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Introduction

This expose represents an attempt to understand some of the recent work

of Atkin, Bwinnerton-Dyer, and Serre on the congruence properties of the

g-expansion coefficlents of modular forms from the polnt of view ¢f the theory
of moduli of elliptic curves, as developed abstractly by Igusa and recently
reconsidered by Deligne., In this optic, a modular form of weight k and level

n becomes a section of a certain line bundle &f§k on the modular variety Mn
which "claessifies” elliptic curves with level n structure {the level n structure
is introduced for purely technical reasons). The modular variety Mn is a
smooth curve over %Z[1/n], whose "physical appearance” is the same whether we
view 1t over € (where it becomes @(n) copies of the quotient of the upper half
plane by the principel congruence subgroup I{n) of SL{2,Z)) or over the algebraic
closure of % /p% , {by "reduction modulo p") for primes p not dividing n.

This very fact EE%EE 223 the possibility of obtaining p-adic properties of
modular forms simply by studying the geometry of Mn @‘Z/pz and its line bundles
gfbk; we can only obtaln the reductions modulo p of identical relations which
hold over © .

The key is instead to isolate the finite set of points of M ® /7.
corresponding to supersingulsr elliptic curves in cheracteristic p, those whose
Hasse invariant vanishes. One then considers various "rigid-snalytic" open
subsets of Mn @>%% defined by removing p-adic discs of varilous radii around
the supersingular points in characteristic p. This mgkes sense because the
Hesse invarisnt is the reduction modulo p of a true modular form (nsmely Ep-l)
over Zﬁ,so we can define a rigid analytic open subset of Mn @JZP by taking
only those p-adic elliptic curves on which Ep-l has p-adic absoclute value
greater than some ¢ > 0. We may then define various sorts of truly p-adic
modular forms as functions of elliptic curves on which ]Ep_l} > ¢, or eguivalent-

ly as sections of the line bundles g?k restricted to the above-constructed
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rigid snalytic open sets of M ®zp . [The role of the choice of € is to
specify the rate of growth of the coefficients of the Laurent series
development around the "misging" supersingular points].

The most important tool in the study of these p-adic modular forms is
the endomorphism they undergo by a "canonical 1lifting of the Frobenius
endomorphism” from characteristic p. This endomorphism comes gbout as follows.
Any elliptic curve on which !Ep_ll > € for suitable £ carries a "canonical
subgroup” of order p, whose reduction modulo p is the Kernel of Frobenius.
The "canonical lifting" above is the endomorphism obtained by dividing the
universal elliptic curve by EEE canonical subgroup {over the rigid open set
of M 8’%% where it exists).

This endomorphism is relgted closely to Atkin's work. His operator U
is simply (% times) the EEEEE of the canonical lifting of Frobenius, and
certain of his results on the g-expansion of the function j may be interpreted
as statements about the spectral theory of the cperator U.

The relation to the work of Swinnerton-Dyer and Serre is more subtle,
end depends on the fact that the data of the action of the "canonical lifting

of Frobenius" on 2-1 over the rigid open set |E > 1 is equivalent to the

p-lf

knowledge of the representation of the fundamental group of the open set of

M ® 7 /pZ where the Hasse invariant is invertible on the p-sdic Tate module

TP (vhich for a non-supersingular curve in characteristic p is s free
Zb-module of rank one)}. Thanks to Igusa, we know that this representation is
s8 non-trivial as possible, sand this fact, interpreted in terms of the action
of the canonical Frobenius on the égk , leads to certain of the congruences
of Swinnerton-Dyer and Serre.

In the first chapter, we review without proof certain aspects of the

modull of elliptic curves, and deduce various forms of the

'q-expansion
principle.” This chapter owes much (probably its very existence) to discussions

with Deligne. Tt is not'p-sdic", and may be read more or less independently
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of the rest of the paper.

The second chapter develops at length various "p-adic" notions of modular
form, in the spirit described above. A large part of it (r % 1) was included
with an eye to Dwork-style spplications to Atkin's work, and may be omitted by
the reader interested only in Swinnerton-Dyer and Serre style congruences.

The idea of working at such "p-edic modular forms" is due entirely to Serre,
who in his 1972 College de France course stressed thelr importance.

The third chapter develops the theory of the "canonical subgroup.”

This theory is due entirely to Lubin, who has unfortunately not published

it except for a tiny hint [33]. The second half of the chapter interprets
certain congruences of Atkin in terms of p-adic Banach spaces, the spectrum
of the operstor U, etc. The possibility of this interpretation is due to
Dwork, through his reglization that not only is pU integral, but U itself is
Yessentinlly" integral (cf{1L1).

The fourth chapter explains the relation between the canonical Frobenuis
and certain congruences of Swinnerton-Dyer and Serre. Tt begins by recalling
a "coherent sheaf" description of p-adic representations of the fundamental
group of certain schemes on which p is nilpotent. This description is certainly
well-known, and basically due to Hasse and Witt, but does not seem 1o be re-
corded elsewhere in the form we require. Using it, we show that the representa-
tion corresponding to w with 3its canonical Frobenuls is that afforded by
the {rank-one) p-sdic Tate module Tp of non-gupersinguler elliptic curves.

We then prove the extreme non-triviality of this representation in Yeanonicsl
subgroup” style. This non-trivislity is due to Igusa, whose proof is finally
not so different from the cne given. We then epply this result of non-

triviality to deduce certain of the congruences of Swinnerton-Dyer and Serre.

In the first sppendix, which is a sort of "chapter zero”, we explain the

relation between the classical approach to elliptic curves via their period
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lattices and the "modern” one, the relation of DeRham cohomology of elliptic
curves to modular forms, and the relation between the Gauss-Manin connection,
Ramanujan's function P{q), and Serre's O-operator on modular forms. The results
are due to Welerstrass and Deligne. It is concluded by & "table” of formulas.

The second appendix explaing the relation between the canonical Frobenuis
on p-sdic modular forms and the Frobenuils endomorphism of the DeRham cohomology
of elliptic curves. It may also be read as an mppendix to [25].

The third appendix relates Hecke polynomials mod p to L-series, coherent
cohomology end the Predholm determinant of U.

As should by now be obvious, this expose owes its very existence to Lubin,
Serre, Deligne, Atkin, and Dwork. It 1s s pleasure to scknowledge my debt

to them, and to thank M. Rapoport for many helpful discussions.
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Chepter 1: Moduli schemes and the g-expeansion principle

In this chepter, we will recall some of the definitions and main results
of the theory of modull of elliptic curves, and deduce from them various forms

of the "g-expansion principle” for modular forms.

1.0. By an elliptic curve over a scheme S , we mean & proper smooth morphism
p: E—> 8 , whose geometric fibres are connected curves of genus one, together

with a section e: S —» E .

S

We denote by W /S the invertible sheaf p*(g% /S) on S, whieh is eanonically

dual (Serre duality) to the invertible sheaf Rlp,(ﬁE) on S .

1.1 Modular forms of level 1

A modular form of weight k € Z and level one is a rule f which
assigns to any elliptic curve E over any scheme S a section £{E/S) of

Q‘—)E /S)®k over $ such that the following two conditions are satisfied.

1. f£{B/S) depends only on the S-isomorphism class of the elliptic

curve E/S .

2.  The formation of f(E/S) commutes with arbitrary change of base

g: S —> § (meaning that f(ES,/S’) u g*f(E/s)).

We denote by M(Z;l,k) the Z-module of such forms.,

Equivalently, a modular form of weight k and level 1 is a rule f which
assigns to every pair (E/R,w) consisting of an elliptic curve over (the spec-
trum of) a ring R together with a basis w© of /R (i.e., a nowhere venish-
ing section of Q% /R OB E ), an element f(E/R,w) € R , such that the follow-

ing three conditions are satisfied.
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1. f£(8/R,w) depends only on the R-isomorphism class of the pair

(E/R,w)

2. £ is homogeneous of degree -k in the "second variable"; for
any A € B° (the multiplicative group of R ),

£{Enw) = h-kf(E,w) .

3. The formation of f(E/R,w) commtes with arbitrary extension

of scalars g: R —> R' (meaning f(ER,/R‘,u?,} = g{£{B/R,w)) ).
(The correspondence between the two notions is given by the formula
£(8/spec(R)) = £(B/R,0) 0>

valid whenever £ = Spec(R) and /5 is a free R-module, with basis w.)
If, in the preceding definitions we consider only schemes S (or
rings R) lying over a fixed ground-ring Ro , and only changes of base by
Ro—morphisms, we obtain the notion of a modular form of weight k and level one
defined over R, the R -module of which is noted M(Ro,l,k).
A modular form f of weight k and level one defined over Ro can be

evaluated on the pair (Tate(q), w

) consisting of the Tate curve and its
can’'pg

o)
canonical differential, viewed as elliptic curve with differential over
Z((q))@z R, (and not just over RO((q))).

The g-expansion of a modular form f is by definition the finite-tailed

Laurent series
£((Tate(q), wcan)Ro) € Z((a))&y R .

The modular form I is called holomorphic at o« if its g-expansion lies in the
subring %[ [q]]®Z RO ; the module of all such is noted S(Ro;l,k) . Notice
that the g-expansion lies in Z({q) )®Z R, C RO((q)) s i.e., it is finite
Ro—linea;r‘ combination of elements of Z((q)) . This implies, for example,
that if RO is the field of fractions of a discrete valuation ring, then the

g~expansion coefficients of any modular form of welght k and level one over Ro
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have bounded denominators.

l.2. Modular forms of level n

For each integer n > 1 , we denote by ,F ‘the kernel of "multiplication
by n" on E/S ; it is a finite flat commutative group-scheme of rank 2° over
S , which is étale over S if emd only if the integer n is invertible in
r{s, 193) i.e., if and only if S is a scheme over Z[%} . A level n struce

ture on E/S is an isomorphism

~ 2
a: B (z/nz)S .

It cannot exist unless n is invertible on 8 , and in that case there always
exists one onsome finite dtale covering S' of S . If a level n structure
on E/S exists, and if § 4is connected,the set of all such is principal
homogeneous under GL(2, %/n%) = Aut((%/nz)g) .

A modular form of weight k and level n is rule which assigns to each
pair (E/S, Otn) consisting of an elliptic curve together with a level n
structure a section f£(E/S, an) of (.@E/S)(@k over S , in a way which depends
only on the isomorphism class of (E/S, Ocn) , and which commutes with arbitrary
base-change g: 8' —> 5 . Equivalently, it is a rule which assigns to all
triples (E/R,w,an) , consisting of an elliptic curve over a ring R together
with a base w of -‘i’E/R and a level n structure Otn , an element
f(E/R,w,Ocn) € R which depends only on the isomorphism class of (E/R,m,ocn) R
which commutes with arbitrary change of base, and which is homogeneous of
degree -k in the "second variable", meaning that for any A € B~ , we have
£(E/R, ‘uw, Otn) = }\'kf(E/R,w,Ocn) . Exactly as for level one, we define the
notion of a modular form of weight k and level n defined over a ring Ro .
The R -module of all such is noted M(Ro,n,k) .

A modular form of weight k and level n defined over a ring Ro which
contains 1/n and a primitive n'th root of unity Qn may be evaluated on

the triples (Tate(q™), w ocn) consisting of the Tate curve Tate(q"

can?
RO



Ka-12 80

with its canonical differential, viewed as defined over %Z((q)) ®Z R0 , together
with any of its level n structures (g]__; points of nE are rational over
Z((q)) ®Z RO 5 in fact, being the canonical images of the points Crilqj s
0<i, 3<n-1 from ”Gm" , they all have coordinates in Z[[q]] &Z Z[r%’ l;n] ,
and the non-constant gecoefficients of their (x,y) coordinates even lie in
z[gn] (c£.[38]), as one sees using the explicit formulas of Jacobi-Tate.

The g~expansions of the modular form f are the finitely many

finite-tailed Laurent series

1.2.1 £{{Tate(d™), Yean® %

IR UOIEES

obtained by varying Otn over all the level n structures.

(N='B Though it makes sense to speak of a modular form of weight k and level n
defined over any ring RO , we can speak of its g-expansions over RO only
when R contains 1/n and a primitive n'th root t, of 1 L)

A modular form defined over any ring Ro is said to be holomorphic
at « if its inverse image on Ro[l/n’ ¢, ] has all its g-expansions in
Z[[q]] ®Z Ro[l/n, Cn] . <I:f‘ the ring R~ itself contains 1/n  and Ly >
this is equivalent to asking that all the q-expansions lie in Z[[q]] @Z Ro . >
The module of such is denoted S(Ro;n,k) .

A modular form (resp: holo. at ») of weight k and level n defined over

a ring R, > which does not depend on the "last variable™ @ isa modular

a modular form (resp: holo. at w) of weight k and level one defined over

Ro[l/n} .

1.3. Modular forms on T'g(p)

Analogously, for an integer n > 1 and a prime number p ,{/ n , a modular
form of weight k and level n on Po(p) is a rule f which assigns to each triple
(8/s, o H) consisting of an elliptic curve, a level n structure, and a finite
flat subgroup-scheme H C E of rank p , a section f(E/S, o, H) of (%/s)®k

over S , which depends only on the isomorphism class of (E/S, o, H) , and
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whose formation commutes with arbitrary change of base &' —> 3 . Equivalently,
it is a rule which assigns to each quadruple (E/R, w, % s H) an element
£(E/R, w, o H) € R , which depends only on the isomorphism clags of the quad-
ruple, whose formation commutes with arbitrary change of base, and which is
homogeneous of degree -k in the second variable. As before, we define the
notion of a modular form of weight k and level n on To(p) being defined over
a ring Ro .

A modular form of weight k and level n on Ty(p) , defined over a ring
Ro which contains l/n and I;n may be evaluated on each of the quadruples

(Tate(d™), w ). . We will call the values of f on these guad-

can? O‘n’ ﬂip R,
ruples the g-expansions of f at the unramified cusps, and say that £ is
holomorphic at the unramified cusps if its g-expansions there all lie in
Zl[ql] ®Z R, . We can also evaluate f on each of quadruples

(Tate(d™), w

ean?® %’ {qn}) s Where {q™} denotes the flat rank~p subgroup

scheme generated by (the imege of) qn . Its values there are called its
g-expansions at the ramified cusps. We say that £ is holomorphic at o« if
all of its g-expansions, at the ramified and vnramified cusps, actually lie in

Z[[q]] & R -

Remark. The distinction between remified and unramified cusps on T,(p) is
quite a natural one - in the work of Atkin, one deals with modular functions
(weight 0) of level one on T,(p) which are holomorphic at the unramified

cusp, but not at the ramified one.

1.4, The modular schemes My and My

For each integer n > 3 , the functor "isomorphism classes of elliptic
curves with level n structure” is representsble, by a scheme M, which 1s an
affine smooth curve over Z[%} , finite and flat of degree:#(GLz(Z/nZ) [+ 1)
over the affine j~line Z[%—, Jjl , and étale over the open set of the affine

j-line where Jj and j-1728 are invertible. The normalization of the projective



Ka-14 82

j=line IP%[_‘L/n] in M is a proper and smooth curve Mn over #[1/n] ,
the global sections of whose structural sheafl are %{l/n,gn] . The curve

M ®Z[l/n]Z[l/n,§n] (resp. Mn ®Z[l/ng[l/n’€n]) is a disjoint union of o(n)
affine {resp. proper) smooth geometrically connected curves over Z[1/n, gn] s
the partitioning into components given by the q>(n) primitive n'th roots of
one occurring as values of the e.m. pairing on the basis of nE specified by
the level n structure. The schenme ﬁnamn over Z[l/n] is finite and étale,
and over %[l/n,gn] , it is a disjoint union of sections, called the cusps of
b./in , which in a natural way are the set of isomorphism classes of level n
structures on the Tate curve Tate(q”) viewed over Z((q)) ®Z Z[l/n,gn] .

The completion of Mn®Z[l/n,§n} along any of the cusps is isomorphic to

. . . s oas 1
Z[l/n,Cn}[[q]] . The completion of the projective j-line ]PZ[l/n,t;n] along

is itself isomorphic to Z[l/n,gn][[q]} , via the formula

j{rate(q)) =1/q + T4k + ... , and the endomorphism of Z[l/n,gn][[q]] arising
from the projection I‘7I_n —_— ]Pl is just given by q +—> qn . In fact, for
each cusp, the inverse image of the universal elliptic curve with level n
structure (E/Mn, Otn) over (the spectrum of) Z[l/n,gn]((q)) (viewed as a
punctured disc around the cusp) is isomorphic to the inverse image over
%[1/n,§n]((q)) of the Tate curve Tate(q™) with the level n structure corre-

sponding tc that cusp.

1.5. The invertible sheaf w on 1\_/In , and modular forms holomorphic at

There is a unique invertible sheaf w on Mn whose restriction to Mn
is &;E/Mn ((E/Mn,an) the universal elliptic curve with level n structure),
and whose sections over the completion %{1/n,§n][[q]} at each cusp are pre-
cisely the z[l/n,gnj[[q]] multiples of the canonical differential of the

Tate curve. The Kodaira-Spencer style isomorphism (cf. ALl.3.17 and [71)

(&E/Mn)®2 == Gy /(1/n]
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extends to an isomorphism

X2 ~ 1 =
(W™ == Qﬁn/zil/n} (lOg(Mn'Mn)} s
and, in fact, over Z[l/n,gn][[q]] , the "square" of the canonical differential

n . 89
woon on Tate(q) corresponds to n 7

It follows that a2 modular form of level n and weight k holomorphic zt

)®k

% defined over any ring R s 1/n is just a section of (uw on

L ®Z[l /n]Ro , or egulvalently a section of the quasi-coherent sheaf
Kk -
(w) gz[l/n]Ro on M, .

1.6. The g-expansion principle

For any Z[1/n]-module K , we define a modular form of level n and
weight kX, holomorphic at « , with coefficients in X , to be an element of
Ho(ﬁn,(;g)@k ®Z[1 /n]K)' At each cusp, such a modular form has a g-expansion in

K Gy /n121/008, 1 8 2llal]

Theorem 1.6.1. Let n >3, X a Z[1/n]-module, and f a modular form of
level n and weight k, holomorphic at o , with coefficients in K . Buppose
that on each of the o(n) connected components of M ®Z[l/n]%[l/n,§n] ,

there is at least one cusp at which the g-expansion of f vanishes identically.
Then £ =0 .

Before proving it, we give the main corollary.

Corollary 1.6.2. (The g-expsnsion principle). Let n >3 , K a E{1/n]J-module,

LCK a Z[l/n}—submodule. Let f be a modular form of weight k, level n,
holomorphic at « , with coefficients in K . Buppose that on each of the cp(n)
connected components of Mn ®%[l /n]i{l/n,gn} , there is at least one cusp at
which all the g-coefficients of £ lie in L %[l/n}z[l/n,gn} . Then f is

a modular form with ccefficients in L .
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Proof of corollary. The exact sequence O —> L —» K —> K/L —> 0 of

%[1/n)-modules gives an exact sequence of sheaves on Mo,

}®k w)®k

1.6.2.1 0 > L®(_<A_,)®k —> k® (0w} —> K/L)® () —> 0,

hence a cohomology exact seguence
1.6.2.2 0 —> Ho(ﬁn,L®Q®k) — Ho(l\-dn,K®(9®k) — 1O(_, (&/1)® (W) .

The theorem (1.6.1) now applies to the image of f in Ho(ﬁn,(K/L) ®9®k) ,
showing that image to be zero, whence f € Ho(ﬁn,L@) (9)®k) by the cohomology
exact sequence. QED

We now turn to the proof of the theorem. By considering the ring of
dual numbers on K , D(X) = Z[1/n]®XK , [multiplication
(a,k)}(a' ,k') = (ma',ak' +a'k)] we are reduced to the case where X is a ring
over Z{l/n} . Because the formation of the cohomology of quasi-coherent
sheaves on quasi-compact schemes commutes with inductive limits, we are first

reduced to the case where K is a finitely generated ring over Z2Z[1/n] ,

then to the case when X is a noetherian local ring. By faithful flatness
of the completion, we further reduce to the case when K is a complete
Noetherian local ring, then by Grothendieck's comparison theorem

to the case wvhen X 1is an artin local ring. By Krull's intersection theorem,
£ induces the zero-section of (9)@k over an open neighborhood of at least
one cusp on each connected component of ﬁn®K®Z[l/n,§n] , hence on an open
dense set in Mn®K . If £ is not zero, there exists a non-void closed
subset Z of ﬁn®K , containing no maximal point of b_/£n®K , on which £

is supported. Over the local ring in Mn® K of any maximal point z of Z,

f becomes non-canonically a section of ('j which is supported at the

2 4}, ®K
closed point, i.e. for any element g & M. {the maximal ideal of O = Y s
z z My ®K

there exists a power gn of g such that gnf =0 . Thus every element of

”bz is a zero-divisor, i.e. the point =z € ]}_/In®K has depth zero. As ﬁn@?K
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is smooth over an artin local ring X , it is Cohen-Macaulay, and hence only
its maximal points have depth zero. Thus 2z must be a maximal point of

ﬁn®K , a contradiction. Hence T must be zero. QED

1.7. Base-change of modular forms of level n > 3

Theorem 1.7.1. Let n >3 , and suppose either that k >2 or that k=1

and n <11 . Then for any %[1/n]-module X , the canonical map

_ — ®
K®H°(Mn,(5£®k) — 1°(_,X® (o) Ky

is an isomorphism.

Proof. By standard base-changing theorems, it suffices to show that

K2 ~~ 1 e

) %n/z[l/n] (lOE(Mn'Mn>) »

together with the fact that each connected component of Mn® Z[1/n, gn] con~

Hl(ﬁn,g(g}k) = 0 . The isomorphism (u

taing at least one cusp, shows that for k > 2 , the restriction of (9
to each connected component of Mn®Z[l/n, Cn] has degree strictly greater
than 2g-2 , g the (common) genus of any of these components,and hence

Hl(}\-ffn ,(Q)®k) = 0 by Rieman-Roch. For 3 <n <11 , explicit calculation shows
that  restricted to each connected component of ﬁn®%[l/n, Qn} has degree

strictly greater than 2g-2 , and we conclude as before. QED

Remark. When n > 12 , w has degree < 2g-~2 on each connected component
of Mn®Z[l/n, ;n} , and equality holds only for n = 12 . The author does
not know whether or not the formation of modular forms of weight one and

level n > 12 commutes with base change.

1.8, Base change of modular forms of level 1 and 2

Theorem 1.8.1. Let RO be any ring in which 2 is invertible. TFor every
integer k > 1 , the canonical map S(%,2,k) ®Z R —> S(RO,2,k) is an iso-

morphism.
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Proof. First we should remark that there are no non-zero modular forms of
level two and odd weight k over R, because the automorphism "-1" of an
elliptic curve transforms (E,w,Ot2) into (E,-w,-Oéz) , hence
f(E,(o,Otg) = £(E,-w,<,) , but O, = &, , hence f(E,-0,<,)) = f(E,-m,cég} =
= (-l}mk f(E,w,ag) , hence Zf(E,w,ch) =0 for k odd .

In sny case, modular forms of level two and weight k, holomorphic at
infinity, over any ring Ro » 1/2 , are precisely those modular forms of level
four and weight k holomorphic at o , defined over RO , which are invariant

under the action of the subgroup of GLQ(Z/ 4 Z) consisting of the matrices

= Imod 2 . Ag this group has order 16, a power of two, we may simply epply

the projector %6 ¥ g to the base-changing isomorphism (1.7.1) in
g=1 (2)

level four to produce the desired isomorphism in level two.

Theorem 1.8.2. Let R, ve any ring in which 2 and 3 are invertible. For every

integer k > 1 , the canonical map

8(%,1,k) &, R, —> S(Ro,l,k)
is an isomorphism.
Proof, The proof is similar to the previous one. We view a modular form of
level one over a ring R 3 1/6 as a modular form of level four (resp. three)
invariant under GL(2,Z/4 %) (resp. GL(2,%/3 Z) , defined over R, . As
GL{2,%Z/4 Z) has order 96 = 32 x 3 (resp. GL(2,%/3 Z) has order 48 = 16 x 3) ,

the projection technique (1.8.1 ) shows that the canonical map

s(zl1/6],1,k) %[1/63130 — s(RD,l,k)
is an isomorphism. Thus it remains only to handle the passage from Z[l/ 6] .

But for any ring R, S(R,l,k) is the fibre product of the diagram:
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B (01, ©R, ()

(G.8.2.1)
KO, , O, (o) «—— 10, %, (o)

(i.e. a modular form of level one over R is a modular from :E‘3 of level three

over R[1/3] together with a modular form fh of level four over R[1/2] ,

such that £

3
As the formation of the diagram (1.8.2.1) and of its fibre product cammutes

and fl; induce the same modular form of level 12 over R[1/12]).

with any flat extension of scalars R —> R' , taking R =% , R' = &[1/6]

gives the desired result.

Bemark 1.8.2.2. The sbove theorem becomes false when we do not exclude the
primes 2 and 3. For over the finite field :E’p , the Hasse invariant A is a
modular form of level one and weight p-l , holemorphic at w . But over Z
there are no non-zero modular forms over Z of level one, holomorphic at «,
of weight either one or two. Similerly, A-A 1is a cusp form of level one

and weight 13 (resp. 14) over ¥, (resp. ]F3 ), which cannot be the reduction
mod p of a modular form over % . See [9] for the full determination of

modular forms over % .

1.9. Modular forms of level 1 and 2: g-expansion principle

For n =1, 2, and any Z[1/nl-module K , we define a modular form of
level n and weight k , holomorphic at o« , with coefficients in X to be

for n = 1: an element of the fibre-product of the diagram

B0y, (7" By /3 (k 8 E1/30)

(1.9.0.0)

s (0™ @y ) (K By 1y 9B11/121) < B0 (0 Gy, g (ROELL/D))
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o 0= &Kk . .
(1.9.0.1) for n=2: an element of K <Ml+’(9> ®%[l/1+]K) invariant by

the subgroup of GLE(Z/A Z) consisting of matrices

= TImod 2 .

The module of all such is noted S(K,n,k) .

(In the case X is a ring, this notion coincides with that already
introduced.) An exact sequence O —>» L —> K —> K/L —> 0 gives an exact
seguence {without the final 0 ) of modules of modular forms, analogous to
(1.6,2.2).

