
Basic Algebra 1

Solutions to Assignment 5

November 22, 2013

Question 1 For a, b, c, d ∈ Z let z = a + ib and w = c + id be Guassian
integers, then in particular z and w are complex numbers and we can divide z
by w as a complex number to get

z/w =
a+ ib

c+ id

=
a+ ib

c+ id

c− id
c− id

=
(a+ ib)(c− id)

c2 + d2

=
ac+ bd

c2 + d2
+ i

bc− ad
c2 + d2

= α+ iβ

Now take q1 to be the closest integer to α and q2 the closest integer to β.
Then we have |q1 − α| ≤ 1/2 and |q2 − β| ≤ 1/2

|r| = |z − qw|
= |w(z/w − q)|
= |w((α− q1) + i(β − q2))|
= |w||(α− q1) + i(β − q2)|
= |w|((α− q1)2 + (β − q2)2)

≤ |w|((1/2)2 + (1/2)2)

< |w|

as desired.
Note that, we are using the fact that the norm function is multiplicative:

|z1z2| = (z1z2)(z1z2)

= z1z2z1z2

= (z1z1)(z2z2)

= |z1||z2|
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Question 2 Take I to be an ideal in R = Z[i]. Now take S = {|z| | z ∈ I, z 6=
0}, then S is a subset of N.

If I is the zero ideal, then I is generated by 0 and there is nothing to prove.
So we assume that I 6= 0 which implies that S is non-empty.

Now by the well-ordering principle (which states that every non-empty sub-
set of N has a minimal element,) S has a minimal element, say |d|. So d is the
nonzero element in our ideal I with least norm. We will show that the ideal I is
generated by d. Since d is an element of I, the ideal generated by d is included
inside I. We need to prove the converse;

Take an arbitrary element z ∈ I. then by question 1, we have q and r in Z[i],
such that

z = dq + r |r| < |d|.

But since z ∈ I and d ∈ I, which implies that dq ∈ I, we have

r = z − dq ∈ I.

If r 6= 0, then |r| is a natural number in S and has norm less than that of d,
which is a contradiction! So r = 0 and z = dq. In other words, z ∈ (d), the ideal
generated by d.

This proves that I ⊂ (d), and hence we have equality, I = (d).

Question 3 As suggested by the hint, take I = (p, t + i) ⊂ Z[i] = R, where
t = (2m)!. Note that we have t2 + 1 ≡ 0 mod p, as we have seen in assignment
3, question 4. By the previous question, I is generated by one element, say
d = a + ib, in R. We will show that p = |d| = a2 + b2. Remember a and b are
integers.

We have p, t+ i ∈ I = (d), so we can write

d|p d|t+ i (1)

which implies that

|d| | |p| = p2 (2)

|d| | |t+ i| = (t+ i)(t− i) = t2 + 1 ≡ 0. (3)

(2) implies that |d| is 1, p or p2. But if |d| = dd = 1 then d is a unit in R, in
which case I would be the whole ring, R. But we have:

Claim 1 /∈ I.
Proof: if 1 ∈ I, then 1 = p(r+is)+(t+i)(u+iv) = (pr+tu−v)+i(ps+tv+u)

which implies

1 = pr + tu− v
0 = ps+ tv + u.
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But if these equations have a solution with r.s, u, v ∈ Z, then the equations hold
modulo p, so we should have

1 ≡ tu− v (4)

0 ≡ tv + u. (5)

Multiplying the first equation by t and adding it to the second we get

t ≡ t2u+ u = (t2 + 1)u ≡ 0,

where the latter equality holds because we know t2 + 1 ≡ 0. But this is a
contradiction since t is not divisible by p.

So d cannot have norm 1. But it also can not have norm p2 as if it did, we
would have p = dd′ with |d′| = 1. So d′ would be a unit and p and d would be
associate. This implies that p | t + i, as d | t + i, by (1). But for p to divide
t+ i, p should divide t and 1, neither of which is true.

So the only possibility left for |d| is p and we have a2 + b2 = |d| = p, and p
is a sum of two squares.

Question 4 First we observe that φ sends the additive (resp. multiplicative)
identity in R to the additive (resp. multiplicative) identity in Z/pZ;

φ(0) = φ(0 + 0i) = [0− 0t]p = [0]p

φ(1) = φ(1 + 0i) = [1− 0t]p = [1]p.

