189-251B: Honors Algebra 2 Midterm Exam

Wednesday, February 26
Questions 1-4 are worth 25 points each, for a maximum possible total of 100 points. The bonus question is worth 10 points.

1. Let V be a vector space over a field F, and let V_{1} and V_{2} be two vector subspaces of V. Recall that V is said to be a direct sum of V_{1} and V_{2} (which we write as $V=V_{1} \oplus V_{2}$) if the span of $V_{1} \cup V_{2}$ is equal to V and $V_{1} \cap V_{2}=\{0\}$.
a) Show that if this is the case, then every vector $v \in V$ can be uniquely expressed as a sum $v=v_{1}+v_{2}$ with $v_{1} \in V_{1}$ and $v_{2} \in V_{2}$.
b) Using nothing more than the basic definition of the dimension of a vector space, show that, if V_{1} and V_{2} are finite-dimensional, and $V=V_{1} \oplus V_{2}$, then V is also finite-dimensional, and $\operatorname{dim}(V)=\operatorname{dim}\left(V_{1}\right)+\operatorname{dim}\left(V_{2}\right)$.
2. A linear transformation $T: V \rightarrow V$ is said to be an idempotent if it satisfies the identity $T^{2}=T$. Show that T is diagonalisable and that

$$
V=\operatorname{ker}(T) \oplus \operatorname{Image}(T)
$$

3. Write down the minimal and characteristic polynomials of the following linear transformations, and state whether they are digaonalisable.
a) The transformation $T: F^{2} \rightarrow F^{2}$ on the space of column vectors with entries in F given by left multiplication by the matrix $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, when $F=\mathbf{R}$.
b) Same question as in a), but with $F=\mathbf{Z} / 2 \mathbf{Z}$.
c) The transformation $T: F^{2} \rightarrow F^{2}$ on the space of column vectors with entries in F given by left multiplication by the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$, when $F=\mathbf{R}$.
d) Same question as in c), but with $F=\mathbf{Z} / 5 \mathbf{Z}$.
e) The transformation $f(x) \mapsto f^{\prime}(x)$ on the (20-dimensional) real vector space of polynomials of degree ≤ 19 with real coefficients. (Here $f^{\prime}(x)$ denotes the derivative of the polynomial f with respect to x.)
4. Let V be a finite-dimensional vector space over a field F and let $T: V \rightarrow V$ be a linear transformation of prime order p, i.e., a transformation satisting $T^{p}=I$, where I denotes the identity tranformation.
a) Show that if F is algebraically closed and $p \neq 0$ in F, the linear transformation T is diagonalisable.
b) If $p=0$ in F (for instance, if $F=\mathbf{Z} / p \mathbf{Z}$ is the field with p elements), show that T is diagonalisable if and only if it is the identity transformation.

The next problem is a Bonus Question. Only attempt it if you are confident that you've answered the first 4 questions completely. With p a prime number as in question 4, Give an example of a non-identity 2×2 matrix of order p with entries in the field $\mathbf{Z} / p \mathbf{Z}$ with p elements. Show that any two matrices of this kind are necessarily conjugate to each other. (Recall that two matrices M_{1} and M_{2} are said to be conjugate if there is an invertible matrix P for which $M_{2}=P^{-1} M_{1} P$.)