As a corollary of (1.6.1), we have

Corollary 1.9.1. {(geexpansion principle} Let n=l or 2, X a Z[1/n]-module,
and LCK a ZE[1/n] submodule. ILet f be a modular form of weight k ,
level n , holomorphic at o« , with coefficients in K . Suppose that at one
of the cusps (for n=1 , there is only one, j=x , while for n=2 there
are three, A = 0,1,0 ), the g-coefficients of f all lie in L . Then f

is a modular form with coefficients in L .

1.10. Modular schemes of level 1 apnd 2

They don't exist, in the sense that the corresponding functors are

not representable. However, for each n >3 we can form the guotients

Mn/GLg(Z/n Z) = the affine j-line /A%[l/n]

il

= . . . oo 1
Mn/GLZ(Z/n %) = the projective j-line ZCF’Z{1 /n]
which fit together for varisble n to form the affine and projective j-lines

, Ll e = __1
over Z . We define Ml —/AZ , the affine j-line, and M o= Py -

invertible sheaf w on ﬁn , n >3, does not "descend" to an invertible
®12

The

sheaf on ﬁl s but its 1248 power g does descend, to (J(1) , the inverse

of the ideal sheaf of o .
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In particular, modular forms over any ring R of level one and weight
12k holomorphic at « , are just the elements of HO(IP%', &(x)) , and their
formation does cammute with arbitrary change of base.

Analogously for n=2 , we define
M, = Mh/the subgroup of GLZ(Z/L, Z} of matrices = I mod 2
1\_/12 = ﬁb,/ the subgroup of GLZ(Z/ 4 %) of matrices = Imod 2 .

The scheme M, is Spec Z[A][1/2n(1-A)]) , and M, is the projective A-line
1 . . = .

IPZ[1/2] . The invertible sheaf  does not descend to M2 s but its square

does descend, to ( (1) = the inverse of the ideal sheaf of the cusp A = o .

In particular, modular forms of level two over any ring R 3 1/2 , of (neces-

sarily!) even weight 2k and holomorphic at all three cusps, are just the

elements of HO(JP%', O(k)) ; hence their formation commutes with arbitrary

change of base.

1.11. Hecke operators

Let £ be a prime number, R a ring in which £ is invertible, and
n an integer prime to £ . For any elliptic curve E/ R , the group-scheme
& of points of order £ is finite &tale over R , and on a finite &tale
over-ring R' it becomes non-canonically isomorphic to (z/zz)g, . Thus
over R' , the elliptic curve ER,/R' has precisely £+1 finite flat sub-
groups-(schemes) of rank £ . For any such subgroup H , we denote by
T: Ep, —> ER’/H the projection onto the quotient and by s ER‘/H —> Eg,
the dual map, which is also finite étale of degree £ . The composition 7T-;r
is maltiplication by £ on ER,/H , and the composition Tem  is multipli-
cation by 4 on ER'
If w is a nowhere vanishing differential on E/R , then

-
T log,) = traeeﬂ(mR,) is a nowhere vanishing differential on ER,/H . If

o E > (Z/n Z); is a level n structure on E/R , there is unique level n
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structure W((xn) on ER,/H such that the diagram

(#/n 2)_,

(1.11.0.0) oc/ \r(an)

-
x> 1B/

is commutative. (N.B. There is another "natural" choice of level n structure

on ERu/H s namely & oW = ﬂ‘W(Oén) , which we will not use.)

Given a modular form over R of level n and weight k, for each triple

(E/R,m,cxn) we may form the sum over the £+1 subgroups H of order 4+1

of ER' B

(1.11.0.1) )N f(ER,/H,;r*(m) @)
i

which, while apparently an element of R' , is in fact an element of R , and

does not depend on the auxiliary choice of R' .

k-1 , we define the Hecke operator T

Normalizing this sum by the

factor £ P on modular forms of level n

and weight k by the formmla

(1.11.0.2) (7,2} (8/R,0,0 ) = FUY e, /0T (0),7@)

the sum extended to the £+1 subgroups of order £ .

We now consider the effect on the g-expansions. The £-division points

of the Tate curve Tate(q™) over Z((q)) &, Z[1/n £] all become rational

over Z{{ ql/ i)} 8, Z[1/ns,t Z] , and the £+1 subgroups of order £ are the

following:

'“/z s generated by I;E

; n
H; , generated by (g; ql/ﬂ) for 1=0,1,...,4=1 .

For the subgroup |u, , the quotient tate{q™) /5% is Tate(qng) (the projection

induced by the £'th power map on Gm) and the dual isogeny consists of dividing
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Tate(qnz) by the subgroup generated by g . For the subgroups H; , the
quotient Tate(qn)/H is Tate((§1 l/l) ) , and the dual isogeny consists

i 1/3

of dividing (Tate((§ ) ) by its subgrour IR

Thus for the subgroup |, , we have 7 (wcan) = W, OB Tate(qnz)
while for the subgroups K, , ;T*(wcan) =g2.(w__ ) on Tate((gi ql/'e)n)
{because in the latter case :f/r is induced by the 2'th power mapping on Gm .
on which w, =~ is at/t)

The quotient Tate(qn)/]uﬂ = Tate(qnz) nay be viewed as obtained
from Tate(q”) by the extension of scalars 9, Z{{q)) — %{(q)) sending
q r—> qz . We denote by ocr'1 the unique level n structure on Tate(qn)
such that cpj(otr’l) = Wz(an) , Wﬂ(an) denoting the image of o by the pro-
jection of Tate(q®) onto Tsﬂ:vs:(qn)/gple :—\-’Tate(qnz} .

The quotients Tate(q")/H, £ Tate(q B/8 el 50,01 over
%{l/nl&,g ]((ql/‘@)) , may each be viewed as obtained from
Tate(q” )/H = Tate(q /ﬁ) by the extension of scalars
o;: 2l1/ne, t;ng]((ql/”)) — %[1/ns, an]((ql/z)) which sends o —> ¢ta 1/t
Under this identification, we have (noting my Tate(q) —> Ta’ce(qn)/Hi ,
i=0,...,4-1 the projections) the relation wi(ocn} = cp;(vo(an)) , a8 an
immediate explicit calcuwlation shows. We denote by Ot" the level n structure
i:{wo(cen)} on Tate(q™)  obtained from ?ro(oan) on Tate{q/ ) Dby the exten-
sion of scalars i: Z[l/nz,gng]((ql/ﬂ)) L= g(1/n4, gnﬂj((q)) sending

/e

q to q .

Thus we have

£(Tate(q™) /Ty (0, ) 7, @)) = £(Tate(d™) o 40, @1)
(1.11.0.3) )

ca.nn

I

o, (£(Tate(d™) ,u
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£(Tate (@) /8, 7 (0 ) o, @) = 2(Tate((6F a9 0o on (@)
= o, (2(rate(@ D) pou 7 (@)
{1.11.0.4)

— .31 I . n
— gyo(1,) "He(Tate(d™) 00 A1)

i

-1 - y—L n 1
ey o (1) H(E(Tate(d) oy, 00) -

Cowbining these, we have the following formula for T 0"
Formula 1.11.1. Let £ be a modular form of level n and weight k over a

ring R , and suppose £ is a prime number not dividing n which is invertible

in R. Let f be a modular form of level n and weight k, with g-expansions

n _ g
(1.11.1.0) f(Tate(q )’“’can’o‘n) = Z ai(an) a .
i >
Then
m n - i
(1.11.1.1) (lﬁf)(Tate(q )’wcan’an) _i Zm bi(cxn)q 5

where the coefficients bi(an) are given by the formula

k-

(1.11.1.2) b (@) = 1ai/l(oc;1) + 2, @)

(with the convention that 2 /y = 0 unless £]i).

Corollary 1.11.2. If £ is holomorphic at « , so is Tl(f) . If £ is a
cusp-form (meening that its g-expansions all start in degree > 1), then so is
Tz(f) . If all the g-expansions of f are polynomials in q , the same is

true of Tz(f) .

Proof, These follow directly from the explicit formulae ~ we note that if £
has polynomial g-expansions of deg <n , then T z(f) has expansions of

degree < nf .

Proposition 1.11.3, Let n>2 and k>2 ,0r 3<n<1l and k>1.

For any prime 4 not dividing n , end any Z[1/n]-module X , there is a

necessarily unique endomorphism of the space of modular forms of weight k and
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level n, holomorphic at = , with coefficients in K , whose effect on

g-expansions is that given by the formulas (1.11.1.0-2).

Proof. By the base-changing theorem, we are reduced to the case X = Z[1/n] .
Por a modular form f over Z{1/n] , T, exists 3 priori over Z[1/ns] , but
its g-expansions all have coefficients in Z[l/n,f;n] , 50 by (1.6.2) and (1.9.1),

Tg(f) is in fact a modular form over Z[1/n] . QED

Corollary 1.11.4. Let k >2 . For any prime £, and any Z-module K, there

is a necesgsarily unique endomorphism of the space of modular forms of weight k
and level one, holomorphic at o« , whose effect on the g-expansion is that

given by the formulas (1.11.1.0-2).

Proof. Choose relatively prime integers n,m > 3 , both prime to £, and view

the module of level one modular forms as the fibre-product of the diagram
00, 0”@ (x@(1/a1))
(.11.k.1)

Ho(ﬁmn,(g)@)k@(li@z{l/nm})) € Ho(ﬁm,(g®k®(K®Z[l/m])) .

The desired Tz is the fibre product of the T,Z

diagram. QED

constructed above on this

1.12. Applications to polynomial g-expansions; the strong g-expansion principle

In this section we will admit the following result, a special case
of Swinnerton-Dyer's structure theorem (cf.[41], [43]), which will be proven

later {cf. L.h.1).

Result 1.12.0. Let n >1 be an integer, K a field of characteristic p ‘fs n,
and f a modular form over K of level n and weight k > 1 , holomorphic at

infinity. Suppose p-l 1 k . Then if all the g-expansions of £ at the cusps
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of Mn®K(gn) are constants, f =0 .

Using this result, we will now prove

Theorem 1.12.1, Let n, k¥ > 1 be integers, and suppose that £ 1is a modular
form of level n and weight k, holomorphic at « , with coefficients in a
Z[1/n]-module X . Suppose that for every prime p such that p-—l]k , the
endomorphism "multiplication by p" is injective on K . Then if all the

g-expansions of £ are polynomials in g, T =0 .

Proof. We begin by reducing to the case n > 3 , using the diagram {1.9.0.0)
to handle the case n=1 , and the interpretation (1.9.1.1) for n=2 . We
then reduce to the case in which n is divisible by a = ]Z-I[.]kp; by hypothesis
K C K[1/a] , so we may replace K by K[1/a] (using the E;homology sequence
(1.6.2.2)), then view T as a modular form of level a'n with coefficients
in K[1/a] . Next we reduce to the case in which K 1s an artin local ring
over Z{1/n] , es explained in the proof of (1.6.1). We will proceed by
induction on the least integer b > 1 such that mb =0, m denoting the
maximal ideal. Thus we begin with the case in which K is a field.
Consider the finite-dimensional K-space V of such moduvlar forms, and
choose a basis fl,... ’fr of V. Let N bve the maximum of the degrees of
the g~expansions of the fi at any of the cusps. At each cusp, record the

£

1
g-expansion of F =| ! :
e
. ai,l(an)
n —_ 1 =
F(Tate(q) u, 5% ) _Z Ajloglat, A= a, (@)
i=o i,mn

Let £ be a prime number such that £ +n, £>N. Because V is stable

under the Hecke operator T {ef.1.11), we have a matrix equation (¢ denoting

2

an T X r matrixz with coefficients in K),

Tﬂ(F) = CF .
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Passing to g-expansions gives the equation
1 k-1 N A Z i
Y (e v Sy en)at=c ) A @)
i i

whence, camparing coefficients of qlz , we find the relation

k-1 4

1t 1 —_— -
A,Bzi(an) t 4 i(an) =C Ail(an) °

N . 2 2 e Yy _
But for i >1, if >N and 14 >N , hence A”(ocn) =0 and Aﬂgi(ozn)-o

(by definition of N). As £ is invertible, we have Ai(a;l) = 0 for each
level n structure Cén . Hence each g-expansion of each f‘i is a constant,
hence by (1.12.0) each :f‘i = (0 . This concludes the proof in case X is a
field, and implies the case in which K is a vector space over a field,
as vector spaces have bases,

Now consider the case of an Artin local ring K whose maximal ideal n
satisfies MP <o | By induction, T becomes O in K/mb , hence by

the exact cohomology sequence (1.6.2.2) associated to the exact sequence of Z[1/n]-

modules O mP K K/mb —> 0, f comes from a form with
coefficients in NP . But as MP™T = o s mP is a (finite~dimensional!)
vector space over the residue field K/YI’U , and the previous case of a field

applies. QED

Corollary 1.12.2. (Strong g-expansion principle) Iet n, k >1 , and let

a = n, P . Let K be a Zl1l/an]-module of which L CK is a Z[1/an]-sub-
p-1|k

module, and f a modular form of level n and weight k, holomorphic at o« ,
such that at each cusp, all but finitely many of its g-expansion coefficients
lie in L ®Z[l/n]%[l/n’ Qn] . Then £ is a modular form with coefficients

in L.

Proof. Apply the theorem to the image of f as modular form with coefficients

in K/L . QED
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1.13. Review of the modular scheme associated to T'g{p)

For each integer n >3 prime to p , the functor "isomorphism classes
of elliptic curves with level n structure and a finite flat subgroup (scheme)

of rank p" is representable, by a scheme Mn b’ which is an affine curve
3

over %Z[1/n] ; it is a regular scheme, but it fails to be smooth over Z[1/n]

precisely at the finitely closed points on Mn - corresponding to super-
-2

singular elliptic curves in characteristic p . The projection "forget the

subgroup of rank p" makes Mn o finite and flat over Mn of degree p+l .

>

We define M
n,p

to be the normalization of Mn in M ; it is a
2

n,p
regular scheme, proper and flat over Z[1/n] . The difference M

0,0 " Mn,p

is finite and tale over Z[1/n] , and over Z[1/n, gn] it is a disjoint union
of sections, called the cusps of ﬁn,p , two of which lie over each cusp of

ﬁn , and exactly one of which is €tale over ﬁn .

The completion of ﬁn’p®z[l/n, l;n] along any of the cusps is iso=-
morphic to Z[1/n, I;n][[q]] . The universal elliptic curve with level n
structure and subgroup of order p over Z[1/n, gn]((q)) , Viewed as a punce
tured disc around an unramified cusp , is the Tate curve Tate(q") with the
level n structure corresponding to the underlying cusp of ﬁn , and the sub~
group “’Lp . Over one of the ramified cusps, the inverse image is the Tate
curve (q"P) , with the induced (q —> of) level n structure from the cusp
of Mn below, and with the subgroup generated by qn .

The automorphism of M given by (E,Otn,H) pren Sy (E/H,w(ocn) ’PE/H>

2
{w: E —> E/H denoting the projection, and W(an) the level n structure

explained in (1.11.0.0)) extends to an automorphism of ﬁn o which inter-
3

changes the two sorts of cusps.
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Chapter 2: pw-adic modular forms

This chapter is devoted to the study of various properly p-adic general-
izations of the notion of modular form, as "functions" of p-adic elliptic curves

whose Hasse invariant is not too near zero.

2.0 The Hasse invariant A as a modular form; its g-expansion

Let R be any ring in which p =0 (i.e., R is an Fp- algebra) and

consider an elliptic curve E/R . The p'th power mapping Fabs is an additive

p-linear endomorphism of @E , hence induces a p-linear endomorphism of the
R-module Hl(E, @E) . If w 1is a base of QE/R s, it determines the dual base

*
n of Hl(E, O’E) , and we define A(E,») ¢ R by setting Fabs(n) = A(B,w)'n -
Replacing w by Aw , A € B has the effect of replacing 71 by 7\.-11] , and

* -1 p ¥ - 1- -1
Fo 7)) =A™ E (n) = APA(B,w) = ATPA(R,0) AT, whence A(E,hw) =

xl'poA(E,w) , which shows that A(E,w) is a modular form of level one and

*
weight op-1 defined over F_ . More intrinsically, we may interpret Fabs as

* (29
ro (0 (E, 00) = (B, 0 )P — 1, &) ,

*
abs”®

fr-t

an Re~linear homomorphism ¥
so as a section of (QE/R . In terms of the base w of g , this section
is A(E,m)'w®p-l . To see that A is holomorphic at = , we simply note that
the Tate curve over ]FP((q)) is the restriction of a plane curve C over
]Fp[[q]] , and that it canonical differential Wapn is the restriction of a
base over ]FP[{Q]] of the qualizing sheaf of C . Thus w . determines the

)

*
is just the matrix of F_ = on Hl(C, §C> with respect to the base n,_ -

dual base 1q,, ~ of Hl(c, O’C) as ]Fp[[q]]-module, and A(Tate (q), Do
In particular, A(Tate (q), Wogn € :le[[q]J .

An alternative method of establishing holomorphy is to use the fact that
for any elliptic curve E/R over any base ring R , Hl(E, @E) is the tangent
space of E/R at the origin, which is to say the R-module of all translation-
invariant derivations of E/R , and that when R ds an Iﬁ‘p-algebra, the action

*
of F . on HY(E, §;) consists of taking the p'th iterate of en invariant
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derivation. Now we use the fact that there is a local parameter + on the com-

pletion of the Tate curve along its identity section in terms of which Wogn =

dt/l+t . Let D be the invariant derivation dual o Bopn * Then D(t) = 1+t ,
hence D(1+t) = 1+t , hence D'(1+#t) = 1+ for all n >1 . Over Foo bt
is an inveriant derivation, and it agrees with D on w, , hence DP =D,

*
hence F

abs(ncan) = Mgy and A(Tate (q), w

can)=l'

2.1 Deligne's congruence A = Ep_ mod P

1

For any even integer k > L , the Eisenstein series Ek is the modular

form over € of level one and weight k whose g-expansion is

2k n k-1
S N Ok SRR 1R T
k dln

a>1

As its g-expansion coefficients all lie in Q , Ek is defined over @ (by

1.9.1). For k =p-1, p>5 , the p-adic ordinal of :%(ﬂl is 1, hence
Ep-l has g-expansion coefficients in @n Z’p . Thus it IIr)l;l];es sense to reduce
Ep‘l modulo p , obtaining a modular form over E’P , whose g-expansion is the
constant 1. Hence A = Ep-l mod p , because both are modular forms of the

same weight with the same g-expansions.

For p =2 and 3, it is not possible to 1ift A to a modular form of
level one, holomorphic at « , over QN Z‘.P . However, for p =2 and
3<£n <11, 2 4}’ n we may 1lift A to a modular form of level n and weight 1,
holomorphic at o« , over %[1/n] (by 1.7.1). For p =3 and any n >3,
3 * n we may lift A +to a modular form of level n and weight 2, holomorphic
at © , over Z[1/n] (by 1.7.1).

For p=2 and 3<n<1l, n odd (resp. for p=3 and n>2,
34 n), we choose a modular form Ep-l
morphic at « , defined over X 1/n] , which lifts A .

of weight p-1 and level n, holo=
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Remark. For p=2 , there exists a lifting of A to a modular form of level n
over Z[l/n] for n=3,5, 7, 9, 11, and hence for any n divisible by one
of 3, 5, 7, 11. But the author does not know whether A 1ifts to a form of
level n for other n (even for n=13!). An alternative approach to the

difficulties caused by p=2 and 3 night be based on the observation that

N

the Eisenstein series E; =1+ 2Lo = (33(n)qn provides a level 1 lifting to

of At if p=2 (resp. of A% ir p=3).

2.2 p-adic modular forms with growth conditions

2.2.0 Let R be a p-adically complete ring (i.e. R, ot lim Ro/pNRo) , and
choose an element r € Ro . For any integer n >1 , prime to p, (resp.
3<n<11 for p=2, and n >2 for p=2) we define the module M(Ro,r,n,k)
of p-adic modular forms over Ro of growth r, level n and weight k¢ An element
f e M(Ro,r,n,k) is a rule which assigns to any triple (E/S, & s Y) consist-

ing of:

{2.2.1) an elliptic curve E/S , where 5 is a R -scheme on which p is nil-
o

potent (i.e. pN=O for W >>0) ;

(2.2.2) a level n structure e s

9®( 1-p)

(2.2.3) & section ¥ of satisfying Y-Ep_ =7

1
. &k .

a section f£(E/S, a s Y) of (g_)E/S) over S , which depends only on the
isomorphism class of the triple, and whose formation commutes with arbitrary
change of base of Ro~schemes St —>8 .,

Fquivalently, we may interpret f as a rule which attaches to each
quadruple (E/R, w, @, Y) consisting of:
{2.2.4)  an elliptic curve E/R, R an R_-algebra in which p is nilpotent;

(2.2.5) abvase w of /g 3

(2.2.6)  a level n-structure;
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(2.2.7) an element Y € R satisfying Y'EP_I(E,w)=r s

an element f(E/R, w, o Y) din R , which depends only on isomorphism class
of the gquadruple, whose formation commutes with extension of scalars of

V~algebras, and which satisfies the functional equation:
(2.2.8)  £(B/R, o, @, ALy Y < Ee(8/R, W, a, ¥) for re B

By passage to the 1imit, we can allow R 1o be a p-adically complete RO-

algebra in the above definition.

(2.2.9) We say that f is holomorphic at e« if for each integer N >1 ,

its value on (Tate (qn), o, r(Ep_l(Tate (@, w ))—l) , considered

“oan?
over 2((a)) ® (3R )] lies in Z[a]] ® (R /p'R )[¢, ] , for each level n

can

structure @ . We denote by S(Ro,r,n,k) the submodule of M(Ro,r,n,k)

consisting of forms holomorphic at o .

As formal consequence of the definitions, we have

. N
2.2,10 M(Ro,r,n,k) 1im M(Ro/p Ro,r,n,k) .

[

. N
2.2.11 S(Ro,r,n,k) 1im S(Ro/p Ro,r,n,k) .

2.3 Determination of M(Ro,r,n,k) when p 1is nilpotent in RO

2.3.0 We begin by determining the universal triple (E/S, Otn, Y) suppos~
ing that p is nilpotent in Ro , and n >3 . For notational convenience,

let's denote 2@1-1) by L . By the definition of M, the functor

3R rg § +—> S-isomorphism classes of triples (E/S, Ocn,Y) is the functor
. 2=
jRo,r,n:S — Ro—morphlsms g: 8 —> Mn ®RO , together with a section
* *
Y of g (L) verifying Yeg (Ep—l) =7

which we may view as a sub-functor of the functor

. . *, -
R ,n’ g — [Ro-morphlsms g: 8§ —>M_ , plus a section Y of g (I},

This last functor is representable, by the Mn®Ro-scheme
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Specy g g (Sym(Z )
n o]

M _®R
n- o

Indeed, we may cover Mn®Ro by affine opens Spec(Bi) over which Z admits

an invertible section ,Zi , and cover S by affine opens Spec(Aij) such that
g{Spec(Aij) factors through Spec(Bi) . Over Spec(Bi) » Spec (Symm(.C ))

v * * v
is Spec(Bi[ﬁi]) . Asection Y of g (AL ) determines an element Y-g {Ei)
of Aij , and then a l1lifting of the given homomorphism g: Bi -—>A. . toa

i3
homomorphism gij: Bi[zi] — Aij by the formuls

By (5 oy (809 = = elo(r-g (1,))%

These @'i piece together to define a morphism from $ to Spec (Symm(,2 )) .

The subfunctor SZR r.n is then represented by the closed subscheme
0’ b4

of Spec (Syman( L)) defined by the vanishing of Ep- -r . Thus the uni-

1
versal triple (E/S, @, Y) 4is just the inverse image on Spec (Symm( Z))

of the universal elliptic curve with level n structure over Mn®Ro , hence

Proposition 2,3.1, When 7p is nilpotent in Ro , and n >3 is prime to p,

there is a canonical isomorphisnm

®k)

H

M(Ro,r,n,k) HO(SEec L (Symm( L) (Ep—l“ r), w

i

E,eR, @ (of (3G [ ) -2))
.2, (9}®<k+j(p-r)))/(‘€p-1' r)

& ME,n k+j(p-l))/(E -1 .
i>o o o-1

Iveé

J

(because M, is affine)

#

o]
H (MH®RO,

v &

i
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2.4 Determination of S(Ro,r,n,k) when p is nilpotent in R

Proposition 2.4.1. Let n >3, p.f n . Under the isomorphism (2.3.1), the
submodule S(Ro,r,n,k) - M(Ro,r,n,k) is the submodule

®k)

B (gpee 1 gp (Sma(£)/(8,; ~0))s %5 of Hl(pee gy (ym(L)/(5, 4 -r)).
n o n o]

Proof. It suffices to treat the case in which Roa gn . Then the ring of
the completion of ﬁn® Ro along = is a finite number of copies of Rg{{q]] R
hence the ring of the completion of Spec ¥ ®R (Symm{ Z )/(Ep-l- r)) along

n o

the inverse image of ® is isomorphic to a finite number of copies of

R [[a]] ¥ R [[a)I(¥])/(T'E ) (Tate(d"), woyys @) = %)
s an) is invertible in RO[[qJ]).

®k)

. . n
(en isomorphism because Ep_l(Tate(q Y, Wonn

s o b
Thus the condition that an element f ¢ H (Spec ﬁn(g)Ro(Symm( X )/(Ep_l-r)), W
have holomorphic g-expansions is precisely the condition that it extend to a

®k)

section of 9®k over Spec = (syma( £ )/(Ep_l—r), W QED

M ®R
n o
Remark 2.4.1.1. Analogously to (2.3.1), we have
H(Spee = o1 (Sym( £)/(8__ 1)), 45
2pec M ®R ym p-1 > U

Bk

It

HO(ﬁn®RO, w @ Symm( 2 )/(Ep._l -1))

O k+j(p-1) .
H (Mn®RO, ; 6>9 . o /(1?,13.l ry) .

2.5 Determination of S(Ro,r,n,k_) in the limit

Theorem 2.5.1. Let n >3 , and suppose either that k >2 or that k=1

and n <11 , or that k=0 and p #2 , or that k=0, p=2 , and n <1l .

Let Ro be any p-adically complete ring (Ro —> 1im RO/pNRO) , and suppose
.

r e R0 is not a zero divisor in RO . Then the homomorphism
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1t KO, Sy o (m pR)/E -0

&
i>o Z[1/0]
2.5.1.0 J
S(R_,r,m,k) = lin s(RO/pNRO,r,n,k)
«
is an isomorphism.

