Math 235 (Fall 2012)
 Assignment 4 solutions

Luiz Kazuo Takei

November 17, 2012

Exercise 1

Yes, the set S is a subring of $M_{2}(R)$. Let us check this fact.

- $1_{M_{2}(R)} \in S$: in fact, $1_{M_{2}(R)}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right) \in S$.
- S is closed under addition: let $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right),\left(\begin{array}{ll}r & s \\ 0 & t\end{array}\right) \in S$, then

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right)+\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right)=\left(\begin{array}{cc}
a+r & b+s \\
0 & c+t
\end{array}\right) \in S
$$

- S is closed under multiplication: let $\left(\begin{array}{ll}a & b \\ 0 & c\end{array}\right),\left(\begin{array}{cc}r & s \\ 0 & t\end{array}\right) \in S$, then

$$
\left(\begin{array}{ll}
a & b \\
0 & c
\end{array}\right) \cdot\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right)=\left(\begin{array}{cc}
a r & a s+b t \\
0 & c t
\end{array}\right) \in S .
$$

Exercise 2

Let R be a subring of \mathbb{Q}. Then $1 \in R$. Since R is closed under addition,

$$
2=1+1,3=2+1,4=3+1, \ldots \in R .
$$

By induction, it is easy to see that $\mathbb{N} \subseteq R$. Therefore R can't be finite.

Exercise 3

Let $f: \mathbb{Q}(\sqrt{-2}) \rightarrow \mathbb{Q}(\sqrt{-2})$ be the given function, i.e.,

$$
f(a+b \sqrt{-2})=a-b \sqrt{-2}
$$

It is obvious that f is bijective. So it is enough to show that f is a homomorphism of rings.

First, let us show it preserves addition:

$$
\begin{aligned}
f((a+b \sqrt{-2})+(c+d \sqrt{-2})) & =f((a+c)+(b+d) \sqrt{-2}))=(a+c)-(b+d) \sqrt{-2} \\
& =(a-b \sqrt{-2})+(c-d) \sqrt{-2})=f(a+b \sqrt{-2})+f(c+d \sqrt{-2}) .
\end{aligned}
$$

Now we check it preserves multiplication:

$$
\begin{aligned}
f((a+b \sqrt{-2}) \cdot(c+d \sqrt{-2})) & =f((a c-2 b d)+(a d+b c) \sqrt{-2}))=(a c-2 b d)-(a d+b c) \sqrt{-2} \\
& =(a-b \sqrt{-2}) \cdot(c-d \sqrt{-2})=f(a+b \sqrt{-2}) \cdot f(c+d \sqrt{-2}) .
\end{aligned}
$$

This finishes the exercise.

Exercise 4

[EXISTENCE]
Notice that $f: \mathbb{Z} \rightarrow R$ defined by

$$
f(n)= \begin{cases}n \cdot 1_{R}:=1_{R}+\cdots+1_{R}, & n \geq 0 \\ -\left(|n| \cdot 1_{R}\right):=-\left(1_{R}+\cdots+1_{R}\right), & n<0\end{cases}
$$

(where $1_{R}+\cdots+1_{R}$ is the sum of 1_{R} taken n times) is a ring homomorphism.
[UNIQUENESS]
Now we show that f is the only possible homomorphism from \mathbb{Z} to R. Let $g: \mathbb{Z} \rightarrow R$ be a homomorphism (possibly different from f). We want to show that g is necessarily equal to f.

By the axioms of a homomorphism, we have that $g(1)=1_{R}$. Using that g has to preserve addition, we obtain that $g(2)=g(1+1)=g(1)+g(1)=$ $1_{R}+1_{R}=2 \cdot 1_{R}$. Similarly, $g(3)=g(2+1)=g(2)+g(1)=3 \cdot 1_{R}$. Using this idea, it is easy to show by induction that $g(n)=n \cdot 1_{R}$ for $n \geq 1$.

We know that for any homomorphism of rings $g(0)=0$ and $g(-n)=-g(n)$. This shows that $g=f$, showing uniqueness.

Exercise 5

Let R be a finite integral domain. To show that R is a field, it is enough to show that any element $r \in R \backslash\{0\}$ has a multiplicative inverse.

