
Solution 1:

By the first homomorphism theorem we know that

R ∼= Z
ker f .

Recall ker f is an ideal in Z. Since Z is a PID we see that ker f = (n) for some integer n.

Case 1: Suppose n = 0.
This implies

R ∼= Z
{0}
∼= Z.

Case 2: Suppose n 6= 0.
Then (n) = nZ. Thus

R ∼= Z
(n) = Z

nZ .

Solution 2:

The statement is false. Let R = Q[x] and I = (x2). Then R is a domain because Q is a field. (Actually all we
need is that Q is a domain to conclude R is a domain.) However,

x · x ≡ 0 (mod x2).

Thus x is a zero divisor in R/I, and hence R/I is not a domain.

Solution 3:

We will first consider the function fp : Z[x]→ (Z/pZ)[x] defined by

fp

( ∞∑
n=0

anx
n

)
=

∞∑
n=0

[an]xn

where [an] defines the residue class of an mod p.

We will first show that this is a ring homomorphism. Given

∞∑
n=0

anx
n and

∞∑
n=0

bnx
n ∈ R,

then

fp

( ∞∑
n=0

anx
n +

∞∑
n=0

bnx
n

)
= fp

( ∞∑
n=0

(an + bn)xn

)

=

∞∑
n=0

[an + bn]xn

=

∞∑
n=0

[an]xn +

∞∑
n=0

[an]xn

= fp

( ∞∑
n=0

anx
n

)
+ fp

( ∞∑
n=0

bnx
n

)

Thus fp preserves addition.
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As well,

fp

(( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

))
= fp

( ∞∑
n=0

(
n∑

m=0

an−mbm

)
xn

)

=

( ∞∑
n=0

[
n∑

m=0

an−mbm

]
xn

)

=

( ∞∑
n=0

(
n∑

m=0

[an−m][bm]

)
xn

)

=

( ∞∑
n=0

[an]xn

)( ∞∑
n=0

[bn]xn

)

= fp

( ∞∑
n=0

anx
n

)
· fp

( ∞∑
n=0

bnx
n

)

This proves fp preserves multiplication. Clearly fp(1) = 1. Therefore fp is is a ring homomorphism. It is clear that
it is surjective.

Next consider the quotient map

qp : Z/pZ [x]→ (Z/pZ [x])/(x2 + 1)

defined by
qp(a(x)) = a(x) + (x2 + 1).

The quotient map is always surjective. Therefore the composition qp ◦ fp : Z[x]→ (Z/pZ [x])/(x2 + 1) is surjective.

We would like to show the kernel of qp ◦ fp is (p, x2 + 1). First we will show (p, x2 + 1) ⊂ ker qp ◦ fp. Choose an
element a(x)p + b(x)(x2 + 1) ∈ (p, x2 + 1). Then

(qp ◦ fp)(a(x)p + b(x)(x2 + 1)) = (qp ◦ fp)(a(x)p) + (qp ◦ fp)(b(x)(x2 + 1))

= qp(0) + ((qp ◦ fp)(b(x)))((qp ◦ fp)(x2 + 1))

= 0 + ((qp ◦ fp)(b(x)))(qp(x2 + 1))

= ((qp ◦ fp)(b(x)))0

= 0.

Thus (p, x2 + 1) ⊂ ker qp ◦ fp.

Next we will show ker qp ◦ fp ⊂ (p, x2 + 1). Suppose s(x) ∈ ker qp ◦ fp. By the division algorithm s(x) =
q(x)(x2 + 1) + (ax + b) for some a, b ∈ Z. As q(x)(x2 + 1) ∈ ker qp ◦ fp we find

ax + b = s(x)− q(x)(x2 + 1) ∈ ker qp ◦ fp.

Thus
qp ◦ fp(ax + b) = qp([a]x + [b]) = 0.

However, as qp is a quotient map this implies [a]x + [b] ∈ (x2 + 1). Hence [a]x + [b] = 0. Therefore a ≡ 0 (mod p)
and b ≡ 0 (mod p). Therefore ax + b ∈ (p, x2 + 1). This proves ker qp ◦ fp ⊂ (p, x2 + 1).

By the first isomorphism theorem this proves

R/ ker qp ◦ fp = R/I ∼= (Z/pZ [x])/(x2 + 1).

Next notice that by the division algorithm every coset in (Z/pZ [x])/(x2 + 1) can be written uniquely in the
form ax + b for some a, b ∈ Z/pZ. Therefore there are p2 elements in (Z/pZ [x])/(x2 + 1).