Proof. Let 45 denote the guasicoherent sheaf @ S (p-1) on ﬁn s
21002 i>o”
and put ASN = Kf ® Ro/pNRo . The inverse system of exact sequences

E -
p-1
2.5.1.1 0 by b 4 W (Epy = 7) —>0

gives an inverse system of six-term cohomology sequences

" -
0 —> 1, By) —RE S B, 4 —> WO, /(5 - 7) —> T, ) —
2.5.1.2

B -
Pzl Hl(Mn, b)) —> Hl(Mn, By Ey 1 -7)) —>0.

Suppose first that k > 0 . Under our hypotheses, the base-changing theorenm
(1.7.1) applies, according to which HO(Mn,,(fN) = Ho(ﬁn,/ﬁ) ® (Ro/pNRO) , and
Hl(ﬁn,;éN) =0 . Thus the H° terms in (2.5.1.2) form a short exact sequence
of inverse systems, the first of which has surjective transition morphisms.
Hence the inverse limits of these inverse systems form the desired short exact
Sequence.

In case k=0 and p#2 or k=0, p=2 and n <1l , we have
®k)

Hl(l\_fln, o =0 for k >1, hence Hl(ﬁn,ﬁ ) = Hl(ﬁn,@) , and by (1.7.1)),

Ho(ﬁn,,dN) = H°(Mn,/§) ® RO/pNRO . The exact sequence (2.5.1.2) becomes
O/~ N O o= N O N
0 —>H(,4) ®R /p R —>H (Mn,,<§) ®R [p R —>H (Mn,,éN/(Ep_l-r)) —

- Hl(ﬁn,a) ® RO/pNRO L E,0) © R /p"R —> H°(ﬁn,mmo/(p1“,r> —0.
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For variable N , these form a six-term exact sequence of inverse systems. If
the sequence of their inverse limits were exact, the theorem would follow, be-
cause the map l,EQ Ho(ﬁn, 4 e RO/pNRO kS 1(:11111 HO(MH, o) @ RO/pNRo is injec-
tive (this because Ho(ﬁn,ﬁ) is a finite free Z[1/n]-module, and r is not a
zero divisor in R — 1;1:111 RO/pNRO) . To prove the exactness we apply a

general lemma.

Lemma 2.5.2. Let 0 K° Kt e ... be a {long) exact sequence
in the category of projective systems of asbelian groups indexed by the positive

integers. Suppose that for all i # i the projective systenm K- has sur-

o) >
jective transition morphisms, and that the sequence

io+l i+2 io+3
1im K e l(j;m K° —s1imK is exact. Then the sequence
— “—

0 —> 1inm K° —> 1im K& —> 1in K° —> ...
&« — —
is exact.
Proof. Consider the 2 spectral sequences of hypercohomology for the functor
iim .
[
2

D,q
T2

2% = BRI Lm) (1)) ==> BP " (1gm) (x7)

Rp(ly) (HY(K")) === mp*q(l(i_m)(K')

By hypothesis, we have IIEg’q =0 for all values of q , hence IR (lim)(XK')=0
P
for a1l n . According to ({48]), we have Rl(l(_i_m) =0 for i >2 , hence

% =0 for g>2. By (481), ve have R (lim)(kl) =0 for 14 i s
o

hence
IElg’q=O unless =0 or ¢g=1 and p=io .
i +2,0
As we have also supposed that IE2 =0 , we have degeneration: Eg’q=E£’q

for all p,g . As Eg’q=o for all p,q , we get in particular IEg’O=O for

all p , which is the desired conclusion. QED
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2.6 Determination of a "basis" of S(Ro,r,n,k) in the limit

Lemma 2.6.1. Under the numerical hypotheses of theorem (2.5.1), for each J >0

the injective homomorphism

. B LT~ .
2.6.1.1 Ho(ﬁn®zp,§9k+a (p-1)y Tp-t o Ho(ﬁn®zp’9®k+(a+l) (e-1),

admits a section.

Proof. We must show that the cokernel of (2.6.1.1) is a finite free zp-
module. By the base-changing theorem (1.7.1}, we have for each j >0 an

exact sequence of finite free %p-modules

0/ &k +3 (p~1) B O k+{5+1) (p~1)
26111 0—>K( 8% 4 y = g (1, 8% 0 ) —
- Ho(ﬁn(gxp ’2®k+(a+l) (p-1) /Ep~19®k+j (e-1)y Hl(ﬁn®%p ac (»-1), o

whose formation commutes with arbitrary change of base (for
_m_®k+(‘j+l> (p-l)/Ep-lg®k+j (p-1) , remark that it's Zp-f’lat by Igusa's theorem
(cf[17]), and modulo p , it becomes a skyscraper sheaf on Mﬂ® JFP , hence has
vanishing Hl) . Hence the cokernel of the map (2.6.1.1) is the kernel of a
surjective map of finite free Zp—modules, hence is itself a finite free
%p-module. QED
For each n, k satisfying the hypotheses of (2.5.1), and each j >0

we choose once and for all a section of {2.6.1.1) ,. and denote its image by

B(n,k,j+l) . Thus for j >0 , we have a direct sum decomposition

2612 KM THUIDED) 25 e JPE) 0 sk,5m)
and
2.6.1.3 Ho(ﬁn)£®k) G—LE'B(nak:O) .

We define B(Ro,n,k,j) = B(n,k,j) & R . Iterating the R_-analogue of
A

(2.6.1.2) gives a direct sum decomposition ¥
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S(R_,n,k+j(p-1) <—— & B(R ,nk,2)
2.6.1.3 .
-8
sy «— 5u .
p-l-a a
rigid s
Let B (Ro,r,n,k) denote the Ro—modu.le consisting of all formal sums
o0
z b, b, € B{R,n,k,a)
a=0

whose terms tend to zero in the sense that given amy N >0, dM> 0 such that

ba € pN-B(R,n,k,a) for a>M , the M allowed to depend both upon N and

upon the series I b . (Notice that Brlgld(RO,r,n,k) does not depend upon r!)

Proposition 2.6.2., Hypotheses as in (2.5.1), the inclusion of prieid

(RO s7,0,K)

in the p-adic completion of Ho(ﬁn, & “m-ku(p-l)) induces (via (2.6.1.3))
jzo

en isomorphism

Brlgld(Ro,r,n,k) —— S(R_,r,n,k)
2.6.2.1
a
5 b "o T by t
a a
a>o (Ep—-l)
réb
where " % o has the value % ba(E/S, Otn)’Ya on (E/S, an,Y) .
a>o (By3) &>0

Proof. For injectivity, we must show that if 5 b_ € Brlg:"d
az>o

(R,n,k) can be

written {(E__-r). £ s_ with s_ ¢ S{R,n,k+a{p-1)) , and s_ +tending to
p-1 a>o0 2 a a
Zero a8 a —> w , ~ then all ba=0 . It suffices to show that for any N >0,

baEO mod pN . But mod pN , both Zba and Is, become finite sums. To fix

ideas, suppose ba = s, = 0 mod pN Va>M. Let's show bM = Sy = 0 mod pN .
= = N = N = N
As 0 = bM+l = Ep-lSM mod p , sy = 0 mod p~ , hence bM = Ep-lSM—l mod p ,

hence bMEO mod pN by (2.6.1.3). Now start again with M-1 ... .
For surjectivity, we just use the decomposition (2.6.1.3). Given = Sq >
s, € 8(R,n,k+a(p-1)) tending to zero, we may decompose s = ¥ (Ep_l)l bj(a) s
i+j=a

with bj(a) € B(R,n,k,3j) , and bj(a} tends to zero as & —y o , uniformly in j .
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Then L s =32 I (E _l)lb.(a) =y 1z ro.{la) +
a g it+j=a P d a i+j=a J

+ (B .~7) % = b,{a) = (&

)u
a i1+j=a J

-1 .x’ , hence zs, and I % rlbj(a)

p-L utv=i-l a it+j=a

have the same image in S(Ro,r,n,k) . Bubt for each j , & rlbj(i-i-j) converges
i

to an element bJ! ¢ B{R,n,k,j) , and b5 tends to zero as J —>» o« , and

¥ b! has the same imasge in S(Ro,r,n,k) as

8 . QED
jzoJ a

a
o

(AN

Corollary 2.6.3. Hypotheses as in {2.5.1), the canonical mapping

S(Ro,r,n,k) —_— S(Ro,l,n,k) defined modularly by composition with the trans-
formation of functors: (E/S, an’Y) — (E/S,otn,rY), is injective; the corre-

sponding map - P
B (R ron,k) — B HEN(R L1 ,0,k)

is given by

Lb —> 1 rb .
a a

2.7 Banach norm and g-expansion for r=1

Proposition 2.7.1. Hypotheses as in (2.5.1), let x € Ro be any element which
divides a power pN, N>1, of p. Then the following conditions on an ele-

ment T € S(Rc,l,n,k) are equivalent, for k >0 :
(1) rfe x-S(RO,l,n,k) s
(2)  the g-expansions of f all lie in x-Roign}ﬁiq}l s

(3) on each of the o(n) connected components of M~ ®  E[1/nt I,
% ogli/n] n

there is at least one cusp where the g-expansion of £ 1lies in

%ok [t J[[al] -

Proof. Clearly (1) ===> (2) ===> (3) . We will prove (3) ===> (1) . Because
r=1 , we have

e R ot
§(R /xR _,1,n,k) = Brlgld(RO/xRo,l,n,k) = Brlgld(Ro,l,n,k)/X'Brlgl (R»1.m,k) 5
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so replacing RO by RO/XRO , we are reduced to the case x=0 , and p nil=-
potent in Ro . In that case f ¢ Brlgld
M

Z b, b € B(Ro,n,k,a) , and it's q-expansion at (Tate(q"),w
a=0

(Ro,l,n,k) is a finite sum

-l
e s By ) ™)

is that of
N
N-a
T b (E )
N -a_a= * P71
5 b (E ) = s
a0 2 p~1 (E )N
p-1
N Nea
hence by hypothesis, =& ba(Ep l) has g-expansion zero at one or more cusps
a=0 - —

on each geometric comnected component of ﬁn , hence by the g-expansion prine-

N
ciple (1.6.2), = b (E )Y -0. By (2.6.1.3), each b =0 . QED
a—o & p-1 a

Proposition 2.7.2. Let n,k,R satisfy the hypotheses of (2.5.1). Suppose

given for each cusp @ of l.Vl‘n a power series fa(q) € Ro[gn][[q]] . The fol-

lowing conditions are equivalent:

1. The fa are the g-expansions of an (necessarily unique) element

fe S(Ro,l,n,k) .

2.  For every power pN of p , there exists a positive integer

N1

M =0 mod p , and a "true" modular form &y € S(Ro,n,km(p-l))

whose g-expansions are congruent mod pN to the given fa .

Proof. (1) ===> {2). Replacing RO by Ro/pNRO , we may suppose p nilpotent
in RO . We must show that the g-expansion of f is the g~expansions of a true
modular form of level n and weight k' >k, k' =k mod pN-l(p-l) . But as
we saw above [efl2.7.1 )], for M >> 0, and p nilpotent in R, f has the
same g-expansions as g/(Ep_l)M » & truly modular of weight kM(p-1) .
Multiplying top and bottom by a suitsble power of Ep-l , We may suppose

M = 0 mod pN-l . Then the g-expansion congruence Ep_l(q) =1 mod(p) at each

il

cusp gives (Ep_l)PN“l(q) 1 mod (pN) , hence (Ep_l)M(q) =1 mod(pN) , and

hence f mod pN has the same g-expansion as g .
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(2) ===> {1). Multiplying necessary gy by a power of (Ep-l

we may assume that the weightis kHVJN(p-l) of the gN are increasing with N .

Let Ay =M. =M. Then (gy,, - gy (Ep_l)AN) lies in

i . e e
D -S(Ro,n,kH/JNﬂ(p-l)) by the g-expansion principle (1.6.2), hence

z (gNﬂ. - gN-(Ep_l)AN) "converges" to an element of S(Ro,l,n,k) , whose

g~expansions are congruent modulo pN to those of g . QED

2.8. Bagses for levels one and two

Suppose P ;é 2,3 . Then Ep_ is a modular form of level one which 1ifts

1
the Hasse invariant, and hence for any p-adically complebte ring Ro 3 r and
integer n > 3 prime to p , the group GLZ(Z/IJZ) acts on the functor

NG
hence on M(Ro,r,n,k) and on S(Ro,r,n,k) . Clearly M(Ro,r,l,k) is just

jRo’r’n by e(E/s, o, ¥) = (B/S, g, ¥) on the set F

the submodule M(Ro,r,n,k) GL (%/ ) of invariants under this action, and
8(R,,1,k) is the submodule S(R_,r,n,k) CLo(B/0Z) o S(R_,e,m,k) . Now
suppose n=3 or n=4 . This choice has the advantage that GLZ(Z/n}Z)

1 .
then has order prime to p (because p # 2,3) , and P = g is
#@LEZ@nZ)
then a projection onto the invariants. Using P we may also make the chosen
section of (2.6.1.1) invariant by GLZ(Z/3Z) , and define

B(1,k,5) = B(n,k,3) 2 # "B _ pn(nx,35) ,

GLo (%Z/nZ) )

B(R,1k,3) = B(L,k,j) ® R =B(R ,n,k,j) Similarly, we define

Z1/n] © °

PR 10 = P e n0) = BT rn ) e g s

the subspace of Brlgld(Ro,r,n,k) consisting of the elements 3 ba each of
whose terms b, is invariant by GLz(Z/n%) .

Applying the projector P to (2.6.2) gives:
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Proposition 2.8.1. ZLet p ;é 2,3 , RO a p-adically complete ring and r € Ro

not a zero~divisor. Then for each k > 0 , the canonical mapping

Bmgld(RO,r,l,k) ——> 8(R_,r,1,k)
2.8.1.0 raba
’b kil 1
%, Z(E =
p-1

is an isomorphism.

Now suppose P # 2 , and consider level two. Let Ep—le S(%[%J,Z,p—l)
a 1lifting of the Hasse invariant. Because the subgroup Gl has order prime to p,

G, = Kernel: GL (z/4z) —> GL(2,%/2%) , considerations similar to the above

provide a projector = #éi b = from level 4 to level 2. We have

B

G
M<R03r929k} = M(Ro,r,l;,k)(}l = Pl(M(RO,I‘,Ll»,k)) > S(Ro’ragak ) = S(Ro,l‘,h-,k) 1=
= Pl(S(RO,r,LL,k)) , Brlgid(RO,r,E,k) = Brlgid(Ro,r,h,k)Gl , the subspace of

B" ’gm(RO,r,u,k) of elements £ b, with each b, invarisnt by G, . Applying

P, to (2.6.2) we get:

Proposition 2.8.2. Let p f- 2, RO a p-adically complete ring and r € RO

not a zero-divisor. For each k > O , the canonical mapping

Brlgld(Ro,r,Z,k) — S(R,,7,2,k)
2.8.2.0
raba
'b k14 1t
= RCARE
p=1

is an isomorphism.

Applying the projectors P or Pl to (2.7.1) gives

Proposition 2.8.3. ILet RO be a p-adically complete ring. Suppose either

that p #2 and n=2 or that p #2,3 and n=1. Let X € R be any
element which divides a power pN, N>1 of p. The following conditions
on an element f ¢ S(RO ,1,0,k) are equivalent:

(1) fex- S(Ro,l,n,k) s

(2)  the g-expansions of f all lie on R [[q]] .
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2.9. Interpretation via formal schemes

Let n>3, ptn, R a p-adically complete ring, and r € R .
We denote by Mn(RO,r) (resp. ﬁn(Ro,r)) the formal scheme over R given

. . k. pA
the compatible family of Ro/p R -schemes Spec Mn®RO/pNRO(Symm( e )/(Ep—l -r))

{resp. Spec 7 ox JolR (Symm(z }/(EP_l—r))). We have
n o )

]

o Rk
M(RO,I‘,n,k) H (Mn(Ro’r> Py )

- Rk
S(Ry,rom,k) = EO( (R ,x),0 ) .

Equivalently, we may view Mn(RO,r) (resp. Mn(Ro,r)) as the completion

along p=0 of the usual scheme Spec Mn®RO(Sym(‘i )/(EP - 7))

-r)) . For any r , the first of these

(resp. Spec Mn®RO(S3’m(oi )/(Ep-l

schemes is affine, because Mn is, and when r=1 both schemes are affine.
The p-adic complebions of their coordinate rings are just the rings M(R,r,n,0)

and S{RO,l,n,O) respectively.
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Chapter 3. Existence of the Canonical Subgroup: Applications

In this chapter we study the "canonical subgroup” of an elliptic curve
whose Hasse invariant is "not too near zero.” TFor simplicity, we assume
throughout this chapter that the groundring Ro is a complete discrete valu-
ation ring of residue characteristic p and generic characteristic zero. We

normalize the ordinal function by requiring that ord(p)=1.

Theorem 3.1. (Lubin) I. Let r ¢ R, have ord(r) < p/p+l . There is one
and only one way to attach to every r-situation (E/R, o, Y) (R a p-adically
complete R -algebra, D Fr, n>1 if p#2,3, n>3 if p=2,3,

Y'Ep_l =r) a finite flat rank p subgroup scheme H C E , called the canonical

subgroup of E/R , such that:

H depends only on the isomorphism class of (E/R, o, vy,

and only on that of (E/R, Y) if p # 2,3 .

The formation of H commutes with arbitrary change of base

R ~—> R' of p-adically complete Ro—algebras.

If p/r =0 in R, H is the kernel of Frobenius: E —> E(p).

If E/R is the Tate curve Tate{q”) over RO/pNRO((q)) s

then H is the subgroup By of Tate(q™) .

1. Suppose r € R~ has ord(r) < 1/p+l . Then there is one and only

one way to attach to every r-situation (E/R, e, Y) (R a p-adically complete

R -algebra, ptn, n>1 if p#2,3, n>3 if p=2,3, ¥ Ep_lzr)
an rP-situation (E'/R, al, Y*') , where

E' = B/H

ol = 'IT(Ofn) , m: E —>E' denoting the projection

n

Te 1 —
Y EP_l(E‘/R, al) =P
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such that
Y' depends only on the isomorphism class of (E/R, o, ¥)

and only on that of (E/R, Y) if p # 2,3 .

The formation of Y' commutes with arbitrary change of

base R —> R' of p-adically complete Ro-algebras.

If p/r=0 in R, Y' is the inverse image (@) o

Y on B® -wr .

Before giving the proof, we give some applications.

Theorem 3.2. Suppose n >3, D ,}' n. Let £ be a modular form of level n
and weight k on Fo(p) , defined over RO , and which is holomorphic at the
unramified cusps of Mn,p . There exists a (necessarily unique) element
Te S(Ro,l,n,k) whose g-expansions at each cusp of M‘n is that of T at
the overlying unramified cusp of ﬁn,p . Furthermore, if r € Ro has
ord(r) < p/p+l , then in fact T ¢ S(Ro,r,n,k) .

Proof. Simply define E(E/R,w,oan,y) = £(B/Ry00 LH)

Theorem 3.3, Suppose n >3, D +n , and that either k >2 or k=1 and
n <11, or that k=0, p#2 , or that k=0, p=2 and n <1l . Let
r € R have ord(r) < 1/p+l . For any f ¢ S(Ro,rp,n,k) , there is a unique

element o(f) ¢ S(Ro,l,n,k) whose g-expansions are given by

(P(f) (Tate(qn) 3wcan’an) = f(Tate(qnp) ,wcan5w(an))

[where 7: Tate{q") —> Tate(qd™®) 1is the map "dividing by By ", and 1T(Otn)

is the induced level n-structure]. Furthermore, o¢(f)- (Ep-l)k € S(Ro,r,n,pk) .

oK
Proof. Define cp(f)(E/R,w,Otn,Y) = f(E'/R, 7 (w) ,ar'l,yv) , [E'=E/H, 71 E — E'

is the projection]. This makes sense if Y-E . =1, for then T is étale

p-1

and so T (w) is a nowhere vanishing differential on B' = E/H . To see that

El;_.l'cp(f) actually lies in S(Ro,r,n,kp) , notice that its value on
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(B/Ry 0,2 5Y), Y'Ep_l=rp , is given formally by
(Ep_l(E/R,m,Otn) Y £ (B /R, (0) ,OLI’I,Y') . [In fact this expression has no meaning,
because W*(w) may well fail to be nowhere-vanishing on E' .] However, if

we write ;r*(w) =Aw' with N € R and ' nowhere-vanishing on E' , then

k (E/R,(u,a ) k
((Ep-l) 'cp(f))(E/R,u),OCn,Y) = _P—’—_""'> 'f(E'/R:w'saI'laY') .

But a simple tangent calculation (cf. 3.6.5 ) shows that A and Ep—l are
essentially equel; they differ multiplicatively by a unit of R . By "reduction
to the universal case", in which R is flat over Zp , we can make sense of

the ratio Ep_l/}\ » and interpret it as a unit in any R ; this permits us to

E/R,w,@t )
define (Ep f)(E/R,m,Ot ,Y)) < > £(E", W ! RO QED

3.4 Construction of the canonical subgroup in case r=1

Let us first note that for r=1 the theorem is very simple. Given
(E/R,Otn) with Ep_l(E/R,Otn) invertible, the curve E ® R/pR over R/pR has
invertible Hasse invariant, hence Ker(¥: E ® R/pR —> (E ® R/pR) (p)) is a
finite flat subgroup-scheme of E & R/pR of rank p whose Cartier dual, the
kernel of Verschiebung, is éj:_aie_. Since R 1is p-adically complete, Hensel's
lemma allows us to uniquely 1ift Ker F to the desired subgroup-scheme H of
E/R (by taking for H the Cartier dual of the unique lifting of its &tale dual).
Since the Tate curve Tate(q™) over IFP((q)) has ker F = Ky the above
argument shows that the canonical subgroup of Tate(q") over RO/pNRO((q)) is
gup . This concludes the proof of part I of the Theorem. For part II, still
only in the case r=1 , we simply note that E' = E/H reduces mod p to
(E®R/pR)/Ker F Z (E ® R/pR) () , which certainly has invertible Hasse invar-
iant if E ® R/pR does - indeed Ep_l((E ® R/pR) (p),w(P) ’O‘:(lp)) =
=(Ep_l(E ® R/pR,w,Otn))P . Hence Ep_l(E',Ocr'l) is invertible in R . This

concludes the proof of (3.1) in the case r=1.
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3.5.0 The "general case" is unfortunately more difficult, and involves a
samewhat detailed study of the formal group of an elliptic curve. Our method
of constructing the canonical subgroup will be to first construct a finite
flat subscheme of the formal group, then to show that it is in fact a subgroup

which has the desired properties. We begin with some lemmas on the formal group.

3.6 Lemmas on the formal group

Lemma 3.6.1. Let R be an Fp-algebra, E/R an elliptic curve, and w &
nowhere vanishing differentisl. Let X be a parameter for the formal group
of E/R ({(i.e., the completion of £ along the identity section), which is

dual to « din the sense that the expansion of w along the formal group is

w={(1+ = aan)dX.
n>1

Let A(E,») denobe the Hasse invariant. Then we have the identities

-1

p-1
a 5 . = (A(E,w) for n=1,2,... .
Pl

. 1 31 (p) . 1t L
Proof. TLet C: QE/R —_— (QE/R) denote the Cartier operator, "dual" to

the endomorphism D —> DP of T%/ We have (O (w) = A(E,w)'w(P) , but we

R
C " ",
may calculate locally”:

0, pf sl
C(aandX) = ot
a (X Yt plu+l

Hence (C {w) = (%) (p), and

m i I “p(m+1)-1
Clw = A(E,w)'w®P =35 A(E,uw)( am)p(de.X)@) , whence

= ) P - ;
& (1) -1 = A(E,w) (am) . As a_=1, the result follows easily. QED

Lemma 3.6.2. Let R be any Zp-algebra, and let G be a one~parameter formal

group over R . Then

(1) EndR(G) o z13 and Zp lies in the center of EndR(G) .
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(2) Given any parameter XO , there exists a {(non-unique!) parameter
X = Xo + higher terms such that for any p-1'st root of unity

t e zp , we have [t](X) =tX .

Proof. Thanks to Lazard, we're reduced to the universal situation, which has
R flat over Zp . So we may use log, exp, and continulty to get (). &s
for (2), it is proven directly in ([31], lemma 4.12), or we can remark that
any choice of a "p-typical coordinate" X (cf.[5], [6]) which is congruent to

Xo mpd degree two terms will do the job.

Lemma 3.6.3. Let R be an ]Fp-a,lgebra, G a one-parameter formal group over R.

In terms of any parameter X , [p](X) is a function of . ile.

3.6.3.0 [p](X) = v(&F) = vnxnp .
1

X
n >
Proof. In End (G), p = VeF, F: G —> G(P) Ve G(P) -G . QED
Pralithedicbacihi E 3

Lema 3.6.4. Let R be a %p—algebra, G a one~parsmeter formal group over R,
X a parameter on G such that [(](X) =X for any p-1'st root of unity

¢ € Zp . Then [pl](X) = X:(a series in Xp-l) .

Proof. [pl([¢](X)) = [t1([p](X)) because p-¢ =('p in Z . Thus
[p1(tX) =t ([pl(X)) , so writing [pl(X) == ean , we have engn = enl; ,
hence ({;-t_;n)en=0 . But for n #1 (p-1), t~t" is invertible in Z, , bence

en=0 . QED

Lemma, 3.6.2. Let R be a %p-algebra, G a one-paremeter formal group over R,
X a paremeter, w= (1+ % aan)dX the dual invariant differential. Then

n>1
we have

3.6.5.0 [pI1(x) = ap_l-xp + higher terms mod{p) .
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Proof., [In the application to elliptic curves, we have a

-1
[p1(x) = v(&®) = tangent(V)-xF + higher terms, so the assertion is that
A(E :U-‘)

= A{E,) , and

It

n

tangent(V) = action of F on Hl(E, 9 ) , which is true!]
By Lazard, we are reduced to the universal case, in which R is flat

over Z.p . Over R[1/pl , we have w = dp(X), o(X) e R[1/pI[{X]] ,

p-2 +1 P
p(X) =X + = 8 o7t ap 15 + higher terms. Let ¥(X) %be the inverse
=2 -

series to @ ¥(X)= X + ... 0(0fX)) =X . Then [pl(X) = y(p-oX)) .
Because o(X) mod degree p lies in X+XZR{{X}} , for each n>2 ,

cp(X)n mod degree prl lies in © o+ Xnﬂ“R[{X]] . If we write

£ b.xX"
132 i

-8
Dpseeesbyy € R, while b = _EP:.% modulo R . WNow the term of degree p in

W(x) =X + , we see from this and the requirment y(p(X)) =X that
[p1(X) = v(pp(X)) is given by

Py D i -l D 1

I b;p +(coef of ¥ in (pX))*) = 2yt Z o.p (coef of X in o(X) )+bp-Pp ,

i=1 i=2

and as pbp € R, we see that all the terms save ap—l ilie in pR . QED
We may suwmnarize our findings in a proposition.

