Basic Algebra 1 Solutions to Assignment 5

November 22, 2013

Question 1 For $a, b, c, d \in \mathbb{Z}$ let z = a + ib and w = c + id be Guassian integers, then in particular z and w are complex numbers and we can divide z by w as a complex number to get

$$z/w = \frac{a+ib}{c+id}$$
$$= \frac{a+ib}{c+id} \frac{c-id}{c-id}$$
$$= \frac{(a+ib)(c-id)}{c^2+d^2}$$
$$= \frac{ac+bd}{c^2+d^2} + i\frac{bc-ad}{c^2+d^2}$$
$$= \alpha + i\beta$$

Now take q_1 to be the closest integer to α and q_2 the closest integer to β . Then we have $|q_1 - \alpha| \le 1/2$ and $|q_2 - \beta| \le 1/2$

$$|r| = |z - qw|$$

= $|w(z/w - q)|$
= $|w((\alpha - q_1) + i(\beta - q_2))|$
= $|w||(\alpha - q_1) + i(\beta - q_2)|$
= $|w|((\alpha - q_1)^2 + (\beta - q_2)^2)$
 $\leq |w|((1/2)^2 + (1/2)^2)$
 $< |w|$

as desired.

Note that, we are using the fact that the norm function is multiplicative:

$$|z_1 z_2| = (z_1 z_2)(\overline{z_1 z_2})$$
$$= z_1 z_2 \overline{z_1 z_2}$$
$$= (z_1 \overline{z_1})(z_2 \overline{z_2})$$
$$= |z_1||z_2|$$

Question 2 Take *I* to be an ideal in $R = \mathbb{Z}[i]$. Now take $S = \{|z| \mid z \in I, z \neq 0\}$, then *S* is a subset of \mathbb{N} .

If I is the zero ideal, then I is generated by 0 and there is nothing to prove. So we assume that $I \neq 0$ which implies that S is non-empty.

Now by the well-ordering principle (which states that every non-empty subset of \mathbb{N} has a minimal element,) S has a minimal element, say |d|. So d is the nonzero element in our ideal I with least norm. We will show that the ideal I is generated by d. Since d is an element of I, the ideal generated by d is included inside I. We need to prove the converse;

Take an arbitrary element $z \in I$, then by question 1, we have q and r in $\mathbb{Z}[i]$, such that

$$z = dq + r \qquad |r| < |d|.$$

But since $z \in I$ and $d \in I$, which implies that $dq \in I$, we have

$$r = z - dq \in I.$$

If $r \neq 0$, then |r| is a natural number in S and has norm less than that of d, which is a contradiction! So r = 0 and z = dq. In other words, $z \in (d)$, the ideal generated by d.

This proves that $I \subset (d)$, and hence we have equality, I = (d).

Question 3 As suggested by the hint, take $I = (p, t + i) \subset \mathbb{Z}[i] = R$, where t = (2m)!. Note that we have $t^2 + 1 \equiv 0 \mod p$, as we have seen in assignment 3, question 4. By the previous question, I is generated by one element, say d = a + ib, in R. We will show that $p = |d| = a^2 + b^2$. Remember a and b are integers.

We have $p, t + i \in I = (d)$, so we can write

$$d|p \qquad d|t+i \tag{1}$$

which implies that

$$|d| \mid |p| = p^2 \tag{2}$$

$$|d| | |t+i| = (t+i)(t-i) = t^2 + 1 \equiv 0.$$
(3)

(2) implies that |d| is 1, p or p^2 . But if $|d| = d\overline{d} = 1$ then d is a unit in R, in which case I would be the whole ring, R. But we have:

Claim $1 \notin I$.

Proof: if $1 \in I$, then 1 = p(r+is) + (t+i)(u+iv) = (pr+tu-v) + i(ps+tv+u)which implies

$$1 = pr + tu - v$$
$$0 = ps + tv + u.$$

But if these equations have a solution with $r.s, u, v \in \mathbb{Z}$, then the equations hold modulo p, so we should have

$$1 \equiv tu - v \tag{4}$$

$$0 \equiv tv + u. \tag{5}$$

Multiplying the first equation by t and adding it to the second we get

$$t \equiv t^2 u + u = (t^2 + 1)u \equiv 0,$$

where the latter equality holds because we know $t^2 + 1 \equiv 0$. But this is a contradiction since t is not divisible by p.