Next, we check that it respects addition and multiplication:

φ((a+ bi) + (c+ di)) = φ((a+ c) + (b+ d)i)

= [(a+ c)− (b+ d)t]p

= [a− bt]p + [c− dt]p
= φ(a+ bi) + φ(c+ di),

and

φ((a+ bi)(c+ di)) = φ((ac− bd) + (ad+ bc)i)

= [(ac− bd)− (ad+ bc)t]p

= [(ac+ bdt2)− (ad+ bc)t]p

= [(a− bt)(c− dt)]p
= [a− bt]p[c− dt]p
= φ(a+ bi)φ(c+ di).

So φ is a homomorphism. Now we compute its kernel; take a+ bi ∈ ker(φ).
We have

[0]p = φ(a+ bi) = [a− bt]p.
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So a− bt = pk. Now we can write

a+ bi = a− bt+ bt+ bi = (a− bt) + b(t+ i) = pk + b(t+ i) ∈ I,

so ker(φ) ⊂ I. Conversely, we have

φ(p) = φ(p+ 0i) = [p− 0t]p = [0]p

φ(t+ i) = [t− t]p = [0]p

and so I ⊂ ker(φ), and hence we have the equality I = ker(φ).
Further, note that [n]p = φ(n+0i) for all [n]p ∈ Z/pZ. Hence φ is surjective.

Now by the (first) Isomorphism Theorem, we have

R/I ∼= Z/pZ.

Question 5

Claim A 2 × 2 matrix is invertible, if and only if its rows are linearly inde-
pendent.

Proof: First we have det

(
a b
λa λb

)
= aλb−bλa = 0.And det

(
λa λb
a b

)
=

λab−λba = 0. So if a matrix has linearly dependent rows, then it’s not invertible.

Conversely, if A =

(
a b
c d

)
∈M2(Z/pZ is not invertible, then ad− bc = 0.

If (a, b) = (0, 0) then rows of A are linearly dependent and there is nothing to
prove. If not, then assume a 6= 0, (the case b 6= 0 is similar.) We have d = bc/a
and taking λ = c/a ∈ F we have (c, d) = (ac/a, bc/a) = λ(a, b) and hence rows
of A are linearly dependent.

This proves the claim.

Now we can use the claim to count the elements in GL2(F );
First we have p2− 1 possibility for the first row, since (a, b) can be anything

(p choices for each a and b,) except for (0, 0).
After we have chosen the first row, the second row can be anything (p2

choices) except for any multiple of (a, b). But there are p multiples λ(a, b) as λ
runs over all elements of F. So for the second row we have p2 − p choices.

So overall, cardinality of GL2(F ) would be (p2 − 1)(p2 − p).

Question 6 We have D8 = {1, r, r2, r3, V,H,D1, D2}. Considering the follow-
ing labeling of vertices of the square

p p
pp1 4

32
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D8 can be realised as a subgroup of S4 by looking at how it permutes the
vertices. So we have

r = (1, 2, 3, 4)

r2 = (1, 3)(2, 4)

r3 = (1, 4, 3, 2)

V = (1, 4)(2, 3)

H = (1, 2)(3, 4)

D1 = (2, 4)

reflection with respect to the diagonal passing through (1)

D2 = ((1, 3)

reflection with respect to the diagonal passing through (2).

So, since r, r3, D1 and D2 are cycles, their order is equal to their length. In
particular, D1 and D2 are of order 2. The identity has order one. And the
other three elements are each composition of two cycles of length two , and
so their order is lcm(2, 2) = 2. So the set of elements of order 2 in D8 is
{r2, V,H,D1, D2}.

Now we consider Q8; We have ord(1) = 1 and ord(−1) = 2 and (±i)2 =
(±j)2 = (±k)2 = −1 so ord(±i) = ord(±j) = ord(±k) = 4. So the only element
of order 2 is −1.

Now we use this to show that the two groups are not isomorphic.

Claim If f : G → H is an isomorphism of groups, and g ∈ G then ord(g) =
ord(f(g)).

Proof: gn = eG if and only if (f(g))n = f(gn) = eH , since f is a group
homomorphism (only if part) and is injective (if part.) So for all n < ord(g) we
have (f(g))n 6= 0 as gn 6= 0. And f(g)ord(g) = f(gord(g)) = f(eG) = eH . And
hence ord(g) is the smallest integer, d, such that (f(g))d = eH .