So let $r \in R \backslash\{0\}$. Consider the set $\left\{r^{n} \mid n \geq 1\right\} \subseteq R$. Since R is finite, this set must also be finite. This means that there are $n, \bar{a}>0$ such that $r^{n}=r^{n+a}$. This implies that

$$
r^{n}\left(r^{a}-1\right)=0
$$

Since R has no zero divisors,

$$
\text { either } \quad\left[r^{n}=0\right] \quad \text { or } \quad\left[r^{a}-1=0\right] .
$$

If $r^{n}=0$, since R has no zero divisors, $r=0$, which is a contradiction. Therefore, $r^{a}=1$. But this implies that

$$
r \cdot r^{a-1}=1
$$

which shows that r^{a-1} is a multiplicative inverse of r.

Exercise 6

The subset $I=F \subset F[X]=R$ is not an ideal of R because $X \in R, 1 \in F$ but $X=X \cdot 1 \notin I$.

Exercise 7

The subset I here is an ideal of $\mathbb{Z} \times \mathbb{Z}$. Let us check that

- I is closed under addition: if $(m, 0),(n, 0) \in I$, then

$$
(m, 0)+(n, 0)=(m+n, 0) \in I
$$

- I is closed under multiplication by an element of $\mathbb{Z} \times \mathbb{Z}$: if $(a, b) \in \mathbb{Z} \times \mathbb{Z}$ and $(m, 0) \in I$, then

$$
(a, b) \cdot(m, 0)=(a m, 0) \in I
$$

Exercise 8

Let N be the set of nilpotent elements of R (a commutative ring), i.e.,

$$
N=\left\{s \in R \mid s^{n}=0, \text { for some } n>0\right\}
$$

Then N is an ideal of R. Let us prove this fact:

- N is closed under multiplication by an element of R : if $r \in R$ and $s \in N$, then $s^{n}=0$ for some $n>0$ and, hence,

$$
(r s)^{n}=r^{n} s^{n}=r^{n} \cdot 0=0
$$

which shows that $r s \in N$.

- N is closed under addition: if $s, t \in N$, then $s^{a}=t^{b}=0$ for some $a, b>0$ and, hence, by the binomial theorem,

$$
(s+t)^{a+b}=\sum_{j=0}^{a+b}\binom{a+b}{j} s^{j} t^{a+b-j}
$$

Now, for each $j \in\{1,2, \ldots, a+b\}$, we have that

$$
\text { either } \quad[j \geq a] \quad \text { or } \quad[a+b-j \geq b]
$$

which implies that

$$
\text { either } \quad\left[s^{j}=0\right] \quad \text { or } \quad\left[t^{a+b-j}=0\right],
$$

meaning that $(s+t)^{a+b}=0$ and, thus, $s+t \in N$.

Now, if R is not commutative, then N is not necessarily an ideal of R. As an example, let $R=M_{2}(\mathbb{Z})$, which is not commutative, and $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in R$. Then $A^{2}=0$, which implies that $A \in N$.

Now take $B=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right) \in R$. Then

$$
C:=B \cdot A=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

is not in N (in fact, $C^{n}=C \neq 0$, for all $n>0$).

Exercise 9

In this case, I is not an ideal. As a counter-example, take $f: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $f(n)=1$, for all $n \in \mathbb{Z}$. Clearly $f \in I$.

Now take $g: \mathbb{Z} \rightarrow \mathbb{R}$ defined by $g(n)=n$, which is an element of R.
Then $g f$ is not an element of I. In fact,

$$
(g f)(0)=g(0) f(0)=0 \cdot 1=0 \neq 1=g(1) f(1)=(g f)(1)
$$

Exercise 10

In this case, I is an ideal. Let us prove this.

- I is closed under addition: if $f, g \in I$, then

$$
(f+g)(0)=f(0)+g(0)=0=f(1)+g(1)=(f+g)(1)
$$

and, hence, $f+g \in I$.

- I is closed under multiplication by an element of R : if $f, g \in I$, then

$$
(f g)(0)=f(0) g(0)=0=f(1) g(1)=(f g)(1)
$$

and, hence, $f g \in I$.

Exercise 11

Let I be an ideal of $F[x]$. If $I=\{0\}$, then $I=(0)$ and the proof is finished. Assume now that $I \neq\{0\}$.

Consider the set $X=\{n \in \mathbb{N} \mid \operatorname{deg}(f(x))=n$ for some $f(x) \in I \backslash\{0\}\}$. The set $X \subseteq \mathbb{N}$ is clearly non-empty and, hence, by the well-ordering principle, there exists

$$
n_{0}=\min X
$$

the smallest number in X.
By construction, there is a polynomial $f_{0}(x) \in I$ such that $\operatorname{deg}\left(f_{0}(x)\right)=n_{0}$ and any other polynomial of I has degree at least n_{0}. The exercise will be finished with the claim below.

