Basic Algebra 1
Solutions to Assignment 5

November 22, 2013

Question 1 For a,b,c,d € Z let z = a + ib and w = ¢ + id be Guassian
integers, then in particular z and w are complex numbers and we can divide z
by w as a complex number to get

_a+ib

2w = c+1id
_ a-+1ibc—id
Cc+idc—id
~ (a+ib)(c —id)
e

ac+bd+ibc—ad
62+d2 02+d2
a+ip

Now take ¢; to be the closest integer to o and g the closest integer to 3.
Then we have |¢1 — | <1/2 and |g2 — 5] < 1/2
rl =z — qu|
= |w(z/w —q)|
= |w((a = q1) +i(8 — q2))|
= w|[(a = q1) + (8 — ¢2)|
= [w|((e = q1)* + (8 — 42)%)
< |w]((1/2)* + (1/2)%)
< |w]

as desired.
Note that, we are using the fact that the norm function is multiplicative:

|2122] = (2122)(Z122)
= Z122%21%2
= (2121)(22%2)

= |21]|22]



Question 2 Take I to be an ideal in R = Z[i]. Now take S ={|z| | z € [,z #
0}, then S is a subset of N.

If I is the zero ideal, then I is generated by 0 and there is nothing to prove.
So we assume that I # 0 which implies that .S is non-empty.

Now by the well-ordering principle (which states that every non-empty sub-
set of N has a minimal element,) S has a minimal element, say |d|. So d is the
nonzero element in our ideal I with least norm. We will show that the ideal I is
generated by d. Since d is an element of I, the ideal generated by d is included
inside I. We need to prove the converse;

Take an arbitrary element z € I. then by question 1, we have ¢ and r in Z[i],
such that

z=dq+r |r| < |d|.

But since z € I and d € I, which implies that dq € I, we have
r=z—dqel.

If r # 0, then |r| is a natural number in S and has norm less than that of d,
which is a contradiction! So r = 0 and z = dq. In other words, z € (d), the ideal
generated by d.

This proves that I C (d), and hence we have equality, I = (d).

Question 3 As suggested by the hint, take I = (p,t +14) C Z[i] = R, where
t = (2m)!. Note that we have t? + 1 = 0 mod p, as we have seen in assignment
3, question 4. By the previous question, I is generated by one element, say
d = a+ib, in R. We will show that p = |d| = a® + b%. Remember a and b are
integers.

We have p,t +1i € I = (d), so we can write

dlp dlt +1 (1)

which implies that
ld| | Ip| = p° (2)
ld| | [t +i] = (t+i)(t—i)=t*+1=0. (3)

(2) implies that |d| is 1, p or p?. But if |d| = dd = 1 then d is a unit in R, in
which case I would be the whole ring, R. But we have:

Claim 1¢1.
Proof: if 1 € I, then 1 = p(r+is)+(t+1i)(u+iv) = (pr+tu—v)+i(ps+tv+u)
which implies

l=pr+tu—vo
0=ps+tv+u.



But if these equations have a solution with r.s,u,v € Z, then the equations hold
modulo p, so we should have

l=tu—w (4)
0=tv+u. (5)

Multiplying the first equation by ¢ and adding it to the second we get
t=t*utu=(t*+1)u=0,

where the latter equality holds because we know t?> + 1 = 0. But this is a
contradiction since ¢ is not divisible by p.

So d cannot have norm 1. But it also can not have norm p? as if it did, we
would have p = dd’ with |d'| = 1. So d’ would be a unit and p and d would be
associate. This implies that p | t + ¢, as d | t + ¢, by (1). But for p to divide
t + i, p should divide ¢ and 1, neither of which is true.

So the only possibility left for |d| is p and we have a® 4+ b = |d| = p, and p
is a sum of two squares.