So d cannot have norm 1. But it also can not have norm p^2 as if it did, we would have p = dd' with |d'| = 1. So d' would be a unit and p and d would be associate. This implies that $p \mid t + i$, as $d \mid t + i$, by (1). But for p to divide t + i, p should divide t and 1, neither of which is true.

So the only possibility left for |d| is p and we have $a^2 + b^2 = |d| = p$, and p is a sum of two squares.

Question 4 First we observe that ϕ sends the additive (resp. multiplicative) identity in R to the additive (resp. multiplicative) identity in $\mathbb{Z}/p\mathbb{Z}$;

$$\phi(0) = \phi(0+0i) = [0-0t]_p = [0]_p$$

$$\phi(1) = \phi(1+0i) = [1-0t]_p = [1]_p.$$

Next, we check that it respects addition and multiplication:

$$\phi((a+bi) + (c+di)) = \phi((a+c) + (b+d)i)$$

= $[(a+c) - (b+d)t]_p$
= $[a-bt]_p + [c-dt]_p$
= $\phi(a+bi) + \phi(c+di),$

and

$$\begin{split} \phi((a+bi)(c+di)) &= \phi((ac-bd) + (ad+bc)i) \\ &= [(ac-bd) - (ad+bc)t]_p \\ &= [(ac+bdt^2) - (ad+bc)t]_p \\ &= [(a-bt)(c-dt)]_p \\ &= [a-bt]_p [c-dt]_p \\ &= \phi(a+bi)\phi(c+di). \end{split}$$

So ϕ is a homomorphism. Now we compute its kernel; take $a + bi \in ker(\phi)$. We have

$$[0]_p = \phi(a+bi) = [a-bt]_p.$$

So a - bt = pk. Now we can write

$$a + bi = a - bt + bt + bi = (a - bt) + b(t + i) = pk + b(t + i) \in I,$$

so $ker(\phi) \subset I$. Conversely, we have

$$\phi(p) = \phi(p+0i) = [p-0t]_p = [0]_p$$

$$\phi(t+i) = [t-t]_p = [0]_p$$

and so $I \subset ker(\phi)$, and hence we have the equality $I = ker(\phi)$.

Further, note that $[n]_p = \phi(n+0i)$ for all $[n]_p \in \mathbb{Z}/p\mathbb{Z}$. Hence ϕ is surjective.

Now by the (first) Isomorphism Theorem, we have

$$R/I \cong \mathbb{Z}/p\mathbb{Z}.$$

Question 5

Claim A 2×2 matrix is invertible, if and only if its rows are linearly independent.

Proof: First we have $det \begin{pmatrix} a & b \\ \lambda a & \lambda b \end{pmatrix} = a\lambda b - b\lambda a = 0$. And $det \begin{pmatrix} \lambda a & \lambda b \\ a & b \end{pmatrix} = \lambda ab - \lambda ba = 0$. So if a matrix has linearly dependent rows, then it's not invertible. Conversely, if $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in M_2(\mathbb{Z}/p\mathbb{Z} \text{ is not invertible, then } ad - bc = 0$. If (a, b) = (0, 0) then rows of A are linearly dependent and there is nothing to prove. If not, then assume $a \neq 0$, (the case $b \neq 0$ is similar.) We have d = bc/a and taking $\lambda = c/a \in F$ we have $(c, d) = (ac/a, bc/a) = \lambda(a, b)$ and hence rows of A are linearly dependent.

This proves the claim.

Now we can use the claim to count the elements in $GL_2(F)$;

First we have $p^2 - 1$ possibility for the first row, since (a, b) can be anything (p choices for each a and b) except for (0, 0).

After we have chosen the first row, the second row can be anything $(p^2 \text{ choices})$ except for any multiple of (a, b). But there are p multiples $\lambda(a, b)$ as λ runs over all elements of F. So for the second row we have $p^2 - p$ choices.