Claim. The ideal I is generated by $f_{0}(x)$, i.e.,

$$
I=\left(f_{0}(x)\right)
$$

Proof. By the axioms of an ideal, it is easy to see that $\left(f_{0}(x)\right) \subseteq I$. Therefore, it suffices to show that $I \subseteq\left(f_{0}(x)\right)$.

Take $f(x) \in I$. We know, by Euclidean division, that there exists polynomials $q(x), r(x) \in F[x]$ such that

$$
f(x)=q(x) f_{0}(x)+r(x)
$$

and $\operatorname{deg}(r(x))<n_{0}$ or $r(x)=0$.
But then $r(x)=f(x)-q(x) f_{0}(x) \in I$ (because both $f(x)$ and $f_{0}(x)$ are in I. By the minimality of n_{0}, it follows that $r(x)=0$. Hence

$$
f(x)=q(x) f_{0}(x) \in\left(f_{0}(x)\right)
$$

We now prove that $\mathbb{Z}[x]$ has ideals that are not principal. Consider the ideal

$$
J:=(2, x)=\{2 f(x)+x g(x) \mid f(x), g(x) \in \mathbb{Z}[x]\} \subseteq \mathbb{Z}[x]
$$

Claim. The ideal J is not the whole ring $\mathbb{Z}[x]$.
Proof. If it was, we would have that $1 \in J$, i.e.,

$$
1=2 f(x)+x g(x)
$$

for some $f(x), g(x) \in \mathbb{Z}[x]$.
Then

$$
1=2 f(0)
$$

with $f(0) \in \mathbb{Z}$, which is impossible because $1 / 2 \notin \mathbb{Z}$.
Claim. The ideal J is not principal.
Proof. Assume, by contradiction, that J is principal, say

$$
J=\left(f_{0}(x)\right)
$$

for some polynomial $f_{0}(x) \in \mathbb{Z}[x]$.
In particular, we have that

$$
2=f_{0}(x) r(x)
$$

for some $r(x) \in \mathbb{Z}[x]$. Looking at the degrees, we obtain that $\operatorname{deg}\left(f_{0}(x)\right)=$ $\operatorname{deg}(r(x))=0$. So, $f_{0}(x)=a_{0}, r(x)=r_{0} \in \mathbb{Z}$. Moreover, $2=a_{0} r_{0}$ says that $a_{0}= \pm 1$ or ± 2.
a_{0} cannot be ± 1 because then $J=\mathbb{Z}[x]$ (why?).
So $f_{0}(x)=a_{0}= \pm 2$.
But $x \in J$ implies that

$$
x=f_{0} s(x)= \pm 2 s(x)
$$

for some $s(x) \in \mathbb{Z}[x]$, which is also impossible (why?).
This shows that our initial assumption (that J is principal) is not correct.

Exercise 12

Let us start proving that $\mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}$.
Recall that

$$
\mathbb{C}=\{a+b i \mid a, b \in \mathbb{R}\}
$$

and

$$
i^{2}=-1
$$

There is a natural homomorphism

$$
\begin{array}{lc}
\varphi: & \mathbb{R}[x] \\
& \longrightarrow \\
& f(x) \\
\longmapsto & \mathbb{C} \\
f(i)
\end{array}
$$

It is easy to see that φ is surjective. Therefore, by the isomorphism theorem,

$$
\mathbb{R}[x] / \operatorname{ker}(\varphi) \cong \mathbb{C} .
$$

Now we just need to show that

$$
\operatorname{ker}(\varphi)=\left(x^{2}+1\right)
$$

In case you don't remember: $\operatorname{ker}(\varphi)=\{f(x) \in \mathbb{R}[x] \mid \varphi(f(x))=0\}=$ $\{f(x) \in \mathbb{R}[x] \mid f(i)=0\}$.

By the proof of last exercise, the only thing we need to show is that $p(x)=$ $x^{2}+1$ is a polynomial of smallest degree in $\operatorname{ker}(\varphi)$. Notice first that $p(x) \in \operatorname{ker}(\varphi)$ (this is clear because $i^{2}-1=0$). Now, if we take a non-zero polynomial of degree <2, then it can't be in $\operatorname{ker}(\varphi)$. This follows from the fact that $a+b i$ can only be zero if $a=b=0$.

We now prove the second part of the exercise: that $\mathbb{C}[x] /\left(x^{2}+1\right) \cong \mathbb{C} \times \mathbb{C}$.
Consider the homomorphism

$$
\begin{array}{lllc}
\psi: & \mathbb{C}[x] & \longrightarrow & \mathbb{C} \times \mathbb{C} \\
& f(x) & \longmapsto(f(i), f(-i)) .
\end{array}
$$

Claim. The homomorphism ψ is surjective.
Proof. Take $(a+b i, c+d i) \in \mathbb{C} \times \mathbb{C}$. We want to show that there is $f(x) \in \mathbb{C}[x]$ such that $f(i)=a+b i$ and $f(-i)=c+d i$.