Question 4 First we observe that ¢ sends the additive (resp. multiplicative)
identity in R to the additive (resp. multiplicative) identity in Z/pZ;

¢(0) = ¢(0 4 0i) = [0 — 0], = [0],

¢(1) = ¢(1+0i) = [1 = 0t], = [1],

Next, we check that it respects addition and multiplication:

d((a+bi) + (c+di)) = ¢((a+¢) + (b+ d)i)
=[(a+c)— (b+d)],
= [a —bt], + [c — di],
= ¢(a + bi) + P(c+ di),

and

¢((a + bi)(c+ di)) = ¢((ac — bd) + (ad + bc)i)
[(ac — bd) — (ad + bc)t],
= [(ac + bdt?) — (ad + be)t],
(@ — bt)(e — dt)]

= [a — bt]p[c — di],

= ¢(a + bi)p(c + di).

So ¢ is a homomorphism. Now we compute its kernel; take a + bi € ker(¢).
We have
[0], = ¢(a + bi) = [a — bt],.



So a — bt = pk. Now we can write
a+bi=a—bt+bt+bi=(a—bt)+bt+i)=pk+bt+i)el,
so ker(¢) C I. Conversely, we have

o(p) = ¢(p + 0i) = [p — 0t], = [0],,
¢(t + Z) = [t - t]p = [O}p

and so I C ker(¢), and hence we have the equality I = ker (o).
Further, note that [n], = ¢(n+0i) for all [n], € Z/pZ. Hence ¢ is surjective.

Now by the (first) Isomorphism Theorem, we have

R/I = 7/pZ.
Question 5

Claim A 2 x 2 matrix is invertible, if and only if its rows are linearly inde-
pendent.

Proof: First we havedet | b = a\b—bAa = 0. And det Aa Ab =
Aa A a b
Aab—Aba = 0. So if a matrix has linearly dependent rows, then it’s not invertible.

Conversely, if A = ( CCL Z ) € M>(Z/pZ is not invertible, then ad —bc = 0.
If (a,b) = (0,0) then rows of A are linearly dependent and there is nothing to
prove. If not, then assume a # 0, (the case b # 0 is similar.) We have d = be/a
and taking A = ¢/a € F we have (c,d) = (ac/a,bc/a) = A(a,b) and hence rows
of A are linearly dependent.

This proves the claim.

Now we can use the claim to count the elements in GLy(F');
First we have p? — 1 possibility for the first row, since (a,b) can be anything
(p choices for each a and b,) except for (0,0).
After we have chosen the first row, the second row can be anything (p?
choices) except for any multiple of (a,b). But there are p multiples A(a,b) as A
runs over all elements of F. So for the second row we have p? — p choices.

So overall, cardinality of GLz(F) would be (p? — 1)(p? — p).

Question 6 We have Dg = {1,7,72,7%,V, H, D1, D5 }. Considering the follow-
ing labeling of vertices of the square




Dsg can be realised as a subgroup of S; by looking at how it permutes the
vertices. So we have

=(1,2,3,4)

= (1,3)(2,4)

3 =(1,4,3,2)

V=(1,4)(2,3)

H=(1,2)(3,4)
D, = ( 74)

reflection with respect to the diagonal passing through (1)

Dy = ((1,3)

reflection with respect to the diagonal passing through (2).

So, since r, 3, D; and Dy are cycles, their order is equal to their length. In
particular, D; and D, are of order 2. The identity has order one. And the
other three elements are each composition of two cycles of length two , and
so their order is lem(2,2) = 2. So the set of elements of order 2 in Dg is
{Tz,‘/v,H,Dl,DQ}.

Now we consider Qg; We have ord(1) = 1 and ord(—1) = 2 and (&i)? =
(£5)? = (£k)? = —1 s0 ord(+i) = ord(4j) = ord(+k) = 4. So the only element
of order 2 is —1.

Now we use this to show that the two groups are not isomorphic.

Claim If f: G — H is an isomorphism of groups, and g € G then ord(g) =
ord(f(g)).

Proof: g™ = eg if and only if (f(g))" = f(¢") = en, since f is a group
homomorphism (only if part) and is injective (if part.) So for all n < ord(g) we
have (f(g))" # 0 as g" # 0. And f(g)”"™9) = f(¢>"9)) = f(eq) = en- And
hence ord(g) is the smallest integer, d, such that (f(g))? = es.