So if we have an isomorphism from D8 to Q8, it should send elements of order
2 in D8 to element(s) of order 2 in Q8. But there are 5 elements of order 2
in the former and only one in the latter, and this contradicts injectivity of the
isomorphism.

Question 7 As suggested by the hint, we look at the action of GL2(F )

(F = Z/2Z) on the set of three elements {
(

1
0

)
,

(
0
1

)
,

(
1
1

)
} of nonzero

column vectors in F 2. We label the elements of this set {1 =

(
1
0

)
, 2 =(

0
1

)
, 3 =

(
1
1

)
} (any ordering would do,)̇ Now any element A ∈ GL2(F )

permutes this set since an invertible matrix gives a linear map F 2 → F 2 which is
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invertible and so sends the zero vector to the zero vector and permutes the other
three vectors. This gives a map φ : GL2(F ) → S3 which is a homomorphism
as it sends the identity matrix to the trivial permutation and multiple of two
matrices correspond to composition of the maps they induce on F 2. Now we

show φ is bijective; if a matrix A =

(
a b
c d

)
is in ker(φ) then

(
a
c

)
=

(
a b
c d

)(
1
0

)
=

(
1
0

)
and (

b
d

)
=

(
a b
c d

)(
0
1

)
=

(
0
1

)
,

and so A is the identity matrix. To show φ is surjective, take any permutation
σ ∈ S3 let

σ(1) =

(
a
c

)
and

σ(2) =

(
b
d

)
and take

A =

(
a b
c d

)
.

Then A is an invertible matrix since its columns are nonzero and not equal, σ
being a permutation (remember that scalars here are just 0 and 1 and so two
nonzero columns are linearly dependant if and if they are equal.) And φ(A) = σ.

This proves that φ is an isomorphism of groups, as desired.

Question 8 Let F = Z/3Z.

We first show that for A =

(
a b
c d

)
∈ GL2(F ) the map σA : P → P which

sends j ∈ P to aj+b
cj+d is a permutation, i.e. it’s a bijective map on P. Since P

is finite, it suffices to show σA is injective, and surjectivity will automatically
follow. So assume σA(j) = σA(k) for j, k ∈ P. Then we have

aj + b

cj + d
=
ak + b

ck + d

(aj + b)(ck + d) = (ak + b)(cj + d)

acjk + adj + bck + bd = acjk + adk + bcj + bd

0 = (ad− bc)(k − j)

now since A is invertible, its determinant ad − bc is nonzero and the above
equality implies j = k. So we have a map φ : GL2(F ) → SP . We now show
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this map is a homomorphism. First it sends the identity matrix to the trivial
permutation, as for any j ∈ P

φ(

(
1 0
0 1

)
)(j) =

1 ∗ j + 0

0 ∗ j + 1
= j.

Second, we should show multiple of two matrices is send to composition of

their images, under φ. Let A =

(
a b
c d

)
and B =

(
a′ b′

c′ d′

)
. Then AB =(

aa′ + bc′ ab′ + bd′

ca′ + dc′ ab′ + dd′

)
, and for any j ∈ P

φ(AB)(j) =
(aa′ + bc′)j + ab′ + bd′

(aa′ + bc′)j + ab′ + dd′

=
a(a′j + b′) + b(c′j + d′)

c(a′j + b′) + d(c′j + d′)

=
aa′j+b′

c′j+d′ + b

ca
′j+b′

c′j+d′ + d

=
a[φ(B)(j)] + b

c[φ(B)(j)] + d

= φ(A)(φ(B)(j)).

So φ is a homomorphism of groups.

Next, we compute the kernel. Assume A =

(
a b
c d

)
is in the kernel, then

φ(A) is the trivial permutation and we have aj+b
cj+d = j for all j ∈ P. Plugging in

different values for j in this equation we get

j = 0 =⇒ b = 0

j =∞ =⇒ a/c =∞ =⇒ c = 0

j = 1 =⇒ a = d

j = 2 =⇒ 2a = 2d

so A is a (nonzero) multiple of the identity matrix

ker(φ) = {Id, 2 ∗ Id}.