So overall, cardinality of $GL_2(F)$ would be $(p^2 - 1)(p^2 - p)$.

Question 6 We have $D_8 = \{1, r, r^2, r^3, V, H, D_1, D_2\}$. Considering the following labeling of vertices of the square

 D_8 can be realised as a subgroup of S_4 by looking at how it permutes the vertices. So we have

$$\begin{split} r &= (1,2,3,4) \\ r^2 &= (1,3)(2,4) \\ r^3 &= (1,4,3,2) \\ V &= (1,4)(2,3) \\ H &= (1,2)(3,4) \\ D_1 &= (2,4) \\ \text{reflection with respect to the diagonal passing through (1)} \\ D_2 &= ((1,3)) \end{split}$$

reflection with respect to the diagonal passing through (2).

So, since r, r^3, D_1 and D_2 are cycles, their order is equal to their length. In particular, D_1 and D_2 are of order 2. The identity has order one. And the other three elements are each composition of two cycles of length two, and so their order is lcm(2,2) = 2. So the set of elements of order 2 in D_8 is $\{r^2, V, H, D_1, D_2\}$.

Now we consider Q_8 ; We have ord(1) = 1 and ord(-1) = 2 and $(\pm i)^2 = (\pm j)^2 = (\pm k)^2 = -1$ so $ord(\pm i) = ord(\pm j) = ord(\pm k) = 4$. So the only element of order 2 is -1.

Now we use this to show that the two groups are not isomorphic.

Claim If $f: G \to H$ is an isomorphism of groups, and $g \in G$ then ord(g) = ord(f(g)).

Proof: $g^n = e_G$ if and only if $(f(g))^n = f(g^n) = e_H$, since f is a group homomorphism (only if part) and is injective (if part.) So for all n < ord(g) we have $(f(g))^n \neq 0$ as $g^n \neq 0$. And $f(g)^{ord(g)} = f(g^{ord(g)}) = f(e_G) = e_H$. And hence ord(g) is the smallest integer, d, such that $(f(g))^d = e_H$.

So if we have an isomorphism from D_8 to Q_8 , it should send elements of order 2 in D_8 to element(s) of order 2 in Q_8 . But there are 5 elements of order 2 in the former and only one in the latter, and this contradicts injectivity of the isomorphism.

Question 7 As suggested by the hint, we look at the action of $GL_2(F)$ $(F = \mathbb{Z}/2\mathbb{Z})$ on the set of three elements $\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ of nonzero column vectors in F^2 . We label the elements of this set $\left\{ 1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, 2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, 3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$ (any ordering would do,) Now any element $A \in GL_2(F)$ permutes this set since an invertible matrix gives a linear map $F^2 \to F^2$ which is invertible and so sends the zero vector to the zero vector and permutes the other three vectors. This gives a map $\phi : GL_2(F) \to S_3$ which is a homomorphism as it sends the identity matrix to the trivial permutation and multiple of two matrices correspond to composition of the maps they induce on F^2 . Now we show ϕ is bijective; if a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is in $ker(\phi)$ then

$$\left(\begin{array}{c}a\\c\end{array}\right) = \left(\begin{array}{c}a&b\\c&d\end{array}\right) \left(\begin{array}{c}1\\0\end{array}\right) = \left(\begin{array}{c}1\\0\end{array}\right)$$

and

$$\left(\begin{array}{c}b\\d\end{array}\right) = \left(\begin{array}{c}a&b\\c&d\end{array}\right) \left(\begin{array}{c}0\\1\end{array}\right) = \left(\begin{array}{c}0\\1\end{array}\right)$$

and so A is the identity matrix. To show ϕ is surjective, take any permutation $\sigma \in S_3$ let

$$\sigma(1) = \left(\begin{array}{c} a \\ c \end{array}\right)$$

and

$$\sigma(2) = \left(\begin{array}{c} b\\ d \end{array}\right)$$

and take

$$A = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right).$$

Then A is an invertible matrix since its columns are nonzero and not equal, σ being a permutation (remember that scalars here are just 0 and 1 and so two nonzero columns are linearly dependent if and if they are equal.) And $\phi(A) = \sigma$.