So if we have an isomorphism from Dg to Q)g, it should send elements of order
2 in Dg to element(s) of order 2 in (Q)s. But there are 5 elements of order 2
in the former and only one in the latter, and this contradicts injectivity of the
isomorphism.

Question 7 As suggested by the hint, we look at the action of GLo(F)

(F = 7Z/27) on the set of three elements {( (1) ) , < (1) > , < 1 >} of nonzero

1
0
0 1 . :

1 ,3 = 1 } (any ordering would do,) Now any element A € GLy(F)
permutes this set since an invertible matrix gives a linear map F2 — F2 which is

column vectors in F2. We label the elements of this set {1 = ) 2 =



invertible and so sends the zero vector to the zero vector and permutes the other
three vectors. This gives a map ¢ : GLa(F) — S3 which is a homomorphism
as it sends the identity matrix to the trivial permutation and multiple of two
matrices correspond to composition of the maps they induce on F2. Now we

show ¢ is bijective; if a matrix A = ( Z Z > is in ker(¢) then
a\ (a b 1y (1
c) \c d 0/ \ o0
b\ [(a b 0y (O
d) \c d 1/ 1)

and so A is the identity matrix. To show ¢ is surjective, take any permutation

and

o € 83 let

o-(2)
and

0(2) = ( b )
and take

a b
A= .
Then A is an invertible matrix since its columns are nonzero and not equal, o
being a permutation (remember that scalars here are just 0 and 1 and so two

nonzero columns are linearly dependant if and if they are equal.) And ¢(A) = o.
This proves that ¢ is an isomorphism of groups, as desired.

Question 8 Let F' =Z/3Z.
We first show that for A = ( (CI Z
aj+b

sends 7 € P to citd is a permutation, i.e. it’s a bijective map on P. Since P
is finite, it suffices to show o4 is injective, and surjectivity will automatically
follow. So assume o4(j) = 0a(k) for j,k € P. Then we have

) € GLy(F) themap o4 : P — P which

aj+b ak+b
cj+d T k+d
(aj + b)(ck + d) = (ak + b)(cj + d)
acjk + adj + bck 4+ bd = acjk + adk + bcj + bd
0 = (ad —bc)(k — 7)

now since A is invertible, its determinant ad — bc is nonzero and the above
equality implies j = k. So we have a map ¢ : GLy(F) — Sp. We now show



this map is a homomorphism. First it sends the identity matrix to the trivial
permutation, as for any j € P

1 0 N 1xg+0 .
(o § D=5 =i
Second, we should show multiple of two matrices is send to composition of
/ /
their images, under ¢. Let A = ( i b ) and B = ( CCL, b ) . Then AB =

d d
aa’ +bd  ab' 4 bd’ )
( cd +de abf + dd ),andforanyj ep
) (ad’ +bc')j + ab + bd’
AB =
$(AB)) (aa +bc')j + ab’ + dd’
a(a'j +b)+b(dj+d)
cla’j +b') +d(cdj+d)
a’j4b’
_aggg tb
= T aj+b
cobr td
a[¢(B) ()] +b
clp(B)(j)] +d
= ¢(A)(¢(B)(j))-

So ¢ is a homomorphism of groups.

|

o

Next, we compute the kernel. Assume A = ( Z > is in the kernel, then

aj+b

¢(A) is the trivial permutation and we have {457

different values for j in this equation we get

= j for all j € P. Plugging in

j=0 = b=0

j=00 = afc=00 = ¢=0
j=1 = a=d

j=2 — 2 =2d

so A is a (nonzero) multiple of the identity matrix
ker(¢) = {Id,2 x Id}.

Now we have a group homomorphism from a group of order 48 (refer to
question 5) to a group of order 24, and the kernel has 2 elements. The image
of ¢ is a subgroup of Sy (and hence of cardinality dividing 24) which is, by
Isomorphism Theorem, isomorphic to GLo(F')/ker(¢). But the latter group has
cardinality 48/2 = 24 and so I'm(¢) has cardinality 24 and hence is the whole
group Sjy.



