Solution 1:

By the first homomorphism theorem we know that

~J Z
R:kcrf'

Recall ker f is an ideal in Z. Since Z is a PID we see that ker f = (n) for some integer n.

Case 1: Suppose n = 0.
This implies

~ L~
R= o = Z.
Case 2: Suppose n # 0.
Then (n) = nZ. Thus
R~ L — Z
— (n) nZ-:

Solution 2:

The statement is false. Let R = Q[z] and I = (2?). Then R is a domain because Q is a field
need is that Q is a domain to conclude R is a domain.) However,

r-z=0 (mod 2?).

Thus z is a zero divisor in R/I, and hence R/I is not a domain.

Solution 3:
We will first consider the function f, : Z[z] — (Z/pZ)[x] defined by

(S - S

n=0

where [a,] defines the residue class of a,, mod p.

We will first show that this is a ring homomorphism. Given

oo o0
Z apx” and Z b,z € R,
n=0 n=0

then

fo (Z anx™ + Z b,ﬂ;”) =fp (Z(an + bn)a:">
n=0 n=0 n=0

= Z[an + by ]z

n=0
oo

= Z[an]x" + Z[an]xn

n=0
=/ <Z anx"> + fp (Z bnx”>
n=0 n=0

Thus f, preserves addition.

. (Actually all we



As well,

() (Sor)) =0 (5 (Fse) )

-5, (i) 5 (i b>

n=0
This proves f, preserves multiplication. Clearly f,(1) = 1. Therefore f, is is a ring homomorphism. It is clear that
it is surjective.

Next consider the quotient map
ap : Z/pL[x] = (Z/pL[z])/(2® + 1)
defined by
gp(a(z)) = a(z) + (a? +1).

The quotient map is always surjective. Therefore the composition g, o f, : Z[z] — (Z/pZ [x])/(x? + 1) is surjective.

We would like to show the kernel of g, o f,, is (p, 2% 4+ 1). First we will show (p, 2 + 1) C ker g, o f,. Choose an
element a(z)p + b(z)(z% + 1) € (p,22 +1). Then

(ap © fp)(a(2)p + b(x)(a® + 1)) = (g5 © fp)(a(x)p) + (gp © f,)(b(w)(a* + 1))
= qp(0) + ((gp © f)(b(z)))((gp © fp)(xQ +1))
=0+ ((gp © fo)(b(2)))(gp(2* + 1))
= ((gp © fp)(b()))0
=0.

Thus (p,2? + 1) C ker g, o f,.
Next we will show kerg, o f, C (p,z* + 1). Suppose s(z) € kergq, o f,. By the division algorithm s(z) =
q(z)(x? + 1) + (az + b) for some a,b € Z. As q(z)(z? + 1) € ker g, o f, we find
az + b= s(z) — q(x)(x* + 1) € kerg, o f,.
Thus
qp © fp(az +b) = gp([a]z + [b]) = 0.

However, as g, is a quotient map this implies [a]z + [b] € (z* + 1). Hence [a]x + [b] = 0. Therefore a = 0 (mod p)
and b =0 (mod p). Therefore ax + b € (p, 2% + 1). This proves kerg, o f, C (p,2? + 1).

By the first isomorphism theorem this proves
R/kerq,o f, = R/I = (Z/pZ[z])/(z* + 1).

Next notice that by the division algorithm every coset in (Z/pZ [z])/(z? + 1) can be written uniquely in the
form ax + b for some a,b € Z/pZ. Therefore there are p? elements in (Z/pZ [z])/(x? + 1).

Suppose p = 5. Then there is an isomorphism h : (Z/5Z [x])/(z* + 1) — Z /57 x Z/5Z given by

h(a(z)) = (a(2),a(3)).



We know that the evaluation maps are homomorphism, thus h is a homomorphism. It remains to show that this
is a bijection. However, since these are both finite sets with 25 elements it suffices to show that it is an injective
function. Suppose h(az +b) = (0,0) then 2a + b = 3a + b = 0. This implies a = b = 0, and hence az + b = 0. This
prove h is injective, and hence an isomorphism.