Proposition 3.6.6. Let R be a Zp-—a.lgebra, G a one-parameter formal group

over R, X a coordinate on G which satisfies [£](X) = tX for every p-l'st

root of unity { e ZP , and » the "dual" differential. Then

3.6.6.0 [p] (X) = pX + S:X:p + 3 cm.Xm(p"l)'*'l
m=2

i

where 2,C,,Cq5e005 € R, and ¢ €pR unless m(p-1)+1 =0(p) , i.e.,
c, © pR unless m =1 (p) . Further, if G is the formal group of an ellip-

tic curve E/R , then a = A(E,y) mod pR .

Proof. By (3.6.4), [p]l(X)=xX-(a series in xp“l) , but modulo pR, [pl(X) is

also a series in XF , by (3.6.3). The congruence for a is by (3.6.1).
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3.7 Construction of the canonical subgroup as a subscheme of the formal group

Suppose we are given (E/R, Otn, Y) with R a pe-adically complete

R_-algebra, n >1 if p #2,3, n>3 for p=2,3, Y-Ep =r, ord(r) < p/p+l.

=1
Because it suffices to treat the case when p is nilpotent in R , we may, by
ordinary localization on R , suppose that the formal group of E/R is given
by a one-parameter formal group law over R , with formsl paramter X ;

we denote by w the "dual" differential. By reduction to the universal case,
we may pow reduce to the case vhen R is a flat Zp-a,lgebra. By (3.6.2), we

may suppose that [£](X) = tX for all p-l'st roots of unity ¢ € Zp .

By (3.6.6), the endomorphism {p] on the formal group looks like

(3.7.0) [p](X) = pX + axP + cm)gn(p-l)ﬂ

z
m > 2
ja =
with <
2'cm50 mod pR unless m=1 (p) .

Ep_l(E/R,w,ozn) mod pR

We first give a heuristic for the method to be used.

Naively speaking, the kernel of [p] is an F p-vector space, and the
canonical subgroup is just a nice choice of a line in this Fp-space, i.e.,
it is an orbit of IF; in this vector space. But the action of ]F}; on
Ker{{p]) is induced by the action of Mooy - Z.P on the formal group. Thus
we must write down the egquation for the orbits of the action of gﬁp—l on
Ker([p]) , and somehow solve this eguation in a "canonicsl" way. Because
¢ € Moy acts on X by [t](X) =tX , it is natural to take T dfn yp-1 5
a parameter for the space of orbits of the action of JF; on Kex({»}) .

The formal identity (obtained from (3.6.6.0) by substituting T = @)

(3.7.1) [p](X) =X-(p + a7 + £ T
m>2

suggests that in fact the equation for the orbits is

{3.7.2) g(T) @praT + r e ™ao 5
m>2 T



119 Ka-51

and that the canonical subgroup is nothing more than a canonical zero of g(T).
We now implement the above heuristically-motivated procedure. Let

r, € R be the element -p/r ; we have ord(rl) =1 - ord(r) > 1/p+l , (because

ord{r) < p/p*l by hypothesis). let Y = Y(E/R,m,ozn) € R ; we have

Y-EP_I(E/R,w,Ozn) =r . Because a = EP_I(E/R,w,Odn) modulo pR , we may write

Ep_l(E/R,m,Otn) = atpb, b € R. Thus Y-{a+#pb) = r , and an immediate calcu-

lation shows that if we put

r.Y

-
(3.7.1) b = 1+r,bY

{which makes sense, because 7y is topologically nilpotent in R) , then
D+ ato =0 .

Let's define gl(T) = g(toT) 5
{3.7.5) gl(T) = p+atOT + = cm(to) T

m>2

cr(to)me .

1]

p-pT + 2
r>2

= pHl .
Let r, = (rl) /P , an element of R Thaving ord(rz) >0 . Let rg € R,

be any generator of the ideal (re,(rl)g) of R .

Lemma 3.7.6. We may write gl(T) = p-gg(T) , with

(3.7.6.1) g(T) =1-T + , mem R

[RVANG

m

with 4 ¢ r R, and d =0 as m—oow .
m m

3

Proof. We have d = cm(to)m/p . Because cm/p lies in R if m Flmod p ,
and because (to)p+l/p lies in TR , we have 4 € 1R for all m > 2 , and

dmﬁo as m —> « ., We next apply Newton's lemma to R, I=r.R and h:gg.

3
Lemma 3.7.7. (Newton) Let R be a ring complete and separated with respect

[o0]
to powers of an ideal ICR . Let h(T) =1-T + % mem ,with d €T,
m=2
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and 4 -—>0 as m —>w . By "substitution", h gives rise to a continuous
function h: R —> R . There exists a unique element; t(xJ € T such that

n{1 - ﬁw) =0 .

Proof. Making the substitution T = 1-5 , we introduce

m . o .
hl(S) =h(1-8) = e, * (l+el)8 + N é 0 e, S , with coefficients e, € I.

For s € I, hl(s) =h{l~s) , 8o our problem is to show that h

1 has a unique

Zero s in I . Forany s € I, hi(s) € 1+1I , hence is invertible in R ,
while hl(s) € I . The Newton process of successive approximations:

- - _ . . .
Sy = 0seeess g =8 hl(sn)/hl(sn) is easily seen to converge to a zero of

hl. If s and s +A are two zeros of hl

0 = hl(s +A) = hl(s) + hi(s)-A + (Ae) = hi(s)'A + (Ae) , hence as hi(s) is

in I , we have

invertible, we have A € (Az) . Because A€ I and R is I-adically sepa=-

rated, this implies A =0 . QED

Tracing back our steps, we have constructed a zero +t = to(l- too)

can

of g{(T) . Because tca.n lies in rlR » we may expand g in powers of Tt ,

and conclude that g(T) is divisible by T-tcan in R[[T]] . We define the

canonical subscheme to be the finite flat rank p subscheme of Ker([pl)

defined by the equation Xp-tcanx . (It may be verified that this subscheme
is independent of the choice of coordinate X on the formal group satisfying

[£1(X) =¢X for all p-l'st roots of unity ¢ € Zp )

3.8 The canonical subscheme is a subgroup

Let's begin by remarking that if E/R modulo p has invertible Hasse
invariant, then [p](X) = pX + (unit) ... By the formal version of
the Weierstrass Preparation Theorem, we see that in R[[X]] , we have
[p1{X) = (xF- toan X)-{a unit in R[[X]]) . Thus when Hasse is invertible mod p,
the canonical subscheme is all of Ker([p]) in the formal group, hence in

particular it's a subgroup-scheme of the formal group.
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In the general case, the condition that the subscheme of equation
xF- toan X Dbe a subgroup-scheme of the formal group is that, noting by G(X,Y)

the group law, we have

(3.8.1) G(X,Y)p-tcan G{X,¥) =0 in R[[X,Y]}/(Xp-tcan XL¥P-t ).

can

Because tcan lies in rlR , it is topologically nilpotent in R , hence the
R-algebra A = R[[X,Y]]/(xP “toan X s ®. toaY) 1is finite and free of rank
p? with basis XY , 0<i, j <p-l. The condition that G(¥,Y)P-t G(X,Y)

vanish in A is simply that the p2 "eoefficients" g., € R defined by the

ij
equation

(3.8.2)  ox,0)° -t aX,Y) = Z g, X7 in A
0 N A 1]
0<d, J<pl

all vapnish in R . Thus it suffices to find a p-adically complete Ro~algebra
R' D R such that, over R' , the canonical subscheme is a subgroup {for then
the gij vanish in R’ , henee vanish in R). But in the universal situation,

R = M(Ro,r,n,o) CR' = M(Ro,l,n,o) , and over R' , E

p-1 is invertible,

hence Hasse mod p is invertible, and so as noted above the canonical sub-
scheme is a subgroup over R' . This concludes the proof of part I of the

main theorem {(3.1).

(3.9) We now turn to proving part IT of 3.1, by comstructing Y' . As be-
fore we may suppose R flat over %p . Let r ¢ Ro have ord(r) < l/p+l .

Then v, = p/r has ord(rl) > p/p+l , and hence . is divisible by ®

1 1
and 1), = z'l/x'p has ord(rh) >0 . Since % € r R, modulo riR the
canonical subgroup is just the kernel of F: E —> E(p) . Hence E' mod rlR
is E(p) . Let ' be any nowhere vanishing one-form on E' which reduces

mnodulo rlR to w(P) on E(p) . Hence we have the congruence

i

{(3.9.1) Ep_l(E'/R,w’ ) (Ep_l(E,w,Otn))p modulo r,R .
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Becanse Ty = ru-rp , we may write

(3'9'2) Ep_l(E’/Rﬁw’:va;J = (Ep_l(E/Rslk)}an})p +rpr)+<j > jeR.
Using the equation

(3.9.3) Y(B/R0@ ) E ) (B/Ryw ) = v

one immediately checks that if we define

(3.9.4) Y (BY/R,ut)) = (Y(E/R,w,an))% + 1yt (T(E/Rua )P,

then Y’(E'/R,m‘;1&)'Ep_l{E'/R,w';Xg) =rP . This concludes the proof of

part II. QED

3.10 Finiteness properties of the Frobenius endomorphism of p-adic modular

functions.
Throughout the rest of this chapter, we denote by RO a complete dis-
crete valuation ring of mixed characteristic with perfect residue field Ro/m

The Frobenius endomorphism ¢ of S(Ro,l,n,k) is defined by

. -1 Y
() (E,w,Cin,Y = (Ep_l) Y o= £(E/H,7(w) ,v{ocn) LYY = 1/Ep_l) , where H denotes
the canonical subgroup of E , m: E —> E/H denotes the projection. As we
have seen azbove, for r € R having ord(r) < 1/p+l , the composite (Ep_l)k-

"extends" to give a commutative diagram

(B _)¥
(R ,1,n,k) —&=> S(R,,1,n,k) B S(R_,1,n,7k)

—— ]

S(RO,I"p,n,k) ““““““ i i /':/ b2 S(Roﬂ‘,ngpk)

For k=0, we find simply that the endomorphism ¢ maps S(Ro,rp,n,o) to

S(Ro,r,n,o) for eny r e R having ord(r) < 1/p+l .
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Theorem 3.10.1. Suppose n >3 and p,{'n ,and n <11 if p=2 ., Then

I. For r e R with ord(r) < 1/p+l , the Frobenius morphism
o S(Ro,rp,n,o) — S(Ro,r,n,O) is a finite morphism (but not in

general flat).
II. If r=1, then ¢ is a finite flat morphism of degree p .

III. For suy r with ord(r) < 1/p+l , the homomorphism (K the fraction

field of R)
P®K: S(Ro,rp,n,o)®K — 5(R,,7,n,0) ©K
is finite and etale of rank p .

Proof. (I). Because the ring S(Ro,r,n,o) is complete and separated in the
p~adic topology, to prove finiteness of ¢ it suffices to prove that the

induced homomorphism
3.10.2 o®R [/ m : S(Ro,rp,n,o) ®R /m —> S(R_,r,n,0)®R fm

is finite. Interpreting S(Ro,r,n,o) as HO(Mn(Ro,r), G) (cf. 2.9), and
noting that b_@n(Ro,r) is flat over R, we see {by "universal coefficients")
that the canonical homomorphism S(Ro,r,n,0)®RO/r£ —_— S(Rc/m,r,n,o) is
injective, with cokernel of finite dimension over Ro/g . Thus S(Ro/m,r,n,o)
is a finite module over S(Ro,r,n,0)®Ro/m , and we have a commutabive dlagrem

of ring homomorphisms
S(RO/Q,ZP,H,O) _2 S(RO/Q,r,n,O)

3.10.3
P®R /m

o

S(Ro,rp,n,o)®Ro/n_a ————> 8(R_,r,0,0)®R /u
in which the vertical arrows are finite. Thus the finiteness of the lower
horizontal arrow (which is what we wish to prove) follows from the finiteness

of the upper horizontal arrow.
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Notice that if r=1, both S(R /m,r,n,0) and 8(R_/m,v¥,n,0) are
S(Ro/m,l,n,o) > while if 0 <ord(r) , both S(R /m,r,n,0) and S(Ro/m,rp,n,o)
are S(Ro/m,o,n,o) . Because ord(r) < 1/p+l , both p/r and p/rf liein m ,
and hence over Ro/m the canonical subgroup over ﬁn(RO/m,r) and over

h—;fn(Rc/m,n,rp Y is just the kernel of Frobenius. Tt follows immediately that in

either case (f.e., r=1 or O <ord{r) <1/p+l) , the endomorphism ¢ of
S(Ro/r_g,r,n,o) is precisely the p'th power mapping (because
o(£) (B0 ,Y) = f(E(P),m(P),aiP) Y = Y(E,w,an)P} = (f(E,w,ocn,Y))p) . But
b—ffn(Ro/m,r} is a scheme of finite type over Ro/m , hence S(Ro/gq,r,n,o) is
a finitely generated Ro/g-algebz-a, hence finite over itself by the p'th power
endomorphism, which proves (I).

For (II}, we remark that when r=1 , the scheme M_n(Ro/m,l) is simply

the open set of ﬁn® RO/I_H_ where E is invertible, hence is a smooth affine

p-1
curve over Ro/lg . Hence the p'th power endomorphism of 1ts coordinate ring
S(Ro/m,l,n,o) makes that ring finite and flat over itself of rank p . Because
S(Ro,l,n,o) is p-adically complete and flat over R, it follows that o
makes S(Ro,l,n,o) into a finite flat module over itself of degree p.

The proof of {III) is more difficult, and requires Tate's theory of
rigid analytic spaces. The ring S(Ro,r,n,o) is the p~adic completion of

Ho(ﬁn®Ro,Symm(9®p"l))/(Ep_l- r) , and this last algebra is finitely generated

over RQ (vecause w has positive degree, hence is ggggg:g}. Thus noting by K
the fraction field of Ro , we see that S(Ro,r,n,O) ®K is a rigid algebra in
the sense of Tate, and contains as dense subalgebra the K-algebra

B, 91,55 ¥P ) /(5 ) - v) 250, O, symn(u®P )/ (5, - 1)

> #(i ®K, m(_@@p-}‘) / (E,_y-1)) , which is precisely the coordinate ring
Dn®K of the open subset of Mn®K where Ep—l is dinvertible. Thanks to
Tate, the ideals of S(Ro,r,n,0)®K are all closed, hence are the closures of

their inbtersections with Dn®K . But as Dn ®K is the coordinate ring of a

smooth affine curve over K , its prime ideals are either minimal {corresponding
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+to irreducible components) or maximal {corresponding to conjugacy classes of
points with values in Ffinite extensions of K ). Indeed, the closed points of
S(Ro,r,n,0)®K are conjugacy classes of homomorphisms 72 S(Ro,r,n,o) —> K,
K' a finite extension of K , or equivalently they are homomorphisms

m: D ®K —> K' which satisfy the contimuity conditions [W(Dn)[ <1,

12 |mE )| 2 {x] (ie., that the images of Eo

"power bounded"). Further, the completions of the local rings at corresponding

and of ¥ = T/Ep—l be

closed points are isomorphic, hence are regular local rings of dimension one,

hence S(Ro,r,n,O) ®K is a regular ring of dimension one. Thus the map

3.10.4 S(Ro,z‘p,n,o)®K —e®K 8(R_,r,m,0) K

is a finite morphism between regular rings of the same dimension, hence {cf. EGA
v, 17.3.5.2) is flat. To see that it has rank p, it suffices to note that by
(II), it has rank p over the dense open set where lEp-l| =1 . It remains
only to see that (3.10.4) is étale. TFor this, it suffices to show that the
fibre over each point with values in @ , the completion of the algebraic
closure of K , consists of p distinct points. Over a point at infinity,
corresponding to Tate(a™) over X((q)) , the fibre consists of the p curves
Tate(gpqn/p) over K((a)) , each of which gives rise to Tate(q") wupon
division by its canonical subgroup uup . A finite point is an elliptic curve
E/Q [with level n structure Ccn ] having good reduction, such that for any
differential « which extends to a nowhere vanishing differential over the
valuation ring of @ , we have 1 > iEp_l(E/K,w)[ > [r|P . The curve E has

ptl subgroups of order p, say HO,H ,...,HP , of which Ho is the canonical

1
subgroup.
ret £(H) - E/H; . The points lying over E ere among the p+l

curves E(l) s (E(l) carrying the induced level n struchure); indeed,
E(l) lies over if and anly if E(l) is a point of S(Ro,r,n,o)®9 whose

canonical subgroup is pE/Hi .
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Consider first the case in which IEp_l(E/K,w)I =1 , i.e., a formal
group of height one. Then Ho is the kernel of p in the formal group,
while the Hi’ i >1 , meet the formal group only in {0} . The quotient
E(O) = E/Ho again has a formal group of "height one" hence its canonical sub~
group is the kernel of p in its formal group, while the image of pE in
E(O) meets the formal group only in {0} . Thus E<O> does not lie over E .
For 1 >1, the quotient E(l) also has a formal group of height one, but
now the image of H  in E(i) = E/Hi is the kernel of p in the formal
group, i.e., it is the canonical subgroup, and hence the E(i) , i=1,...,Dp ,
do lie over.

It remains to treat the case of "supersingular reduction”, which we

do by Imbin's original method, and show (part 5 of theorem 3.10.7) %hat again

only E(l) P ,E(p) lie over.

(3.10.5) Let § be an algebraically closed complete (under & rank one valu=-
ation) field of characteristic zero and residue characteristic p . Let
RC X be the valuation ring, and let E/R be an elliptic curve over R , and
X a parameter for the formal group of E/R , normalized by the condition
[£]1(X) =tX for every p-1l'st root of unity in %p . Suppose that the Hasse
invariant of the special fibre vanishes. Then in the formal group, we have

2

D - -
(3.10.6)  [p](x) = pX+ax®+ & @D Lo @, 5 ale-Du
o om Pl
m=2 m > pH2

with ord(a) >0 , ord{Cm) >1 for m#1modp, and ord(CPﬂ} =0,
(this last because we suppose height two for the special fibre). [If ord(a)<1 ,

we have ord(a) = ord Ep_l(E/R,m) for any nowhere vanishing differential w on

E/R, by (2.1).]
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Theorem 3.10,7. (Lubin)

1. If ord(a) < p/p+l , the canonical subgroup H  consists of {0}

and the p-1 solutions X of (3.10.6) whose ordinal is l;:{d(a)_ The pg-p

ord (a) < 1-ord(a) )
P -p p-l ’
If ord(a) > p/p+l , then all non-zero solutions of (3.10.6) have ordinal l/pg-l .

other solutions of (3.10.6) all have ordinal (which is

2. If ord{a) < 1/p+¥l , then the quotient E' = E/Ho has as normalized

coordinate for its formal group X' = 1 G(X,x) , where G(X,Y) denotes
x€H
o

the formal group law on E , The expression of [p] on E/I-IO is
[pl(x7) = px' +a'(x)¥ + ...

with ord(a') = p ord(a) .

3. If 1/p+l < ord(a) < pyp+l , then ord(a') =1 - ord & , and the

canonical subgroup of E/H ~is _E/H_, and (E/HO)/HO(E/HO) is just E ,

D
(but a level n structure Ocn becomes p'l-an after two divisions by the

canonical subgroup - (compare Dwork [11],8.11)).

L. If ord{e) > p/p+l , there exist p+l curves E<l> , each having

ord(a(i)) = 1/p+l , such that E = E(i)/HO(E(i)) , where HO(E(i)) denotes

(1)

the canonical subgroup of E

These curves are E(l) = E/Hi’ 1=0,L1,u0s,D »

5. If 0 <ord(a) < p/p+1 , there exist precisely p curves E{l) having
ord(a,) < 1/ptl such that E = E(l>/HO(E(1)) , namely the curves p(1) - B/H, ,

i=1,...,p (c£.3.10.b1) , and ord(a,) = % ord(a) .
Proof. 1. follows from looking at the Newbon polygon of [pl(X) , which is

(1,1)

/~ if ord(a) > p/p+l

(p,ord a)

if ord(a) < p/p+l
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and remarking that the construction of the canonical subgroup as subscheme of

the formal group consisted precisely of isolating the factor of [p](X)

corresponding to the first slope, when there is a first slope.

2. By Lubin ([32]), we know that if H 1is any finite subgroup of a one=-

parameter formal group over RO, then X —> T G{X,x) is the projection
x € H

onto the guotient. Thus the non-zerc points of order p on E/HO are of

two sorts, the points 1 G(y,x) with [pl(y)=0, ord(y) = Q—x;gﬁhl s

X€E HO b -p
and the points T G(z,x) where [pl(z) ¢ H , [pl(z) £0 The first sort
x€H
)
of point has ordinel given by =  ord(G(y,x)) , and as ord(y) < ord(x)
xel
)
for any x € H , this sum is just plord y) = %&Q . The second sort of
point has ordinal ¥  ord(G{z,x)) . Frem the equation [pl(z) € HO-{O} .
xel
we see that ord([pl(z)) = i‘%l . The Newton polygon of [p](z)=er0- {0}
is thus
(O, l-Ol‘d(a)>
p-1
(psord(s))
2
(»°,0)

and hence z has either ordinal ord(a)/p?'-p or k-'ng(a). In either case,
ord(z) < ord(x) for any x € H . Hence the secondpsggt of point has ordinal
either ord(a)/p-1 or (l-p ord(al/p-1 . Thus among the non-zeroc points of
order p on E/Ho , there are two distinct ordinals which occur, namely

ord(sa)/p-1 and (1-p ord(a)/p-1 , of which the greater is (1-p ord(a)/p-1 .

l-ord(a')_ 1-~p ord(a)
p-1 p-1

>

Thus by 1, E/HO has ord{a') < p/p+l , and

which proves 2. We note that the image of pE is not the canonical subgroup.
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3. If we suppose 1/p+l < ord(a) < p/p+l , then on E/Ho the first

sort of points of order p are the points 1 G(y,x) for each y such
xel
o

that [pl(y) =0, y £ H . As in 2, these points have ordinal ord(a)/p-1 .

The second sort are the points T G(z,x) where [pl{z) ¢ H - {o} ,
x€H
o

hence [p](z) has ordinal l;;__x_‘%l . They hypothesis ord(a) > 1/p*1 in-

sures that the Newton polygon of [p](Z) =x € H - {0} is

(o 1~ord(a2> ) ¢ (p,ord(a))
)

(P2:O>

hence ord(z) = 9—'—;—%-91 < ord(x) for any x € H_ , hence the second sort of
p {p-1)

point has ordinal 1-brd(a)/p(p-1) . Thus E/HO hag a canonical subgroup,
namely its points of order p of largest ordinal = ord(a)/p-1 . Hence
l-ord(a') _

ol = ord(a)/p~1 , whence ord{a') = 1-ord(a) , and the canonical sub~

group is the image of all the points of order p on E .

L. If ord(a) > p/p+l , the Newton polygon of [pl(X) is

(1.1)

* (p,ord(a))

* (%,0)

Hence all non-zero points of order p have the same ordinal l/p2-l . The

points z such that [pl(z) =x, [pJ(x) =0, x # 0 , have ordinal l/pz(pZ-l) s
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because the Newton polygon of [pl]{Z) =x , ord(x) = l/pz-l , is

* {p,ord a)

-

(0,1/p°-1)

(»°,0)

Thus for any subgroup Hi of order p of E , the first sort of point of

order p has ord = % ord(G(y,x)) >p ord(y) = p/pz—l (since ord(y) =
XéHi

=ord{x) if x £ 0 ). The second sort of point has ordinal p~ord(z)=l/p(p2-l} s

(because ord(z) < ord(x) for any x € Hy ). But p/p2-1 > l/p(p2~l) , hence

each E/Hi has a canonical subgroup, which is the image of pE . Looking at

the ordinals of the non-canonical points of order p on E/Hi , we have by

{3.10.7.1) the eguality ord(a’)/pa-p = l,/p{pz-l) , hence ord{a') = 1/p+l .

5. We first remark that if ord(a) < p/p+l , then E' = E/H either
has ord(a') > 1/p+¥l , or its canonical subgroup is not the image of PE and
hence E'/H{E') #E . Indeed, if ord(a) < 1/p+l , then as noted in the proof
of 2., the canonical subgroup is not the image of pE . If ord(a) = 1/p+l ,
then as proven in 4., ord(a') > p/p+l . If ord(a) > 1/p+l , then
ord(a') = l-ord(a) , and 1l-ord{a) > 1/p+l because ord{a) < p/p+l . It re~
mains bo see that for each non-canonical subgroup Hi, i=1,..0.,D0 5 E(i> :E/Hi
has Ol‘d(&(i)) = % ord(ai) » and its canonical subgroup is the image of pE'
Again we calculate the ordinals of the points of order p on E/Hi .

The first sort of points are all images of points of the canonical subgroup

H of E (because pE=H0®Hi for i=1,...,p) . For yeHO-[O} s

e}
_ 1-ord(g

o while ord(G(y,x)) = ord x = %‘i(_%l because

P -p
ord{y) »ord x if x € H; - {0} . Hence the image of ¥ € H, - {0} has

ord G(y,0) = ord y
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ordinel = ord(y) + 2 om@)=k%%ﬂ+p4,w§@=lwﬁﬁhpm@)'
x €H;-(0} P p wp p ?

What sbout the image of a point =z such that [p](z) e H, - {o} 2

The Newton polygon of [p](Z) =x, x € H - {o} , is

. (p,ord a)
(0, o;d.(a))
P -p

T (p2 30)

hence ord(z) = ord(a}/pg(pg—-p) = ord(x)/p2 for xeH - {0} . Thus
(1)

ord(z) < ord(x) , hence the second sort of points of order p on E have

l-ord a , ord(a)
p=1

ordinal =p-ord(z) = ord(a)/p(pz-p) . But > Ord(a>/P(P2-P)

(because ord(a) < p/p+l < pg/p+l) » hence E(l) has a canonical subgroup,
l—ord(a<1)) _l-ord a ord(a)
p-1 p~-1 P
cludes the proof of 5., and also of theorem (3.10.7).