Suppose p = 5. Then there is an isomorphism h : (Z/5Z [x])/(x2 + 1)→ Z/5Z× Z/5Z given by

h(a(x)) = (a(2), a(3)).
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We know that the evaluation maps are homomorphism, thus h is a homomorphism. It remains to show that this
is a bijection. However, since these are both finite sets with 25 elements it suffices to show that it is an injective
function. Suppose h(ax + b) = (0, 0) then 2a + b = 3a + b = 0. This implies a = b = 0, and hence ax + b = 0. This
prove h is injective, and hence an isomorphism.

Therefore
R/I ∼= (Z/5Z [x])/(x2 + 1) ∼= Z/5Z× Z/5Z.

Suppose p = 7. Notice (x2 + 1) does not have any roots in Z/7Z we see that (x2 + 1) is irreducible. Since
(x2 + 1) is irreducible we will show (Z/7Z [x])/(x2 + 1) is a field with 49 elements.

Notice that it is a commutative ring since Z/7Z [x] is a commutative ring. It remains to show that every element
is invertible. Choose ax + b ∈ (Z/7Z [x])/(x2 + 1) where ax + b 6= 0. By the Euclidean algorithm there exist
polynomials a(x) and b(x) ∈ (Z/7Z [x]) such that

a(x)(ax + b) + b(x)(x2 + 1) = 1.

Thus
a(x)(ax + b) ≡ 1 (mod (x2 + 1)).

This proves (ax + b)−1 = a(x). Hence every element is invertible. Therefore R/I is isomorphic to a field with
p2 = 49 elements.

Solution 4:

Consider the function f : R→ F given by taking the constant term of the power series, that is,

f

( ∞∑
n=0

anx
n

)
= a0.

Step 1: First we will show this is a ring homomorphism.

Given
∞∑

n=0

anx
n and

∞∑
n=0

bnx
n ∈ R,

then

f

( ∞∑
n=0

anx
n +

∞∑
n=0

bnx
n

)
= f

( ∞∑
n=0

(an + bn)xn

)
= a0 + b0

= f

( ∞∑
n=0

anx
n

)
+ f

( ∞∑
n=0

bnx
n

)

Thus f preserves addition.

f

(( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

))
= f (a0b0 + (a1b0 + a0b1)x + . . .)

= a0b0

= f

( ∞∑
n=0

anx
n

)
· f

( ∞∑
n=0

bnx
n

)

This proves f preserves multiplication. Clearly f(1) = 1. Therefore f is is a ring homomorphism.

Step 2: Next we will show that f is surjective.

Given a ∈ F , we see that a ∈ R. As f(a) = a we have shown f is surjective.

Step 3: Now we will describe the kernel.
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Notice that the kernel of f is the set of polynomials with no constant terms. These are exactly the elements in
R which are a multiple of x. This implies ker f = (x).

Step 4: By the first isomorphism theorem for rings we find

R/ ker f = R/(x) ∼= F.

Step 5: Now we will show that any element which does not belong to (x) is invertible.

Suppose
∑∞

n=0 anx
n /∈ (x). This implies a0 6= 0.

We will now construct the inverse for this element. Let b0 = 1
a0

. Assume bk is defined. As a0 6= 0 we can let

bk+1 = − b0ak+1+...+bka1

a0
.

Multiplying the following power series we find( ∞∑
n=0

anx
n

)( ∞∑
n=0

bnx
n

)
= a0b0 +

∞∑
n=1

(ak+1b0 + . . . + a0bk+1)xn

= a0
1
a0

+

∞∑
n=1

(
ak+1b0 + . . . +− b0ak+1+...+bka1

a0
a0

)
xn

= 1.

Thus each element which is not in (x) is invertible.

Step 6: We will now show that if J is a non-trivial ideal then J ⊂ (x).

Suppose J is an ideal which is not contained in (x). Then by Step 5 we know that J contains an invertible
element r. However, by the multiplicative property in the definition of an ideal r−1r = 1 ∈ J . Once an ideal
contains 1 it contains every element s ∈ R since the multiplicative property in the definition of an ideal implies that
(sr−1)r = s ∈ J . Thus J is the trivial ideal, i.e., J = S. Therefore if J is a non-trivial ideal then J ⊂ (x).

Solution 5:

1. First we note that the operation is commutative; that is,

a ∗ b = a + b− ab = b + a− ba = b ∗ a.