Therefore
R/I = (Z/5Z[x])/(x* + 1) 2 Z/5Z x Z/5Z.

Suppose p = 7. Notice (z? + 1) does not have any roots in Z/7Z we see that (2% + 1) is irreducible. Since
(2 4 1) is irreducible we will show (Z/7Z [x])/(z% + 1) is a field with 49 elements.

Notice that it is a commutative ring since Z/7Z [z] is a commutative ring. It remains to show that every element
is invertible. Choose ax + b € (Z/7Z|x])/(z* + 1) where ax + b # 0. By the Euclidean algorithm there exist
polynomials a(z) and b(x) € (Z/7Z [z]) such that

a(x)(ax +b) +b(z)(z* +1) = 1.
Thus
a(z)(ax +b) =1 (mod (2% +1)).

This proves (az + b)~! = a(x). Hence every element is invertible. Therefore R/I is isomorphic to a field with
p? = 49 elements.

Solution 4:

Consider the function f : R — F given by taking the constant term of the power series, that is,

f (i anx”> = ag.
n=0

Step 1: First we will show this is a ring homomorphism.

i apx” and i b,z € R,

n=0 n=0

Given

then

f (Z anx” + Z bna:"> =f (Z(an + bn)x">

n=0

=ap+bo

=f (Z anx"> + f (Z bnm”>
n=0 n=0

Thus f preserves addition.

f ((i anm"> <i bnx">> = f(aopbo + (a1bo + agbr)z + ...)

= apbo

(&) ()

This proves f preserves multiplication. Clearly f(1) = 1. Therefore f is is a ring homomorphism.

Step 2: Next we will show that f is surjective.
Given a € F, we see that a € R. As f(a) = a we have shown f is surjective.

Step 3: Now we will describe the kernel.



Notice that the kernel of f is the set of polynomials with no constant terms. These are exactly the elements in
R which are a multiple of x. This implies ker f = (z).

Step 4: By the first isomorphism theorem for rings we find
R/ker f = R/(x) 2 F.

Step 5: Now we will show that any element which does not belong to (x) is invertible.
Suppose > 7 s anz™ ¢ (x). This implies ag # 0.
We will now construct the inverse for this element. Let by = % Assume by, is defined. As ag # 0 we can let

boa +...4+bra
bk+1:70k+1a0 ka1

Multiplying the following power series we find

(Z anxn> (Z ann> = apboy + Z (ak+1b0 + ...+ aobk+1) z"

n=0 n=0 n=1

ao

oo
boagi1+...+bra
:aoé + E (ak+1b0+...+_MGO> "
n=1

=1

Thus each element which is not in (z) is invertible.
Step 6: We will now show that if J is a non-trivial ideal then J C ().

Suppose J is an ideal which is not contained in (x). Then by Step 5 we know that J contains an invertible
element r. However, by the multiplicative property in the definition of an ideal »~'r = 1 € J. Once an ideal
contains 1 it contains every element s € R since the multiplicative property in the definition of an ideal implies that
(sr~Y)r =s € J. Thus J is the trivial ideal, i.e., J = S. Therefore if J is a non-trivial ideal then J C (z).

Solution 5:

1. First we note that the operation is commutative; that is,

axb=a+b—ab=b+a—ba=>x*a.

2. Let a,b € F — {1}. Clearly axb € F. Suppose a *xb=1. Then
a+b—ab=1.

Taking all the terms to one side shows
O=ab—a—b+1.

Factoring this we find
0=(a—1)(b—1).

However, a # 1 and b # 1. Hence a % b € F — {1}. This shows « is a binary operation.
3. First notice
(axb)xc=(a+b—ab)xc
=(a+b—ab)+c—(a+b—ab)c
=a+b—ab+c—ac—bc+ abc
=a+b+c—ab—ac—bc+ abe.