Now we have a group homomorphism from a group of order 48 (refer to
question 5) to a group of order 24, and the kernel has 2 elements. The image
of φ is a subgroup of S4 (and hence of cardinality dividing 24) which is, by
Isomorphism Theorem, isomorphic to GL2(F )/ker(φ). But the latter group has
cardinality 48/2 = 24 and so Im(φ) has cardinality 24 and hence is the whole
group S4.
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Question 9 To show a subset of a group is a subgroup we need to check it
contains the identity element and it’s closed under multiplication and that it
contains inverses of its elements; paragrapheg ∈ Z(S) Since the identity element
in G commutes with every element of G (eGg = geG = g) it, in particular,
commutes with all elements in S and is, hence, in Z(S).

Z(S) is closed under multiplication If g, h ∈ Z(S) then for every s ∈ S
we have

gs = sg

hs = sh.

So for all s ∈ S we have

s(gh) = (sg)h = (gs)h = g(sh) = g(hs) = (gh)s

and so gh is in Z(S). Now we show a = g−1s is equal to b = sg−1

ga = g(sg−1) = (gs)g−1

= (sg)g−1

= s(gg−1)

= s = (gg−1)s

= g(g−1s) = gb

so ga = gb and multiplying both sides by g−1 from left, we get a = b, as
desired.

Question 9 First we observe that for every element a ∈ H and g ∈ G ag
−1 ∈

H y definition of a normal subgroup. So for a ∈ H conjugacy class of a, [a] =
{gag−1 | g ∈ G} is a subset of H.

Now we show for a, b ∈ H, [a] and [b] are either disjoint or equal;
Assume [a] ∩ [b] is not empty so we have

g1ag
−1
1 = g2bg

−1
2 ,

then
a = g−11 g2bg

−1
2 g1 = gbg−1

for g = g−11 g2.
Then we show that every conjugate of a is in [b] and every conjugate of b is

in [a]. Take h ∈ G,

hah−1 = h(gbg−1)h−1

= (hg)b(hg)−1 ∈ [b]
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and

hbh−1 = h(g−1bg)h−1

= (hg−1)b(hg−1)−1 ∈ [a]

and so [a] = [b].
Hence H can be written as a disjoint union of it’s conjugacy classes.

Now take G = Sn. First we have the following general facts. Any element
in G is a product of disjoint cycles, and if σ ∈ G is any permutation and
τ = (i1, . . . , it) a cycle of length t then στσ−1 = (σ(i1), . . . , σ(it)), is a cycle of
the same length.

And for τ1 and τ2 two (disjoint) cycles, we have σ(τ1τ2)σ−1 = (στ1σ
−1)(στ2σ

−1).
And so conjugating multiple of (disjoint) cycles result in a multiple of cycles of
the same length.

Further any two cycles of the same length τ1 = (i1, . . . , it) and τ2 = (j1, . . . , jt)

are conjugate: for σ =

(
i1 . . . it
j1 . . . jt

)
we have τ2 = στ1σ

−1.

Let n = 4; thenG = {Id, (i, j), (i, j, k) = (i, k)(i, j), (i, j, k, l) = (i, l)(i, k)(i, j), (i, j)(k, l) |
i, j, k, l different elements in{1, 2, 3, 4}}, and by what we said above conjugacy
classes ofG are Id, [(i, j)] = set of all 2-cycles, [(i, j, k)] = set of all 3-cycles, [(i, j, k, l]) =
set of all 4-cycles, [(i, j)(k, l)] = set of all multiples of two disjoint 2-cycles.

Now from this we can see that normal subgroups of G are {Id},K = {Id}∪
[(i, j)(k.l)], A4 = set of even permutations, S4, since

1.if a subgroup contains the conjugacy class of 2-cycles, it will contain the
whole group as everything is generated by 2-cycles

2.if a subgroup contains conjugacy class of multiple of two 2-cycles and
nothing else, then it’s the Klein subgroup K. If it contains conjugacy class of
3-cycles then it’s A4. If it contains any of the odd conjugacy classes then it’s
S4.

3.if it contains the conjugacy class of 3-cycles, then it will contain [(i, j)(k, l)]
so it will either be A4 or S4.

4.if it contains the 4-cycles, then since a 4-cycle multiplied by itself is multiple
of 20cycles, the subgroup will contain [(i, j)(k, l)] and hence will be S4.

Now if n = 5, conjugacy classes are identity, 2-cycles, 3-cycles, 4-cycles,
5-cycles, [(i, j)((k, l) =multiples of two disjoint 2-cycls and [i, j)(k, l,m)] = mul-
tiples of a 2-cycle and a 3-cycle. Normal subgroups are{Id}, A5 and S5.
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