nowhere-vanish ing  d i f f e r e n t i a l  on E/R 

(which i n  any case e x i s t s  l o c a l l y  on R) ~ and l e t  ~ be the  cor responding  

dX XdX 
differential of the second kind (i.e. ~ = ~ ~ ~ : -~-- as explained in 

(A1.2.4)). Because ~ = R-~ + U , we see that if u e U is a base of U 

(which in any case exists locally on R) then the de Pham cup-product <~,u> 

is invertible on R . We may then define a "function" ~ by the formula 

<~ ~u> 
(A2.4.1) ~(E/R,~) = 12 for ~v base u of U . <~,u> 

Clearly the right-hand expression is independent of the choice of base u of 

U ~ and the effect of replacing ~ by kw ~ k e R x is to replace ~ by k-l~ 
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hence ~(E/R,kw) = k-2~(E/R,w) . Hence ~ is a p-adic modular form of weight 

two and level one. Its q-expansion is 

A2.4.2 ~(Tate(q),Wcan) = 12 - -  
<n can, u> <n can,V(e) (~can) > 

12 <Wcan ,~(e) > <~Ocan ,u> (Wea n ) 

because, formally at co , U is spanned by V(e) (Wcan) . If we denote by 

the series i - 24Z al(n)q n , then by (AI.3.16) we have 

~7(@) (Wcan) = -P(q)12 Wean + Ncan . Substituting into (A2.4.2) gives 

<~ -P(~) 
'Jcan' 12 Wcan + ~can > 

(A2.4.3) ~(Tate(q) ,Wcan) -~ 12 = 
<w -P(~) 

can' 12 Wcan + ~can > 

= p(@ 

P(q) 

!2- P(q) <~can,-Wcan > 
12 <Wcan, ~can> 

This provides a modular proof that P is p-adically modular. 
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Appendix 3: Hecke pol3rnomials~ coherent cohomology~ and U 

In this final appendix, we explain the relation between Hecke po!y- 

nemials mod p, coherent cohomology, and the endomorphism U of S(R,r~n,O)®K 

(notations as in (3.1!)). 

(A3.1.O) Let us begin by computing the trace of U n , using the Dwork-Monsky 

fixed point formula. For simplicity, we take R to have residue field 
P 

Let R be  i t s  ~ m r a m i f i e d  e x t e n s i o n  o f  d e g r e e  m , and  K t h e  f r a c t i o n  f i e l d  

of R m The endomorphism q~ acts on the points of %(]Fp,1) with values 

in the algebraic closure IF of IF as the relative Frobenius. For each 
P P 

integer m _> i we denote by T °m the set of ~p-Valued points of %(IFp,l) 

-which are fixed by the m'th iterate # , i.e., T ° is the set of IF m-Valued 
m p 

points of Mn(~ p ,i) . It is known (cf.[36]) that each element of T°m lifts 

to a unique Rm-Valued point of the formal scheme %(R,I) which is fixed by ~ . 

We denote by T the set of such ~-fixed Rm-Valued points of %(R,I) (so 

Tm ~> T°m by reduction nod ~ ). The tangent space to %(R,I) at a point 

t s T m is a free Rm-module of rank one, on which m acts as an Rm-linear 

endomorphism. We denote by d~(t) e R its "matrix". The Dwork-Monsky 
m 

trace formula [36] is as follows: 

(A3.1.1) trace(Um) ~-~ Z -l d~m(%) 
t e T pm l_d(pm(t) 

m 

It remains to determine the "local terms" in this formula. We begin 

with the cusps, i.e., the points t ~ T whose image t s T ° is a cusp of 
m o m 

%(l~q ,i) - Then, as we have seen, the overlying point t e T m is itself a cusp 

of %(Rm,1 ) , the completion of its local[ ring is Rm[[q]] , and the action 
m 

of m is given by q : ~ qP , whose linear term is zero. Hence d~m(t) =0 

at the cusps. 

Now suppose t e T m is not a cusp. Then the corresponding elliptic 

curve E t is the so-called canonical liftin~ of its reduction Eto (because 
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the m'th iterate of the Frobenius endomorphism of Eto lifts to an endomorphism 

of E t , namely m-fold division by the canonical subgroup -(cf.Messing [34]). 