, hence ord(a(l)) = ord(a)/p . This con-

3.11 Applications to the congruences of Atkin - the U operator

We maintain the notations of the previous section. As we have seen,
for each r € RO having ord(r) < 1/p+l , the homomorphism
o S(Ro,rp,n,o) —> S(Ro,r,n,O) is finite, and becomes finite and flat of
degree p vwhen we tensor with K . Thus there is defined the trace morphism
3.11.1 EX S(R_,r,n,0) ®K —> 8(&_,7,n,0)®K .
For r=1, ¢ is itself finite flat of degree p , hence there is defined

3.1L.2 trq): S(Ro,l,n,o) _— S(Ro,l,n,{)) .



Ka-64 132

In terms of g-expansion, we have

3.11.3 (tr (£)){(Tate(q" ) st ) = Z f(trate{gqn/P),mcan, %vg(osn))
tP=1

where T (cc ) denotes the induced level n structure on Tate(tg" o/ Py, viewed

as a gquotient of Tate(q } . Equivalently, if we write

3.11.3.1 £(Tate(q") 0, @) = ZAi (Ocn)qi

then we have the formula (in which a;‘l is the level n structure on Tate(q")
obtained as the inverse image of wo(an) on Tate(q /P) by the extension

of scalars ql/p —> g , compare pp.32-33)

3.11.3.2 (tr(p(f))(Tate(qn) O Pp) = LAPl (p oz;‘l .

Notice that we have the relation, for any f € S(Ro,r,n,o) ®K ,
%
3.11.3.3 T (f) = tr (I (f + (T
3 b (6) =t (1°(5) + 5()

*
(where Ip(f) (E/R,m,an) dfn f(E/R,w,p‘an)) , which should be viewed as the
"eanonical p-adic 1ifting" of the Eichler-Shimura congruence relation (compare

Deligne [71).

Integrality Lemma 3.11.L4. For any T € Ro with ord{r) < 1/p+l , we have

tr(p(S(Ro,r,n,O)) C S(RO,IP,II,O) (althou—gh @ S(rO:rPﬂl,O) — S(Ro,r,n,o)

is finite but not flat if ord(r) >0 ).

Proof. We may suppose ord{r) > 0 , the case r=1 being trivial. It fol-
lows (from Tate [L45]) that for any finite flat morphism ¢: A —> B of rigid
algebras over K , we have tr(p {power~bounded elements of B )} C power-bounded
elements of A . Thus we must show that the power-bounded elements of
S(Ro,r,n,o)®K are precisely S(Ro,r,n,o) . For this, we introduce the
finitely generated R -algebra B = B ®R_, gm@@P'l))/(Ep_l- r) . Its

p-adic completion B & ln.m B/p B is S(Ro,r,n,o) , and indeed via the
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isomorphism (2.6.2.1), B corresponds to the R -submodule of srieid p ,r,1,0)
o fo) 244y

consisting of all finite sums, which shows incidentally that B is a (free

and hence) flat Ro-module, and that B/mB ¥ ‘E/n_oﬁ . The fact that Ep-l mod -

ulo m has simple zeros implies that B/mB is reduced. (Indeed, B/mB is

i
_ N
Ho(Mn® Ro/z_g, Synm(i,\,_@}p l))/(Ep_l) , and if ¥ f. represents a nilpotent
o
ks

element, with minimal N , then a power of hence

N -1 ?
, which contradicts the minimality of N.) We may

is divisible by Ep
fN is divisible by Ep-l
thus conclude by the following lemma.

Lemma 3.11.5. Let RO be a complete discrete valuation ring, B a flat
finitely~generated Ro-algebra such that @/gx_% is reduced. Then the set of

power-bounded elements of %@K is B .

Proof. Since /1; is flat over B , hence over RO , we have %C%@K , S0
the statement makes sense. By Tate, we know that any power-bounded element of
%@K is integral over /Ii , 80 we must show that % is integrally closed in
B®K . Let T be a uniformizing parsmeter of R . If f €B mnd f/r is

integral over B , then clearing the denominators in the egquation shows that

~ ~ ~ o~
f is a pilpotent element of B/mB , hence f ¢ mB = 7B . QED
3.11.6, We now define Atkin's operator U: S(Ro,rp,n,0)®K —_— S(RO,IP,n,O)

to be the composite

1
= tr
S(Ro,z—p,n,o)®K C——> s(r_,7,n,0) ®K £ 25 S(Ro,rp,n,o)®K .
Thus if T e s(RO,rP,n,o) has g~expansions

ol _}_ i
3.11.6.1 £{Tate(q )’wcan’an> =L Ai(an)q

then UTf € S(Ro,rp,n,O)®K has g-expansions

n — 1 oy, 1
3,11.6.2. \U £)(Tate(q )"*’can’o‘n) —ZApi(P an) Q- .

[This formula shows that U(s(Ro,l,n,o)) c s(Ro,l,n,o)} . It is not true in
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general that U (S(RO,rp,n,O)) - S(Ro,rp,n,o) , but the situation iz as good

as if it were true, as Dwork was the first to realize.

Lemma 3.11.7. (Dwork) Suppose D > 7 , and suppose I € RO satisfies the
inequality

2
0 < o) < 5w

Then the R -submodule S(R_,r¥,n,0) + U(S(Ro,rp,n,o}) of s(ao,rp,n,o)®1<

is U=stable.

Remark 3.11.8. The point is that the submodule S(Ro,rp,n,O) + U(S(Ro,rp,n,O))
contains S(Ro,z‘p,n,o) and is contained in %S(Ro,rp,n,o) , hence it defines
the same topology on S(Ro,rp,n,o)®K as S(Ro,rp,n,o) . Thus in an equivalent

norm on S{Ro,x'p,n,O)®K , U has operator norm <1 .

Proof. Let's use the representation (2.6.2.1) of elements of S(Ro,rp,n,o)

Py
in the form f = —-—~3‘——a . The hypothesis insures that for a >2 ,
a > 0 (B )
— p_l
ord(rpa/p-ra) >0 , and hence
rp-bl L2(p-1)
3.11.9. T=%,+3 + p-(an element of S(Ro,r,n,o)) .
p~1

Because pU :trcp maps S(Ro,r,n,o) to S(Ro,rp,n,o) , we have

rpbl r2(p—l)
3.11.10. U(£) = U(b,) + U (—5=) + an element of s(Ro,xP,n,o) .
p-1
Since bo is just a constant, we have U(bo) = bo , and hence it suffices to
show that for sny b, € I{O(B_/In®Ro,£®p—l) , we have
2 erl
3.11.11 U “( )CS(RO,rp,n,O) + U(s(Ro,rP,n,o) .

Ep-l

For this, notice that rbl/E_D_l lies in S(Ro,r,n,o} , hence
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b, Z PPy
3.11.12. trcp( ) = N

B’ a1 (& Bk

P
I‘p-l
P
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The hypotheses insure that ord( -rP¥per®) >0 if a > 2 , and hence

Py -1 rb -1 rPu!
31013 U(gh) =B te (ph ) I (bp+ )
p=1 P P pa1 P p-1

L3(2-1)

2
P

+p (an element of S(Ro,r,n,o) .

Notice that U(E——l) has g-expansions divisible by r° , as does
p-1
pr (any element of S(Ro,rp,n,())) , and hence so does
1 - 1 *
rpbl - o1 (bOEP“l + rpbl )

Fp-r P Fp-1

(+*™/p) (0] +

-1

1
(bO Ep-l

there exists an element b’]'_ € Ho(ﬁn®Ro,2

and hence so does + rpbi) . By the g-expansion principle,

®P-1y  guch that

-1 -1 ol Py
—Ii——— (bo Ep-l + rpbi) = rpbi{ , hence rz (b + == ) = L , hence

G Ep-l Ep--l

(@-1)
5

I’Pb i3
U ( 1)=_£_b_

= + p-{an element of

S(Ro,r,n,o)) .
p=1 p-1 P

Again using the fact that pU = trq) maps S(Ro,r,n,o) to S(Ro,rp,n,o) ,

we find
5 rpbl rpb‘i
US(—=) = U(5=) + an element of S(Ro,rp,n,o) .
-1 -1

which proves (3.11.11) and the lemma. QED
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3.12 p-adic Hecke operators

For any prime number £ which is prime to both p and to the level n,

we may define T, 6 on S(Ro,r,n,k) by the usual formula

)/

3381 (2, (/R 1) = 57 ) (e, /K7 W) ), D)

the sum extended to the £+1 subgroups X of order £ . The various Tz

commute with each other, and for k=0 they all commite with U .

We may consider the "spectral decomposition” of the K-Banach space

S(Ro,rp,n,o)®K with respect to U (which is completely continuous, because
the inclusion S(RO,IP,n,O}®K into S(RQ,r,n,O)@K is). TFor any rational

number v , the subspace

3.12.3 U U Ker(U-a)®

m>1 « ex*8  op ordinal v

of S(Ro,rp,n,o) ®K is finite-dimensional, and is stable by U and the Tz .

By Dwork's lemma (3.11.7), this subspace is reduced to {0} unless v >0 .

The first interesting case is thus to take v=0 , the so-called "unit-root
subspace” of S(Ro,zp,n,o)®l{ . [Notice that this unit root subspace is
independent of the choice of v € Ro with l/p+l > ord{(r) >0 , because U
maps S(Ro,r,n,0)®K to S(Ro,rp,n,oﬁzi, i.e. it improves growth conditions.
Thus if f ¢ S(R_,r,n,0)®K is ennihilated by (U -o)" , and af0,
then f is a K(@)-linear combination of U(£), Ug(f‘),..., g™(£) , hence
in fact f € s(Ro,xP,n,o)@)K,... L]

Lemma 3.12.4. (Dwork) Hypotheses as in (3.11.7), the dimension of the unit
®p-l)

. o O
root subpsace of S(Ro,rp,n,0)®K is at most dim.H (Mn®K,¢_o

Proof. The dimension of the unit root subspace is the number of unit zeros of
the Fredholm determinant of U , which by (3.11.8) lies in Ro[{TJ} , hence

this dimension is also the degree of this Fredholm determinant reduced modulo m,
which is to say the degree of the determinant of U on

(S(Ry,rP,n,0) + U (S(Ro,rp,n,o))®Ro R/m .
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=L
Py

But for f e S(Ro,rp,n,o) , £= Z S » We have
a>0 (B

p~1
U(£) =b, + U(=—=) modulo m-S(R ,#°,n,0) and
0 E 1 = 09 bhnd
p—

n
Ug(f) = U (E_—i) modulo m S(Ro,rp,n,o) . Thus the image of U on
P-
(S(Ro,rp,n,o) + U (S(Ro,rp,n,o))®R/r_n_ is gpenned by the images under U of

1

Ep-l

all elements D with

o,
o € H (Mn®Ro, 0) ana

s Or= Rp-1 O
b, € B(R ,n,k,1) > B ®R 0 © )/By (T SR, d) . Thus the rank

of U on (S(Ro,rp,n,o) + U(S(RO',rp«,n,O))®Ro/r£ is at most the K-dimension

of H"(ﬁn®x,<,_5® p-ly

3.13 Interpretation of Atkin's congruences on J

We denote by j the absolute j-invariant, viewed as a modular function
of level one, defined over % , having a first order pole at infinity. As is
well known, p-TP(j) lies in Z%[j] . By inverse image we may view both
and p-Tp(j) as elements of M(Ro,r,n,o) for any T € R . We may also view
p(j) as an eiement of M(Ro,r,n,o) » for any r e R having ord(r) < p/p+#
[indeed, o(3)(E,?) = j(E/H) , H the canonical subgroup]. Subtracting,
we define p-U(J) = p-Tp(j) —o(3) e M(Ro,r,n,O) . Because j has only a
first order pole at w , U(j) is holomorphic at infinity, indeed its

g-expansion is

3.13.1 U(3)(Tatelq)) = Z elpn)g™ , where
n>0

3.13.2 j{Tate(q)) = Z eln)g® = L, Thl + .. .
n > =1 4

Thus U (j) lies in S(%P,l,n,o) , and P U(j) lies in S(R_,r,n,0) for

any T € Ro having ord(r) < p/p+l . Combining this observation with the
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remark {3.11.8), we see that for every m >1 , we have

Um(j) € S(Zp,l,n,()) n P"2'S(R07r;n30) .

Let us examine explicitly the congruence consequences of the innocuous
statement " U (j) e S(Zp,l,n,o) n p-l S(R,ro,n,o) whenever ord(r) < p/p+l ".
Suppose that p £ 2,3 , 5o that we may work directly with S(Ro,r,l,o) via
its basis as constructed in (2.6.2.1). We may write

b
.13.3.0 U(j) = Z — b e B(% ,1,0,a) .
3 33 (J) azo (Ep_l)a H ae (P, s ’a)

For r e R with ord(r) < p/p+l , we have pb, € ra’B(Ro,l,O,a) , hence we

{ap/p+1}

have pb_€p B(Zp,l,o,a) , where {ap/p+l] denotes the least

. B
integer > ap/p+l . Thus by € Zp, b € B(Zp,l,o,l), b ep lB(fzp,]_,o,a)

- . n+
for 2 < a<p, bp+l € pP 1B(~Zp,l,0,a),..., certainly b € p ]‘B(ZP,O,a)

if a>pn,for n>1. Thus

n
P b .
3.13.3.1 u(3) = ¥ & modulo pPs(z ,1,1,0)
a=0 (E_ .) P
p-1
P n
5 b HP?
a0 & P71 n+l
3.13.3.2 u(j) = - modulo p S(%P,l,l,o) .
()
p-1
1
Using the fact that ., has g-expansion =1 (p) , and hence that (Ep_l)p
has g~expansion = 1 (pn+l) , we deduce that for p 74 2,3 , the g-expansion of

U{3j) is congruent mod p‘nﬂ‘

to the g-expansion of a true modular form of

level one, defined over Z% , holomorphic at w , of weight pn(p-l) . In fact,
n

using <Ep~l)P to kiil the eonstant term, we find that U(J) - T4k has g-expansion

congruent mod pn+l to the g-expansion of a cusp form of level one and weight

pn(p—l) , defined over % , a result obtained independently by Koike [28].

We now return to the properly Atkinesque aspects of the Un(j) , and

their interpretation.
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Lemma, 3.13.1«&. Suppose there exists a p-adic unit a € Zp such that for

every m > 1 , we have the g-expansion congruences

Umﬁ“l(j-'ﬂm) =5 U™(j-744) modulo p" in g-expansion
. m+l .y m, m
i.e., elp i) Sac(p i modulo p for all m > 1.

Let ¢ (i) = Lin aMe(g™) . Then for T ¢ R, having ord(r) < p/p+l , there
m
is a unique element " lim " a7 U T(j-THH) € S(Zp,l,n,o) n p'2 S(Ro,r,n,o)
which is of level one (i.e., invariant under GLE(Z/n %)) , whose g-expansion
1

is = coo(i}ql , and which is fixed by a U .
m>1

Proof. By (2.7}, the hypothesis is in fact eguivalent to the congruences
-1 am+l,. PSS R N m
3.13.%.1 (27U )T (5-7l) = (277U ) {(3-74)  modulo p S(Zp,l,n,@) .

Let's write the expression of (a-lU YB(3-744) in terms of the base of
S(Z ,1,n,0) @
(2, ,1,2,0)
b, (m)

3.13.4.2 (a"lU VE(gaTh) = >_ —e b (m) ¢ B(% ,n,0,a) .
2 >0 & P

a
(E,

Then we have the congruences ba(nﬂ.) = ba(n) modulo p B(Zp,n,o,a) , We may
define b _(w) = lim b_(m) ¢ B(% ,n,0,a) . But for any r € R with

a A T o
ord(r) < 1/p+l , we have pzba(m} € ra'B(Ro,n,O,a) , henece

pzba(oo) e r® B(Ro,n,o,a) . Varying (Ro,r) , we see that in fact 'pgba(oo)
coe v olap/pil) .
lies in »p - B(%P,n,o,a) , where {x} denotes the least integer >x ,

b (o0} o
(i.e., {x} = -[-x]) . Hence Z-a—-—a &n ”lim"(a_lU YB(j-7hl)  1ies in
(& )
p=1
S(Zp,l,n,o) np~? S(Ro,r,n,o) , and in S(%p,l,n,o) it is the limit (in the

Banach space topology of (a—lU YR (3-7hh) .
The last two assertions are obviously true for r=1 , by passage to

the limit, and follow for any r of ord(r) < p/p+l because the canonical

map S(Ro,r,n,o) — S(Ro,l,n,o) is injective. QED
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Remark 3.13.5. The hypotheses of the lemma are in fact satisfied for p = 13 ,
a striking result due to Atkin.

(3.13.6) Using the fact that the twelfth power 2®l‘2 of w descends to the

invertible sheaf 0(1) on the projective j-line over % , one can copy the
construction of a basis of S(Ro,r,n,o) , n >3, toget a basis of

S(r_,r,1,0) L2 8(R_,r,m,0) GLy (2/n)

for primes p =1 mod 12. Then one can
copy the proof given in ([1L4]) to show that the dimension of the unit root sub-
space of S(Ro,r,l,o)®K is at most

dim HO(]}Dl,_@@p-l) = aim BO(® 1, 5(131—‘23)) =1+ 91-71 , for p=1mod 12. In
particular, for p = 13, the unit root space has a base consisting of the
constant function and the function ":L:;m"(a‘lU Y2 (3-744) , and this latter
function is necessarily the unigue "unit root cusp form" in S(Ro,r,l,o) .

This unicity, together with the stability of the space of unit root cusp forms

under the Hecke operators T £ 74 13 , gives a startling result of Atkin.

E’
Theoren 3.13.7. (Atkin) The 13-sdic modular function

"lim"(a—lU VR(3-7hh) = Z coo(i) q& is a similtaneous eigenfunction of all
i>1

the Hecke operators T,, 1 #13 .

(3.13.8)  Using the fact that 9®2 descends to the invertible sheaf (¥ (1)

on the projective A-line M2 over Z[lfz] , one may construct as above a base
of S(Ro,r,E,O) , and prove as above that the unit root subspace of
S(Ro,r,2,0)®K has dimension at most

dim H°(M2,9®P'l) = aim HO(P 1, @(P-%l)) =1+ %l , for p odd. In fact, Dwork
has proven that in this case the dimension is exactly 1 + Pé—l , (cf. his expos€

in this volume).

(3.13.9) Dwork's result implies that for p = 1 mod 12, the dimension of the

. . -1
unit root subspace of S(Ro,r,l,o) is precisely 1 + %—é— , and hence that

there are precisely I:)L_Tl independent unit root cusp forms in S(Ro,r,l,o) .
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For p = 13 , this fact together with the "accident" ¢(13) # 0 mod 13 , implies

Atkin's result that a and "1im"(a"lu)m(;;-7uu) exist.
m
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Chapter 4. p-adic representations and congruences for modular forms

4,1 p-adic representations and locally free sheaves

Let g be a power of p , k a perfect field containing ]Fq s Wn(k)
its ring of Witt vectors of length n, and S, @ flat affine Wn(k)-scheme
whose special fibre is normal, reduced and irreducible. Suppose that Sn
admits an endomorphism ¢ which induces the q-th power mapping on the special

fivbre. [If Sn is affine and smooth over Wn(k} , then such a ¢ always

exists. ]

Proposition 4.1.1 There is an equivalence of categories between the category

of finite free Wn(]Fq)~modules M on which Fl(Sn) acts continuously, and
the category of pairs (H,F) consisting of a locally free sheaf of finite

*
venk H on § = together with an isomorphism F: ¢ (H) —>H .

Construction-proof. Given a representation M of Wl(Sn) , let Tn be a

finite étale galois Sn—scheme such that the representation factors through
Aut(Tn/Sn) . Because T is étale over S, » there is a unique g-linear
endomorphism of Tn which induces the g-th power endomorphism of T X k

n i, (k)

which we denote by gp . By unicity, ¢ commutes with Aut(T r/sn) . Let Hy

be the Tnnmodule M be the cpT-linear endomorphism

)OTn , and let T

w{f( Fq
of H, defined by FT(m® f) = m®cpT(:f‘) . For each g € Aut(sn) , we define
gm®F) = g(m)®(g“l)*(f) , thus defining an action of Aut(Tn/Sn) on (HT,FT) .
By descent, it follows that there is a unigue {H,F) on Sn whose inverse
image on T = is Aut(Tn/Sn) - isomorphic to (HT,FT) . The construction

M ann~> (H,F) defines the functor we will prove to be an equivalence. Notice

that we can recover M as the fixed points of F,, acting as o-linear endo-

T
morphisms of the module of global sections of HT , hence our functor is fully
faithful. To show that it is an equivalence, we must show that any (H,F)

arises in this way, or, in concrete temms, we must show that given (H,F) A

there exists a finite étale covering Tn of Sn over which H admits a basis
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of F-fixed points. We proceed by induction on the integer n .

Suppose first n=1 . Then § is a k-scheme, and (H,F) is a locally
free finite rank S-module H together with a g-linear endomorphism F of H
which gives an isomorphism F : H(Q) —> H . For any S-scheme T , the inverse

image module HI carries the inverse image g-linear map F defined by

T ?*
(F,(n®%) =F(n) ® £+2 , which gives an isomorphism Fo Hé‘ﬂ — .

Notice that the functors on S-schemes

il

{X(T) global sections of H,

¥(T) = bases of H, (@T—isomoxphisms (@T)r —> H,, , where

T
r = rank(H))

7Z(T) = bases of consisting of fixed points of F
T

are all representable, the first by M(Symm(ﬁ)) , the second by the open
subset of the r = rank(H)-fold product X(r/S) =X XX ees Ky X over which
the tautogical map (@X(r/s))r —> He(z/s) is an isomorphism, the third

by the closed subscheme of Y over which the universal basis is fixed by FY '
We must show that Z is finite and étale over § . This problem is local

on S , hence we may assume S affine and H free. Choose a basis hl”“ ’hr

of H , and let (aij) be the invertible matrix of F : F(hi) =7 ajihj .

Consider the functor on S~schemes

¥1({T) = sections of H, fixed by ¥, .

It is representable by a scheme finite and &tale of rank qr over 8 , because
. . . . . q
- =7 . ho
a section & X;h, of H is F-fixed if and only if = tha. }; <X1) T ay;hy s
thus Y' is the closed subscheme of Akg defined by the equation

X, =l_ a,.(X)%,  i=l,...,r.
1

Because the matrix (aij) is invertible, if we denote by (bij) its inverse,

the equations are the same as the equations
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(Xi)q =Z by %y i=1,...,r ,
3

which define a finite &tale S-scheme of rank q° .

The scheme Z is the open subscheme of Y,(r/S) =Y Ky eev X ¥* where
the universal r-tuple of F-fixed sections form a base of H , and hence .Z is
g’_‘ga_l_e_ over 5 . It remains to check that Z is proper over S , and non-void.
By the valuative criterion, we must show that for #ny valvation ring V over
5 , any F-fixed basis of H‘K {K the fraction field of V) prolongs to an
F-fixed basis of HV . Because the scheme Y' of fixed points is finite over
S , each basis element prolongs to a unique F-fixed section of HV . To see
that the corresponding may Vv HV is an isomorphism, we look at its
determinant, which reduces us to the case of a rank one module. Then the

matrix of F is F(hl) = ah, , with a invertible in V , and an F-fixed basis

1
of H, is a vector k-h:L , with k ¢ X satisfying k = kP . As a eV is

X

invertible in V , any such k is an invertible element of V , hence k-hl
"is" an F-fixed base of L

It remains to see that Z is non-empty. As its formation commutes
with arbitrary change of base S' —> § , it's enough to check the case when
S is the spectrum of an algebraically closed field. But a finite-dimensional
vector space over an algebraically closed field with a g-linear automorphism
is always spanned by its fixed points (Lang's trick; cf.[23]) and the set of
fixed bases is a GLr(IE‘q)-torseur. Thus 7 is finite étale of rank = #GLr(IFq)
over 8 , and the action of GLR(IFq) on 7 (induced by its action on the
functor of F-fixed bases) makes 2 into a GLr(qu}S-torseur. The cohomology
class of this torseur is an element of Hit(s,sz,r(&’q}) = Hom(m) (8) 61, (F )
which 1s none other than the desired represemtation. This concludes the
construction-proof for n=1.

Suppose the result known for n-1 . Then there is a finite étale
k) over which H/pn-lH admits a

covering Tn- of Sn =35

1 -1 7 P ) LS
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basis of F-fixed points. There is a unique finite étale covering Tn of Sn

% . .
such that Tn 8. Sn-l is Tn-—l , and replacing Sn by Tn we may Suppose

that H/pn_lH admits a basis of F-fixed points. Let h hr be a basis

15000
of H which lifts an F-fixed basis of H/pn—lH (Sn is affine!). Writing

E:

hl Nl N,
H , we have F(h) = (L +p ~A)h . In order for (1 +p lE)Q to
h

T
be an F-fixed basis, we must have

(1+ " 0(8)- (1 + ") = (1+3" 7 E)n

or equivalently (sn being flat over Wn(k))

o(E) +A =F mod {p) ,
which is a set of r° Artin-Schreier equations (eij)q ~eyy =-hyy over
8. =85 X . s 4 . .
1 =5, Vin (k) k On a finite etale covering Tl of Sl , these equations

admit solutions, and hence on the unique finite étale covering Tn of Sn

% - . _ps R
such that T, g5 Sl Tl , the module HTn admits an F-fixed basis. QED

Remarks 4.1.2.1 The operation "tensor product” in the category of repre-

sentations of Wl(Sn) in finite free Wn(]E‘q) modules corresponds to the
tensor product (H,F)® (H',F') = (HB® H,F®F') , defined by
S

(FOF) (h®h!) = F(h)QF'(n') . “

(4.1.2.2) The "internal Hom" in the category of representations corresponds
to the internal Hom defined by Hom( (H,F),(Hl,Fl)) = (Hom @(H,Hl) ,Fz) where
F2 is the unique o¢-linear endomorphism of mO(H’Hl) such that for
heH, fe H_o_xg_(H,Hl) , we have Fz(f) (F(n)) = Fl(f(h)} . In particular,
Hom( (H,F),(@,cp)) is the'contragredient" (i/{,\}:) , defined by the reguirement

that for h e H, h e H , we have <F(h),F(h)> = p(<h,h>) .