2. Let a, b ∈ F − {1}. Clearly a ∗ b ∈ F . Suppose a ∗ b = 1. Then

a + b− ab = 1.

Taking all the terms to one side shows
0 = ab− a− b + 1.

Factoring this we find
0 = (a− 1)(b− 1).

However, a 6= 1 and b 6= 1. Hence a ∗ b ∈ F − {1}. This shows ∗ is a binary operation.

3. First notice

(a ∗ b) ∗ c = (a + b− ab) ∗ c
= (a + b− ab) + c− (a + b− ab)c

= a + b− ab + c− ac− bc + abc

= a + b + c− ab− ac− bc + abc.

On the other hand,

a ∗ (b ∗ c) = a ∗ (b + c− bc)

= a + (b + c− bc)− a(b + c− bc)

= a + b + c− bc− ac− ab + abc.

This proves ∗ is associative.
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4. For a ∈ G we see
a ∗ 0 = a + 0− 0 = a.

Therefore 0 satisfies the properties of the identity.

5. Notice
a ∗
(

1
a−1

)
= a + a

a−1 −
a2

a−1 .

Finding a common denominator we see that

a ∗
(

1
a−1

)
= (a2−a)+a−a2

a−1 = 0.

Therefore
(

a
a−1

)
is the inverse to a.

Since these four properties hold this is a group. It also happens to be an abelian group.

Solution 6:

There are 3! = 6 bijective functions from {1, 2, 3} to {1, 2, 3}. These elements of S3 are listed below:

e, (12), (13), (23), (123) and (132).

A cycle of length n has order n.
Thus e has order 1.
The elements (12), (13) and (23) have order 2.
The elements (123) and (132) have order 3.

Solution 7:

Let x, y ∈ G. Then
x2y2 = 1 · 1 = 1 = (xy)2.

In other words,
xxyy = xyxy.

Taking inverses on either side we see that

x−1xxyyy−1 = x−1xyxyy−1.

Canceling off implies yx = xy. As this holds for all x, y ∈ G, we conclude that G is abelian.

Let h be the set of 3× 3 matrices with entries in Z/3Z, of the form{(
1 a b
0 1 c
0 0 1

)
a, b, c ∈ Z/3Z

}
Step 1: We will first show this is a subgroup of the group of invertible matrices GL3(Z/3Z). Notice1 a1 b1

0 1 c1
0 0 1

1 a2 b2
0 1 c2
0 0 1

 =

1 a1 + a2 b2 + a1c2 + b1
0 1 c1 + c2
0 0 1


This proves if g1, g2 ∈ H then g1 · g2 ∈ H.

From the previous formula we find1 a b
0 1 c
0 0 1

1 −a ac− b
0 1 −c
0 0 1

 =

1 a− a (−ac + b) + ac + b
0 1 c− c
0 0 1

 =

1 0 0
0 1 0
0 0 1


Thus each element in H has an inverse in H.

Step 2: Next we can see that since there are 3 choices for each entry a, b and c, there are 27 elements in H. This
shows that H has order 27.
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Step 3: This group is non-abelian since
(

1 1 0
0 1 0
0 0 1

)
and

(
1 0 0
0 1 1
0 0 1

)
∈ H. If we multiply these elements we find1 1 0

0 1 0
0 0 1

1 0 0
0 1 1
0 0 1

 =

1 1 1
0 1 1
0 0 1


However, multiplying them in the opposite order gives us1 0 0

0 1 1
0 0 1

1 1 0
0 1 0
0 0 1

 =

1 1 0
0 1 1
0 0 1


The top right-hand entry is different. Therefore this group is non-commutative.

Step 4: Finally we can see that each element g of H satisfies G3 = 1.1 a b
0 1 c
0 0 1

1 a b
0 1 c
0 0 1

1 a b
0 1 c
0 0 1

 =

1 a b
0 1 c
0 0 1

1 2a 2b + ac
0 1 2c
0 0 1


=

1 3a 2b + ac + 2ac + b
0 1 3c
0 0 1


=

1 0 0
0 1 0
0 0 1


Thus we have found a group with the required properties.

Solution 8:

Suppose g, h ∈ H1 ∩H2. As H1 is a subgroup

g · h ∈ H1 and g−1 ∈ H1.

Similarly, as H2 is a subgroup
g · h ∈ H2 and g−1 ∈ H2.