Question 9 To show a subset of a group is a subgroup we need to check it
contains the identity element and it’s closed under multiplication and that it
contains inverses of its elements; paragraphe, € Z(.S) Since the identity element
in G commutes with every element of G (eqg = geg = g¢) it, in particular,
commutes with all elements in S and is, hence, in Z(S).

Z(9) is closed under multiplication If g,h € Z(S) then for every s € S
we have

gs = sg
hs = sh.

So for all s € S we have

s(gh) = (sg)h = (gs)h = g(sh) = g(hs) = (gh)s

1 1

and so gh is in Z(S). Now we show a = g~ 's is equal to b = sg~

ga=g(sg~") = (g9s)g~"

= (s9)g"
=s(997")
=s5=(997")s
=g(g~"'s) = gb

so ga = gb and multiplying both sides by ¢g—! from left, we get a = b, as
desired.

Question 9 First we observe that for every element a € H and g € G ad €
H y definition of a normal subgroup. So for a € H conjugacy class of a, [a] =
{gag=' | g € G} is a subset of H.

Now we show for a,b € H,[a] and [b] are either disjoint or equal;

Assume [a] N [b] is not empty so we have

grag; " = gabgs ',

then

a =gy g2bgs g1 = gbg™"

for g =gy Lgs.
Then we show that every conjugate of a is in [b] and every conjugate of b is
in [a]. Take h € G,
hah™' = h(gbg~')h ™"
= (hg)b(hg)~" € [0]



and

hbh ™t = h(g~'bg’h !
= (hg™"b(hg™ ")~ € [a]

and so [a] = [b].
Hence H can be written as a disjoint union of it’s conjugacy classes.

Now take G = §,,. First we have the following general facts. Any element
in G is a product of disjoint cycles, and if ¢ € G is any permutation and
7 = (i1,...,4;) a cycle of length t then oro~! = (0(i1),...,0(it)), is a cycle of
the same length.
And for 71 and 7 two (disjoint) cycles, we have o(7172)0 ! = (om0 1) (020 ).
And so conjugating multiple of (disjoint) cycles result in a multiple of cycles of
the same length.

Further any two cycles of the same length 71 = (41, ...,4) and 72 = (j1,...,J¢)
are conjugate: for o = ;.1 o ;.t we have 7y = om0 L.
1 ... t

Let n = 4; then G = {Id, (i, §), (¢, j, k) = (4, k) (i, 5), (i, 4, k, 1) = (4,1) (i, k) (3, ), (4, 5) (K, 1) |
i, 7, k, 1 different elements in{1,2,3,4}}, and by what we said above conjugacy
classes of G are Id, [(4, j)] = set of all 2-cycles, [(4, j, k)] = set of all 3-cycles, (3, j, k,]) =
set of all 4-cycles, [(i,7)(k,1)] = set of all multiples of two disjoint 2-cycles.

Now from this we can see that normal subgroups of G are {Id}, K = {Id} U
[(4,7)(k.l)], Ay = set of even permutations, Sy, since

1.if a subgroup contains the conjugacy class of 2-cycles, it will contain the
whole group as everything is generated by 2-cycles

2.if a subgroup contains conjugacy class of multiple of two 2-cycles and
nothing else, then it’s the Klein subgroup K. If it contains conjugacy class of
3-cycles then it’s Ay. If it contains any of the odd conjugacy classes then it’s
Sy.

3.if it contains the conjugacy class of 3-cycles, then it will contain [(4, 7)(k, )]
so it will either be A4 or Sy.

4.if it contains the 4-cycles, then since a 4-cycle multiplied by itself is multiple
of 20cycles, the subgroup will contain [(7, 7)(k,1)] and hence will be Sy.

Now if n = 5, conjugacy classes are identity, 2-cycles, 3-cycles, 4-cycles,
5-cycles, [(4,7)((k,1) =multiples of two disjoint 2-cycls and [¢, j)(k,, m)] = mul-
tiples of a 2-cycle and a 3-cycle. Normal subgroups are{Id}, A5 and Ss.