(4.1.2.3) Because S, 1is normal, reduced and irreducible, a representation

of Wl(Sm} = vrl(Sl} is just a suitsbly unramified representation of the Galois

group of the function field of S Thus for any non~void open set U C Sn »

1
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the functor "restriction” from the category of representations of Wl(Sn) to
the category of representations of vl(U) is fully faithful. Hence the functor
"restriction" from the category of (H,F)'s over Sn to the category of those

over U is fully faithful,

L4.2. Application to modular schemes

,2.0. Let n >3, p a prime not dividing n , q a power of p such
that g =1 mod n , and choose an isomoghism between }pn and Z’/n% over

W(Iﬁ’q) , i.e. choose a primitive n'th root of wunity ¢ . Let Sf»n (resp. §§m)

-1

invertible and where the e.m. pairing on the basis of nE has the value ¢ ,

be the open subset of Mn®wm(]Fq) {resp. of Mn®wm(lf‘q)) where EP is

i.e. where the determinant of the level n structure is the chosen isomorphism
of %/n% with w, - The schemes an (resp. ggl) are smooth affine Wm(TE‘q)
schemes with geometrically connected fibres. In the notation of (2.9), we
have Mn(wm(IFq) ,1) = U Sf‘n , the union taken over the primitive n'th roots of
unity, and I\_/In(wm(]Fq) ,1) = U 51% .

Let ¢ denote the Frobenius automorphism of Wm( i) q) . We have

P

o) = CP , and hence S}n = (SI%)(U>, §§np = (éf'n)(a) . The endomorphism ¢ of
ﬁn{wm(lﬁ‘q) ,1) defined by "division by the canonical subgroup” does not respect

: =t ner gt stP
the various Sm , but rather it maps Snn to Sﬁ (because modulo p, the

) P (o)
canonical subgroup is the kernel of absolute Frobenius). As §§l = (51%1} 5
we may and will view ¢ as a g-linear endomorphism of each Sz%z , which modulo p
becomes the p!'th power mapping. In a similer fashion, the endomorphism ¢ of
the invertible sheaf 2@}: on ﬁn(wm( IFq) ,1) , defined by
vk .

o(£) (E,w,Oén) = £{B/H,7 (w) ,W(Oln)) [where H denotes the canonical subgroup
and T: E —> E/H the projection], may be viewed as a g-linear endomorphism

off 9®kJ§§l , for each primitive n'th root of unity ¢ . [Notice that 2®k

is generated by (p(g®k) as a sheaf; indeed for a local section f of 9®k R

a glance at g-expansions shows that o(f) = fp/{Ep_l)k , hence o(f) is an
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invertible section wherever f is.]

We wish to determine which representation of Wl(ggl) in a free
z/pmz = Wm(IFP)-module of rank one corresponds via {(4.11) to (g®k,cp) on
§§n . Of course it suffices to do this for k=1, by (4.1.2.1). There is an
obvious candidate, namely the representation of Wl(SSD) on the étale quotient
of the kernel of pm on the universal curve ® . [Noting by
T B —> E(CP) = E/H the projection onto the quotient by the canonical sub-
group, the composite o' E ——> E;fn) induces an isomorphism of the étale

~ P ~ m
quotient  E/ E = mE/Ker(Trm) 205 Ker (7)™ 4n B(O ) .] If this caendidate is

P P
to "work'", we must have:

Temma L.2.1. The representation of Trl(Srcn) on Ker(z\%)m extends to a repre-

sentation of Wl(-S—S’n) , i.e., it is "unramified at « ",

Proof. Since the étale topology cannot distinguish §§n and §§ , 1t is
equivalent to show that the representation of ”1(85_) on Ker(v™") extends

to a representation of Wl(gg) on Ker{(V") . TLet K denote the function
field of E‘%‘ ; we must see that the inertia group of Gal(Ksep/K) at each
cusp acts trivially on Ker(V") in E}({pm) (x%°P) . To decide, we may replace
K by its completion at each cusp, which is just Xk({(a)), k = ]Fq.', and the
inverse image of B over this completion is the Tate curve Tate(qn)/k( (0)) .
The curve E(pm> becones Tate(qnpm) , and (1™ is the map

Tate(qnpm) — Tate{d™) given by "division by the subgroup generated by .

As this subgroup consists entirely of rational points, the inertial group

(and even the decomposition group) at each cusp acts trivially.

Theorem 4.2.2. The representation of . 51%1) on Ker(M™ (= +to the Stale

l(
quotient of Ker pm on the universal curve) corresponds, via the equivalence

(4.1.1), to  (w,p) -

Proof. By the "full-faithfulness” of restriction to open sebts, it suffices

to prove this over Srgn . Let's take a finite &tale covering T of Sm which
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trivializes the representation -~ in concrete terms, we adjoin the coordinates
of a point of Ker(;r)m of order precisely pm . Over T , each point of

v

Ker(m)™ gives a morphism (%/pmz)T =5 (Rer(m)™). , whose Cartier dual is a

T
morphism (Ker p° in %)T = (Ker ’{Tm)T —_— (ppm)T > (@}m)T . The inverse
image of the invariant differential dt/t on (6 ), furnishes an invariant
differential on the kernel of pm in £ . Since T is killed by pm 5 the
first infinitesmal neighborhood of the identity section of E lies in the
kernel of pm in % , and hence there is a unique inveriant differential on
E whose restriction to the kernel of pm in E is the given one. Thus we
have defined a morphism from (Ker(;r)m)T to wy . Further, if we take a
point of Ker(vvr)m of order precisely ", the map (Z./pm%)T — (Ker(?r)m)T
is an isomorphism, hence the Cartier dusl is an isomorphism, and hence the
inverse image of dt/t on Ker pm in % is nowhere vanishing. Thus the
induced map (Ker(;r)]:ﬂ)T %? iy O’T —> w, 1is an isomorphism of invertible
sheaves on T . It is clegr that this map commutes with the obvious action
of Aut(T/SI%) . [In concrete terms, and locally on S , Ker(p') in E has

coordinate ring free on 1,X,... ,XPm-l

, a point P of (Ker(:fir)m)T gives

rise to a map Won defined by f(X) =32 ai(P)Xi , the corresponding differ-
ential is w, = df/f , snd for any g € Aut(T/Sm) , we have ai(g(P)) =g(ai(P)) ,
and hence Wy (py = g(mp) .1 By descent, we have constructed an isomorphism
vetween w and the invertible sheaf on an associated to the &tale quotient

of E .

pm

It remains to see that this isomorphism is compatible with the @-linear
endomorphisms. Tensoring one with the inverse of the other, we obtain a
@¢~-linear endomorphism on @'Sm 3 we must show that it carries "1" to "1" .

To check this, it suffices to do so in s "punctured disc at ", over
Wm(]Fq)((q))m when we loock at the Tate curve Tate(gq") . The morphism
7 Tate(q™ P ) —> Tate(q™) has kernel the subgroup generated by d* . The

point qn is a rational point of Ker(v)m , and the corresponding differential
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i1s precisely the Tate differential Wopr = at/t . As qn is a rational point,
the section [¢"]®1 of Ker(m)™ Z?an@' is fixed by the canonical ¥ , and
the corresponding section Waan of w is fixed by ¢ (because Wonn has

g-expansion identically "1"). Hence our isomorphism respects the gp-linear

endomorphisms in a punctured disc around « , and hence respects it everywhere.

Remark 4.2.2.1. One may prove this theorem in a non-constructive way by
showing that both of the associated p-adic characters X,: 'ITl(SI%) — (Z/p"B)"
have the same value on all Frobenius elements, namely the reciprocal of the
"unit root" of the ordinary elliptic curve which is the fibre over the corre-

sponding closed point of Sg'l .

Theorem 4.3. (Igusa [21]) The homomorphism

Wl(%) o Aut(Ker(?r}I%l) Z (%/p"2)* is surjective, and for every non-void
open set UC Ei;n , the composite '[Tl(U) — Wl(§§n) — (Z/pm‘z)X remains
surjective.

Proof. It suffices to show that, denoting by K the function field of

SC X

m Wy, ( ]Fq)
is surjective. In fact, we will prove that the inertial group of Gal(KseP/K)

m
T, » the homomorphism Gal(K°°P/K) —> Aut(Ker V" in 2(P") (gsery)

at any supersingular elliptic curve already maps surjectively. Let ¥ be eny
: ¢

closed point of Sl where Ep-l

closure k , we may assume ¥ is a rational point. The completion of S%@k

vanishes; replacing ]Fq by its algebraic

at # is isomorphic to Spec(k[[A]]) , and the inverse image of the universal
curve over k[[A]] admits a nowhere vanishing differential « such that
Ep_l(E,m) =A ., {This is just Igusa's theorem that the Hasse invariant has

only simple zeros.) So we must prove

Theorem 4.3 bis(Tgusa). Let E,» be an elliptic curve over k[[A]] with
Hasse invariant A , k Ybeing an algebraically closed field of characteristic p.
Then the extension of k({A)) obtained by adjoining the points of

m
er ¥ 5P —>E is Pully remified of degree pr ~(p-1) , with Galois group
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canonically isomorphic to Aut(%/pm%) .

Proof. The first statement implies the second, since Ker v is cyclic of

sep . In terms of a normalized parameter X for the

order p° over k((a))
formal group (i.e. [£1(X) = tX for any p-l'st root of unity ¢ ¢ Z;j) , the

endomorphism [p] has the shape
2
4.3,1 [pl(x) = v(xP) =ax® +a® + ...

with o invertible in k[[A])] (because modulo A , we have a supersingular
curve by hypothesis, hence its formal group is of height two). Thus
V(x) = A¢ +ox® + ... , and the composite Vo : 2P 55 is the composite

Ml n=2

my L{p ) m-ly (o ) (v)
g0) ¥ g ) ¥ A ¢ DI
( V) ( V) v v
The expression of V' is VP ) =aAP x +aP 2P £ ... . A point of Ker Ve
sep

with values in k{(4)) of order precisely " may be viewed as a sequence

sep

of elements of the maximal ideal of k({A)) which satisfy the

yOﬂ et ’ym_l

successive equations

0 = V(yy) = Ay, +Oé(yo)p o

_ (@ _ AP P, \P
Vo =V (yy) = ATy rat(y)T v
pm—]_ pm-l .
<ym-1) = A Vpoy +O (ym_l} o

Mo

-1
('
Iep = v

But a glance at the Newton polygons of these equations shows successively that
the ordinals of Yosees¥y g are given by (noting by ord the ordinal normalized

50 that ord(A) = 1):

ord(yo) = 1/p-1
ord(y,) = 1/o(p-1)
ora(y, ) = 1/5""(p-1) .
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4.4, Applications to congruences between modular forms a la Serre

Corollary 4.4.1, Let k be an integer, and suppose m > 1 . The following

conditions are equivalent:

1) k=0modlp-1)-p"t if p£2, end k =0 mod P ye oo

where (1) =0, a{2) =1, and a(m) =m-2 if m >3 .

2) The k'th (tensor) power of the representation of 7Tl(§§l) on the

étale quotient of B is trivial.

e
Bk =t . R . .
3) The sheaf W on Sm admits a nowhere vanishing section fixed
by o .
4) Over a non-void open set UC —S'El 5 2®k admits a nowhere vanishing
section fixed by ¢ .
=L Rk . . .
5) Over Sm P admits a section whose g-expansion at one of the

cusps of §§n is identically 1.

6) Over a non-void open set U C §E1 which contains a cusp, (_u_®k

admits a section whose g-expansion at that cusp is identically 1.

Further, if 1) holds, then any section verifying either 4) or 6) extends
uniquely to a section over all of §§n verifying 3) and 5), and is in fact the

1t
k/p-1'st power of Ep-l .

Proof. 1) <===> 2), because the image of Wl(grin) is all of

hut{g/v'E) = (Z/sz)* , a group of exponent pm—l(p-l} for p # 2 and of
{(m)

exponent & for p=2 . By (4.3), 2) <===>3) equivalence 3) <===> L)

is by full-faithfulness of "restriction to U, ef.(4.1.2.3). By the explicit
formula for ¢ and the g-expansion principle, we have 3) <===>5) and k) <==> 6).
When 1) holds, the unicity of the section satisfying L) or 6) or 3) or 5) follows
from the full-faithfulness of restriction to U ; that this section is

)k/p—l

(E

-1 follows from the g-expansion principle.
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Corollary 4.k.2. {Serre) Suppose f;, 1=1,2 are elements of S(W(Fq),l,n,ki) s

i=1,2 , and that kl >k Suppose that the g-expansions of £, and f2 at

2 " 1
at least one cusp of Mm(W(Fq),l) are congruent modulo p , and that

£,(0) #0mod p ot that cusp. Then k =k, modulo p" N(p-1) if p 2,

1
_ ofm)
and k, =k, modulo 2 if p=2 , where (1) =0, a(2) =1, and
a{m) =m-2 for m >3 . If these congruences hold at at least one cusp on each
kz-kl/p-l

irreducible component, then f_ =f_ - (%

m,
o=t (B, modulo p u(W(IFq) ,l,n,kz) .

Proof. Once we prove the congruence on the ki , the final assertion results

from the g-expansion principle. To prove the congruence on the weights, we

reduce the situation modulo pm . Then fl and f2 are sections of 9®kl
ko . =t .
and respectively over Sm . By hypothesis, fl and hence f2 are
invertible on a non-void open set U of §§1 , and the ratic fg/ fl is thus
ko=kq

an invertible section of over U , and by hypothesis fg/fl has
g~expansion identically one at at least one cusp on each égl . By {(b.h.1), we

have the desired congruence on kl—k2 . QED

Corollary 4.4.3. (Serre) ILet f be a true modular form of level n and

weight k on Fo(p) , holomorphic at the unramified cusps, and defined over the
fraction field K of W(]Fq) . Suppose that at each unramified cusp, the
g-expansion has all its non-constant gecoefficients in W(IFq) . Then the
constant terms of the g-expansions lie in p_m-W(IE’q) , vhere, for p #2 ,

m is the largest integer such that o(p") = #(Z/me)X divides k , and for

p=2 , m=1 if k ig odd, and mzorde(k)+2 if k is even.

Proof. For N >0, pr is a true modular form of level n and weight k on
Fo(p) , defined over W(JFq) . By (3.2),there is a unique element g of

su(rp q) s1,n,k) whose g-expansions are those of pr at the corresponding
unremified cusps. If -, denotes the minimum of the ordinals of the constant
terms of these q-expansions, then g is divisible by p 0 in S(H(E),1,n,k),

. Ne .
by (2.7). Thus we may write g =7p ©h, with h ¢ S(W(Iﬁ’q) ,1,n,k) having the
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same g~-expansions as does pmof at the corresponding wnramified cusps. Then
h has integral g-expansions, and at least one of them is congruent modulo pmo
to a constant which is a unit on W(IIFq) . Multiplying £ by the reciprocal
of this unit, we get a g-expansion which is congruent mod pN to 1" . As
the constant function "1" is modular of weight zero, we must have

-1
kEOmodpmo (p=1) if p#£2, k =0mod eo‘(mo) for p=2 . QED

Remark 4.4.4., If we apply these estimates to the constant terms of the class-
ical level one Eisenstein series Ek , we get precisely the correct bounds for
the denominators of the Bernoulli mumbers (ef. [42], [B3] for more on Bernoulli

numbers ).

4,5, Applications to Serre's "modular forms of weight X

L.5.0. Let X e End(%) . For each power pm of p , X induces an endo-
morphism of (Z/pm’Z)X . For any primitive n'th root of unity ¢ , and for any
representation p of vl(gg) in a free %/p % module of rank one, we may
define the representation pX f—&— Xep . Teking for p the representation
given by the étale quotient of pmE , we denote by (gx,cp) the invertible sheaf
with @-linear endomorphism which corresponds to pX. For variable m , the sheaves
QX on 81%1 are competible, and we define a compatible family of global sections
to be a p-adic modular form of weight X and level n , holomorphic at « ,
defined over W(qu) . If X=keZC End(Z;) , we just recover the elements
of S(W(]Fq) ,2in,k) . For p#2, Z is dense in End(Z};) , and indeed
End(%;f) <= lim Z/p(p™ME 3 for p=2 , Z, has index four in the {(non-cormmu-~
tative) ring End(Zg) . If p#2, then for any ¥ (resp. if p=2, for any

X € Zg) , the pair (Ex,cp) on 5%1 is isomorphic to (£®km,cp) for any

k, € & such that k =X modulo p(p") (resp. if p=2, modulo 2° if m=1,

ol if m=2, ana &2 Sk

Sk

if m > 3) . The isomorphism between (w 50)

and (9 ,cp) for different choices km’ kx;l € Z approximating X is given
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(e -k )/ (p=1)
by multiplication by (Ep_l) . As this isomorphism leaves inveriant

the g~expansion modulo pm (resp. modulo Zm_l for p=2), it follows that a
p-adic modular form of weight X and level n , holomorphic at « , defined over
(W(It?q) , has a well defined g-expansion in W[[q]] at each cusp, and that for

given X , f is uniquely determined by its g-expansions.

Theorem 4.5.1. Tet X e End(Z;) , and suppose X € Z, if p=2 . Let £ be

2

a modular form of weight X and level n , holomorphic at o« , defined over

W(]Fq) . Then there exists a sequence of integers 0 < k, <k, £ k3 < el
satisfying

k =X mod (p(pm) if p#£2

k =% mod M2 ir p=2 and m >3

and a sequence of true modular forms fi of weilght ki and level n, holo-

morphic at o , defined over W(IFq) , such that

£ =fmod P in q-expansion, if p £ 2
£ = mod 2%1 in g-expansion if p=2, m >3 .
Conversely. Let [km}m >1 be an arbitrary sequence of integers, and suppose

given s seguence fm € S(W(]’E‘q) ,l,n,km} of p~adic modular forms of integral

weights ki such that

- moo, .
:f‘m+l = fm mod p in g-expansion at each cusp

£ £0 mod p in c-expansion.
Then the sequence of weights k — converges to an element X ¢ End(Z;f) , and

there is a unique modular form f£ = "lim" fm of weight X and level n ,

holomorphic at = , defined over W( IFq) , such that

:E‘m = mod pm in g-expansion.
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Corollary 4.5.2. (Serre) If a collection of elements of W[[q]] 1is the set

of g-expansions of a p-adic modular form f of weight X € End(Z;f) (resp.
X e &, if p=2) and level n , holomorphic at w and defined over w(:!Fq) s

then both £ and X are uniquely determined.

Proof of the theorem. The first part follows directly from the definitiocns.

For the second part, we will reduce to the case in which the f‘m are all true

nodular forms, whose weights satisfy O < ki <k
n
' = (p
replace f by f} fm(Ep_l)

o S eee - Indeed, if we

_l)Nm with Nm >> 0 , then we may suppose all
k >0, and by (2.7.2), for N >>0, f' has q-expsnsion mod P of a
true modular form. Rechoosing the Nm to be sufficiently increasing with m,
we have the desired reduction. Now consider the limit g-expansions. We may
and will work on each irreducible component of Mn®w(]Fq) separately. If on
a given component, the limit g-expansion is identically zeroc at any cusp, it

is so at every cusp, hence each f‘m is =0 (pm) on that component, and there
is nothing to prove. In the contrary case, the limit g-expansion is divisible

no+l

m
by p © ‘but not by at each cusp (mo is independent of the choice of

m
cusp on each irreducible component: cf.(2.7.1}). Then for m > n_, f =p Ogm

m
where g is a true modular form with q-expansions #0 (p) . So replacing
the sequence f by the sequence {f‘r:l} = {gmoﬂn} , we may sSuppose that each

f, has all g-expansions FOmod p . Then by (4.L4.1), the congruence

- no, e = i

f,. =f,md D in g-expansion implies that k ,, =k modulo ¢l{p ) for p/;é 2,
m-2 _ = (kg1 ~k) / (1)

and modulo 2 if p=2 and m >3, and thet f . =1 - (Ep_l)

m o R . m
modulo p . Hence X = lim km exists in End(%;f) , and {fm nod p }m >1

define a compatible family of sections of the sheaves QX on the schemes 5}% .

QED
Corollary 4.5.3. (Serre) Let X e End(Z;f) , and suppose X € %, if p=2 .

Let 0 <k, <k, <... De a sequence of integers such that k =X modulo o(p™)

1
if p £2 , and modulo F2 p=2 and m >3 . Let (f‘m} be a sequence

of true modular forms of weight km and level n on To(p) , holomorphic at
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the unramified cusps, and defined over the fraction field X of w( TFq) . Sup=-
pose that the non-constant terms of all the g~expansions of the fm are in

W(]E‘q) , and that at each cusp,

£a(@ - £,00) =2 () - £(0) modp"

m
Then if X ;é 0, let mO be the largest integer such that X =0 mod cp(p o)
if p#F2, for p=2 , m =1 if X is invertible in %, , and mo=2+ord2(X)

m
if X is not invertible in Z2 . Then for m > mo, P Ofm has integral

{e W(]Fq)) g-expansions, and at each cusp we have the congruence on constant
m m-m

terms: p m+l(o) =p f(O) mod p  © for all m>m if p£2 , and

m m~1-m
[o) = T4 o
2°f (0) =2 fm(O)mon if m>3 end m>m .

m
Proof. The integrality of the g-expansions of the bp Ofm follows from (4.4.3).
m
Let g, =P Of , which has integral g-expansions. Then & and

-k )/ (p-1)
h dfn g, (Ep_ ) m+l have g-expansions which are congruent modulo o

) L. _

if p #£2 , (resp. modulo 2" if p=2) and gm(o) = hm(O) . Thus g o -h)
has g-expansions congruent to the constents g +l(O) - hm(O) modulo po  if

v £ 2, (resp. modulo Pl p=2) . Applying (4.L4.3) to the function

m -1 .
(gm+l - hm)/p for p # 2 , (resp. to Eri1 ~ hm/2'm for p=2) we find

m
that its constant term has denominator at most p © . Thus
g,,,(0) =h (0) modulo 3" ir p A2, ad 7o ir pe2. QED
Example 4.5.4. (Serre) Take £ o= K, the classical Eisenstein series of

level 1, whose g-expansions are given by -(”ink /% o+ % o (n)q™ .
n m n>1 km-l

Choose the km to be strictly increasing with m , so that they tend archi-

medeanly to ® . One checks immediately that the hypotheses of {4.5.3) are
T dfn o »

verified. The limit "1im" p £, =07 G is thus a modular form of

weight X = lim km , whose g-expansion is given by

=2 o 1q alnippa X(@/a
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*
where Z (X) is the (prime to p part of the) Kubota-Leopoldt zeta function,
in the notation of Serre [42 ]. We hasten to point out that even if the

- - 0 » r} " Iy
character X is an even positive integer 2k > L4 , the above defined ng is

a p-adic modular form of weight 2k , but it is pot the ususal Eisenstein series

%
GEk . Indeed, the g-expansion of G2k is given by
k-1 2k—l
¥ (@ = 2ap e (120 + Z & )
dfn,p }’ a
while the g-expansion of ng is given by
Gy () = 5 € (1-2%) + qnzazk-l.

n>1 afn

*
Both sz and sz are p-adic modular forms of weight 2k , which, as Serre

explained to me, are related as follows:

* 2k~1

Zk=1 \n,.%
6, = Z T (ay,) -
n>o

Taking k=1 , we obtain a p-adic modular form G; of weight 2 , and we may
define G2 a8 a p-adic modular form by setiing
dafn nn
G, == Z PO (G,;) .

nz>o

An immediate calculation gives the g-expansion of G2 (cf. Al.3 for the series P)
G(a) = Z Z d= P(q)

n>1 d n
and shows that, for any prime p , the series P(q) is the g-expansion of a
p-adic modular form of weight two and level one. We refer the reader to A2.k
for an "intrinsic" proof of this fact for p # 2,3 , based on the classical

interpretation of P as a ratio of periods {ef.A1.3).
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Appendix 1: Motivations

In this "motivational” appendix we will first recall the relation be-
tween complex elliptic curves and lattices in € , then the relation between
modular forms and the de Rahm cohomology of elliptic curves, and finally the
relation between the Gauss-Manin connection and Serre's O operator on modular

forms. These relations are due to Welerstrass and Deligne.

Al.1l Lattices snd ellipfic curves

Given a lattice L C € , we may form the guotient C/L , a one-dimen-
sional complex torus, and endow it with the translation-invariant one-form
w=4dz (z the coordinate on €). Thanks to Welerstrass , we know that C/L

"is" an elliptic curve, given as a cubic I~ by the inhomogeneous equation

A1.1.1 y2 = b - g% = &3 >

such that  is the differentisl dx/y . The isomorphism from C/L to this

curve is explicitly given by the ;0 ~function:

A1.1.2 z € ¢/L —> (x = Plz;1), v = $(z;L))
where
Ai.1.2.1 (z;L) =E Z (—-L-—-*L),

LS ° peI- {o} (z-xa)2 2

da 50(Z'L -2 z -2

Al.l1.2.2 '( ;L) 2 = — +

P dz =~ 2elL-{0} (2-2)3

L \" 6
A1.1.2.3 = 60 /27, g, =1ho /i .
&2 2 eT- {0} / 3 ﬁeLZ-'{O}

Conversely, given an elliptic curve E over € together with a non-
zero everywhere holomorphic differential  , it arises in the above way from

the lattice of periods of w ,

¥ eHl(E; %}cc.

Al.1.2.4 L{E,w) = {fm
b4
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Under this correspondence, the effect of replacing (E,w) by (B, w) ,

¥
neC , is to replace L by A-L :

A1.1.2.5 L{Eww) = A L(E,w) .

Recall that classically, a complex modular form of weight k {and level 1) is
a holomorphic function on the upper-half plane f(t) which satisfies the
transformation equation

at +b
et +4d

£1.1.3 £(EEED) < g(e) (er+ )" V(%) e s1,(®) .

As explained in [1&2%], there is associated to £ a unique function of lattices

F(L) such that £{t) = F@r+%) , and which is homogeneous of degree -k in
- 3 -

L: PRI = kF(L) for A€ C . (Explicitly, F(L) = mgkf(ml/wz) if

L = Zw + %y, and Im(wl/wg) >0.)