Thus
g · h ∈ H1 ∩H2 and g−1 ∈ H1 ∩H2.

This proves H1 ∩H2 is a group.

The union of two subgroups in not necessarily a subgroup. Consider the group Z × Z with componentwise
addition as the group operation. Then H1 = Z× 0 and H2 = 0× Z are both subgroups. However, the union is not
a subgroup. For example, (1, 0) ∈ H1 and (0, 1) ∈ H2, however,

(1, 0) + (0, 1) = (1, 1) /∈ H1 ∪H2.

This shows H1 ∪H2 is not closed under addition, and so is not a subgroup.

Solution 9:

Step 1: Consider the set

H = {ai | i ∈ Z}.

We begin by showing that ai = 1 for some natural (finite) number i.

Since there are finitely many elements in G there are finitely many elements in H. Thus

ai = aj for some i, j ∈ N where i 6= j.

Without loss of generality we can assume i > j. Multiplying both sides by a−j we see that:

aia−j = aja−j = 1.
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Thus ai−j = 1, which shows that the order of a is at most i− j. Let d ∈ N be the order of a.

Step 2: We will now show that the cardinality of H is d.

The elements ai 6= aj for 1 ≤ j < i ≤ d, otherwise ai−j = 1 which contradicts the definition of d. As well, the
am = ar where m ≡ r modulo d. Thus the only distinct elements in H are a, a2, . . . , ad. This proves the cardinality
of H is d.

Step 3: Next we show that H is a subgroup.

Given ai, aj ∈ H we see that
ai · aj = ai+j ∈ H.

Thus H is closed under multiplication.

Now we must show that each element in H has an inverse in H. Notice that

am · adm−m = (ad)m = 1.

This shows that adm−m is the inverse of am. Therefore H is a group.

Step 4: Finally we will show that an = 1.

Lagrange’s Theorem states that the cardinality of a subgroup H divides the cardinality of the whole group G.
Together with the result from Step 2 we find that d | n. Therefore n = dk for some natural number k. This means

an = (ad)k = 1k = 1.

Step 5: This allows us to prove Fermat’s Little Theorem.

We know there are p− 1 elements in (Z/pZ)×. Thus for a 6≡ 0 (mod p), we find

ap−1 ≡ 1 (mod p).

Multiplying both sides by a proves
ap ≡ a (mod p).

Solution 10:

Suppose that a, b ∈ Z(S). Then

as = sa for all s ∈ S and

bs = sb for all s ∈ S.

This proves
abs = asb = sab for all s ∈ S.

Therefore ab ∈ Z(S).

Suppose a ∈ Z(S). This implies
as = sa for all s ∈ S.

Multiplying by a−1 on both sides gives us

a−1asa−1 = a−1saa−1 for all s ∈ S.

Thus
sa−1 = a−1s for all s ∈ S.

This proves a−1 ∈ Z(S). Therefore, Z(S) is a subgroup.

Solution 11:

Consider the function f : G2 → G1 defined by f(x) = ex. This is a group homomorphism because

f(x + y) = e(x+y) = ex · ey = f(x) · f(y).

Notice that f−1(x) = lnx. As f has a (two-sided) inverse function we see that f is bijective. This proves f is an
isomorphism.

Solution 12:

We will assume the following facts:
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1. Every element in Sn can be written as a product of 2-cycles. This follows from the following decomposition
of a cycle into a product of 2-cycles:

(a0a1 . . . an) = (a0an)(a0an−1) . . . (a0a1).

2. The alternating group An, which is the set of elements which can be written as an even number of 2-cycles,
is well-defined and a group.

3. The conjugacy class of an element is determined by its cycle decomposition.

Step 1: As conjugacy is an equivalence relation, conjugacy classes are equivalence classes. Therefore different
conjugacy classes are disjoint.

Step 2: Next we will explain why any normal subgroup N is a union of disjoint conjugacy classes.

Suppose a ∈ N . By the definition of a normal subgroup gag−1 ∈ N for all g ∈ G. This means that the entire
conjugacy class of a is in N . Therefore N is a union of disjoint conjugacy classes.

Step 3: Next we will show the converse holds. We will show that a subgroup which is a disjoint union of conjugacy
classes is normal.

Suppose N subgroup which is a disjoint union of conjugacy classes. Let n ∈ N and g ∈ G. Then gng−1 is a
conjugate of an element in N hence it is in N by our assumption on N . Thus gNg−1 ∈ N for every element g ∈ G.
This shows N is a normal subgroup.
Step 4: Next we will describe the conjugacy classes of S4.