In this case it is known that the completion of the local ring at t is iso- 

morphic to Rm[[X]] , where i +X is the Serre-Tate parameter (cf. ft note , p.186). 

Let ~ e Z x = ~(m,to) be the "matrix" of the action of the automorphism "pm-th 
P 

power" acting on the Tate module Tp(Eto(]Fp)) of the reduced curve. Then 

(cf.Messing [34]), the action of m on Rm[[X]] is the one sending 

I+X > (I+X) pm/~2 (re,to) 2 , hence d~m(t) = pm/~ Combining all this, we 

find the formula 

(A3. i. 2) trace = m 
t ~ T~ p -~(~,to)2 

t not a cusp 

Denoting by ~Om the set of ~pm-Valued points of Mn(~Fp,l ) , i.e. the set of 

ordinary elliptic curves over ~Fpm with level n structure, we have 

Z m (A3.1.3) trace(um) = pm ~(m,to)2 
t o 

The next step is to assemble this data into an expression for the 

Fredholm determinant det(1- tU) as a product of L-series on Mn(~,l ) . For 

any closed ~oint x of Mn(~ p ,l) (i.e., an orbit of Gs2(IFp/~p) acting 

on the ~- valued p~ints of ~%(~p ,i)) , we ~efine ~(x) : ~<deg(x),~ , 

where ~ is any ~Fpdeg(x ) -valued point of ~(~Fp,l) lying over x . For 

each integer r , the L-series L(Mn(]Fp,l);~r;t) is the element of Zp[[t]] 

given by the infinite product over all closed points x of ~(]Fp,l) 

(A3.1.4) H (l-~r(x)'tdeg(x)) -I 
X 

An elementary calculation now yields the following identity. 

Identity A3.1.5 

det (i- tU) : H 
r>O 

L (M n ( ]Fp, l) ,~-2 (r +l),pr t) (which is the key point 



S~ Ka- 1 1 5 

of [12]). It shows independently of (3.11.7) that det(l- tU) lies in 

and gives as a corollary the following congruence formula. 

Corollaz~ A3.1.6. det(l-tU) ~ L(Mn(]Fp,1), GP-3,t) modulo p.Zp[[t]] . 

z [[t]] , 
P 

Proof. the term with r = O remains modulo p, and modulo p the characters 

G-2 and GP-3 are equal, hence give L-series which coincide mod p . 

But the character GO = ~ mod p is the one associated to the locally 

constant rank-one ~Fp - etal@ sheaf Rlf.~ , and the L-series 

L(Mn(~ ~ ~i), ~-3,t ) is just the L-series L(Mn(IF p ,i), (Rlf.]Fp)®P-3,t) 

associated to (Rif.~Fp) ~p-3 in (4.1.1). 

[NB the apparent inversion is due to the fact that G describes the 

action of the arithmetic Frobenius on the etal@ quotient of Ker p ~ and hence 

by duality it is the action of the 69ometric Frobenius on its dual Rlf.~p.] 

Furthermore~ the sheaf Rlf.~Vp extends to a locally constant rank-one 

%-etalg sheaf on %(IFp ,I) , and the value of the extended character (still 

denoted ~ is i at each cusp (cf.(4.2.1)). Thus we have 

(A3.i. 7) L(Mn(~ p ,i) ,~Po-3,t) 

~3.2 0 Let H i 
camp 

= [~ (I- t deg -- IF, ,(R!f.~Fp)®p-3,t) 
x closed x)]'L(~%(~l) 

@ 

point among 
the cusps 

denote the etal@ cohomology groups with compact supports 

Hiomp(M-n( % ,!),(Rlf.]Fp )QP-3) , which are Gal(%/]Fp )-mod~ules over ]Fp 

Only Hlec~p is ~ O . Let Fgeo ~ E Gal(]Fp/% ) denote the inverse of the 

automorphism x - > x p . According to ([47]), we have the fDrmula 

~3.2.1) L(M-n( ~ ,!),(Rlf.~Fp )@P-3,t) : det(l-t FgeomI~ccomp) . 