By Welerstrass , we may now associate to f a "holomorphic" function
T of pairs (E,w) consisting of an elliptic curve/C +ogether with a nowhere~
vanishing differential which is homogeneous of degree -~k in the second variable:
F{E ) = A EF {E,w) , defined by T (E,w) = F(L(E,w)) . This is the point of

view taken in the text.

Al.2 Homomorphy at = and the Tate curve

Recall further that a complex modular form f(t) is said to be mero-
morphic (resp. holomorphic) at ® , if the periodic funetion f£(7) = £(7+1) ,
when viewed as a function of g = exp(27it) , holomorphic for 0 < |g| <1,
in fact extends to a meromorphic (resp. holomorphic) function of ¢ in [q] <1 .

In terms of IF, we are asking sbout the behavior of
. *, %
T (¢/2ri% + 2ritZg, 2ridz) = F(C /¢ ,dt/t)
h %
(where t = exp(2miz) is the parameter on € , and ¢“ denotes the subgroup

*
of € generated by ¢ ), a5 g tends to zeroc. By stendard caltculations(ecf.

[38]), the curve C/L, L = 2mi% + 27it& with differential 2midz is given
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as the plane cubic

2 .3 By
¥© o= 4x° - 3K+ 57 » With differential ax/y

A1.2.1
(x = Pleriz,L), Y = P1({2miz,L))

with coefficients the Eisenstein series

‘ 12-(211:1)1L gg('r) = § =1+ 240 ¥ 03(n)qn >j
Al.2.2 ¢ 3 gk(n) = o
216+ (27i) g3(7) = Eg=1-50kz 05(n>qn ddinl

Thus to ask that the modular form f be meromorphic (resp. holomorphic)
> .3 B 5 \l
. - o by .. .
at « is to ask that IF|Y Lx =Xt 5g dX/Y! 1ie in the ring €((q))
of finite-tailed Laurent series (resp., that it lie in C[[ql] , the ring of
formal power series in q ).

The equation Al.2.1 in fact defines an elliptic curve over the ring

Z[1/61({q)) ; in fact, if we introduce
I=x+=, Y =x+2y
then we may rewrite the equation in the form

3

A1.2.3 ¥ +xy = + Bla)x + c(q)

with coefficients

E, -1
B(q) = -5@% -5 nZl 54(n)a”
Al.2.4
Eh-l) Eé“l)
oo = -5 (W "7(—_551? ~ Z -503(n) -70'5<n) n
v 12 B n>1 12 o

This last equation defines an elliptic curve over Z{{q)) whose restriction to
1 .
Z[g]((q)) is the above curve, and the nowhere vanishing differential dx/2y+x

restricts to give daX/Y over Z[%"]((q)) .
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By definition, the Tate curve Tate(q) with its canonical differential

W,y 1S the elliptic curve over Z((q)) defined by (A1.2.3), with differential
Copn = dx/2y+x . For each integer n > 1 , the Tate curve Tate(qn) with its

canonical differential Yoan is deduced from (Tate(q), “’ca.n) by the extension
of scalars %({(q)) —> Z((q)) givenby = aiql —> 3 aiqnl . Explicitly,

(Tate(q™), w_ ) is given by

can

2

Al.2.5 ¥ rxy = 2348(d) % + old®) 3 = dx/2y+x .

wC an

Let Qn be a primitive n'th root of unity. The points of order n

*
on C /qnz are clearly the (images of the) nZ points
i3 .
Al.2.6 ¢)7a , 0<i, j<n-l.

Using the explicit expressions for x and y as functions of t = exp(2riz)

nk
q

1 l-an

e n'kt
X(‘t) = —g—x’lk—' —2

ke% (1-q t)2

le

Al.2.7

MO S G S i

keZ (:L-ant)3 k=1 1-q

B

one sees that each of the n°-1 points (gn)iq"j , 0<1i,J<n-1, (1,3) # (0,0
hags x and y coordinates in Z[{q]}@Z Z[gn,l/n] . Hence all level n struc-
tures on Tate(q®) over Z({g)) are defined over Z((q})@Z[Cn,l/nJ (rather
than just over z[gn,l/n]((q)) . This implies that the g-expansions of a

modular form of level n have bounded denominators (ef.1.2.1).

Al.2 Modular forms andde Rham cohomology

We can now give a purely algebraic definition of modular forms of
weight k , (meromorphic at « ) as being certain "functiond' f£(E,w) defined
whenever

Pl
R
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is any elliptic curve over any ring R , and w ¢ T'(E, %1 /R) is a novhere
vanishing differential on £ , whose values f£(E,w) are elements of the ground-

ring R . The conditions to be satisfied are
-k X
0) f£(Eaw) = AT £{E,w) for all A e R

1) f£(B,w) depends only on the isomorphism class of (E,w) over R ;

2) if ¢: R —> R' is a ring homomorphism, then, denoting by (Ego’wcp)
the curve with differential over R' deduced by extension of scalars,

we have f(Ecp,m(P} = o{f(E,w)) .

{Such modular forms are automatically meromorphic at infinity, simply because
the Tate curve Tate(q) is an elliptic curve over Z((q)).}

Given a modular form f of weight k , we may form the k~ple differ-
ential f{E,w)ow®k on E , which is independent of the choice of w , and

view it as a global section over R of the (invertible) sheaf (QE/R)@k , where

Y5 /R E]—f_é"“*(QEEL/R) :

This permits us to interpret a (mercmorphic at = ) modular form of weight k as
a function f£(E) , defined on any elliptic curve E over any ring R , with

values in the global sections of (3’E/R)®k , which satisfies

1) if o: E—> E' is an isomorphism of elliptic curves over R , then
o™ (£(8) = £(E) 3
2) if ¢: R —> R' is a ring homomorphism, then f(EqJ) = cp*(f(E)) .
Why bother to lock at the de Rham cohomology? Over any base ring R,
the (1ﬁ) de Rham cohomology of an elliptic curve F/R , noted }%R{E/R} and

defined as ]Hl(E, Q,E /R) , sits in a short exact sequence, its "Hodge filtration”)

of R-modules
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0 —> wp —> }%R(E/R) ——> Lie(E/R) —> 0

At

Al.2.1 (g, Oy)

(iE/R)(g.:L

Furthermore, when the integer € is invertible in R , this sequence has a

canonical (but not functorial) splitting,

H%R(E/R) T &p/R @ (ﬁi/:a)@)-l

which may be obtained as follows. Given (E,w) over R, R 1/6 , then there
are unique meromorphic functions with poles only along the identity section,
of orders 2 and 3 respectively, X and Y on E such that w=d¥/Y and such

that E is defined by (inhomogeneous) equation

2 a3
Y_ux-g2x-g3, gz,g3€R

(when R =C , we have X = &(Z;L), Y = P'(z3L) , I the lattice of periods

of w) . To specify the dependence on w , let's write X(E,w), Y(E,w),

gQ(E,m), g3(E,w) . By uniqueness, we necessarily have
-2
Ehw) = 2" 1(B,uw)
Y(E,A\w) =7\_3-Y(E,w)
Al.2.2 L
gQ(E,Mo) = A gg(Eam)
-6
85(E ) = 2~ (8,0)

But over any base-ring R , the first de Rham cohomology of an elliptic
curve E/R is nothing other than the module of differentials on E/R having
at worst double poles at o« (i.e. along the identity section). More precisely,

the inclusion of the de Rham complex @'E —_— g‘% /R in the complex

Dyle) — s ()
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induces an isomorphism on H1 . Because Hl(E, (7E(°°)) =O=H1(E,Q%:'/R(2m }) =0

for 1 >0 , we have

E' (8, Oplo) —> Q%/R(Zoo)) - coker(#'(z, Op(=)) —> HO(E,Q:é/R(em))

Al.2.3

Coker(R -2 HO(E,QEl/R(Z ©)))

H0 (5,05 /5 (2= ) -

If we suppose 6 to be invertible in R , then as soon as we choose a
nowhere vanishing differential w on E , we may canonically specify a basis

of Hl(E,Q%/R@oo)) , namely

_ AX(E,w N L _X(E,w) dX(E,w
AL.2.k o= TR and n = X(Ew) m—‘_LY%E_,wy_J_l.

Replacing w by Aw , A € RX, has the effect of replacing this basis by

_ AX(Ew -1 X(Enw)dX(E,\w
Al.2.5 }\w—_Y(EJ,X_w% and XN T —W,

which is to say that we have defined an isomorphism
AL.2.6 B (B/R) <= ®
e DR Yr/R ~ YE/R

given locally on R in terms of the choice of a nowhere vanishing o by

aw+bn%>am@'bm-l.

For every integer k > 1 , the k'th symmetric power of this isomorphism
provides an isomorphism

)®k-2 @ -k .

Al.2.7 Symm k( H%R(E/R)) = (g)E/R)®k @ (QE/R e @ (ET/R)®
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Al.3 The Gauss-Manin connection, and the function P

We begin by computing the Gauss-Manin comnnection on H%‘R(E/R) in the
case where R 1s the ring of holomorphic functions of 7 , and E is the

relative ellipbic curve defined by the lattice % + ZT . The dual Hl(E/R) of

H%R(E/R) is R-free on the two families of paths 7, 8nd oy,
T
(A1.3.1 71 on E_= C/Z+ B
0 Yo 1
The Gauss-Manin connection in this context is the action VTz v (cfti_“: of a(-i-,;

on H]:])-R(E/R) given by the formula (cf.[26], 4.1.2)

(A1.3.2) F e =% [ for ce HL(E/R) , and i=1,2
7

(i.e., it is the dual of the connection on Hl(E/R) for which y; and 7,
are the horizontal sections).

To actually compute, let's note by w (resp. Tl) the cohomology classes

of %rx_ and %x_ respectively, and denote by w3 5 i=1,2 and Nys i=1,2
the periods f7 w and fy n , which we view simply as elements of R . We
i i

will also denote by 71 and y, ‘the elements of H%R(E/R) defined by Poincard
duality and the requirement that for any ¢ € }%R(E/R) s f7-§ = <t,y4> -

i
Thus <y2,7l> =1-= -<')/l,72> , and <7l,yl> = <72,72> =0 . We have

wy = <w,7i> and ny = <n,7i> for i=1,2 . Hence we necessarily have

€
i

W7o T Wy W TN\ /7 w
(A1.3.3) 5 =

nEMNe 7 71271 1 Mo 71 i

(because both sides have the same periods over both 71 and 72) .
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But the classical "period relation” of Legendre

Al.3.4 Nylp = Mg, = 21l
[which expresses that the topological cup-product <w,n> is 27wl , or eguiva-
lently that the DR~cup~-product <w,q>DR: 1]. This allows us to express w and

1  in terms of 7y end 9,

7y -, @ ©
Al.3.5 2mi 2) = 2 2 < >.
71 'ﬂl wl i

Applying VT , we annihilate 71 and Yo hence, noting % by a prime ' ,
-nt w?! w -1 @, V{w)
A1.3.6 o = 2 2> . 2 2> A
1
AN S TOPANACY;

an equation we may solve using Legendre's relation:

VT(m)>: =1 /wl ’%X’Wé w’)(u)
) ZMK My Low/\q

M1 i

LI |-~ 1

S N A Al B R e Y

2ri 1 1 [ 1 ’
1™yl T 9T/ AN

A1.3.7

At this point we must recall that w =T, mzzl and Legendre's relation be-

comes: m, = T, = 2ri . TFed back into (Al1.3.7), this information gives

\75(“0 -1 o -1 o
A1-3.8 == —é—n_l-:- 5 .
Zn) (n,)"=amriny  -ny/\n
1 -2
Lemma Al.3.9. f, = ~L I ———p == -~ P, where X' means that the term
mn (mrm) 3
(m=0, n=0) is omitted, and P is the function of ¢ = T given by
P(a) =1~ 24 = ol(n)qn , where gl(n) = b a .
n>1 d > 1,d[n



Proof. The first follows from the definition of n, as a period of
n = XaX/Y = ®(z)dz , and the fact that n = -df , where { is the Welerstrauss

¢ ~function

(A1.3.10) ¢ (2) =%+ZX {_m.n +mrl+n " }
mn

(mt + n)?'

zﬂ'{-dg(z}) = t{z) - t(z+1) , and hence

A1
- 1 1 1
T ol +z‘mzn {z-—mr-n T gemt-n+l 2}

(mT+n)

~ -1 1 1
-sat 2 )3 5 +n§0{_§ +z-n'z+1-n}

m#0n  {(mtin)

Tndeed ny = [, W = glea () =g

SR
ot

(A1.3.11) =

N
=

[

Yyt e——s .

mn (m'|:+n)
The second equality is ubiquitous (ef.[423], pp.15L4-155).

Remark Al.3.12. A similar calculation, based on the fact that the { is an

absolutely convergent double sum, hence also given by function

(A1.3.12.1) t(z) =< + Zl {-mw—n W }

z nt+n (mt+n) 2

shows that 7, = ¢(z) = t(z+1) = -5 o' T—T—)— . Comparing these two formulas,
nm {mtn

we see that ng(-—l/"c) = Tnl(’c) , and hence Legendre's formula nl(T)-Tng(T) =27
is equivalent to the transformation formula

T}z("-‘/T)

(A1.3.12.2) -

= Tng(’r) = 277-1 2
i.e. ﬂg("l/T) = Tz'qg(”r) + omiv

or equivalently P(-1/T) = TZP(T) - é—,[}rl .
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Remark (Al.3.13). Viewing Legendre's relation as saying that <w,pg =1 s

one can prove it easily using Serre's cup-product formula, valid on any complete

nonsingular curve over € : for any dfk w and any dsk n , the cup-product

<n,w>pp  is given by the sum /;“3 resgo(f,p -w) , where at each point P, f@;

is an element of the /P-adic completion of the function field such that n= d.f? .

If one bears in mind that, analytically, we have n=~-df , then the usuwal proof

of Legendre's relation on an elliptic curve (cf. [U6], 20.4.11) just becomes

an analytic proof of Serre’s cup-product formule in that particular case.
Returning to the relative elliptic curve c/z+z T over R , we have

2

VT( ) 1 7_%_2 1 w

(A1.3.14) = ==
E ™o 12, 2L\
9 2ri 3
) i . . _ 1
Consider now the differentials Yoan = 2riw 5, 1 can =g N o and let
_1 d4__a . . A .
O=%% Fc =93 - Them w,, Iis the canonical differential dt/t on the
3 1 1t Py

Tate curve Tate{(q) over ¢€({(q)) , Noan 8 the d.s.k. "dual” to . in

the sense of the splitting (Al.2.6), and the Gauss-Manin connection on

1 e 1 -
]HDR(Tate(q)/C((q))) is given in terms of w =gz w,  and n=2miq by
2
P
w V{w) T=> 1 w
o[ )= F) -2 3
n vi{n) b 2p /\n
{ %Ji (P°-120P) - ”—§-—P
(1.3.15)
-2 =i
= 12 )-WT o
g—z (P°-126P) '1% i
and hence is given in terms of Woon * Nean by
-P
“ean 12 1 Yean
(A1.3.16) v(6) =
2
Yean P -126F P Nean

T4 2
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(AL.3.17) The iscmorphism o" % o>° .

Let T be an arbitrary scheme, S a smooth T-scheme, and E/S an
elliptic curve. For any derivation D € _I_)gE(S/T) and any nowhere vanishing
invariant one-form w on E/S , we may apply V(D) %o w , view V(D) as an
element of H%R(E/S) , and compute the cup-product <w,V(D)w> € Oy . We view
this construction as defining a pairing between Der(S/T) and 9®2 s W
denoting the line bundle f*n%' /S on 8 , or equiva.lentliy* as a morphism from
g®2 0 Q:SL/T . The dual mapping Der(S/T) —> (le*( %))®2 is precisely
the tangent mapping of the classifying map from $ to the modular stack (or
to the modular scheme M, , if we rigidify the situation with a level n

structure). When this map is an isomorphism, the classifying map is eta.le’,

and we say that E/S is "almost modular™.

Corollary Al.3.18. Consider the Tate curve Tate(q) over Z((g)) . The

image of m;@ai is the differential dg/g on %({q)) .

Procf. The assertion is that Q”can’v(ejwcan> =1 ., It suffices to check
=P

. , = + .
this over C{{g)) , where we have v(@(%m) 12 “ean © Mean As
Woans Woan” = 05 W Wy Megy” = 1, QED

Al.4  The Gauss-Manin connection and Serre's O operator ([41]): d'aprds Deligne

A series f£{q) € €[a]] is (the g-expansion of) a modular form of
weight k if and only if f(q)'(mcan)®k extends to a "global” section of @®k ,
i.e. one which is "defined" for all families of elliptic curves /€ , or equiva-

lently if there exist integers a,b with a-b=k such that

)®a'( )®b

can extends to a "global” section of Syma+b(1‘%3) » in

(@) (g
the same sénse.
We now view the Gauss-Manin connection on H%'R(E/S) , where S is a

smooth T-scheme, as an arrow V: HL (B/S) —> X—%R(E/S)Q@Qé'/T . Tts k'th sym-

metric power is a conmection on Symmk(}ll) , S0 an arrow
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Sy (HD) — Sy (55) ®g§/T . If E/S is "almost" modular, we have iso-
morphism Q%' /T ~ 9®2 s SO we may view this last arrow as an arrow
Symk(Hl) —_— Symnk(}ll)®9®2 . Suppose now that 6 = 23 is invertible

in S . Then we have a splitting l-%R(E/S) ~ 4 ©® o1, whose k'th symmetric

k .
power is a splitting Syxmnk(H%R(E/S)) ~ 3 g®k-23 , and we may interpret
j=0
the Gauss-Manin connection as an arrow
k k k
~23 =23 ®2 BDK+2=2]
AL Z 2®k 2 __, Z  Br-2ig B2 Z 9@1{@ 25
j=0 J=0 J=0

Suppose that £ dis the g-expansion of a modular form of weight k.

. _ Ra &b
Then for any integers a and b such that a-b=k , f’-(mcan) (ncan)

extends to a global section of Syznma+b (Hl} . Hence its image under the Gauss-
Manin comnection extends to a global section of Syrnma+b(}1:L) ®9®2 . But its

image under Gauss-Manin is

e(f).(wcall)®2. (wcan)@)a‘ (ncan)®b'

+ f'a'(w ®

)®a—l(£
can iz “

Q2
can ncan)®(mca.n) ®(ncan)

}® >®b =1 ( P2-189P P ) (

w T, )®2
iann can 12 “can

[

&
+E (wca.n -b- (nca.n can

2 atb o pipanj
which we group according to the decomposition Smaﬂ: (Hl} Qy™ = gs_a b+2-2]
520

3

= {e(f) - (a=b)-£- %'(wcan)(gwg- (ean) oP

+ [af}‘(wcan)®a+l' (ncan) b+

2
P=L26P & at ®b-1
’ {bf‘ TH } (wca;rl) > (nca.n) :
Thus we conclude that if £ is modular of weight k=a=b , then

o(£) - kf- IPé' is modular of weight k+2 = a+2-b

(a1 k. 2) af is modular of weight k = a-b

oL

i

P°-12 op

T at+3 - (b-1) .

is modular of weight k+h
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[Serre’s 3 operator is O(f) = 12 8{(f) - k-P-f for F modular of weight Xk ,
hence Of is modular of weight k+2 .]

Corollary Al.L.3. P° - 12 6P is modular of weight U , hence

P° - 12 6P = E), dn o

Proof. Take f =1 which is modular of weight O = 1-1 , to see that Pg- 12 6P

is modular of weight 4 . As it has constant term 1, it is necessarily EM .

Corollary Al.4.4, (Deligne) P = QA—A , where A denotes the unique normalized

cusp form of weight 12, the discriminant (Ej - Eg)/1728 .

Proof, 6{4) -A-P is a cusp form of weight 14 and level 1 , and there are

none save zero. QED

Corollary Al.4.5. The Gauss-Manin connection on }%R of Tate(q) over

Z[1/61((q)) is given by

-P

V(e) (wca,n) i 1 Yoan
(a1.4.6) = .
Q P
v(©) (ng ) 5 15/ N\lean

Proof. give a base of E%R over Z(%—)((q)) c ¢({qg)) , and we

can’ ean

have the desired assertion by transcendental means over C{{(q)}) .
Remarks.
-1/12 1

1/ 1/12
which is a pilpotent matrix. This shows that the canonical extension (in the

1. The value at 0O of the connection matrix is

sense of ( [ 8] ) of H%R with its Gauss-Manin comnection to « is given

by the free module with base Woan® Toan

2 .
2, We have (Vée)) (wcan) = 0 (because the periods of « are 1 and
T both killed by (5%9 ) , hence by Igusa [17], the Hasse-invariant has a

2

g~expansion f(q) € ]FP[[q]] which satisfies 6°f = 0 , so writing f=3 anqn R

2
we have (a)° =0 , hence a =0 , hence f = ag * apqp + ... . By direct
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caleulation (of the coefficient of &t in the Eéé'th power of

3 ELL(O) E6(O) 3 X 1

- =Xt = WX - 5t 5E (cf.[26], 2.3.7.14) , we compute

ay = 1, hence £ =1 mod(qp) . As the same is also true for the reduction

" = P P
mod p of Ep-l , we have B £ mod(p,q°) , hence Ep-l £ is a cusp form
mod p of weight p-1 and level 1 with a zero of order > p , hence vanishes
mod p . Thus Ep-l mod p is the Hasse invariant, and f{q) is identically 1 .
(We gave Deligne's original and more conceptual proof of this fact in 2.1.)
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(41.5) Formulas

(A1.5.0) For n >3, l\_/fn is proper and smooth over Z[1/n] , and its
inverse image over %[1/n, gn] is the disjoint union of ¢(n) proper smooth
schemes with geometrically comnected fibres ﬁ% , one for each primitive n'th
root of unity ¢ (corresponding to the value of the e.m. pairing on the given
basis of points of order n). The Z[l/n,l;n] schemes i/’fi are non-canonically
isomorphic to each other. We give below the formulas for their (common) genus,
the (common) number of their cusps, and the degree of the invertible sheaf w .
The method of deducing such relations is very simple: one notes that by flat-
ness, the fact that I-Vf% -Mi is a disjoint union of sections, and the isomor-

phism 9_®2 zml (log "cusps") , it suffices to calculate these
HS/2(1/n, ¢ ]

invarisnts for any geometric fibre I_dgl ®k [k any algebraically closed field

containing 1/n ]. One then applies the standard Hurwitz formula to.the mor-

1
k
My 3

other than o "is” an elliptic curve E over k , up to isomorphism. The

phism M%@k — IPIJ\': provided by the j-invariant. A closed point of 1P

points of M§1®k lying over it are the set of all level n structures on E
such that the value of the e.m. pairing on the given basis of nE is ¢,
modulo the natural action of Aut(E) of o= - The cardinality of the fibre
over the point "E" is thus #SLQ(Z/n Z)/# aut(E) . Tor J(E) #0 , 1728,
Aut(E) = +1 , and hence over 1911( - {0, 1728, w} , the projection is étale of
degree #sxz(z/nz)/e . The fibre over O has #SLg(z/nz)/é points, and that
over 1728 has #SLE(Z/n%)/’-L points. The points over o« are the cusps, each
of which is ramified of degree n, hence the number of cusps is #SLQ(Z/nZ)/Zn .
Letting X denote the topological Euler characteristic, we thus have the

formula:

X ®K) = #51,(2/n B) [ +F + =] + #L,n B)[1/2]- X(BT - (0, 1728, «}) ,

ie., x(ﬁ%@k) = #5L,(%/n B) [%- + ,}f- + % - %—] = #51,(2/n 2) - [%— . Now
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#SLE(Z/n%) =0 W (- ég) , 50 we have finally
pin P

(A1.5.1) Formulas

li

2
(A1.5.2) l-genus(ﬁ%l) = %J:—I; #SLE(Z/n%) % III (1 _1_2) ;
P

PIn

1
—2)§

(41.5.3) # cusps on T = = #sL(nm) = S I!r (1 -
pin p

2

(A1.5.4)  degree(w) on 1\71251 = %deg(nl(log cusps)) %(2;;-2 + # cusps)

@5 - Ly gor, (z/nm)

1]

= & #51,(%/nm)
(A1.5.5) Sample conseguences

T

C has genus zero only for =n = 3,4,5, and genus one only for =n= 6 .

We always have deg(9®2) > 2g-2 , but deg(w) >2g-2 only for 3 <n <11 .
For n = 3,4,5, Mi is a T , hence w 1is uniquely determined by its

degree; g=@(l) on I\_/I%, 2:0’(2) on 1\713, 9=0(5) on 1\_/[%
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Appendix 2 - Frobenius

In this appendix we will explain the relation between the Frobenius
endomorphism on p-adic modular forms and the action of Frobenius on the de Fham

cohomology of "the" universal elliptic curve.

(A2.0) Let R be a p-adically complete ring, E/R an elliptic curve which
modulo p has invertible Hasse invariant, and HCE its canonical subgroup.

Let E' = E/H , and let 7: E —> E' denote the projection. Then ¥ induces

an Remorphism T }%'R(E’/R) — I—%R(E/R) . Suppose now that R=M(W(JFQ), 1,n,0),
the ring of p-adic modular functions of level n defined over W(Iﬁ‘q) , where q
is a power of p such that g =1 mod n . Let E/R be the universal curve

with level n structure, such that Hasse is invertible mod p . As E' = E/H

is a curve over R with level n structure and Hasse invertible mod p , it is
"elassified” by a unique homomorphism ¢: R —> R such that E' = E(q)) .

This homomorphism ¢ is precisely the Frobenius endomorphism of the ring
M(W(Jﬁ'q),l,n,o) defined in [11] (the "Deligne-Tabe mapping”). The induced
homomorphism T }%R(E'/R) = E%R(E(@/R) =(H-L(E/R))((P) —_— }%R(E/R) gives a
g-linear endomorphisn of M- (F/R) , which we denote F(p) = o™t (to be
compatible with the notations of [25]). Because 7 is induced by an R-morphism
E —> E' , the endomorphism F(p) respects the Hodge filtration

0 —> y—> H%R(E/R) — Q-l ~—> 0 , and thus induces g-linear endomorphisms

(still noted F(p)) of w and of ot .

Lemma (A2.1). On w , Flg) =pp; on _u_)-l , Flg) = o .