The following polynomial satisfies the desired property and shows that psi is surjective:

$$
f(x)=\frac{a+b i}{2 i}(x+i)+\frac{c+d i}{-2 i}(x-i) .
$$

Now, by the isomorphism theorem,

$$
\mathbb{C}[x] / \operatorname{ker}(\psi) \cong \mathbb{C} \times \mathbb{C}
$$

Like before, our final job is to show that $\operatorname{ker}(\psi)=\left(x^{2}+1\right)$. And, again, this is the same as showing that the polynomial $p(x)=x^{2}+1$ is a polynomial of smallest degree in $\operatorname{ker}(\psi)$. This final step is pretty much the same as the final step of the first part of the exercise, so we leave it for you! :)

Exercise 13

It is easy to see that $\mathbb{Q}(\sqrt{-5})$ is a ring and that $\mathbb{Z}[\sqrt{-5}]$ is a subring of $\mathbb{Q}(\sqrt{-5})$. It suffices than to show that $\mathbb{Q}(\sqrt{-5})$ is a field, which amounts to showing that every non-zero element of it has a multiplicative inverse.

So take $a+b \sqrt{-5} \in \mathbb{Q}(\sqrt{-5}) \backslash\{0\}$, i.e., $a, b \in \mathbb{Q}$ are not both zero. We want to show it has an inverse in $\mathbb{Q}(\sqrt{-5})$.

Note that (magic!)

$$
(a+b \sqrt{-5})(a-b \sqrt{-5})=a^{2}+5 b^{2}=: r \in \mathbb{Q} \backslash\{0\}
$$

and, thus,

$$
(a+b \sqrt{-5})(a / r-b / r \sqrt{-5})=1
$$

showing that

$$
(a / r-b / r \sqrt{-5}) \in \mathbb{Q}(\sqrt{-5})
$$

is a multiplicative inverse of $a+b \sqrt{-5}$.

Exercise 14

You are really brave! Reading the solution to the second optional problem! So let's continue!

Actually that magical little trick from the last exercise comes from a function known as the "norm function". Here it is in all its glory:

$$
\begin{aligned}
N: \mathbb{Q}(\sqrt{-5}) & \longrightarrow \mathbb{Q} \\
a+b i & \longmapsto(a+b \sqrt{-5})(a-b \sqrt{-5})=a^{2}+5 b^{2} .
\end{aligned}
$$

You can show that N preserves multiplication, i.e.,

$$
N(z w)=N(z) N(w)
$$

for all $z, w \in \mathbb{Q}(\sqrt{-5})$.
Moreover, if we restrict the norm function to $\mathbb{Z}[\sqrt{-5}]$, the image lands in \mathbb{Z}, i.e.,

$$
\begin{aligned}
N: \mathbb{Z}[\sqrt{-5}] & \longrightarrow \mathbb{Z} \\
a+b i & \longmapsto(a+b \sqrt{-5})(a-b \sqrt{-5})=a^{2}+5 b^{2}
\end{aligned}
$$

We want to show that the only invertible elements in $\mathbb{Z}[\sqrt{-5}]$ are $1,-1$. Let $z \in \mathbb{Z}[\sqrt{-5}]$ be an invertible element. Then there exists an element $w \in \mathbb{Z}[\sqrt{-5}]$ such that

$$
v w=1 .
$$

But then taking norms,

$$
N(v) N(w)=N(v w)=N(1)=1
$$

Calling $v=a+b i$, we have the following equation in \mathbb{Z}

$$
\left(a^{2}+5 b^{2}\right) N(w)=1
$$

Since the equation is in \mathbb{Z} we have that

$$
a^{2}+5 b^{2}= \pm 1
$$

Hence the only possible values of a and b are:

$$
a= \pm 1 \quad \text { and } \quad b=0
$$

Therefore

$$
z= \pm 1
$$

as we wanted.
Notice we proved that an element $z \in \mathbb{Z}[\sqrt{-5}]$ is invertible if and only if $N(z)=1$.

Exercise 15

Let us show that $2 \in \mathbb{Z}[\sqrt{-5}]$ is irreducible. Assume that

$$
2=z w
$$

for some $z, w \in \mathbb{Z}[\sqrt{-5}]$.
Our goal is to show that either z or w is invertible (i.e., either $N(z)=1$ or $N(w)=1)$.