By (4.2.2), the invertible sheaf with p-linear "automo~hism" corresponding to 

- , ® 3-P ,~ (Rlf.]Fp)QP-3 is (3-p,~) over ~(~Fp ,i) . But the pair ~_~ ,.~, 

extends to an invertihle sheaf with p-linear endomorphism on all of M ® ~ , n p 

namely to the invertible sheaf ~Q3-P on %~% , with p-linear endomor~hism 
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given by 

® 3-p ®3-p ~: ~ > 

~: g > AP-3.~ 

= p ,_~ w ® where A %-i rood denotes the Hasse invariant c p (~ % p-! 

(compare q-expansions:) 

Because this extended endomorphism vanishes at the fibres outside 

Mn( % ,i) , we have an isomorphism 

(A3.2.2) H i ~ the fixed points of $ acting p-linearly on 
comp 

Hi(~n ®~p ,_~®3-P~ 

under which the action of the arithmetic Frobenius on H i is its obvious 
comp 

action on the fixed points of $ . It follows formally that we have the 

identity 

(A3.2.3) det(1- t FgeomIHicomp ) ---- det(l- t~IHi(~®% ,_®3-p)) . 

Putting this all together, we have the following congruence relation 

modulo p %[[t]] . 

®B-p)) ~3.2.4) d e t ( l - t U )  ~ [ H ( l - t  deg x)] .det( l - t$1Hl(~in® % ,_ . 
x closed 

point lying 
among the cusps 

~3.3) We now wish to calculate the determinant of ~ on ~(~®% , ®3-p) 

by using Serre dnality and the Cartier o~erator. For this it is convenient 

to abstract the situation slightly in the following lemma - in which X is 

~®~, ~ is ®p-3 and B is AP-3. 
n p 

Len~na A3.3.1. Let X be a projective smooth curve over Imp , ~ an invertible 

sheaf, and B a section of ~®p-i The composition 

(A3.3.2) ~ ®~i B > ~®p ®Dx > 
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(where C is the Cartier operation, defined iocally by c(~P®~) = ~®C(~)) 

induces an endomorphism of HO(x, ~ ® i) which is dual to the endemorphism 

of ~(x,~ -l) induced by the endomorphis~ ~ > B(~)P of ~-i 

Proof. We begin by remarking that although X C > IP n need not be geo- 

metrically connected, Serre duality on ~n gives a perfect pairing between 

Hi(x, ~) end Ext~-~( % ~) with values in Hn(pn~ m n ) ~ ~ for sz~y co- 
Co P 

herent-~on X~ ~ich~just as in the usual ease may be computed via repartitions 

and residues. The desired duality now follows from the fact that if x e X 

is a closed point, and ~ and ~ are meromorphic sections of ~ -i and 

® 21 , then residuex(B-(~)P-~) = (residuex(~.C(B~)) )P , (the usual Cartier 
Vp 

formula applied to the one-form B(~) ~) . QED 

@2k A2k Lemma A3.3.3. Take X = ®IFp, ~= ~ , k ~ 0 , and B = in the 

previous lemma. Under the isomorphism 

HO(%®]Fp,~®2k~ l) ~'~H0(%®% ,o~2k+2Ql(cusps))_ ~the space of cusp forms 

of level n and weight 2k+2 over ]F , the endomorphism ~ > C(A2k~) is 
P 

the Hecke operator T 
P 

Proof. It suffices to check the q-e~pansions. 

~( 0 2  
and the isomorphism ~ log cusps) --~ ~ , if 

But in terms of q-expansions 

in q-expansion is f(q)(d-~q) k+l 

then c(Ak{) in q-ex2pansion is C(f(q)'(~f (2kp+2)/2) =C(f(q)~).(~)®k 

But if f(q) : E anqn )~) (a n . , C(f(q ---- Z p)i/p qn dqq Comparing this with 

the exl01icit formula (1.11.1.2) for Tp gives the desired result (because 

2k-1 
p - 0 (p)') . Q~ 

Putting this all together, we obtain the congruence relation 

mod p z[EtJ] : 



Ka-I 18 186 

~det(1-tU) ~ [ ~ (l-t deg x)]'detIl-tT Icusp forms of weight p-l~ 
\ X closed ~ Pl ~nd level n J 

point lying 
8mong the cusps 

(A3.3.3) 

) t [ o P-3 0 -- ® ~P-3 i /det (1- tT cusp forms ofwe:i@~ p - l /  ~ d e t l l - t . C  A H (M • ,~ ~ 
k. \ P and level n ] ~ n p -- # 

1~is form~la is the starting point for recent work of Adolphson [0]. 