Proof. (We will suppress the level n structures, for simplicity.) Let £ be
a section of ¢ . Then f(E,w)-w is a section of QE/R . By definition,
o(f) is the section £(E/H, :{/T*(m))‘w of Q’é/B . Because T is étale and
E/H = 5(®) , we have 1 (&) = Ao®  with A invertible in R . Thus

£(E/H, ()0 = f(E(q)), m(q’))-m = x'l-cp(f(E,w))-m . On the other hand,
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F(g) (2(m,0) 2 1 ((2(5,0)-0P) = pl2(E,0))-7 (0?) = ole(®m,u)- RS, [ohe
last equality because puw = [p]*(m) = 'ﬁ*(%*(m)) == W*(}vw(@) = k-vr*(m{@))] .
Thus F(p) = pp as g-linear endomorphism.

Similarly, for 2—1 , a section T is a section f(E,m)-w-l of
H'(E, 0) , and o(f) 1is the section £(B/1,7 () 0™ of H(E, O) . But
as before E/H = £(®) , 7 (w) =ho with A dinvertible in R , and so ¢(f)
is the section Nq)(f(E,m))'w“l . But
P(e) (£(E,0) 0D = 7 (28,0 (0™ @) = g(2(E,0) 7 (WD @ . 50 ve must
show that W*(m-l)((p) = 2wt , or by Serre duality, that :!/T*(w(@)) =nNw,

which was the definition of A\ . QED

A2.2 Calculation at <«

The canonical subgroup of Tate(q) over Z({q)) is by and the
quotient is Tate(q®) = Tate(q) (9} , where (of)(q) = £(¢®) . Thus we also
have a ¢-linear endomorphism of }%R(Ta’ce(q)/%((q)) . Passing to €((q)) =and
viewing the situation analytically, Woan becomes the differential 27idz on
C/Z + Z7 , and the canonical subgroup becomes %Z/Z . The quotient is
c/% Z+ %t -—“L C/7 + Zpt . In terms of the bases 71(1) , i=1,2 end
7,(p1) , i=1,2 of H , we have my (1) = 7. (01) 5 T(R) = py,(p7) .

It follows that Tr*(wcan(qp)) = Tr*((wcan(g))(q))) = {q) because both

p wca.n

have the same periods:

 7le (@)= [ o (@)= [ (@ =pr
71(,1.) can 7771 can )/l(PT) can P
A2.2.1
[ mle, (@)= u (@ = | w, (@) =p.
75(7) e T, peyp(pr) O

By functionality, F(q}) respects the Geuss-Manin connection, and
= =P . .
v(e) (wca.n) =75 Y%an " Nean I° the unique (up to scalars) element of

}%R(Tate(q)/Z( (a))) killed vy V() (as a direct calculation shows - indeed
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vy (ALh.6 ), this rank two differential equation over € has non-trivial
funipotent) monodrony around gq = 0 , hence has at most one solution which is

single~valued at g = 0). It follows that

(2.2.2) Flo) (V(8) (wcan)) = a-V(@)mcan for some a ¢ % ; explicitly,

, whence

w2.2.3) ":%.Pl W*(“gg} " W*(nizr)l = -St_ag Yean * *Mean

_ polP) -aP
(az.2.%) T (o) (“can) = 15 Wogn + @ Mogn *
Because w_ .~ end V(e)wcaIl give a base of HY such that “’canAv(e)“’can is

a constant base of H2 , the fact that 7 has degree p shows that a=1 , so

(2.2.5)  F(g)(n,,) = LAL =P

12 “oan * Nean

Thus the matrix of F(gp) on }H'(Ta.te(q)/Z[l/@((q))) is given by

FloYlw, )

can

P
7o) (n,,) <M%——P 1

O w
can
(a2.2.6)

nca.n

To give formulas valid over %((q)) , we use the base w an’v(e)(wcan) of

c
}%R(Tate(q}/z((q))) 3 we have
Flo) (w,,,) P 0 w

can
(a2.2.7) =
F () (7(6) () o 1/\ ) (uy,)

A2,3  The "canonical direction" in }%R (a special case of [25], [13])

We return to the universal situation R = M(W(Iﬁ‘q},l,n,o} , E/R uni-
versal. In terms of a base w, n of H’%R(E/R) adopted to the Hodge filtration,

the matrix of F(cp) has the shape:
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I

(82.3.1) F{o)

w p/}\ 0 © » € R invertible
with
CeR

ul C X2/ \n

An argument of successive approximation shows that there is a unique element

£ e R such that Flg){n+fw) € R (5 +fw) ; indeed

(42.3.2)  Flp){n+fuw) = cu+ mw(f)% w={c+ % () Jutan ,
so we want £ € R to satisfy

c + % o{f) = rf
(A2.3.3) i.e. .

f=%+§§@(f)

Let us define a mapping T: R—> R by T(f) = % + %— e(f) . It is immediate
i A

that T is a contraction mapping of R in its p-adic topology, so has a

unique fixed point 1im T {0) , which is explicitly given by

n{n-1)
. Z o (1/0)ol(e)
@

(A2.3.54 £
) nz1 alatd) ;)

>lo

Of course, the choice of base is not canonical, nor need there exist a gichal
basis (over all of R ), but the given construction does construct an F(g)-splitting

of the Hodge filtration

(A2.3.5) 0 — w —> H%R(E/R) w o .

Looking at o , we see that in terms of the base «_ , v(6) (wcan) of
1 {Tate(q)/%Z((q)) , we have simply "constructed” the vector V{(6)(w )} , which
R ’ A can

is indeed fixed by F((p} . Hence we have proven

Theorem A2.3.6. (Dwork) Let —Mn(W(J'Fq) ,1) denote the formal scheme over
w(]Fq) which mod p~ is the open subset of Mn®wm(IFq) where By is

invertible. The locally free rank two module on Mn(w(]Fq,l)) given by
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}%‘R(E/Mn(W(IFq) ,1)) admits a loecally free extension H%R(E/ﬁn(w(lfﬁ’q) ,1))

which along any cusp is the w(mq)[[q}] submodule of Hl(Tate(qn) /w(zs‘q)((q))}
spanned by w,, ~end by V(G)(wcan) . The Gauss-Manin connection over

Mn(W(JFq) ,1) extends to a "connection with logarithmic poles” over I\—/I'n(W(JE‘q,l)) R
and the g~-linear endomorphism F(p) over Mn(w( IFq) ,1) extends to a ¢-linear
endomorphism, still noted F(g) , over all of ﬁn(w(la“q) ,1)  (ef{pa2.2.6) and
(A2.2.7) for the explicit formulas defining these extensions). There is a

canonical F(gp)-stable splitting of the Hodge filtration

-~

& -
0 —> y —> }%R(E/Mn(w (]Fq),l)) —— l_so , (the image of which we

denote U C H%'R(E/Mn(w(mq),l)); it is a horizontsl (by unicity!) F(gp)=-stable

rank one submodule).

A2.4 P as a p-adic modular form of weight 2

Suppose now that p ;4 2,3 . Let R be any ring in which p 1s nil-
potent, E/R an elliptic curve whose Hasse invariant modulo p is invertible,
and U C }%R(E/R) the inverse image of the canonical rank one submodule con-
structed above. (Strictly speaking, we must Tirst choose a level n structure
for some n >3 prime to p defined over an étale over~-ring R' of R, and
check that the U obtained in Hl(ER,/R') descends to a UC Hl(E/R) which
is independent of choices.) Let © be a nowhere~vanishing differential on E/R
(which in any case exists locally on R) , and let 1 be the corresponding
differential of the second kind (i.e. w = %X- P X—?(X— as explained in
(A1.2.4)). Because qt - Reew + U, we see that if u € U is a base of U

{which in any case exists locally on R) then the de Rham cup-product <w,uw>

is invertible on R . We may then define a "function” P by the formula

(82.4.1) B(B/R,w) =12 S for any base u of U .
o, > pase

Clearly the right-hand expression is independent of the choice of base u of

U , and the effect of replacing w by Aw , A € R is to replace 7 by )C'ln .
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hence g(E/R,Mo) = x_2§(E/R,m) . Hence P is a p-adic modular form of weight
two and level one. Its g-expansion is
> > <nca.n’v<e)(wcan)>

=~ can
A2k, = =
2.4.2 P(Tate(q),wcan) 12 = = 12 = NOIOWNE
can can

because, formally at o« , U is spanned by V(G)(mcan) . If we denote by P(q)
the series 1 - 24y cl(n)qn , then by (A1.3.16) we have

=P . . . .
V(e)(wcan) = % Wogy * Mggy - Substituting into (A2.4.2) gives

< R P—((l)- W + 1 > lZ-P(q) <1 =W >
> can’ 12 can can can can
(A2.4.3)  P(Tate(q),w )= 12 =
can 12 <w,__, 1. >
< -P(q) + S can’® 'can
Yean’ 12 “can  Necan

= P(q)

This provides a modular proof that P 1is p-adically modular.
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Appendix 3: Hecke polynomials, coherent cohomology, and U

In this final appendix, we explain the relation between Hecke poly-
nomials mod p, coherent cohomology, and the endomorphism U of S(R,r,n,0)®K

(notations as in (3.11)).

(A3.1.0) Let us begin by computing the trace of " , using the Dwork-Monsky
fixed point formula. For simplicity, we take R to have residue field F_ .
Let Rm be its unramified extension of degree m , and Km the fraction field
of R . The endomorphism ¢ acts on the points of ﬁn(mp,l) with values

in the algebraic closure ._]F_p of ]Fp as the relative Frobenius. For each
integer m >1 we denote by Tsl the set of E‘p -valued points of ﬁn(IFP,l)
which ere fixed by the m'th iterate ¢ , i.e., T~ is the set of ]Fpm-valued
points of D_dn(lﬁ‘p ,1) . Tt is known (cf.[36]) that each element of T}i 1ifts
to a unique Rm-valued point of the formal scheme ﬁn(R,l) which is fixed by o.
We denote by T, the set of such ¢-fixed R ~valued points of l\—/ln(R,l) (s0

T = Tz by reduction mod P ). The tangent space to ﬁn(R,l) at a point
t e Tm is a free Rm-modu.le of rank one, on which cpm acts as an Rm-linea.r
endomorphism. We denote by dcpm(t) € R its "matrix". The Dwork-Monsky
trace formula [36] is as follows:

{A3.1.1) trace(U") = Z =L dLm(-L .

tel Pt 1-dg ()

It remains to determine the "local terms” in this formula. We begin

[¢]

with the cusps, i.e., the points + € Tm whose image to € Tm is a cusp of
ﬁn(]Fq ,l) . Then, as we have seen, the overlying point % eTm is itself a cusp

of ﬁn(Rm,l) , the completion of its local ring is Rm[{q]] , and the action
m
off cpm is given by q +—> qp , whose linear term is zero. Hence dcpm(t) =0

at the cusps.

Now suppose t € Tm is not a cusp. Then the corresponding elliptic

-

curve E, is the so-called canonical 1lifting of its reduction Et (vecause
o
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the m'th iterate of the Frobenius endomorphism of Eto 1ifts to an endomorphism

of Ep , nemely m-fold division by the canonical subgroup - {cf.Messing [34]).

In this case it is known that the completion of the local ring at t is iso-
morphic to Rm[ [X]] , where 1+X is the Serre-Tate parameter (cf. ftnote, p.186).
Tet O € z;f =a(m,t ) be the "matrix" of the action of the automorphism "sPoth
power" acting on the Tate module Tp(Eto(ﬁp }) of the reduced curve. Then
(cf.Messing [34]), the action of cpm on Rm[[X]J is the one sending

1+X —> (1+x)Pm/o‘2 , hence dg'(t) = pm/a(m,’co)2 .  Combining all this, we

find the formula

(A3.1.2) trace(UT) = Z —_—

m 2
t e Ty P - Ot(m,to)
t not a cusp

Denoting by T?no the set of I , -valued points of Mn(]FP,l) , i.e. the set of
P

ordinary elliptic curves over IF m With level n structure, we have
P

(23.1.3) trace(U™) = }: 1

oo _m 2
t, €T P -Ot(m,to)

The next step is to assemble this dabta into an expression for the
Fredholm determinant det{l-4U) as a product of L-series on Mn(IFP ,1) . For

any closed point x of Mn(IFp ,1) (i.e., an orbit of Gal{IE‘P/IFP) acting

on the f‘p— valued ppints of Mn(]FP s1)) , we define of{x) = aldeg(x),X) ,

where X 1is any FP deg(x) =-valued point of Mn(JFP ,1) 1ying over x . TFor
each integer r , the L-series L(Mn(JFP 51) ;Oér;t) is the element of ZP[[t]]

given by the infinite product over all closed points x of Mn( ]FP s1)

r deg(x) -1
(A3.1.14) T (1-a(x)-t )
X
An elementary calculation now yields the following identity.

Identity A3.1.5

w2 (r+l r
( ) P

det (1-1tU) = L(Mn(IFP ,1) o t) (which is the key point

1
r>o0
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of [12]). Tt shows independently of (3.11.7) that det(l~tU) I1ies in zp[[t]] s

and gives as a corollary the following congruence formula.

Corollery A3.1.6.  det(1-tv) = L0y, (F ,1), a®3 4) modulo b2, [[6]] -

Proof. the term with r=0 remains modulo p, and modulo p the characters
a-g and ozp-3 are equal, hence give L-series which coincide mod p .

But the character Ozo = mod p is the one associated to the locally
constant rank-one IFp - etalé sheaf le*JFp , and the L-series
L(Mn(]Fp ,1), ocg‘3,t } is just the L-series L(Mn(]Fp 1), (le*:m‘p )®P'3,t)
associated to (le*IE‘P #P-3 in (h.1.1).

[I}I}; the apparent inversion is due to the fact that « describes the
action of the arithmetic Frobenius on the etalé quotient of Ker p , and hence

by duality it 1s the action of the geometric Frobenius on its dual le*]FP -]

Furthermore, the sheaf le*]FP extends to a locally constant rank-one
IFP- etalé sheaf on ﬁn( ]FP ,1) , and the value of the extended character (still

denoted oco) is 1 at each cusp (ef.(h.2.1)). Thus we have

(13.2.7) L0 (F,,00870,0) = [T (1-%8 Ml (m,1), (R, P P3,0)
x closed
point among
the cusps

(AB.E.Z Let Hiomp denote the etalé cohomology groups with compact supports

i o 1 &p=3 . =
Hcomp(Mn(Fp ,1),(R :f‘*JFp) ) , which are Gal(]l?‘P /IE‘p)-modules over Z[Fp .

Only HE is £0. Let F_ . ¢ Gal (E, /T,) denote the inverse of the

comp om

awtomorphism x —> x® . According to ([47]), we have the formula

(3.2.1) L(F, 1), (R, PP 20) = aes(r-v v, lwl )

By (L.2.2), the invertible sheaf with p-linear "automorphism” corresponding to
(le*IFp )®p-3 is (93-13,@) over I\_/ln(]Fp ,1} . But the pair (9®3“p,q))
extends to an invertible sheaf with p-linear endomorphism on all of ﬁn® IFP s

namely to the invertible sheaf 2@3-13 on D—/fn® JFp , with p-linear endomorphism
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given by

where A = Ep-—l mod p denotes the Hasse invariant e I‘(ﬁn® IE‘P ,_@@P'l) s
(compare g-expansions!)
Because this extended endomorphism vanishes at the fibres outside

I\_/In(ll?p ,1) , we have an isomorphism

i

(A3.2.2) Hcomp = the fixed points of p acting p-linearly on
(T ,w®3-p)
n P
under which the action of the arithmetic Frobenius on Hiomp is ibs obvious

action on the fixed points of ¢ . It follows formally that we have the

identity

i N =i ®3-p
(83.2.3) det{i-t FgeomIHcomp) = det(l- tylH (M, ® F, s ).

Putting this all together, we have the following congruence relation

modulo p Zp[[t}] .

(#3.2.%)  det(l-tU) = [ T (1 -19%8 *qet(1 -5 H OF ,053PY),
x closed n P
point lying
among the cusps

(A3.3) We now wish to calculate the determinamt of ¢ on Hl(ﬁn® IFP ’2®3-p)

by using Serre duslity and the Cartier operator. PFor this it is convenient

to abstract the situation slightly in the following lemma - in which X is

1\71n®1Fp, Z is o®P3 | ana B is AP

Lemma A3.3.1. Let X %be a projective smooth curve over ]FP , of an invertible

sheaf, and B a section of 2% | e composition

(3.3.2) i@ni-—B-e »C®P®gi-£-> L ®gi
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(where ¢ ig the Carbier operation, defined locally by C{sP®uw) = £®C(w))
induces an endomorphism of HO(X, I® Ql) which is dual to the endomorphism

of Hl(X, ,(-l) induced by the endomorphism £ —> B(2)® of L-l .

Proof. We begin by remerking thst although X Cs " need not be geo=

metrically connected, Serre duality on pi gives a perfect pairing between

Hl(X, F) and Ext:l&—l(} ,Q:)L() with values in Hn(]Pn,Qm n —= IFP for any co-
X

Ir
herent Fon %, vhich just as in the usual case may be computed via repartitions

and residues. The desired duality now follows from the fact that if x € X
is a closed point, and £ and £ are meromorphic sections of .,( -1 and
L ® gl , then residueX(B-(i’,)p'g) = (residuex(i-C(Bg)))p , {the usual Cartier

formuls applied to the ome-form B(£)PE) . QED

Lemma A3.3.3.  Take X=I\7In®]1<"p, ;C_=9®2k , >0 ,and B =4 in the

previous lemma. Under the isomorphism

® 2k ® 2k 42

Ho(ﬁn® EI‘),Q ®Ql) -"‘—JHO(MH® JFP W ® I{cusps)) = the space of cusp forms

of level n and weight 2k+2 over IFP , the endomorphism § —> C(Aakg} is

the Hecke operator TP .

Proof. It suffices to check the g-expansions. But in terms of g-expansions

. . 1 —_~ B2 . . . . dg. k+1
and the isomorphism Qx(log cusps) = g , if & in g-expansion is T{qg) (E)

® (2kp+2)/2

&k
then C(Akg} in geexpansion is C(f(q)-(%(-l-) ) =C(f(q)%g)'(i—q) .

But if £(q) =% aq" , c(f(q)%} =35 (anp)l/P.q“ %% . Comparing this with
the explicit formula (1.11.1.2) for Tp gives the desired result (because

Ok
=0 (o)1) . QED

Putting this all together, we obtain the congruence relation

mod p Zp[[t]] :
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— deg x / s
det(1~tU) = [ 1 {1-t V}rdet{1-%T |cusp forms of weight p-1
x closed Y » and level n
point lying
among the cusps
(A3.3.3) P

det (l—-tTp cusp forms of weight p-l) = det(l-t-CoAP-B Ho(l\_/ln® IFP ,9%-3@1))
\

and level n

This formula is the starting point for recent work of Adolphson [O].

FOOTNOTE : the first new sentence on page 182 is incorrect, though the tangent calcula-
tion we deduce from it is correct. The difficulty is that the Serre-Tate parameter is
not "rational' over Rm, but only over R_, the completion of the maximal unramified ex-
tension of R. However, if we view t as defining, by extension of scalars, a rational
point of ﬁn(Rm,l), then the completion of its local ring is indeed isomerphic to
R_IXN , where 1+X is the Serre-Tate parameter {(cf. Messing [34]). Further, the R -
linear endomorphism of R_I[X]] deduced from ¢m by extension of scalars is given by

m/e2
1+x+ (1+x)F /a , in the notation of page 182, and the formula (A3.1.2) remains true.



10.

11.
12.

13.

1h,

15.

187 Ka-119
References

Adolphson, A.: Thesis, Princeton University 1973.

Atkin, A. 0. L.: Congruence Hecke operstors, Proc. Symp. Pure Math.,
vol, 12,

————— : Congruences for modular forms. Proceedings of the IBM Conference
on Computers in Mathematical Research, Blaricium, 1966. North-Holland
(1967).

————— , end J. N. O'Brien: Some properties of p(n) and c(n) modulo powers
of 13. TAMS 126, (1967), Lhe-bso.

Cartier, P.: Une nouvelle opération sur les formes aifrérentielles, C. R.
Acad. Sci. Paris 2bh, (1957), Le6-428.

----- : Modules associés a un groupe formel commutatif.Courbes typiques.
C. R. Acad. Sci. Paris 256, (1967), 129-131.

----- : Groupes formels, course at I.H.E.S., Spring, 1972. (Notes by
J. F. Boutob available (?) from I.H.E.S., 9l-Bures-sur-Yvette, France.)

Deligne, P.: Formes modulaires et représentationS £=adiques. Exposé 355.
Séminaire N, Bourbeki 1968/1969. Lecture Notes in Mathematics 179,
Berlin-Heidelberg-New York: Springer 1969.

~~~~~ : Equations Différentielles & Points Singuliers Réguliers. Lecture
Notes in Masthematics 163. Berlin-Heidelberg-New York: Springer 1970.

----- : Courbes Elliptiques: Formulaire (d'aprés J. Tate). Multigraph
available from I.H.E.S., 9l-Bures-sur-Yvette, France, 1968.

----- , and M. Rapoport: Article in preparation on moduli of elliptic

curves.
Dwork, B.: P-adic cycles, Pub. Math. I.H.E.S. 37, (1969), 27-115.
----- : On Hecke Polynomials, Inventiones Math. 12{1971), 249-256.

----- : Wormalized Period Matrices I, II. Annsls of Math. 94, 2nd series,
(1971), 337-388, and to appear in Annals of Math.
P,

----- : Article in this volume.

Grothendieck, A.: Fondements de la Géométrie Algébrique, Secrétariat Mathé-

matique, 11 rue Pierre Curie, Paris 5%, Prance, 1962.

----- : Formule de Lefschetz et rationalité des fonctioms L, Exposé 279,
Séminaire Bourbaki 196h4/1965.



188
Ka-120
16. Hasse, H. : Existenz separabler zyklischer unverzweigter Erweiterungs-
kBrper vom Primzahlgrade Hber elliptischen FunktionenkBrpern der
Charakteristik p . J. Reine angew. Math. 172, (193k), 77-85.

17. Igusa, J. : Class number of a definite guaternion with prime discriminant,
Proc. Natl. Acad. Sci. bh, (1958), 312-31kL.

18. ~m=m=: Kroneckerian model of fields of elliptic modular functions,
Amer. J. Math. 81, (1959), 561-577.

19. mwmew: Fibre systems of Jacobian varieties IIT, Amer. J. Math. 81,
(1959) , b53-L76.

20, eme—— : On the transformation theory of elliptic functions, Amer. J.
Math. 81, (1959), 436-452.

21, - : On the algebraic theory of elliptic modular functions, J. Math.
Soc. Japan 20, {1968), 96-106.

22. Thara, Y.: An invariant multiple differential attached to the field of
elliptic modular functions of characteristic p. Amer. J. Math. 78,
(1971), 137-1L7.

23. Katz, N.: Une formule de congruence pour la fonction zeta. Exposé 22,
SGA 7, 1969, to appear in Springer Lecture Notes in Mathematics.
(Preprint available from I.H.E.S., 9l-Bures-sur-Yvette, France.)

2k, - : Nilpotent comnections and the monodromy theorem - applications
of a result of Turrittin, Pub. Math. IL.H.E.S. 39, (1971), 355-hi2.

25, wemm- : Traveux de Dwork. Exposé 409, Séwinaire N. Bourbaki 1971/72,
Springer Lecture Notes in Mathemstics, 317, (1973), 167-200.

26, memmmy Algebraic solutions of differential equations (p-curvature and
the Hodge filtration). Invent. Math. 18, (1972), 1-118,

270 s , and T. Oda: On the differentiation of de Rham cohomology classes
with respect to parameters, J. Math. Kyoto Univ. 8, (1968), 199-213.

28, Koike, M.: Congruences between modular forms and functions and appli-

cations to a conjecture of Atkin, to appear.

29, Lehner, J.: Lectures on modular forms. National Bureau of Standards,
Applied Mathemstics Series 61, Washington, D.C., 1969.

30. Lubin, J., J.=-P. Serre and J. Tate: Elliptic curves and formal groups,
Woods Hole Summer Tnstitute 1964 (mimeographed notes).



189

Ka-121

31. Iubin, J.: One-parameter formal Lie groups over p-adic integer rings,
Ann. of Math. 80, 2nd series (1964), LOL-LSL,

R : Finite subgroups and isogenies of one-parameter formal groups,
Ann. of Math. 85, 2nd series (1967), 296~-302.

33, mmeee : Newton factorizations of polynomials, to appear.

33.bis -~--=-: Canonical subgroups of formal groups, secret notes.

3k, Messing, W.: The crystals associated to Barsotti-Tate groups: with
applications to abelian schemes. ILecture Notes in Mathematics 264,
Berlin-Heidelberg-New York: Springer 1972.

35, mmee—— : Two functoriality, to sppear.

36. Monsky, P.: Formal cohomology III - Trace Formulas. Amn. of Math. 93,
2nd series (1971), 315-343.

37, Newman, M.: Congruences for the coefficients of modular forms and for
the coefficients of j(T). Proc. A.M.S. 9,(1958), 609-612.

38. Rogquette, P.: Analytic theory of elliptic functions over local fields.
GBttigen: Vanderhoeck und Ruprecht, 1970.

39. Serre, J.-P.: Endomorphismes complétement continus des espaces de Banach
p-adiques.  Pub. Math. I.H.E.S. 12, (1962).

40.  w-ewa: Course at Colldge de France, spring 1972.

N : Congruences et formes modulaires. Exposé 416, Séminaire N.
Bourbaki, 1971/72, Lecture Notes in Math. 317, (1973), Springer, 319-338.

42, emeee : Formes modulaires et fonctions zeta p-adigues, these Proceedings.

Lod,  cmee : Cours dtarithmétique. Paris: Presses Univ. de France 1970.

L3, Swinnerton-Dyer, H. P. F.: On f-adic representations and congruences for
coefficients of modular forms, these Proceedings.

Wi,  Tate, J.: Elliptic curves with bad reduction. Lecture at the 1967
Advanced Science Summer Seminar, Bowdoin College, 1967,

L T : Rigid analytic spaces. Inventiones Math. 12, (1971), 257-280.

46,  Whittaker, E. T. and G. N. Watson: A course of modern analysis,

Cambridge, Cambridge University Press, 1962.



Ka-122 190

7. Deligne, P., Cohomologie & Supports Propres, Exposé 17, SGA 4, to appear
in Springer Lecture Notes in Mathematics.

L48. Roos, J. E., Sur les foncteurs dérivés de 1im . Applications, C. R. Acad.
[ —
Sei. Paris, tome 252, 1961, pp. 3702-0k.