On the other hand,
ax(bxc)=ax*(b+c—bc)
=a+ (b+c—bc)—alb+ c—be)
=a+b+c—bc—ac— ab+ abe.

This proves * is associative.



4. For a € G we see
ax0=a+0—-0=a.

Therefore 0 satisfies the properties of the identity.

5. Notice

1 _ a _ a
a’*(afl)_a—"_afl a—1"

Finding a common denominator we see that

“x (ail) - (aki)—ﬁiaﬂ =0.

Therefore (ﬁ) is the inverse to a.

Since these four properties hold this is a group. It also happens to be an abelian group.

Solution 6:
There are 3! = 6 bijective functions from {1,2,3} to {1,2,3}. These elements of S3 are listed below:

e, (12),(13),(23), (123) and (132).

A cycle of length n has order n.
Thus e has order 1.
The elements (12), (13) and (23) have order 2.
The elements (123) and (132) have order 3.

Solution 7:

Let z,y € G. Then
w2yt =1-1=1= (zy)>

In other words,
TTYY = TYTY.
Taking inverses on either side we see that
xilxxyyyfl = xilxyxyyfl.

Canceling off implies yzr = xy. As this holds for all x,y € G, we conclude that G is abelian.
Let h be the set of 3 x 3 matrices with entries in Z/3Z, of the form

((318) e cis2)

Step 1: We will first show this is a subgroup of the group of invertible matrices GL3(Z/3Z). Notice

1 a1 b 1 as by 1 ay+as by+ajcs+ b
0 1 C1 0 1 C2 = 0 1 c1+ c2
0 0 1 0O 0 1 0 0 1

This proves if g1,92 € H then g1 - go € H.

From the previous formula we find

1 a b 1 —a ac—b 1 a—a (—ac+b)+ac+b 100
01 ¢ 0 1 —c =1{0 1 c—c =10 1 0
0 0 1 0 O 1 0 0 1 0 0 1

Thus each element in H has an inverse in H.

Step 2: Next we can see that since there are 3 choices for each entry a,b and ¢, there are 27 elements in H. This
shows that H has order 27.




Step 3: This group is non-abelian since (é i %) and (é g (}:) € H. If we multiply these elements we find
1 10 1 00 1 1 1
01 0 01 1}]=10 11
0 0 1 0 0 1 0 0 1
However, multiplying them in the opposite order gives us
1 00 1 10 1 10
0 11 01 0J=1(0 11
0 0 1 0 0 1 0 0 1

The top right-hand entry is different. Therefore this group is non-commutative.
Step 4: Finally we can see that each element g of H satisfies G% = 1.

1 a b\ /1 a b\ /1 a b 1 a b 1 2a 2b+ac
0 1 ¢ 01 ¢ 01 ¢]=101 ¢ 0 1 2¢c
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1
1 3a 2b+ac+2ac+b
=10 1 3c
0 O 1
1 0 0
=10 1 O
0 0 1

Thus we have found a group with the required properties.
Solution 8:
Suppose g,h € Hy N Hy. As H; is a subgroup
g-he Hyand g~' € Hy.
Similarly, as Hs is a subgroup
g-he Hyand ¢g~' € Hs.

Thus
g-he HNHyand g~' € H N Ho.

This proves H; N Hy is a group.

The union of two subgroups in not necessarily a subgroup. Consider the group Z x Z with componentwise
addition as the group operation. Then H; = Z x 0 and H; = 0 X Z are both subgroups. However, the union is not
a subgroup. For example, (1,0) € H; and (0,1) € Hj, however,

(1,0) +(0,1) = (1,1) ¢ H; U Ho.

This shows H; U Hs is not closed under addition, and so is not a subgroup.

Solution 9:
Step 1: Consider the set
H={d"|icZ}.

We begin by showing that a® = 1 for some natural (finite) number 1.