This proves that ϕ is an isomorphism of groups, as desired.

Question 8 Let $F = \mathbb{Z}/3\mathbb{Z}$. We first show that for $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(F)$ the map $\sigma_A : P \to P$ which

sends $j \in P$ to $\frac{aj+b}{cj+d}$ is a permutation, i.e. it's a bijective map on P. Since P is finite, it suffices to show σ_A is injective, and surjectivity will automatically follow. So assume $\sigma_A(j) = \sigma_A(k)$ for $j, k \in P$. Then we have

$$\frac{aj+b}{cj+d} = \frac{ak+b}{ck+d}$$
$$(aj+b)(ck+d) = (ak+b)(cj+d)$$
$$acjk+adj+bck+bd = acjk+adk+bcj+bd$$
$$0 = (ad-bc)(k-j)$$

now since A is invertible, its determinant ad - bc is nonzero and the above equality implies j = k. So we have a map $\phi : GL_2(F) \to S_P$. We now show this map is a homomorphism. First it sends the identity matrix to the trivial permutation, as for any $j \in P$

$$\phi(\left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array}\right))(j) = \frac{1*j+0}{0*j+1} = j.$$

Second, we should show multiple of two matrices is send to composition of their images, under ϕ . Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $B = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$. Then $AB = \begin{pmatrix} aa' + bc' & ab' + bd' \\ ca' + dc' & ab' + dd' \end{pmatrix}$, and for any $j \in P$

$$\phi(AB)(j) = \frac{(aa' + bc')j + ab' + bd'}{(aa' + bc')j + ab' + dd'}$$

$$= \frac{a(a'j + b') + b(c'j + d')}{c(a'j + b') + d(c'j + d')}$$

$$= \frac{a\frac{a'j+b'}{c'j+d'} + b}{c\frac{a'j+b'}{c'j+d'} + d}$$

$$= \frac{a[\phi(B)(j)] + b}{c[\phi(B)(j)] + d}$$

$$= \phi(A)(\phi(B)(j)).$$

So ϕ is a homomorphism of groups.

Next, we compute the kernel. Assume $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is in the kernel, then $\phi(A)$ is the trivial permutation and we have $\frac{aj+b}{cj+d} = j$ for all $j \in P$. Plugging in different values for j in this equation we get

$$j = 0 \implies b = 0$$

$$j = \infty \implies a/c = \infty \implies c = 0$$

$$j = 1 \implies a = d$$

$$j = 2 \implies 2a = 2d$$

so A is a (nonzero) multiple of the identity matrix

$$ker(\phi) = \{Id, 2 * Id\}.$$

Now we have a group homomorphism from a group of order 48 (refer to question 5) to a group of order 24, and the kernel has 2 elements. The image of ϕ is a subgroup of S_4 (and hence of cardinality dividing 24) which is, by Isomorphism Theorem, isomorphic to $GL_2(F)/ker(\phi)$. But the latter group has cardinality 48/2 = 24 and so $Im(\phi)$ has cardinality 24 and hence is the whole group S_4 .

Question 9 To show a subset of a group is a subgroup we need to check it contains the identity element and it's closed under multiplication and that it contains inverses of its elements; paragraph $e_g \in Z(S)$ Since the identity element in G commutes with every element of G ($e_Gg = ge_G = g$) it, in particular, commutes with all elements in S and is, hence, in Z(S).

Z(S) is closed under multiplication If $g, h \in Z(S)$ then for every $s \in S$ we have

$$gs = sg$$
$$hs = sh.$$

So for all $s \in S$ we have

$$s(gh) = (sg)h = (gs)h = g(sh) = g(hs) = (gh)s$$

and so gh is in Z(S). Now we show $a = g^{-1}s$ is equal to $b = sg^{-1}$

$$ga = g(sg^{-1}) = (gs)g^{-1}$$

= $(sg)g^{-1}$
= $s(gg^{-1})$
= $s = (gg^{-1})s$
= $g(g^{-1}s) = gb$

so ga = gb and multiplying both sides by g^{-1} from left, we get a = b, as desired.