FOOTNOTE : the first new sentence on page 182 is incorrect, though the tangent calcula- 

tion we deduce from it is correct. The difficulty is that the Serre-Tate parameter is 

not "rational" over Rm, but only over R , the completion of the maximal unramified ex- 

tension of R. However, if we view t as defining, by extension of scalars, a rational 

point of %(R~,I), then the completion of its local ring i ss indeed isomorphic to 

R [[X]] , where I+X is the Serre-Tate parameter (cf. Messing [34] ). Further, the R - 

linear endomorphism of R [[X]] deduced from ~m by extension of scalars is given by 

I+X ~ (I+X) pm/~2, in the notation of page 182, and the formula (A3.1.2) remains true. 



187 Ka-1 19 

References 

O. Adolphson, A. : Thesis, Princeton University 1973. 

I. Atkin, A. O. L. : Congruence Hecke operators, Proc. S~np. Pure Math., 

vol. 12, 

2. - .... : Congruences for modular forms. Proceedings of the iBM Conference 

on Computers in Mathematical Research, Blaricium, 1966. North-Holland 

(1967). 

3 ...... , and J. N. O'Erien: Some properties of p(n) and c(n) modulo powers 

of 13. Tm~ 126, (1967), 442-459. 

4. Cartier, P.: Une nouvelle operation sur les formes diff~rentielles~ C. R. 

Acad. Sci. Paris 244, (1957), 426-428. 

5. - .... : Modules associ@s ~ tun groupe formel commutatif. Courbes typiques. 

C. R. Acad. Sci. Paris 256 , (1967), 129-131. 

6. - ..... Groupes formels, course at I.H.E.S.~ Spring, 1972. (Notes by 

J. F. Boutot available (?) from I.H.E.S., 91-Bures-sur-Yvette, France.) 

7- Deligne, P. : Formes mod%Ckaires et representations ~-adiques. Expose 355. 

S$minaire N. Bourbaki 1968/1969 . Lecture Notes in Mathematics 179, 

Berlin-Heidelberg-New York: Springer 1969 . 

8. - .... : Equations Diff$rentielles ~ Points Singuliers R~guliers. Lecture 

Notes in Mathematics 163. Berlin-Heidelberg-New York: Springer 1970. 

9. - .... : Courbes El!iptiques: Formulaire (d'apr~s J. Tare). Multigraph 

available from I.H.E.S., 91-Bures-su~-Yvette, France, 1968. 

i0 ...... , and M. Rapoport: Article in preparation on moduli of elliptic 

cur~ge S. 

ii. Dwork, B.: P-adic cycles, Pub. Math. I.H.E.S. 37, (1969), 27-115. 

12 ...... : On Hec/<e Polynomials, Inventiones Math. 12(1971), 249-256. 

13 ...... : Normalized Period Matrices I, II. Annals of Math. 94, 2rid series, 

(1971), 337-388, and to appear in Annals of Math. 

14. - .... : Article in this volume. 

15. Gr~othendieck, A. : Fondements de la G$om@trie AlgSbrique, SecrEtariat Math@- 

matique, ll rue Pierre Curie, Paris 5 e, France, 1962. 

15 bis ..... : Formule de Lefschetz et rationalit~ des fonctions L~ Expos$ 279, 

S6_minaire Bo~r%~ki 1964/1965. 



Ka- 1 20 188 

16. Hasse, H. : Existenz separabler zyklischer ~verzweigter Erweiteruags- 

kSrper yore Primzahigrade {~ber elliptischen FunktionenkSrpern der 

Char~teristik p . J. Reine angew. Math. 172, (1934), 77-85. 

17. Igusa, J. : Class number of a definite quaternion with prime discriminant~ 

Proc. Natl. Acad. Sci. 44, (1958), 312-314. 

18. - .... : Kroneckerian model of fields of elliptic modular functions, 

Amer. J. Math. 81, (1959), 561-577. 

19. - .... : Fibre systems of Jacobian varieties llI, Amer. J. Math. 81, 

(1959) , 453-476. 

20. - .... : On the transformation theory of elliptic functions, Amer. J. 

Math. 81, (1959), 436-452. 

21. - .... : On the algebraic theory of elliptic modular functions, J. Math. 

Soc. Japan 20, (1968), 96-106. 