Since there are finitely many elements in G there are finitely many elements in H. Thus
a’ = a’ for some i,j € N where i # j.
Without loss of generality we can assume i > j. Multiplying both sides by a7 we see that:

ala™ =ala”? =1.



Thus a’~/ = 1, which shows that the order of a is at most i — j. Let d € N be the order of a.
Step 2: We will now show that the cardinality of H is d.

The elements a’ # o’ for 1 < j < i < d, otherwise a’~7 = 1 which contradicts the definition of d. As well, the
a™ = a” where m = r modulo d. Thus the only distinct elements in H are a,a?,...,a%. This proves the cardinality
of H is d.

Step 3: Next we show that H is a subgroup.
Given a',a’ € H we see that
a-dd =a' e H.
Thus H is closed under multiplication.
Now we must show that each element in H has an inverse in H. Notice that

a™ . adm—m — (ad)m —1.

This shows that a®”~" is the inverse of a™. Therefore H is a group.

Step 4: Finally we will show that a™ = 1.

Lagrange’s Theorem states that the cardinality of a subgroup H divides the cardinality of the whole group G.
Together with the result from Step 2 we find that d | n. Therefore n = dk for some natural number k. This means

a" = (aH)F =17 =1.

Step 5: This allows us to prove Fermat’s Little Theorem.
We know there are p — 1 elements in (Z/pZ)*. Thus for a # 0 (mod p), we find

a?” ' =1 (mod p).
Multiplying both sides by a proves
a’? =a (mod p).
Solution 10:
Suppose that a,b € Z(S). Then

as = sa for all s € S and
bs=sbforall s S.

This proves
abs = asb = sab for all s € S.

Therefore ab € Z(95).
Suppose a € Z(S). This implies
as = sa for all s € S.

1

Multiplying by a™" on both sides gives us

a tasa ' =a"tsaa" ! for all s € S.

Thus

sa t=a"lsforall seS.

This proves a~! € Z(S). Therefore, Z(S) is a subgroup.
Solution 11:
Consider the function f : Gy — G defined by f(z) = e®. This is a group homomorphism because

Jla+y) == = ¢ eh = f(z) - f(y).

Notice that f~!(z) = Inz. As f has a (two-sided) inverse function we see that f is bijective. This proves f is an
isomorphism.

Solution 12:
We will assume the following facts:



1. Every element in S, can be written as a product of 2-cycles. This follows from the following decomposition
of a cycle into a product of 2-cycles:

(apay . ..an) = (aoan)(aoan-1) ... (apas).

2. The alternating group A,,, which is the set of elements which can be written as an even number of 2-cycles,
is well-defined and a group.

3. The conjugacy class of an element is determined by its cycle decomposition.

Step 1: As conjugacy is an equivalence relation, conjugacy classes are equivalence classes. Therefore different
conjugacy classes are disjoint.

Step 2: Next we will explain why any normal subgroup N is a union of disjoint conjugacy classes.

Suppose a € N. By the definition of a normal subgroup gag~' € N for all ¢ € G. This means that the entire
conjugacy class of a is in N. Therefore N is a union of disjoint conjugacy classes.

Step 3: Next we will show the converse holds. We will show that a subgroup which is a disjoint union of conjugacy
classes is normal.

Suppose N subgroup which is a disjoint union of conjugacy classes. Let n € N and g € G. Then gng™" is a
conjugate of an element in /N hence it is in N by our assumption on N. Thus gNg~! € N for every element g € G.
This shows N is a normal subgroup.

Step 4: Next we will describe the conjugacy classes of Sy.

1

As conjugacy classes are determined by their cycle decomposition, the following elements are representatives for
the 5 conjugacy classes of Sy:
e, (12), (123), (12)(34), (1234).

Step 5: Now we will find the normal subgroups of Sy.

We claim the normal subgroups are the following:
1. The trivial subgroup {e} and G are always normal subgroups.