Question 9 First we observe that for every element $a \in H$ and $g \in G a^{g^{-1}} \in H$ y definition of a normal subgroup. So for $a \in H$ conjugacy class of $a, [a] = \{gag^{-1} \mid g \in G\}$ is a subset of H.

Now we show for $a, b \in H$, [a] and [b] are either disjoint or equal; Assume $[a] \cap [b]$ is not empty so we have

$$g_1 a g_1^{-1} = g_2 b g_2^{-1},$$

then

$$a = g_1^{-1}g_2bg_2^{-1}g_1 = gbg^{-1}$$

for $g = g_1^{-1} g_2$.

Then we show that every conjugate of a is in [b] and every conjugate of b is in [a]. Take $h \in G$,

$$hah^{-1} = h(gbg^{-1})h^{-1}$$

= $(hg)b(hg)^{-1} \in [b]$

and

$$hbh^{-1} = h(g^{-1}bg)h^{-1}$$
$$= (hg^{-1})b(hg^{-1})^{-1} \in [a]$$

and so [a] = [b].

Hence H can be written as a disjoint union of it's conjugacy classes.

Now take $G = S_n$. First we have the following general facts. Any element in G is a product of disjoint cycles, and if $\sigma \in G$ is any permutation and $\tau = (i_1, \ldots, i_t)$ a cycle of length t then $\sigma \tau \sigma^{-1} = (\sigma(i_1), \ldots, \sigma(i_t))$, is a cycle of the same length.

And for τ_1 and τ_2 two (disjoint) cycles, we have $\sigma(\tau_1\tau_2)\sigma^{-1} = (\sigma\tau_1\sigma^{-1})(\sigma\tau_2\sigma^{-1})$. And so conjugating multiple of (disjoint) cycles result in a multiple of cycles of the same length.

Further any two cycles of the same length $\tau_1 = (i_1, \ldots, i_t)$ and $\tau_2 = (j_1, \ldots, j_t)$ are conjugate: for $\sigma = \begin{pmatrix} i_1 & \cdots & i_t \\ j_1 & \cdots & j_t \end{pmatrix}$ we have $\tau_2 = \sigma \tau_1 \sigma^{-1}$. Let n = 4; then $G = \{Id, (i, j), (i, j, k) = (i, k)(i, j), (i, j, k, l) = (i, l)(i, k)(i, j), (i, j)(k, l) \mid i \leq l \}$

Let n = 4; then $G = \{Ia, (i, j), (i, j, k) = (i, k)(i, j), (i, j, k, l) = (i, l)(i, k)(i, j), (i, j)(k, l)$ i, j, k, l different elements in $\{1, 2, 3, 4\}$, and by what we said above conjugacy classes of G are Id, [(i, j)] = set of all 2-cycles, [(i, j, k)] = set of all 3-cycles, [(i, j, k, l]) =set of all 4-cycles, [(i, j)(k, l)] = set of all multiples of two disjoint 2-cycles.

Now from this we can see that normal subgroups of G are $\{Id\}, K = \{Id\} \cup [(i, j)(k.l)], A_4 = \text{set of even permutations}, S_4$, since

1.if a subgroup contains the conjugacy class of 2-cycles, it will contain the whole group as everything is generated by 2-cycles

2.if a subgroup contains conjugacy class of multiple of two 2-cycles and nothing else, then it's the Klein subgroup K. If it contains conjugacy class of 3-cycles then it's A_4 . If it contains any of the odd conjugacy classes then it's S_4 .

3. If it contains the conjugacy class of 3-cycles, then it will contain [(i, j)(k, l)] so it will either be A_4 or S_4 .

4. If it contains the 4-cycles, then since a 4-cycle multiplied by itself is multiple of 20 cycles, the subgroup will contain [(i, j)(k, l)] and hence will be S_4 .

Now if n = 5, conjugacy classes are identity, 2-cycles, 3-cycles, 4-cycles, 5-cycles, $[(i, j)((k, l) = \text{multiples of two disjoint 2-cycls and } [i, j)(k, l, m)] = \text{multiples of a 2-cycle and a 3-cycle. Normal subgroups are} {Id}, A_5 and S_5.$