22. lhara, Y. : An invariant multiple differential attached to the field of 

elliptic modular functions of characteristic p. Amer. J. Math. 78, 

(1971), 137-147. 

23. Katz~ N. : Une formule de congruence pour la fonction zeta. Expos$ 22, 

SGA 7~ 1969, to appear in Springer Lecture Notes in Mathematics. 

(Preprint available from I.H.E.S., 91-Hures-sur-Yvette, France.) 

24. - .... : Nilpotent eormections and the monodrom~- theorem - applications 

of a result of Turrittin~ Pub. Math. I.H.E.S. 39, (1971), 355-412. 

25 ...... : Travaux de Dwork. Expos~ 409, S~minaire N. Bourbaki 1971/72, 

Springer Lecture Notes in Mathe~latics, 317, (1973), 167-200. 

26. - .... : Algebraic solutions of differential equations (p-curvature and 

the Hodge filtration). Invent. Math. 18, (1972)~ 1-118. 

27. - .... , and T. 0da: On the differentiation of de Rham cohomology classes 

with respect to parameters, J. Math. Kyoto Univ. 8, (1968), 199-213. 

28. Koike, M. : Congruences between modular forms and functions and appli- 

cations to a conjecture of Atkin, to appear. 

29. Lehner, J.: Lectures on modular forms. National Bureau of Standards, 

Applied Mathematics Series 61, Washington, D.C., 1969. 

30. Lubin, J.~ J.-P. Serre and J. Tate: Elliptic curves and formal groups, 

Woods Hole Summer Institute 1964 (mimeographed notes). 



189 Ka- 1 21 

31. Lubin, J. : One-p~r~meter formal Lie groups over p-adic integer rings, 

Ann. of Math. 80, 2nd series (1964), 464-484. 

32. - .... : Finite subgroups and isogenies of one-parameter formal groups, 

Ann. of Math. 85, 2nd series (1967), 296-302. 

33. - .... : Newton factorizations of polynomials, to appear. 

33.his .... : Canonical subgroups of formal groups, secret notes. 

34. Messing, W. : The crystals associated to Barsotti-Tate groups: with 

applications to abelian schemes. Lecture Notes in Mathematics 264, 

Berlin-Heidelberg-New York: Springer 1972. 

35. - .... : T~o functoriality, to appear. 

36. Monsky, P. : Formal cohomology III - Trace Formulas. Ann. of Math. 93, 

2nd series (1971), 315-343. 

37. Newman, M. : Congruences for the coefficients of modular forms and for 

the coefficients of j (T). Proc. A.M.S. 9, (1958), 609-612. 

38. Roquette, P. : Analytic theory of elliptic functions over local fields. 

GSttigen: Vanderhoeck und Ruprecht, 1970. 

39. Serre, J.-P. : Endomorphismes compl~tement continus des espaces de Banach 

p-adiques. Pub. Math. I.H.E.S. 12, (1962). 

40. - .... : Course at Coll~ge de France, spring 1972. 

41. - .... : Congruences et formes modulaires. Expos~ 416, S~minaire N. 

Bourbaki, 1971/72, Lecture Notes in Math. 317, (1973), Springer, 319-$38. 

42. - .... : Formes modulaires et fonctions zeta p-adiques, these Proceedings. 

42~. - .... : Cours d'armthmetlque. Paris: Presses Univ. de France 1970. 

43. Swinnerton-Dyer, H. P. F. : On ~-adic representations and congruences for 

coefficients of modular forms, these Proceedings. 

44. Tate, J. : Elliptic curves with bad reduction. Lecture at the 1967 

Advanced Science gummer Seminar, Bowdoin Co!lege~ 1967. 

45. - .... : Rigid analytic spaces. !uventiones Math. 12, (1971), 257-289. 

46. Whittaker, E. T. and G. N. Watson: A course of modern anaJkTsis, 

Cambridge, Cambridge University Press, 1962. 



Ka- 1 22 190 

47. Deligne, P., Coh~r~ologie ~ Supports Propres, Expos~ 17, SGA 4, to appear 

in Springer Lecture Notes in Mathematics. 

48. Roos~ J. E., Sum les foncteurs dSriv~s de lim . Applications, C. R. Acad. 

Sci. Paris~ tome 252, 1961, pp. 3702-04. 