Taking norms yield

$$
4=N(2)=N(z) N(w)
$$

Since $N(a+b \sqrt{-5})=a^{2}+5 b^{2}$, we see that the only solutions are

$$
N(z)=4 \text { and } N(w)=1
$$

or

$$
N(z)=1 \text { and } N(w)=4
$$

In any case, either z or w is invertible, as we wanted.
The proof that the other numbers are irreducible is similar and will be left for you.

Exercise 16

We have the simple remark

$$
2 \cdot 3=6=(1+\sqrt{-5})(1-\sqrt{-5})
$$

which shows that we don't have unique factorization in $\mathbb{Z}[\sqrt{-5}]$.

Exercise 17

Let us prove that $I:=(2,1+\sqrt{-5})$ is not principal.
Suppose, by contradiction, that $I=(z)$. Then

$$
\begin{gathered}
2=z w \\
1+\sqrt{-5}=z v
\end{gathered}
$$

for some $w, v \in \mathbb{Z}[\sqrt{-5}]$.
Taking norms yield

$$
\begin{aligned}
& 4=N(z) N(w) \\
& 6=N(z) N(v)
\end{aligned}
$$

By recalling that

$$
N(a+b \sqrt{-5})=a^{2}+5 b^{2}
$$

we see that we must have

$$
N(z)=1
$$

which implies that $z= \pm 1$ which is not true (prove that $-1 \notin I$).
The same kind of argument proves that the other two ideals are not principal.
Let us now prove that $(2,1+\sqrt{-5})$ is not a product of non-trivial prime ideals (in the sense defined in exercise 18). A "non-trivial" ideal here means an ideal that is not the whole ring.

We start with a claim.
Claim 1. The ideal $(2,1+\sqrt{-5})$ is a maximal ideal.
Proof. Let J be an ideal such that

$$
(2,1+\sqrt{-5}) \subsetneq J
$$

Our goal is to show that J is necessarily the whole ring, i.e., that $1 \in J$. Let $\alpha=a+b \sqrt{-5} \in J \backslash(2,1+\sqrt{-5})$, where $a, b \in \mathbb{Z}$. Then we can write

$$
a=2 m+\epsilon_{a} \quad \text { and } \quad b=2 n+\epsilon_{b},
$$

for some $m, n \in \mathbb{Z}$ and $\epsilon_{a}, \epsilon_{b} \in\{0,1\}$.
Since $2(m+n \sqrt{-5}) \in(2,1+\sqrt{-5})$, we obtain that

$$
\epsilon_{a}+\epsilon_{b} \sqrt{-5}=\alpha-2(m+n \sqrt{-5}) \in J \backslash(2,1+\sqrt{-5}),
$$

i.e., one of the following elements are in J (and not in $(2,1+\sqrt{-5})$):

$$
1, \quad \sqrt{-5}, \quad 1+\sqrt{-5}
$$

In any of these cases, since $1+\sqrt{-5} \in J$, we have that $1 \in J$.

Note that the product of two ideals is never an ideal bigger than the original ones, i.e.,

$$
I J \subseteq I \quad \text { and } \quad I J \subseteq J
$$

Hence, if $(2,1+\sqrt{-5})=I J$, then

$$
I=(2,1+\sqrt{-5}) \quad \text { or } \quad I=\mathbb{Z}[\sqrt{-5}]
$$

and the same applies for J :

$$
J=(2,1+\sqrt{-5}) \quad \text { or } \quad J=\mathbb{Z}[\sqrt{-5}]
$$

Since I and J can't both be $(2,1+\sqrt{-5})$ (because exercise 18 says that, in this case $I J=(2) \neq(2,1+\sqrt{-5})$), we must have that either I is trivial or J is trivial.

A similar argument shows that the other two ideals are not product of two non-trivial ideals.

Exercise 18

Let us show that $(2,1+\sqrt{-5})^{2}=(2)$. It is easy to see that $(2,1+\sqrt{-5})^{2}$ is generated by

$$
2^{2}, 2(1+\sqrt{-5}),(1+\sqrt{-5})^{2}=-4+2 \sqrt{-5}
$$

Since they are all multiples of 2 , we have that $(2,1+\sqrt{-5})^{2} \subseteq(2)$.
Now, note that

$$
2=-(1+\sqrt{-5})^{2}+2(1+\sqrt{-5})
$$

which implies that $(2) \subseteq(2,1+\sqrt{-5})^{2}$.
The same kind of argument shows the other two equalities.

References