As conjugacy classes are determined by their cycle decomposition, the following elements are representatives for
the 5 conjugacy classes of S4:

e, (12), (123), (12)(34), (1234).

Step 5: Now we will find the normal subgroups of S4.

We claim the normal subgroups are the following:

1. The trivial subgroup {e} and G are always normal subgroups.

2. The set V = {e, (12)(34), (13)(24), (14)(23)} is a subgroup. It is closed under taking inverses because each
element is its own inverse.

Next we will show that V is closed under multiplication. Let a, b ∈ V. If a or b is the identity then clearly
ab ∈ V . If a = b then ab = e as each element is its own inverse. Multiplying two distinct non-identity elements
gives you the third non-identity element (i.e., ((12)(34))((13)(24)) = (14)(23)). Therefore V is closed under
multiplication.

Finally by Step 3 we know V is normal.

3. Finally A4, the set of elements which are a product of an even number of transpositions (2-cycles), is a
subgroup of S4. It is made up of the identity and the elements which have a cycle decomposition which is a
3-cycle or 2 disjoint 2-cycles. Thus it is a union of disjoint cycles. By Step 3 this proves A4 is normal.

Next we will show these are the only possibilities. In particular, we will show that if N is a normal subgroup,
since it a union of conjugacy classes which is closed under multiplication, thus it will be one of the 4 subgroups
listed above.

Case a: Suppose N is a normal subgroup which contains a transposition. By Step 2 this implies N contains all the
transposition. However, all the elements of G can be written as a product of transpositions. In order for N to be
closed under its operation this means N = G.

Case b: Suppose N is a normal subgroup which contains 4-cycle. By Step 2 this implies N contains all the 4-cycles.
Thus N contains the following product of 4-cycles:

(1243)(1234)(1243) = (1243)(132) = (34) ∈ N.

Thus N contains a transposition. By Case a this implies N = G.
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Case c: Suppose N contains an element which is a 3-cycles and no 4-cycles or transpositions. Then by Step 2 this
implies N contains all the elements which are 3-cycles. Thus N contains the following product of 3-cycles:

(123)(124) = (13)(24) ∈ N.

By Step 2 this means N contains all the elements which are the product of 2 disjoint 2-cycles. Therefore N is A4.

Step 6: Next we will describe the conjugacy classes of S5.

As conjugacy classes are determined by their cycle decomposition, the following elements are representatives for
the 7 conjugacy classes of S5:

e, (12), (123), (12)(34), (1234), (12)(345), (12345).

Step 7: Now we will find the normal subgroups of S5.

1. The trivial subgroup {e} and G are always normal subgroups.

2. Again A5, the set of elements which are a product of an even number of transpositions, is a subgroup of S5.
It is made up of the identity and the elements which have a cycle decomposition which is a 3-cycle, a 5-cycle
or 2 disjoint 2-cycles. Thus it is a union of disjoint cycles. By Step 3 this proves A5 is normal.

Next we will show these are the only possibilities. In particular, we will show that if N is a normal subgroup,
since it a union of conjugacy classes which is closed under multiplication, thus it will be one of the 3 subgroups
listed above.

Case a: For the same reason as in Case a of the S4 situation, if N is a normal subgroup which contains a transposition
then N = G.

Case b: For the same reason as in Case b of the S4 situation if N is a normal subgroup which contains a 4-cycle
then N = G.
Case c: Suppose N is a normal group which contains an element which is a disjoint product of a 2-cycle and a
3-cycles. By Step 2 this means N contains (12)(345). Hence

((12)(345))3 = (12)3(345)3 = (12) ∈ N.

Thus by Case a N = G.
Case d: Suppose N is a normal subgroup G which is contained in A5. We will show that if N contains any element
which is not the identity then N = A5. We will do this by noticing the following:

1. If N contains all the 3-cycles then
(123)(345) = (12345) ∈ N.

This means N contains all the 5-cycles.

2. If N contains all the 5-cycles then
(12345)(12354) = (13)(24).

Thus N contains all the elements which are a product of 2 disjoint 2-cycles.

3. If N contains all the elements which are a product of 2 disjoint 2-cycles then

((12)(34))((34)(25)) = (125).

Thus N contains all the 3-cycles.

Therefore if N contains any element of A5 which is not the identity N = A5.
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