2. The set V' = {e, (12)(34),(13)(24), (14)(23)} is a subgroup. It is closed under taking inverses because each
element is its own inverse.

Next we will show that V' is closed under multiplication. Let a,b € V. If a or b is the identity then clearly
ab € V. If a = b then ab = e as each element is its own inverse. Multiplying two distinct non-identity elements
gives you the third non-identity element (i.e., ((12)(34))((13)(24)) = (14)(23)). Therefore V is closed under
multiplication.

Finally by Step 3 we know V' is normal.

3. Finally A4, the set of elements which are a product of an even number of transpositions (2-cycles), is a
subgroup of Sy. It is made up of the identity and the elements which have a cycle decomposition which is a
3-cycle or 2 disjoint 2-cycles. Thus it is a union of disjoint cycles. By Step 3 this proves A, is normal.

Next we will show these are the only possibilities. In particular, we will show that if IV is a normal subgroup,
since it a union of conjugacy classes which is closed under multiplication, thus it will be one of the 4 subgroups
listed above.

Case a: Suppose N is a normal subgroup which contains a transposition. By Step 2 this implies N contains all the
transposition. However, all the elements of G can be written as a product of transpositions. In order for IV to be
closed under its operation this means N = G.

Case b: Suppose N is a normal subgroup which contains 4-cycle. By Step 2 this implies IV contains all the 4-cycles.
Thus N contains the following product of 4-cycles:

(1243)(1234)(1243) = (1243)(132) = (34) € N.

Thus N contains a transposition. By Case a this implies N = G.



Case c: Suppose N contains an element which is a 3-cycles and no 4-cycles or transpositions. Then by Step 2 this
implies N contains all the elements which are 3-cycles. Thus N contains the following product of 3-cycles:

(123)(124) = (13)(24) € N.

By Step 2 this means N contains all the elements which are the product of 2 disjoint 2-cycles. Therefore N is Ay.
Step 6: Next we will describe the conjugacy classes of Ss.

As conjugacy classes are determined by their cycle decomposition, the following elements are representatives for
the 7 conjugacy classes of Ss:

e, (12), (123), (12)(34), (1234), (12)(345), (12345).

Step 7: Now we will find the normal subgroups of Ss.

1. The trivial subgroup {e} and G are always normal subgroups.

2. Again As, the set of elements which are a product of an even number of transpositions, is a subgroup of Ss.
It is made up of the identity and the elements which have a cycle decomposition which is a 3-cycle, a 5-cycle
or 2 disjoint 2-cycles. Thus it is a union of disjoint cycles. By Step 3 this proves As is normal.

Next we will show these are the only possibilities. In particular, we will show that if IV is a normal subgroup,
since it a union of conjugacy classes which is closed under multiplication, thus it will be one of the 3 subgroups
listed above.

Case a: For the same reason as in Case a of the Sy situation, if IV is a normal subgroup which contains a transposition
then N = G.

Case b: For the same reason as in Case b of the Sy situation if N is a normal subgroup which contains a 4-cycle
then N = G.

Case c: Suppose N is a normal group which contains an element which is a disjoint product of a 2-cycle and a
3-cycles. By Step 2 this means N contains (12)(345). Hence

((12)(345))* = (12)3(345) = (12) € N.

Thus by Case a N =G.
Case d: Suppose N is a normal subgroup G which is contained in A;. We will show that if N contains any element
which is not the identity then N = As. We will do this by noticing the following:

1. If N contains all the 3-cycles then
(123)(345) = (12345) € N.

This means N contains all the 5-cycles.

2. If N contains all the 5-cycles then
(12345)(12354) = (13)(24).

Thus N contains all the elements which are a product of 2 disjoint 2-cycles.

3. If N contains all the elements which are a product of 2 disjoint 2-cycles then

((12)(34))((34)(25)) = (125).
Thus N contains all the 3-cycles.

Therefore if N contains any element of A5 which is not the identity N = As.



